JP5147025B2 - Iron-based preform and journal structure for forming metal matrix composites - Google Patents

Iron-based preform and journal structure for forming metal matrix composites Download PDF

Info

Publication number
JP5147025B2
JP5147025B2 JP2010287019A JP2010287019A JP5147025B2 JP 5147025 B2 JP5147025 B2 JP 5147025B2 JP 2010287019 A JP2010287019 A JP 2010287019A JP 2010287019 A JP2010287019 A JP 2010287019A JP 5147025 B2 JP5147025 B2 JP 5147025B2
Authority
JP
Japan
Prior art keywords
peripheral surface
preform
iron
hole
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010287019A
Other languages
Japanese (ja)
Other versions
JP2011069372A (en
Inventor
輝幸 小田
寛 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd, Fuji Jukogyo KK filed Critical Nippon Piston Ring Co Ltd
Priority to JP2010287019A priority Critical patent/JP5147025B2/en
Publication of JP2011069372A publication Critical patent/JP2011069372A/en
Application granted granted Critical
Publication of JP5147025B2 publication Critical patent/JP5147025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、金属基複合材(Metal Matrix Composite:以下、頭文字をとってMMCと言う)の形成に用いるアルミニウム系合金による鋳包み性に優れた金属基複合材形成用鉄系プリフォーム及びジャーナル部構造に関する。   The present invention relates to an iron-based preform and journal for forming a metal-based composite material, which is excellent in castability with an aluminum-based alloy used for forming a metal matrix composite (hereinafter referred to as MMC). Regarding the part structure.

従来、例えば車両用エンジンにおいては、重量軽減を図るためアルミニウム系合金を鋳造したシリンダブロックが広く使用されている。このようなエンジンにおいてはアルミニウム系合金(熱膨張係数:21.0×10−6/℃程度)よりなるシリンダブロックにジャーナル部を形成し、このジャーナル部に軸受メタルを介装して鉄系材料のクランクシャフト(熱膨張係数:9×10−6〜12×10−6/℃程度)を軸支すると、エンジン作動時にはシリンダ内における混合気の燃焼により発生した熱がジャーナル部に伝達され、ジャーナル部の温度が上昇して鉄系材料のクランクシャフトとアルミニウム系合金からなる母材との熱膨張係数の差により、軸受メタルが介在するジャーナル部の軸受面とクランクシャフトとの間のクリアランスが過大になって車両走行時に振動や騒音の発生を招くことになる。 Conventionally, for example, in a vehicle engine, a cylinder block in which an aluminum alloy is cast is widely used in order to reduce weight. In such an engine, a journal part is formed in a cylinder block made of an aluminum-based alloy (thermal expansion coefficient: about 21.0 × 10 −6 / ° C.), and a bearing metal is interposed in the journal part to make an iron-based material. If the crankshaft (coefficient of thermal expansion: 9 × 10 −6 to 12 × 10 −6 / ° C.) is supported, the heat generated by the combustion of the air-fuel mixture in the cylinder is transmitted to the journal when the engine is operating. The clearance between the bearing surface of the journal part where the bearing metal intervenes and the crankshaft is excessive due to the difference in the thermal expansion coefficient between the crankshaft made of iron-based material and the base material made of aluminum-based alloy due to the rise in the temperature of the part As a result, vibration and noise are generated when the vehicle travels.

そこで、例えば、水平対向4気筒エンジンのクランクシャフトを軸支するジャーナル部にあっては、アルミニウム系合金からなる左右のシリンダブロックにそれぞれ中央部が半円弧状に凹設された軸受面を有するジャーナル部に、シリンダブロックの鋳造時に鉄系粉末焼結体からなる鉄系プリフォームを鋳包みして鉄系プリフォームをMMC化することにより、母材となるシリンダブロックのアルミニウム系合金を変更することなくジャーナル部に必要な熱膨張係数を得るようにしている。   Therefore, for example, in a journal portion that supports a crankshaft of a horizontally opposed four-cylinder engine, a journal having a bearing surface in which a central portion is recessed in a semicircular arc shape on each of left and right cylinder blocks made of an aluminum alloy. To change the aluminum alloy of the cylinder block that becomes the base material by casting the iron preform made of iron-based powder sintered body into the part and casting the iron-based preform into MMC. The thermal expansion coefficient necessary for the journal portion is obtained.

ところが、アルミニウム系合金の母材の一部または全部をMMC化する場合、一般的に鋳造法、特に高速・高圧鋳造法(High Pressure Die Casting:以下、頭文字をとってHPDCと言う)を用いて界面の接合強度を確保し、鉄系粉末焼結体からなるプリフォームにアルミニウム系合金を容易に溶浸させて密着性を安定的に確保することは極めて困難である。また、鉄系粉末焼結体からなるプリフォームをアルミニウム系合金で鋳包む際には、鋳包み後のアルミニウム系合金溶湯の溶浸状態が機械的特性や物理的特性に大きく影響することが知られており、このような影響を少なくするために鋳造条件が制約されることが多い。   However, when part or all of the base material of the aluminum-based alloy is made into MMC, generally a casting method, particularly a high-speed / high-pressure casting method (High Pressure Die Casting: hereinafter referred to as HPDC) is used. Thus, it is extremely difficult to ensure the adhesion strength at the interface and to ensure stable adhesion by easily infiltrating the aluminum-based alloy into the preform made of the iron-based powder sintered body. It is also known that when a preform made of an iron-based powder sintered body is cast with an aluminum-based alloy, the infiltration state of the molten aluminum-based alloy after casting is greatly affected by mechanical and physical properties. In many cases, the casting conditions are limited to reduce such influence.

一方、鉄系粉末焼結体からなるプリフォームの組織を基地中に遊離Cu相が分散した組織とし、更にショットブラスト処理或いは更に水蒸気処理を施し、プリフォームの表面粗さを特定の粗さ範囲とすることにより、鉄系粉末焼結体からなるプリフォームとアルミニウム系合金の溶湯との濡れ性が向上してアルミニウム系合金による鋳包み性が向上し、アルミニウム系合金からなる母材と鉄系プリフォームとの接合強度が向上することが知られている(例えば、特許文献1参照)。   On the other hand, the preform structure made of the iron-based powder sintered body is made into a structure in which the free Cu phase is dispersed in the base, and further subjected to shot blast treatment or further steam treatment, and the surface roughness of the preform is within a specific roughness range. As a result, the wettability between the preform made of the iron-based powder sintered body and the molten aluminum alloy is improved, and the castability of the aluminum-based alloy is improved. It is known that the bonding strength with the preform is improved (see, for example, Patent Document 1).

特開2004−204298号公報JP 2004-204298 A

上記特許文献1によると、Cuが固溶して鉄系粉末焼結材からなるプリフォームの強度を増加させると共に、遊離Cu相として基地中に析出してプリフォームがアルミニウム系合金で鋳包まれる際にアルミニウム系合金と反応して界面の接合強度を増加させることができる。   According to Patent Document 1, Cu is dissolved to increase the strength of a preform made of an iron-based powder sintered material, and is precipitated in a matrix as a free Cu phase, and the preform is cast with an aluminum-based alloy. At this time, the bonding strength at the interface can be increased by reacting with the aluminum-based alloy.

しかし、アルミニウム系合金によって鋳包みする際に、プリフォームの形状や仕様等に起因してプリフォームと母材との界面が一定の接合強度に達する前に、プリフォームを鋳包むアルミニウム系合金溶湯の凝固及び収縮時に発生する応力が加わると界面の密着が不安定になり、かつ界面に隙間が発生して接合強度が不安定になることが懸念される。これらの界面における接合強度の不安定や、隙間の発生等の現象は、HPDCのように急冷凝固を伴う場合に顕著である。   However, when casting with an aluminum alloy, the aluminum alloy melt that casts the preform before the interface between the preform and the base metal reaches a certain bonding strength due to the shape and specifications of the preform. When stress generated during solidification and shrinkage is applied, adhesion at the interface becomes unstable, and there is a concern that a gap is generated at the interface and bonding strength becomes unstable. Phenomena such as instability of bonding strength at these interfaces and generation of gaps are remarkable when rapid solidification is involved as in HPDC.

ジャーナル部においてアルミニウム系合金からなる母材とプリフォームとの界面に隙間があると、母材とプリフォームとの間の熱伝導効率が低下してジャーナル部の周方向において熱伝導率のバラツキが発生する。このバラツキによりジャーナル部が均等に膨張しなくなり、ジャーナル部の軸受面による軸受メタルの支持が不安定になりクランクシャフトと軸受メタルとの間の摩擦係数が高くなる。この摩擦係数の増加すなわち摩擦抵抗の増大に起因して軸受メタルの摩耗が激しくなりエンジンの燃費、性能、耐久性等が低下する要因となる。   If there is a gap at the interface between the preform made of an aluminum-based alloy and the preform in the journal part, the heat conduction efficiency between the preform and the preform will decrease, and the thermal conductivity will vary in the circumferential direction of the journal part. Occur. Due to this variation, the journal portion does not expand evenly, the support of the bearing metal by the bearing surface of the journal portion becomes unstable, and the coefficient of friction between the crankshaft and the bearing metal increases. Due to the increase in the friction coefficient, that is, the increase in frictional resistance, the wear of the bearing metal becomes intense, which causes a decrease in engine fuel consumption, performance, durability, and the like.

更に、ジャーナル部においてプリフォームと母材との界面に隙間があると、ジャーナル部の軸受面を機械加工する際に、薄肉に形成された該部が加工時の負荷により弾性変形してジャーナル部の加工精度が低下する。   Furthermore, if there is a gap at the interface between the preform and the base material in the journal part, when the bearing surface of the journal part is machined, the thin part is elastically deformed by the load during processing and the journal part The machining accuracy is reduced.

また、界面に隙間が存在すると、鉄系粉末焼結体からなるプリフォームを鋳包むアルミニウム系合金溶湯の凝固及び収縮時に発生する残留応力や熱膨張の差によって高い負荷による応力集中が起こり、アルミニウム系合金部、即ち母材が破損することがある。   Also, if there is a gap at the interface, stress concentration due to high load occurs due to the difference in residual stress and thermal expansion that occurs during solidification and shrinkage of the molten aluminum alloy that casts the preform made of iron-based powder sintered body, and aluminum A system alloy part, ie, a base material, may be damaged.

従って、かかる点に鑑みなされた本発明の第1の目的は、アルミニウム系合金による鋳包み性に優れ、安定した界面接合強度及び密着が確保できる金属基複合材形成用鉄系プリフォームを提供することにある。また、第2の目的はこの鉄系プリフォームを有するジャーナル部構造を提供することにある。   Accordingly, a first object of the present invention made in view of such points is to provide an iron-based preform for forming a metal matrix composite that is excellent in castability by an aluminum-based alloy and can ensure stable interfacial bonding strength and adhesion. There is. A second object is to provide a journal structure having this iron-based preform.

上記第1の目的を達成する請求項1に記載の金属基複合材形成用鉄系プリフォームの発明は、断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面を有するアルミニウム系合金母材で鋳包みされ、上記凹面に沿う断面半円弧状乃至U字状で上記中心軸芯延在方向に沿って連続する内周面及び外周面を有するプリフォーム本体を備えた金属基複合材形成用鉄系プリフォームにおいて、上記プリフォーム本体は、上記内周面と外周面とを連通する貫通孔が穿設され、上記貫通孔の内面に表面積拡大処理が施されていることを特徴とする。   The invention of the iron-based preform for forming a metal matrix composite material according to claim 1, which achieves the first object, is an aluminum having a concave surface continuously formed along a central axis extending direction and having a semicircular cross section. A metal base comprising a preform body casted with a base alloy base material and having a semicircular arc or U-shaped cross section along the concave surface and having an inner circumferential surface and an outer circumferential surface continuous along the central axis extending direction In the iron-based preform for forming a composite material, the preform body has a through-hole communicating with the inner peripheral surface and the outer peripheral surface, and a surface area enlargement process is performed on the inner surface of the through-hole. Features.

請求項1の発明によると、プリフォーム本体に、内周面と外周面とを連通する貫通孔を穿設し、かつこの貫通孔の内面に表面積拡大処理を施すことによって、鋳包み工程において、鉄系プリフォームの外周面側に注湯されたアルミニウム合金溶湯は、鉄系プリフォームの表面に沿って内周面側に侵入すると共に、外周面側から貫通孔を経て内周面側に供給されて良好な湯廻り性が得られる。また、半円弧状の凹面と鉄系プリフォームの内周面との間に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面に沿って収縮応力が作用し、かつ外周面側に注湯されたアルミニウム系合金溶湯の凝固及び収縮によって外周面に沿って収縮応力が作用したときに、内面に表面積拡大処理より貫通孔の内面の面積を増大させて貫通孔に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力が増大して内周面及び外周面に沿う収縮応力が分散されて受け止められてアルミニウム系合金溶湯の移動が抑制されると共に内周面及び外周面に密着し、収縮後の母材に生じる残留応力が緩和される。   According to the invention of claim 1, in the casting process, by forming a through-hole that communicates the inner peripheral surface and the outer peripheral surface in the preform main body and subjecting the inner surface of the through-hole to a surface area expansion process, The molten aluminum alloy poured on the outer surface of the iron-based preform penetrates the inner surface along the surface of the iron-based preform, and is supplied from the outer surface to the inner surface via a through hole. As a result, good hot water circulation is obtained. Also, contraction stress acts along the inner peripheral surface during solidification and contraction of the molten aluminum alloy poured between the semicircular arc-shaped concave surface and the inner peripheral surface of the iron-based preform, and on the outer peripheral surface side. Aluminum-based alloy that penetrated into the inner surface by increasing the inner surface area of the through-hole by surface area expansion treatment when shrinkage stress was applied along the outer peripheral surface due to solidification and shrinkage of the poured aluminum-based alloy molten metal The drag due to shrinkage stress due to solidification and shrinkage of the molten metal is increased and the shrinkage stress along the inner and outer peripheral surfaces is dispersed and received, and the movement of the molten aluminum alloy is suppressed and the inner and outer peripheral surfaces are in close contact with each other. Thus, the residual stress generated in the base material after shrinkage is relieved.

更に、このアルミニウム合金溶湯の凝固及び収縮時におけるアルミニウム合金溶湯の移動の抑制に伴って、母材と鉄系プリフォームとの界面における隙間の発生が防止でき、安定した界面接合強度及び密着が確保できる。   Furthermore, with the suppression of the movement of the molten aluminum alloy during solidification and shrinkage of the molten aluminum alloy, it is possible to prevent the formation of a gap at the interface between the base metal and the iron-based preform, and to ensure stable interfacial bonding strength and adhesion. it can.

請求項2に記載の発明は、請求項1の金属基複合材形成用鉄系プリフォームにおいて、上記プリフォーム本体の内周面及び/または外周面に開口する有底孔が穿設されていることを特徴とする。   According to a second aspect of the present invention, in the iron-based preform for forming a metal matrix composite according to the first aspect, a bottomed hole that opens to the inner peripheral surface and / or the outer peripheral surface of the preform body is formed. It is characterized by that.

請求項2の発明によると、プリフォーム本体の内周面及び/または外周面に開口する有底孔を穿設することで、有底孔に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力によって、内周面や外周面に沿って作用する収縮応力が分散されて受け止められ、アルミニウム系合金溶湯の移動が抑制されて内周面や外周面に密着し、収縮後の母材に生じる残留応力が緩和される。この有底孔は貫通孔に比べ穿設の制約が少なく、貫通孔の穿設が制限される部位でも有底孔を穿設することができる。   According to the invention of claim 2, the shrinkage stress due to the solidification and shrinkage of the molten aluminum alloy infiltrated into the bottomed hole by drilling the bottomed hole opened in the inner peripheral surface and / or outer peripheral surface of the preform body. Due to the drag force, the shrinkage stress acting along the inner and outer peripheral surfaces is dispersed and received, and the movement of the aluminum alloy molten metal is suppressed and adheres to the inner and outer peripheral surfaces. The resulting residual stress is alleviated. The bottomed hole has less restrictions on the drilling than the through hole, and the bottomed hole can be drilled even at a site where the drilling of the through hole is restricted.

請求項3に記載の発明は、請求項2の金属基複合材形成用鉄系プリフォームにおいて、上記有底孔の内面に表面積拡大処理が施されていることを特徴とする。   According to a third aspect of the present invention, in the iron-based preform for forming a metal matrix composite according to the second aspect, a surface area enlargement process is performed on the inner surface of the bottomed hole.

請求項3に記載の発明によると、有底孔の内面に表面積拡大処理により貫通孔の内面の面積を増大させて、有底孔内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力が増大する。   According to the third aspect of the present invention, the inner surface of the bottomed hole is increased in surface area by a surface area expansion process, and due to the shrinkage stress caused by the solidification and shrinkage of the molten aluminum-based alloy that has entered the bottomed hole. Drag increases.

請求項4に記載の金属基複合材形成用鉄系プリフォームの発明は、断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面を有するアルミニウム系合金母材で鋳包みされ、上記凹面に沿う断面半円弧状乃至U字状で上記中心軸芯延在方向に沿って連続する内周面及び外周面を有するプリフォーム本体を備えた金属基複合材形成用鉄系プリフォームにおいて、上記プリフォーム本体は、内周面及び/または外周面に開口する有底孔が穿設され、上記有底孔の内面に表面積拡大処理が施されていることを特徴とする。   The invention of the iron-based preform for forming a metal matrix composite according to claim 4 is casted with an aluminum-based alloy base material having a semicircular cross section and having a concave surface continuously formed along the direction in which the central axis extends. An iron-based preform for forming a metal matrix composite comprising a preform body having a semicircular arc or a U-shaped cross section along the concave surface and having an inner peripheral surface and an outer peripheral surface that are continuous along the extending direction of the central axis. The preform body is characterized in that a bottomed hole that opens to the inner peripheral surface and / or the outer peripheral surface is formed, and a surface area enlargement process is performed on the inner surface of the bottomed hole.

請求項4に記載の発明によると、プリフォーム本体の内周面及び/または外周面に開口する内面に表面積拡大処理が施され有底孔に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力によって、アルミニウム系合金溶湯の凝固及び収縮による内周面及び外周面に沿って作用する収縮応力が分散されて受け止められ、アルミニウム系合金溶湯の内周面及び外周面に沿う移動が抑制されると共に内周面及び外周面に密着し、凝固及び収縮後の母材に生じる残留応力が緩和される。更に、このアルミニウム合金溶湯の凝固及び収縮時におけるアルミニウム合金溶湯の移動抑制に伴って、母材と鉄系プリフォームとの界面における隙間の発生が防止でき、鋳包み性に優れ、安定した界面接合強度及び密着が確保できる。   According to the fourth aspect of the present invention, the shrinkage stress due to solidification and shrinkage of the molten aluminum-based alloy that has been subjected to surface area expansion treatment on the inner peripheral surface and / or the inner surface opened to the outer peripheral surface of the preform body and entered the bottomed hole. The drag due to the solidification and shrinkage of the molten aluminum alloy is dispersed and received by the drag caused by the aluminum alloy melt, and the movement along the inner and outer circumferential surfaces of the molten aluminum alloy is suppressed. In addition, it is in close contact with the inner and outer peripheral surfaces, and the residual stress generated in the base material after solidification and shrinkage is relieved. Furthermore, with the suppression of the movement of the molten aluminum alloy during solidification and shrinkage of the molten aluminum alloy, it is possible to prevent the formation of gaps at the interface between the base material and the iron-based preform, and excellent in castability and stable interface bonding. Strength and adhesion can be secured.

請求項5に記載の発明は、請求項4の金属基複合材形成用鉄系プリフォームにおいて、上記プリフォーム本体は、上記内周面と外周面とを連通する貫通孔が穿設されていることを特徴とする。   According to a fifth aspect of the present invention, in the iron-based preform for forming a metal matrix composite according to the fourth aspect, the preform body has a through-hole communicating the inner peripheral surface and the outer peripheral surface. It is characterized by that.

請求項5の発明によると、プリフォーム本体に、内周面と外周面とを連通する貫通孔を穿設することによって、鋳包み工程において、鉄系プリフォームの外周面側に注湯されたアルミニウム合金溶湯は、鉄系プリフォームの表面に沿って内周面側に侵入すると共に、外周面側から貫通孔を経て内周面側に供給されて良好な湯廻り性が得られる。また、半円弧状の凹面と鉄系プリフォームの内周面との間に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面に沿って収縮応力が作用し、かつ外周面側に注湯されたアルミニウム系合金溶湯の凝固及び収縮によって外周面に沿って収縮応力が作用したときに貫通孔に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力が増大して内周面及び外周面に沿う収縮応力が分散されて受け止められてアルミニウム系合金溶湯の移動が抑制されると共に内周面及び外周面に密着し、収縮後の母材に生じる残留応力が緩和される。   According to the invention of claim 5, the preform body was poured into the outer peripheral surface side of the iron-based preform in the casting step by drilling a through hole that communicates the inner peripheral surface and the outer peripheral surface. The molten aluminum alloy penetrates into the inner peripheral surface side along the surface of the iron-based preform, and is supplied from the outer peripheral surface side to the inner peripheral surface side through the through hole, so that good hot-rollability is obtained. Also, contraction stress acts along the inner peripheral surface during solidification and contraction of the molten aluminum alloy poured between the semicircular arc-shaped concave surface and the inner peripheral surface of the iron-based preform, and on the outer peripheral surface side. When the shrinkage stress acts along the outer peripheral surface due to the solidification and shrinkage of the molten aluminum alloy molten metal, the inner peripheral surface increases due to the drag due to the shrinkage stress due to the solidification and shrinkage of the molten aluminum alloy that has entered the through hole. In addition, the shrinkage stress along the outer peripheral surface is dispersed and received, the movement of the molten aluminum alloy is suppressed, and the residual stress generated in the base material after the shrinkage is relieved by being in close contact with the inner peripheral surface and the outer peripheral surface.

上記第2の目的を達成する請求項6に記載のジャーナル部構造の発明は、上記請求項1〜5のいずれか1項に記載の金属基複合材形成用鉄系プリフォームを、上記プリフォーム本体の内周面に沿う断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面状の軸受面を有するアルミニウム系合金母材で鋳包みしたことを特徴とする。   The invention of the journal part structure according to claim 6, which achieves the second object, is characterized in that the iron-based preform for forming a metal matrix composite according to any one of claims 1 to 5 is replaced with the preform. It is characterized by being cast with an aluminum alloy base material having a semi-circular cross section along the inner peripheral surface of the main body and having a concave bearing surface continuously formed along the direction in which the central axis extends.

請求項6によると、鉄系プリフォームを、鉄系プリフォームの内周面に沿う断面半円弧状で連続形成された凹面状の軸受面を有するアルミニウム系合金からなる母材で鋳包みして形成したジャーナル部は、鉄系材料のシャフトとの熱膨張係数の差が小さくなり、ジャーナル部の温度が上昇してもシャフトと軸受面とのクリアランスを許容範囲内に収めることができ、シャフトの回転中における振動や騒音の発生を防止することができる。   According to claim 6, the iron-based preform is cast with a base material made of an aluminum-based alloy having a concave bearing surface continuously formed in a semicircular cross section along the inner peripheral surface of the iron-based preform. The formed journal part has a smaller difference in thermal expansion coefficient from the shaft of ferrous material, and even if the temperature of the journal part rises, the clearance between the shaft and the bearing surface can be kept within an allowable range. Generation of vibration and noise during rotation can be prevented.

更に、鉄系プリフォームの内周面における界面の隙間の発生が防止され、母材と鉄系プリフォームとの熱伝導効率が向上してジャーナル部の周方向において熱伝導率が均一になり、ジャーナル部の軸受面側が均等に膨張して真円度が確保される。これにより、シャフトとの間の摩擦係数の増加が抑制され、この摩擦抵抗の減少に伴ってエンジンの燃費、性能、耐久性等が確保できる。   Furthermore, the occurrence of gaps at the interface on the inner peripheral surface of the iron-based preform is prevented, the heat conduction efficiency between the base material and the iron-based preform is improved, and the thermal conductivity becomes uniform in the circumferential direction of the journal part, The bearing surface side of the journal portion is evenly expanded to ensure roundness. As a result, an increase in the coefficient of friction with the shaft is suppressed, and the fuel consumption, performance, durability, and the like of the engine can be ensured as the frictional resistance decreases.

本発明の金属基複合材形成用鉄系プリフォームによると、プリフォーム本体に、内周面と外周面とを連通する内面に表面積拡大処理を施した貫通孔を穿設することによって、鋳包み工程において、鉄系プリフォームの外周面側に注湯されたアルミニウム合金溶湯は、鉄系プリフォームの表面に沿って内周面側に侵入すると共に、外周面側から貫通孔を経て内周面側に供給されて良好な湯廻り性が得られる。また、半円弧状の凹面と鉄系プリフォームの内周面との間に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面に沿って収縮応力が作用し、かつ外周面側に注湯されたアルミニウム系合金溶湯の凝固及び収縮によって外周面に沿って収縮応力が作用したときに、貫通孔に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力によって内周面及び外周面に沿う収縮応力が分散されて受け止められてアルミニウム系合金溶湯の移動が抑制されると共に内周面及び外周面に密着し、収縮後の母材に生じる残留応力が緩和される。   According to the iron-based preform for forming a metal matrix composite according to the present invention, the preform body is formed by punching a through hole having a surface area expansion treatment on the inner surface communicating the inner peripheral surface and the outer peripheral surface. In the process, the molten aluminum alloy poured on the outer peripheral surface side of the iron-based preform enters the inner peripheral surface side along the surface of the iron-based preform, and also passes through the through hole from the outer peripheral surface side to the inner peripheral surface. It is supplied to the side to obtain good hot water circulation. Also, contraction stress acts along the inner peripheral surface during solidification and contraction of the molten aluminum alloy poured between the semicircular arc-shaped concave surface and the inner peripheral surface of the iron-based preform, and on the outer peripheral surface side. When shrinkage stress is applied along the outer peripheral surface due to solidification and shrinkage of the molten aluminum alloy molten metal, the inner peripheral surface and outer periphery are affected by the drag due to the shrinkage stress due to solidification and shrinkage of the molten aluminum alloy that has penetrated the through hole. The shrinkage stress along the surface is dispersed and received, and the movement of the molten aluminum-based alloy is suppressed and is closely adhered to the inner peripheral surface and the outer peripheral surface, and the residual stress generated in the base material after contraction is relieved.

また、本発明の金属基複合材形成用鉄系プリフォームによると、プリフォーム本体の内周面及び/または外周面に開口する内面に表面積拡大処理が施され有底孔に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力による抗力によって、アルミニウム系合金溶湯の凝固及び収縮による内周面及び外周面に沿って作用する収縮応力が分散されて受け止められ、アルミニウム系合金溶湯の内周面及び外周面に沿う移動が抑制されると共に内周面及び外周面に密着し、凝固及び収縮後の母材に生じる残留応力が緩和される。更に、このアルミニウム合金溶湯の凝固及び収縮時におけるアルミニウム合金溶湯の移動抑制に伴って、母材と鉄系プリフォームとの界面における隙間の発生が防止でき、鋳包み性に優れ、安定した界面接合強度及び密着が確保できる。   In addition, according to the iron-based preform for forming a metal matrix composite of the present invention, an aluminum-based alloy that has been subjected to surface area expansion treatment on the inner peripheral surface and / or inner surface opened to the outer peripheral surface of the preform body and has entered the bottomed hole The shrinkage stress acting along the inner and outer peripheral surfaces due to the solidification and shrinkage of the aluminum alloy melt is dispersed and received by the drag due to the shrinkage stress due to the solidification and shrinkage of the molten metal, and the inner peripheral surface of the aluminum alloy melt and The movement along the outer peripheral surface is suppressed and the inner surface and the outer peripheral surface are in close contact with each other, and the residual stress generated in the base material after solidification and contraction is relieved. Furthermore, with the suppression of the movement of the molten aluminum alloy during solidification and shrinkage of the molten aluminum alloy, it is possible to prevent the formation of gaps at the interface between the base material and the iron-based preform, and excellent in castability and stable interface bonding. Strength and adhesion can be secured.

本発明のジャーナル部構造によると、鉄系プリフォームを、鉄系プリフォームの内周面に沿う断面半円弧状で連続形成された凹面状の軸受面を有するアルミニウム系合金からなる母材で鋳包みして形成したジャーナル部は、鉄系材料のシャフトとの熱膨張係数の差が小さくなり、ジャーナル部の温度が上昇してもシャフトと軸受面とのクリアランスを許容範囲内に収めることができ、シャフトの回転中における振動や騒音の発生を防止することができる。   According to the journal part structure of the present invention, an iron-based preform is cast with a base material made of an aluminum-based alloy having a concave bearing surface continuously formed in a semicircular arc shape along the inner peripheral surface of the iron-based preform. The enveloped journal part has a smaller difference in thermal expansion coefficient from the shaft made of ferrous material, and the clearance between the shaft and the bearing surface can be kept within an allowable range even when the temperature of the journal part rises. Generation of vibration and noise during rotation of the shaft can be prevented.

更に、鉄系プリフォームの内周面における界面の隙間の発生が防止され、母材と鉄系プリフォームとの熱伝導効率が向上してジャーナル部の周方向において熱伝導率が均一になり、ジャーナル部の軸受面側が均等に膨張して真円度が確保される。これにより、シャフトとの間の摩擦係数の増加が抑制され、この摩擦抵抗の減少に伴ってエンジンの燃費、性能、耐久性等が確保できる。   Furthermore, the occurrence of gaps at the interface on the inner peripheral surface of the iron-based preform is prevented, the heat conduction efficiency between the base material and the iron-based preform is improved, and the thermal conductivity becomes uniform in the circumferential direction of the journal part, The bearing surface side of the journal portion is evenly expanded to ensure roundness. As a result, an increase in the coefficient of friction with the shaft is suppressed, and the fuel consumption, performance, durability, and the like of the engine can be ensured as the frictional resistance decreases.

第1実施の形態に係る鉄系プリフォームの概要を示す斜視図である。It is a perspective view which shows the outline | summary of the iron-type preform which concerns on 1st Embodiment. 図1のI−I線断面図である。It is the II sectional view taken on the line of FIG. シリンダブロックのクランクシャフトと直交する方向の縦断面図である。It is a longitudinal cross-sectional view of the direction orthogonal to the crankshaft of a cylinder block. 図3のII矢視図である。FIG. 4 is a view taken in the direction of arrow II in FIG. 3. ジャーナル部の説明図である。It is explanatory drawing of a journal part. 他の貫通孔を示す図であり、(a)は断面図、(b)は(a)のIII矢視図である。It is a figure which shows another through-hole, (a) is sectional drawing, (b) is a III arrow directional view of (a). 他の貫通孔を示す図であり、(a)は断面図、(b)は(a)のIV矢視図である。It is a figure which shows another through-hole, (a) is sectional drawing, (b) is IV arrow line view of (a). 他の鉄系プリフォームの断面図である。It is sectional drawing of another iron-type preform. 第2実施の形態に係る鉄系プリフォームの断面図である。It is sectional drawing of the iron-type preform which concerns on 2nd Embodiment. ジャーナル部の説明図である。It is explanatory drawing of a journal part. 他の有底孔を示す図であり、(a)は断面図、(b)は(a)のV矢視図である。It is a figure which shows another bottomed hole, (a) is sectional drawing, (b) is a V arrow directional view of (a). 他の有底孔を示す図であり、(a)は断面図、(b)は(a)のVI矢視図である。It is a figure which shows another bottomed hole, (a) is sectional drawing, (b) is VI arrow directional view of (a).

以下、本発明による金属基複合材形成用鉄系プリフォーム及び鉄系プリフォームを有するジャーナル部構造の実施の形態について、水平対向4気筒エンジンのクランクジャーナル部及び該ジャーナル部に配置される鉄系プリフォームを例に図を参照して説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an iron-based preform for forming a metal matrix composite and a journal structure having an iron-based preform according to the present invention will be described below. A crank journal portion of a horizontally opposed four-cylinder engine and an iron-based material disposed in the journal portion A preform will be described as an example with reference to the drawings.

(第1実施の形態)
図1は、第1実施の形態に係る鉄系プリフォームの概要を示す斜視図、図2は図1のI−I線断面図である。
(First embodiment)
FIG. 1 is a perspective view showing an outline of an iron-based preform according to the first embodiment, and FIG. 2 is a cross-sectional view taken along the line II of FIG.

本実施の形態に係る金属基複合材形成用鉄系プリフォーム(以下「鉄系プリフォーム」という)1は、例えば鉄系粉体と、銅粉と、黒鉛粉と、潤滑剤粉末と或いは更に被削性改善用微細粒子粉とを混合して混合粉とした後、この混合粉を金型に装入してプレス等を用いて加圧成形し、1100〜1250℃で焼結した鉄系粉末焼結体によって形成される。なお、焼結条件は、鉄系粉末焼結体の熱膨張係数が13.5×10−6/℃以下となるように、温度、時間を調整することが好ましい。 An iron-based preform for forming a metal matrix composite (hereinafter referred to as “iron-based preform”) 1 according to the present embodiment includes, for example, iron-based powder, copper powder, graphite powder, lubricant powder, or further After mixing with fine particle powder for improving machinability to make a mixed powder, this mixed powder is charged into a mold and press-molded using a press or the like, and sintered at 1100 to 1250 ° C. It is formed by a powder sintered body. In addition, as for sintering conditions, it is preferable to adjust temperature and time so that the thermal expansion coefficient of the iron-based powder sintered body is 13.5 × 10 −6 / ° C. or less.

この鉄系プリフォーム1は、図1及び図2に示すように、中心軸芯L方向に沿って延在する半円弧状乃至U字状の内周面11及び外周面12、対向する端面13、14とを備えたプリフォーム本体10を有し、プリフォーム本体10の両端にそれぞれ半径方向に延在するフランジ部15、16が一体形成され、各フランジ部15、16には連通孔15a、16aが穿設されている。   As shown in FIGS. 1 and 2, the iron-based preform 1 includes a semicircular arc shape or a U-shaped inner peripheral surface 11 and an outer peripheral surface 12 extending along the central axis L direction, and opposed end surfaces 13. , 14, and flange portions 15, 16 extending in the radial direction are integrally formed at both ends of the preform body 10, respectively, and each flange portion 15, 16 has a communication hole 15 a, 16a is drilled.

プリフォーム本体10の内周面11は、略半円弧状で中心軸芯L方向に沿って延在する第1内周面11aと、第1内周面11aの一方端に連続形成された平面状の第2内周面11b、第2内周面11b及び第1内周面11aの他端にそれぞれ連続するとともに互いに対向する平面状の第3内周面11cと第4内周面11dを有している。一方、外周面12は、略半円弧状で中心軸芯L方向に沿って延在する第1外周面12aと、第1外周面12aの一方端に連続形成された平面状の第2外周面12b、第2外周面12b及び第1外周面12aの他端にそれぞれ連続すると共に互いに対向する平面状の第3外周面12cと第4外周面12dを有している。   An inner peripheral surface 11 of the preform main body 10 is a substantially semicircular arc shape, a first inner peripheral surface 11a extending along the central axis L direction, and a plane continuously formed at one end of the first inner peripheral surface 11a. A planar third inner peripheral surface 11c and fourth inner peripheral surface 11d that are continuous with the other ends of the second inner peripheral surface 11b, the second inner peripheral surface 11b, and the first inner peripheral surface 11a and that face each other. Have. On the other hand, the outer peripheral surface 12 is a substantially semicircular arc-shaped first outer peripheral surface 12a extending along the central axis L direction, and a planar second outer peripheral surface continuously formed at one end of the first outer peripheral surface 12a. 12b, the second outer peripheral surface 12b, and the first outer peripheral surface 12a, respectively, have a planar third outer peripheral surface 12c and a fourth outer peripheral surface 12d that are continuous with each other and face each other.

プリフォーム本体10の外周面12と内周面11とを連通する貫通孔が複数穿設されている。本実施の形態では中心軸芯Lと直交する基準線Laを有して第1内周面11aと第1外周面12aの間を連通する第1貫通孔21A、基準線Laと平行な基準線Lbを有して第2内周面11bと第2外周面12bの間を連通する第2貫通孔21B、基準線Laと直交する基準線Lcを有して第3内周面11cと第3外周面12cの間を連通する第3貫通孔21C、基準線Laと直交する基準線Ldを有して第1内周面11aの第4内周面11d近傍と第4外周面12dの間を連通する第4貫通孔21Dの各貫通通孔が穿設されている。   A plurality of through holes that communicate the outer peripheral surface 12 and the inner peripheral surface 11 of the preform body 10 are formed. In the present embodiment, the first through hole 21A having a reference line La orthogonal to the central axis L and communicating between the first inner peripheral surface 11a and the first outer peripheral surface 12a, a reference line parallel to the reference line La. Lb has a second through hole 21B communicating between the second inner peripheral surface 11b and the second outer peripheral surface 12b, a reference line Lc orthogonal to the reference line La, and the third inner peripheral surface 11c and the third The third through hole 21C that communicates between the outer peripheral surfaces 12c and the reference line Ld that is orthogonal to the reference line La, and between the vicinity of the fourth inner peripheral surface 11d of the first inner peripheral surface 11a and the fourth outer peripheral surface 12d. Each through-hole of the 4th through-hole 21D which connects is drilled.

これら第1〜第4貫通孔21A〜21Dを形成することによって、鉄系プリフォーム1の内周面11と外周面12が連通してアルミニウム系合金により鋳包みした際に湯廻りが良好になるとともに、鉄系プリフォーム1の表面積が増大してアルミニウム系合金の溶湯との密着性及び接合強度の向上が図られ、かつアルミニウム系合金溶湯が容易に且つ安定的に密着し、場合により溶浸して鉄系プリフォーム1のMMC化が得られる。これらの第1〜第4貫通孔21A〜21Dは金型による加圧成形時または焼結体の加工時に形成される。好ましくは金型による加圧成形時に同時に成形することにより製造の効率化が得られると共に製造コストの抑制が得られる。   By forming the first to fourth through holes 21A to 21D, when the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 1 communicate with each other and are cast with an aluminum-based alloy, the hot water circulation is improved. At the same time, the surface area of the iron-based preform 1 is increased to improve the adhesion and bonding strength with the molten aluminum alloy, and the molten aluminum alloy can be easily and stably adhered, and infiltrated in some cases. Thus, the MMC of the iron-based preform 1 can be obtained. These first to fourth through holes 21A to 21D are formed at the time of pressure molding by a mold or at the time of processing a sintered body. Preferably, the molding is performed at the same time as the pressure molding with the mold, so that the production efficiency can be improved and the production cost can be suppressed.

第1貫通孔21Aは、断面円形で基準線La方向に連続する円筒状の内面を有して内方端22Aaが第1内周面11aに開口する貫通孔本体22Aと、貫通孔本体22Aの外方端22Abに連続形成されて第1外周面12aに開口し、かつ貫通孔本体22Aの外方端22Ab側から第1外周面11a側に移行するに従って内径が漸次拡径するテーパ孔部23Aを有している。   The first through hole 21A has a cylindrical inner surface that is circular in cross section and continuous in the direction of the reference line La. The inner end 22Aa has an inner end 22Aa that opens to the first inner peripheral surface 11a, and the through hole main body 22A. A tapered hole portion 23A that is continuously formed at the outer end 22Ab and opens to the first outer peripheral surface 12a, and whose inner diameter gradually increases as it moves from the outer end 22Ab side of the through-hole body 22A to the first outer peripheral surface 11a side. have.

第2貫通孔21Bは、断面円形で基準線Lb方向に連続する円筒状の内面を有して内方端22Baが第2内周面11bに開口する貫通孔本体22Bと、貫通孔本体22Bの外方端22Bbに連続形成されて第2外周面12bに開口し、かつ貫通孔本体22Bの外方端22Bb側から第2外周面12b側に移行するに従って内径が漸次拡径するテーパ孔部23Bを有している。   The second through-hole 21B has a cylindrical inner surface that is circular in cross section and continuous in the direction of the reference line Lb, and has a through-hole main body 22B having an inner end 22Ba open to the second inner peripheral surface 11b, and the through-hole main body 22B. A tapered hole portion 23B that is continuously formed at the outer end 22Bb, opens to the second outer peripheral surface 12b, and has an inner diameter that gradually increases from the outer end 22Bb side to the second outer peripheral surface 12b side of the through-hole body 22B. have.

第3貫通孔21Cは、断面円形で基準線Lc方向に連続する円筒状の内面を有して内方端22Caが第3内周面11cに開口する貫通孔本体22Cと、貫通孔本体22Cの外方端22Cbに連続形成されて第3外周面12cに開口し、かつ貫通孔本体22Cの外方端22Cb側から第3外周面12c側に移行するに従って内径が漸次拡径するテーパ孔部23Cを有している。   The third through hole 21C has a cylindrical inner surface that is circular in cross section and continuous in the direction of the reference line Lc, and has an inner end 22Ca that opens to the third inner peripheral surface 11c, and a through hole main body 22C. A tapered hole portion 23C that is continuously formed at the outer end 22Cb, opens to the third outer peripheral surface 12c, and has an inner diameter that gradually increases from the outer end 22Cb side of the through-hole body 22C to the third outer peripheral surface 12c side. have.

第4貫通孔21Dは、断面円形で基準線Ld方向に連続する円筒状の内面を有して内方端22Daが第1内周面11aに開口する貫通孔本体22Dと、貫通孔本体22Dの外方端22Dbに連続形成されて第4外周面12dに開口し、かつ貫通孔本体22Dの外方端22Db側から第4外周面12d側に移行するに従って内径が漸次拡径するテーパ孔部23Dを有している。   The fourth through hole 21D has a cylindrical inner surface that is circular in cross section and continues in the direction of the reference line Ld, and has an inner end 22Da that opens to the first inner peripheral surface 11a, and a through hole main body 22D. A tapered hole portion 23D that is continuously formed at the outer end 22Db, opens to the fourth outer peripheral surface 12d, and whose inner diameter gradually increases as it moves from the outer end 22Db side of the through-hole body 22D to the fourth outer peripheral surface 12d side. have.

各貫通孔21A〜21Dの形状はMMC化する製品形状等の仕様により異なるが、各貫通孔本体22A〜22Dの内径Aは、プリフォーム本体10の厚さ、即ち内周面11から外周面12までの寸法が5〜20mmでアルミニウム系合金による鋳包みによって内周面11側に形成される後述する薄肉部38、39(図5参照)の厚さが0.5〜9.5mmのときには1〜19mmが好ましい(1mm≦A≦19mm)。また、隣接する貫通孔21の間隔B、即ち内周面11側における第1貫通孔21Aの貫通孔本体22Aの内方端22Aaと第2貫通孔21Bの貫通孔本体22Bの内方端22Baの開口中心間の間隙B、第2貫通孔21Bの貫通孔本体22Bの内方端22Baと第3貫通孔21Cの貫通孔本体22Cの内方端22Caの開口中心間の間隔B、第1貫通孔21Aの貫通孔本体22Aの内方端22Aaと第4貫通孔21Dの貫通孔本体22Dの内方端22Daの開口中心間の間隔Bは、貫通孔本体22A〜22Dの内径Aの1.5倍以上乃至5倍以下(1.5A≦B≦5A)に形成される。   The shape of each of the through holes 21A to 21D varies depending on the specifications such as the shape of the product to be converted into an MMC. The inner diameter A of each of the through hole bodies 22A to 22D is the thickness of the preform body 10, that is, from the inner peripheral surface 11 to the outer peripheral surface 12. When the thickness of the thin wall portions 38 and 39 (see FIG. 5), which will be described later, formed on the inner peripheral surface 11 side by casting with an aluminum alloy is 0.5 to 9.5 mm ~ 19 mm is preferable (1 mm ≦ A ≦ 19 mm). Further, the interval B between the adjacent through holes 21, that is, the inner end 22Aa of the through hole body 22A of the first through hole 21A on the inner peripheral surface 11 side and the inner end 22Ba of the through hole body 22B of the second through hole 21B. A gap B between the opening centers, an interval B between the opening centers of the inner end 22Ba of the through hole body 22B of the second through hole 21B and the inner end 22Ca of the through hole body 22C of the third through hole 21C, the first through hole The distance B between the opening center of the inner end 22Aa of the through hole body 22A of 21A and the inner end 22Da of the through hole body 22D of the fourth through hole 21D is 1.5 times the inner diameter A of the through hole bodies 22A to 22D. It is formed in a range of 5 to 5 times (1.5A ≦ B ≦ 5A).

内周面11に開口する各貫通孔本体22A〜22Dの内方端22Aa〜22Daと内周面11との連続部分が滑らかに連続する曲面、いわゆるR形状或いは面取り形状に形成されている。   The continuous portions between the inner ends 22Aa to 22Da of the through-hole bodies 22A to 22D opened to the inner peripheral surface 11 and the inner peripheral surface 11 are formed into a smoothly curved surface, so-called R shape or chamfered shape.

また、第1〜第4貫通孔21A〜21Dの深さCは貫通孔本体22A〜22Dの内径Aの0.5倍以上乃至5倍以下(0.5A≦C≦5A)が好ましい。   Further, the depth C of the first to fourth through holes 21A to 21D is preferably 0.5 to 5 times (0.5A ≦ C ≦ 5A) the inner diameter A of the through hole bodies 22A to 22D.

これら、各貫通孔21A〜21Dの貫通孔本体22A〜22Dの内径A、隣接する第1〜第4貫通孔21A〜21Dの各間隔B、第1〜第4貫通孔21A〜21Dの各深さC、及び、各貫通孔本体22A〜22Dの内方端22Aa〜22Daと内周面12との連続部分の曲面形状は、MMC化する製品形状等の仕様により最適に設定するには、予め実験やシミュレーションにより、製品における界面の密着状態及び母材側のクラック等の発生状況により決定すること好ましい。   The inner diameter A of the through-hole bodies 22A to 22D of the through-holes 21A to 21D, the intervals B between the adjacent first to fourth through-holes 21A to 21D, and the depths of the first to fourth through-holes 21A to 21D. C and the curved surface shape of the continuous portion between the inner ends 22Aa to 22Da of the through-hole bodies 22A to 22D and the inner peripheral surface 12 are experimentally set in advance in order to optimally set according to specifications such as the product shape to be converted to MMC. It is preferable to determine by the state of adhesion of the interface in the product and the occurrence of cracks on the base material side by simulation.

この鉄系プリフォーム1は、必要に応じてショットブラスト処理が施され、表面粗さをRzで10〜100μmとされる。このショットブラスト処理を施すことにより、表面に形成された酸化被膜等が除去されて表面が清浄化され、基地中に分散する遊離Cu相が表面に露出される。これによりアルミニウム系合金の溶湯との濡れ性が向上してアルミニウム系合金による鋳包み性が向上する。   This iron-based preform 1 is subjected to shot blasting as necessary, and the surface roughness is 10 to 100 μm in Rz. By performing this shot blast treatment, the oxide film formed on the surface is removed to clean the surface, and the free Cu phase dispersed in the matrix is exposed to the surface. As a result, the wettability of the aluminum-based alloy with the molten metal is improved and the castability of the aluminum-based alloy is improved.

このように形成された鉄系プリフォーム1は、鋳型内にセットされ、アルミニウム系合金の溶湯で鋳包むことによって、鉄系プリフォーム1にアルミニウム系合金が容易に且つ安定的に密着し、場合により溶浸して鉄系プリフォーム1がMMC化する。   When the iron-based preform 1 formed in this way is set in a mold and cast with a molten aluminum-based alloy, the aluminum-based alloy is easily and stably adhered to the iron-based preform 1. So that the iron-based preform 1 becomes MMC.

図3及び図4は、この鉄系プリフォーム1が用いられるジャーナル部の実施の形態を示すものである。本実施の形態は、水平対向4気筒エンジンのシャフト、例えばクランクシャフトを軸支するクランクジャーナル部を示すもので、図3はシリンダブロックのクランクシャフトと直交する方向の縦断面図であり、図4は図3のII矢視図である。   3 and 4 show an embodiment of a journal portion in which the iron-based preform 1 is used. This embodiment shows a shaft of a horizontally opposed four-cylinder engine, for example, a crank journal portion that supports a crankshaft, and FIG. 3 is a longitudinal sectional view in a direction perpendicular to the crankshaft of the cylinder block. FIG. 4 is a view taken in the direction of arrow II in FIG. 3.

図3及び図4において、左右のシリンダブロック31、32は、アルミニウム系合金により別個に鋳造成形され、その左側のシリンダブロック31には、中央部に半円弧状に形成された凹面である軸受面34を有する複数の左側ジャーナル部33が形成されており、右側シリンダブロック32にも同様の軸受面36を有する複数の右側ジャーナル部35が形成されている。   3 and 4, the left and right cylinder blocks 31 and 32 are separately cast and formed of an aluminum alloy, and the left cylinder block 31 has a bearing surface that is a concave surface formed in a semicircular arc shape at the center. A plurality of left journal portions 33 having 34 are formed, and a plurality of right journal portions 35 having similar bearing surfaces 36 are also formed on the right cylinder block 32.

クランクシャフト41は、左右の各ジャーナル部33、35の軸受面34、36に半割状の軸受メタル40a、40bを介在させて挟み込ませて配設され、各ジャーナル部33、35の半円弧状の軸受面34、36に軸受メタル40a、40bを介在して軸支される。このクランクシャフト41は、鉄系材料で形成されており、シリンダ内における混合気の燃焼によるピストンの往復運動がコンロッドを介して伝達されることにより回転し、その回転中においてジャーナル部33、35は大きな衝撃的な荷重を常時受けると共に、混合気の燃焼による熱の伝搬により熱膨張する。   The crankshaft 41 is disposed by being sandwiched between the bearing surfaces 34 and 36 of the left and right journal portions 33 and 35 with the halved bearing metals 40a and 40b interposed therebetween, and the journal portions 33 and 35 have a semicircular arc shape. The bearing surfaces 34 and 36 are pivotally supported with bearing metals 40a and 40b interposed therebetween. The crankshaft 41 is made of an iron-based material, and rotates when the reciprocating motion of the piston caused by combustion of the air-fuel mixture in the cylinder is transmitted through the connecting rod. During the rotation, the journal portions 33 and 35 are rotated. A large impact load is always applied, and thermal expansion occurs due to heat propagation due to combustion of the air-fuel mixture.

本実施の形態では、左右の各ジャーナル部33、35に、図1及び図2に示した構造の鉄系プリフォーム1をMMC化して設ける。各鉄系プリフォーム1は、各シリンダブロック31、32の鋳造成形時に、その鋳造型のジャーナル部形成位置に配置して鋳包み工程においてMMC化して設ける。   In the present embodiment, the iron-based preform 1 having the structure shown in FIGS. 1 and 2 is provided in the left and right journal portions 33 and 35 as MMC. Each of the iron-based preforms 1 is disposed at the position of forming the journal part of the casting mold and formed into an MMC in the casting step when the cylinder blocks 31 and 32 are cast.

この鋳包み工程において、鉄系プリフォーム1の外周面12側に注湯されたアルミニウム合金溶湯は、鉄系プリフォーム1の表面に沿って鉄系プリフォーム1の内周面11側に侵入すると共に、各貫通孔21A〜21Dを経ても内周面11側に供給されて良好なアルミニウム系合金溶湯の湯廻り性が得られる。これは、特に図5に示すようにジャーナル部33、34に形成された半円弧状の軸受面34、36と鉄系プリフォーム1の内周面11との間に形成される2〜3mm程度と極めて薄い薄肉部38、39にあっても良好な湯廻り性が得られる。   In this casting process, the molten aluminum alloy poured on the outer peripheral surface 12 side of the iron-based preform 1 enters the inner peripheral surface 11 side of the iron-based preform 1 along the surface of the iron-based preform 1. At the same time, even through each of the through holes 21A to 21D, it is supplied to the inner peripheral surface 11 side, and good hot-rollability of the molten aluminum alloy is obtained. Specifically, as shown in FIG. 5, this is about 2-3 mm formed between the semicircular bearing surfaces 34, 36 formed in the journal portions 33, 34 and the inner peripheral surface 11 of the iron-based preform 1. Even in the extremely thin thin portions 38 and 39, good hot water circulation is obtained.

このジャーナル部33、35の軸受面34、36と鉄系プリフォーム1の内周面11との間の薄肉部38、39に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面11に沿って周方向に収縮応力σ1が作用し、外周面12側に注湯されたアルミニウム系合金の凝固及び収縮によっても外周面12に沿って周方向に収縮応力σ2が作用する。一方、鉄系プリフォーム1の各貫通孔21A〜21D内内に侵入したアルミニウム系合金溶湯の凝固及び収縮によって各貫通孔21A〜21Dに沿ってそれぞれ収縮応力σ3、σ4、σ5、σ6が作用する。   The inner peripheral surface 11 during solidification and contraction of the molten aluminum alloy poured into the thin wall portions 38 and 39 between the bearing surfaces 34 and 36 of the journal portions 33 and 35 and the inner peripheral surface 11 of the iron-based preform 1. The shrinkage stress σ1 acts in the circumferential direction along the outer circumferential surface 12 and the shrinkage stress σ2 acts along the outer circumferential surface 12 also in the circumferential direction due to solidification and shrinkage of the aluminum alloy poured on the outer circumferential surface 12 side. On the other hand, the shrinkage stresses σ3, σ4, σ5, and σ6 act along the through holes 21A to 21D by the solidification and shrinkage of the molten aluminum alloy that has entered the through holes 21A to 21D of the iron-based preform 1, respectively. .

これら鉄系プリフォーム1の各貫通孔21A〜21D内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ3、σ4、σ5、σ6による抗力によって、薄肉部38、39に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面11に沿って周方向に作用する収縮応力σ1が分散されて受け止められる。これにより、アルミニウム系合金溶湯の内周面11に沿う移動が抑制されると共に内周面11に密着し、収縮後のアルミニウム系合金による薄肉部38、39に生じる残留応力を軽減及び均等に分散することができ、薄肉部38、39の残留応力が緩和されて該部の割れ等が防止できる。   Aluminum poured into the thin-walled portions 38 and 39 by the drag due to the shrinkage stresses σ3, σ4, σ5, and σ6 due to solidification and shrinkage of the molten aluminum alloy that has entered the through holes 21A to 21D of the iron-based preform 1 The shrinkage stress σ1 acting in the circumferential direction along the inner peripheral surface 11 during solidification and shrinkage of the molten alloy is dispersed and received. As a result, the movement of the molten aluminum alloy along the inner peripheral surface 11 is suppressed and the aluminum alloy is in close contact with the inner peripheral surface 11, and the residual stress generated in the thin-walled portions 38 and 39 due to the aluminum alloy after shrinkage is reduced and evenly distributed. It is possible to relieve the residual stress of the thin-walled portions 38 and 39 and prevent cracking of the portions.

同様に、鉄系プリフォーム1の各貫通孔21A〜21D内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ3、σ4、σ5、σ6による抗力により、鉄系プリフォーム1の外周面12側に注湯されたアルミニウム系合金溶湯の凝固及び収縮によって外周面12に沿って作用する収縮応力σ2が分散されて受け止められ、アルミニウム系合金溶湯の外周面12に沿う移動が抑制されると共に外周面12に密着し、収縮後の該部に生じる残留応力を軽減及び均等に分散することができる。   Similarly, the outer peripheral surface 12 of the iron-based preform 1 is caused by the drag due to the shrinkage stresses σ3, σ4, σ5, and σ6 due to the solidification and shrinkage of the molten aluminum alloy that has entered the through holes 21A to 21D of the iron-based preform 1. The shrinkage stress σ2 acting along the outer peripheral surface 12 is dispersed and received by the solidification and contraction of the molten aluminum alloy poured on the side, and the movement along the outer peripheral surface 12 of the molten aluminum alloy is suppressed and the outer periphery It is possible to reduce and evenly disperse the residual stress generated in the portion that is in close contact with the surface 12 and contracted.

更に、アルミニウム合金溶湯の凝固及び収縮時におけるアルミニウム系合金溶湯の鉄系プリフォーム1の内周面11及び外周面12に沿う周方向の移動の抑制及び密着に伴って、鉄系プリフォーム1とアルミニウム系合金による母材との界面における隙間の発生が防止でき、鉄系プリフォーム1の内周面11及び外周面12と薄肉部38、39を含む母材との界面強度が確保できる。   Furthermore, with the suppression and close contact of the circumferential movement along the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 1 of the molten aluminum-based alloy during solidification and shrinkage of the molten aluminum alloy, Generation of a gap at the interface with the base material due to the aluminum-based alloy can be prevented, and the interface strength between the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 1 and the base material including the thin portions 38 and 39 can be secured.

ここで、鉄系プリフォーム1は鉄系粉末焼結体からなるため空孔を有し、鋳包み時にアルミニウム系合金溶湯が鉄系プリフォーム1に容易に且つ安定的に密着し、場合により溶浸してMMC化され、MMC化された鉄系プリフォーム1の熱膨張係数と鉄系材料からなるクランクシャフト41との熱膨張係数の差が小さくなるので、ジャーナル部33、35の温度が上昇しても、クランクシャフト41と軸受面34、36とのクリアランスを許容範囲内に収めることができ、クランクシャフト41の回転中における振動や騒音の発生を防止することができる。   Here, since the iron-based preform 1 is made of an iron-based powder sintered body, the iron-based preform 1 has pores, and the molten aluminum-based alloy is easily and stably adhered to the iron-based preform 1 during casting, and may melt depending on the case. Since the difference between the thermal expansion coefficient of the iron preform 1 soaked into MMC and converted into MMC and the crankshaft 41 made of iron-based material is reduced, the temperature of the journal portions 33 and 35 increases. However, the clearance between the crankshaft 41 and the bearing surfaces 34 and 36 can be within an allowable range, and vibration and noise during rotation of the crankshaft 41 can be prevented.

更に、鉄系プリフォーム1の内周面11及び外周面12との界面における隙間の発生を防止し、内周面11及び外周面12との界面接合強度を確保することで、母材と鉄系プリフォーム1との間の熱伝導効率が向上してジャーナル部33、35の周方向において熱伝導率が均一になり、ジャーナル部33、35の軸受面34、36側が均等に膨張してジャーナル部33、35による軸受メタル40a、40bの支持が安定してクランクシャフト41と軸受メタル40a、40bとの間の摩擦係数の増加が抑制されるため、摩擦抵抗の減少に伴ってエンジンの燃費、性能、耐久性等が確保できる。   Furthermore, by preventing the generation of a gap at the interface between the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 1, and ensuring the interface bonding strength between the inner peripheral surface 11 and the outer peripheral surface 12, the base material and the iron The thermal conductivity efficiency with the system preform 1 is improved, the thermal conductivity becomes uniform in the circumferential direction of the journal portions 33, 35, and the bearing surfaces 34, 36 side of the journal portions 33, 35 are evenly expanded so that the journal Since the support of the bearing metals 40a and 40b by the portions 33 and 35 is stabilized and the increase in the friction coefficient between the crankshaft 41 and the bearing metals 40a and 40b is suppressed, the fuel consumption of the engine is reduced as the frictional resistance is reduced. Performance, durability, etc. can be secured.

更に、ジャーナル部33、35において薄肉部38、39と鉄系プリフォーム1との界面に隙間がなくなり、ジャーナル部33、35の軸受面34、36を機械加工する際に薄肉に形成された薄肉部38、39の加工時の負荷による変形が抑制されてジャーナル部33、35の加工精度が向上する。   Further, there is no gap in the interface between the thin wall portions 38, 39 and the iron-based preform 1 in the journal portions 33, 35, and the thin wall formed when the bearing surfaces 34, 36 of the journal portions 33, 35 are machined. The deformation of the portions 38 and 39 due to a load during processing is suppressed, and the processing accuracy of the journal portions 33 and 35 is improved.

ここで、第1〜第4貫通孔21A〜21D内での収縮応力σ3、σ4、σ5、σ6が過少の場合には、アルミニウム系合金溶湯の凝固及び収縮に伴う薄肉部38、39の応力σ1に対抗する拘束力が過少になり内周面11と母材の界面に連続した隙間が形成されて界面強度が不安定になる。そこで、本実施の形態では鉄系プリフォーム1に穿設される第1〜第4貫通孔21A〜21Dの貫通孔本体22A〜22Dを内径1〜19mmの断面円形で連続する内面を円筒状に形成したが、仮に貫通孔21A〜21Dをテーパ孔に形成した場合には、界面の密着には有利だが鉄系プリフォームの加工が困難になり製造コストの増大を招くと共に貫通孔と内周面と連続部分にアンダーカット部が形成されて収縮応力σ1に対抗する拘束力が過大になり、凝縮及び収縮時に応力集中が発生して母材、特に薄肉部38、39に破断やクラックが発生する確率が高くなる。   Here, when the shrinkage stresses σ3, σ4, σ5, and σ6 in the first to fourth through holes 21A to 21D are too small, the stress σ1 of the thin portions 38 and 39 accompanying the solidification and shrinkage of the molten aluminum-based alloy. As a result, the constraining force against the surface becomes too small, and a continuous gap is formed at the interface between the inner peripheral surface 11 and the base material, and the interface strength becomes unstable. Therefore, in the present embodiment, the through hole bodies 22A to 22D of the first to fourth through holes 21A to 21D perforated in the iron-based preform 1 have a cylindrical inner surface that is continuous in a circular shape with an inner diameter of 1 to 19 mm. However, if the through holes 21A to 21D are formed as tapered holes, it is advantageous for close contact with the interface, but processing of the iron-based preform becomes difficult, resulting in an increase in manufacturing cost and the through holes and the inner peripheral surface. The undercut part is formed in the continuous part and the restraining force against the shrinkage stress σ1 becomes excessive, stress concentration occurs during condensation and shrinkage, and the base material, particularly the thin parts 38 and 39, breaks and cracks occur. Probability increases.

また、貫通孔21A〜21Dの内径Aを1mmより小さくすると、アルミニウム系合金溶湯の凝固及び収縮に伴う薄肉部38、39の応力σ1に対抗する拘束力が過少になり界面の密着性向上の効果が極めて小さく、また、ショットブラスト処理を施す場合に貫通孔の内面にショットが良好に吹き付け難く、ショットブラスト処理の効果が期待できない。   Further, if the inner diameter A of the through holes 21A to 21D is smaller than 1 mm, the restraining force against the stress σ1 of the thin portions 38 and 39 accompanying the solidification and shrinkage of the molten aluminum alloy becomes insufficient, and the effect of improving the adhesion at the interface. In addition, when shot blasting is performed, it is difficult to spray shots on the inner surface of the through hole well, and the effect of shot blasting cannot be expected.

一方、貫通孔21A〜21Dの内径Aを19mmより大きくすると、鉄系プリフォーム1の体積が減少してプリフォーム本来の機能効果が減少することが懸念され、かつ第1〜第4貫通孔21A〜21D内でアルミニウム系合金溶湯の凝固に伴う収縮の影響が大きく、第1〜第4貫通孔21A〜21D内における母材との密着性が低下し、薄肉部38、39の応力σ1に対抗する拘束力が過少になり内周面11と母材との界面強度が不安定になる。   On the other hand, if the inner diameter A of the through holes 21A to 21D is larger than 19 mm, there is a concern that the volume of the iron-based preform 1 is reduced and the original functional effect of the preform is reduced, and the first to fourth through holes 21A. The effect of shrinkage due to the solidification of the aluminum-based alloy melt is large in ˜21D, the adhesion to the base material in the first to fourth through holes 21 </ b> A to 21 </ b> D is reduced, and the stress σ <b> 1 of the thin wall portions 38 and 39 is counteracted The restraining force to be used becomes too small, and the interface strength between the inner peripheral surface 11 and the base material becomes unstable.

隣接する貫通孔21の間隔B、即ち内周面11側における第1貫通孔21Aの貫通孔本体22Aの内方端22Aaと第2貫通孔21Bの貫通孔本体22Bの内方端22Baの開口中心間の間隔B、第2貫通孔21Bの貫通孔本体22Bの内方端22Baと第3貫通孔21Cの貫通孔本体22Cの内方端22Caの開口中心間の間隔B、第1貫通孔21Aの貫通孔本体22Aの内方端22Aaと第4貫通孔21Dの貫通孔本体22Dの内方端22Daの開口中心間の間隔Bが、内径Aの1.5倍より小さいと鉄系プリフォーム1を金型による加圧成形が困難になり、かつ機械加工等により各第1〜第4貫通孔21A〜21Dを追加加工するには大幅な製造コストの増大を招くと共に鉄系プリフォーム1の体積が減少してプリフォーム本来の機能効果が減少することが懸念される。一方、隣接する貫通孔21の間隔Bが内径Aの5倍を超えると貫通孔間の部分に隙間が発生する可能性が高くなる。   The distance B between adjacent through holes 21, that is, the opening center of the inner end 22Aa of the through hole body 22A of the first through hole 21A and the inner end 22Ba of the through hole body 22B of the second through hole 21B on the inner peripheral surface 11 side. The interval B between the opening centers of the inner end 22Ba of the through-hole body 22B of the second through-hole 21B and the inner end 22Ca of the through-hole main body 22C of the third through-hole 21C, and the first through-hole 21A. When the distance B between the opening centers of the inner end 22Aa of the through hole body 22A and the inner end 22Da of the through hole body 22D of the fourth through hole 21D is smaller than 1.5 times the inner diameter A, the iron-based preform 1 is removed. It becomes difficult to press-mold with a mold, and additional machining of each of the first to fourth through holes 21A to 21D by machining or the like causes a significant increase in manufacturing cost and the volume of the iron-based preform 1 is increased. Decrease preform original function Result there is a concern that to decrease. On the other hand, if the interval B between the adjacent through holes 21 exceeds five times the inner diameter A, the possibility that a gap is generated in the portion between the through holes is increased.

更に、内周面11と第1〜第4貫通孔21A〜21Dの内周面11に開口する各貫通孔本体22A〜22Dの内方端22Aa〜22Daと内周面11との連続部分の曲面或いは面取り形状の曲率半径が過大であると、界面強度及び密着が悪化する一方、過小であると鉄系プリフォーム1の製造が困難になると共に、アルミニウム系合金溶湯の凝縮及び収縮時に応力集中が発生して母材、特に薄肉部38、39に破断やクラックが発生する。   Furthermore, the curved surface of the continuous part of the inner peripheral surface 11 and the inner ends 22Aa to 22Da of the through hole bodies 22A to 22D opened to the inner peripheral surface 11 of the first to fourth through holes 21A to 21D. Alternatively, if the radius of curvature of the chamfered shape is excessive, the interfacial strength and adhesion deteriorate, whereas if it is too small, it becomes difficult to produce the iron-based preform 1 and stress concentration occurs during condensation and contraction of the molten aluminum-based alloy. It generates and breaks and cracks occur in the base material, particularly the thin wall portions 38 and 39.

また、第1〜第4貫通孔21A〜21Dの深さCが、内径Aの0.5倍より小さいと、鋳包みの際に第1〜第4貫通孔21A〜21D内にアルミニウム系合金溶湯の侵入が困難になる一方、内径Aの5倍を超えると鉄系プリフォーム1の金型による加圧成形が困難になり、機械加工等により第1〜第4貫通孔21A〜21Dを追加加工するには大幅な製造コストの増大を招く要因となる。   Further, when the depth C of the first to fourth through holes 21A to 21D is smaller than 0.5 times the inner diameter A, the molten aluminum alloy in the first to fourth through holes 21A to 21D at the time of casting. However, if it exceeds 5 times the inner diameter A, it becomes difficult to press-mold with the metal mold of the iron-based preform 1, and the first to fourth through holes 21A to 21D are additionally processed by machining or the like. Therefore, it becomes a factor that causes a significant increase in manufacturing cost.

なお、鉄系プリフォーム1の第1〜第4貫通孔21A〜21Dの貫通孔本体22A〜22Dの内面には、図6(a)に断面を示し、III矢視図を同図(b)に示すように、貫通孔本体22A〜22Dの内面に螺旋状の溝22cを形成したり、図7(a)に断面を示し、IV矢視図を同図(b)に示すように、貫通孔本体22A〜22Dの内面に複数のリブ22dを形成することによって、或いはスリット等を形成して貫通孔の内面に表面積拡大処理を施すことにより、貫通孔本体22A〜22Dの内面の面積を増大させて、各貫通孔21A〜21D内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ3、σ4、σ5、σ6による抗力を増大させる。これにより、内周面11に沿って作用する収縮応力σ1及び外周面12に沿って作用する収縮応力σ2をより確実に受け止め、アルミニウム系合金溶湯の内周面11及び外周面12に沿う移動を抑制して内周面11及び外周面12と母材との密着効果を向上すると共に、収縮後の母材に生じる残留応力を軽減させることができる。   In addition, the inner surface of the through-hole main bodies 22A to 22D of the first to fourth through-holes 21A to 21D of the iron-based preform 1 is shown in a cross-section in FIG. As shown in FIG. 7, a spiral groove 22c is formed on the inner surface of the through-hole bodies 22A to 22D, or a cross-section is shown in FIG. 7 (a), and the IV arrow view is shown in FIG. By forming a plurality of ribs 22d on the inner surfaces of the hole bodies 22A to 22D, or by forming surface areas on the inner surfaces of the through holes by forming slits or the like, the areas of the inner surfaces of the through hole bodies 22A to 22D are increased. Thus, the drag due to the shrinkage stresses σ3, σ4, σ5, and σ6 due to solidification and shrinkage of the molten aluminum alloy that has entered the through holes 21A to 21D is increased. Thereby, the shrinkage stress σ1 acting along the inner circumferential surface 11 and the shrinkage stress σ2 acting along the outer circumferential surface 12 are more reliably received, and the movement of the molten aluminum alloy along the inner circumferential surface 11 and the outer circumferential surface 12 is performed. It can suppress and improve the contact | adherence effect of the inner peripheral surface 11 and the outer peripheral surface 12, and a base material, and can reduce the residual stress which arises in the base material after shrinkage | contraction.

なお、図8に図2に対応する鉄系プリフォーム1の断面を示しように、中心軸芯Lを直交する基準線Laを有して第1内周面11aと第1外周面12aの間を連通する第1貫通孔21A、基準線Laと平行な基準線Lbを有して第2内周面11bと第2外周面12bの間を連通する第2貫通孔21B、基準線Laと直交する基準線Le、Lfを有して第3内周面11cと第3外周面12cの間を連通する比較的小径の一対の第5貫通孔21E、第6貫通孔21F、基準線Laと直交する基準線Lgを有して第1内周面11aの第4内周面11d近傍と第4外周面12dの間を連通する比較的小径の第7貫通孔21G、基準線Lgと平行な基準線Lhを有して第4内周面11dと第4外周面12dの間を連通する比較的小径の第8貫通孔21H、及び第1貫通孔21Aと第8貫通孔21Hとの間において中心軸芯Lを斜交する基準線Ljを有して第1内周面11aと第1外周面12aの間を連通する第9貫通孔21Jを穿設する等、内周面11と外周面12とを連通する貫通孔の数、配置、大きさ等を、MMC化する製品形状等の仕様により最適に設定することができる。これら貫通孔の数、配置、大きさ等は、予め実験やシミュレーションにより、製品における界面の密着状態及び母材側のクラック等の発生状況により決定することが好ましい。   8 shows a cross section of the iron-based preform 1 corresponding to FIG. 2, and has a reference line La orthogonal to the central axis L, and between the first inner peripheral surface 11a and the first outer peripheral surface 12a. The first through hole 21A that communicates with the reference line La and the second through hole 21B that communicates between the second inner peripheral surface 11b and the second outer peripheral surface 12b with a reference line Lb parallel to the reference line La, and orthogonal to the reference line La A pair of relatively small-diameter fifth through-holes 21E, sixth through-holes 21F, and reference lines La that have reference lines Le and Lf that communicate with each other between the third inner peripheral surface 11c and the third outer peripheral surface 12c. A relatively small-diameter seventh through-hole 21G that communicates between the vicinity of the fourth inner peripheral surface 11d of the first inner peripheral surface 11a and the fourth outer peripheral surface 12d, and a reference parallel to the reference line Lg. A relatively small eighth through-hole 21H having a line Lh and communicating between the fourth inner peripheral surface 11d and the fourth outer peripheral surface 12d. And a ninth reference line Lj that obliquely intersects the central axis L between the first through hole 21A and the eighth through hole 21H and communicates between the first inner peripheral surface 11a and the first outer peripheral surface 12a. The number, arrangement, size, and the like of the through holes that connect the inner peripheral surface 11 and the outer peripheral surface 12 can be optimally set according to specifications such as the product shape to be converted to MMC, such as through holes 21J. The number, arrangement, size, and the like of these through holes are preferably determined in advance by experiments and simulations based on the state of adhesion of the interface in the product and the occurrence of cracks on the base material side.

(第2実施の形態)
図9は、第2実施の形態に係る鉄系プリフォーム51の概要を示し、上記図2に対応する断面図である。なお、図2と対応する部分には同一符号を付することで該部の詳細な説明を省略する。
(Second Embodiment)
FIG. 9 shows an outline of the iron-based preform 51 according to the second embodiment, and is a cross-sectional view corresponding to FIG. 2 corresponding to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態に係る鉄系プリフォーム51は、上記鉄系プリフォーム1と同様の鉄系粉末焼結体によって形成される。   The iron-based preform 51 according to the present embodiment is formed of the same iron-based powder sintered body as that of the iron-based preform 1.

この鉄系プリフォーム51は、図9に示すように鉄系プリフォーム1と同様に、第1内周面11a、第2内周面11b、第3内周面11c、第4内周面11dを有する断面半円弧状乃至U字状の内周面11及び第1外周面12a、第2外周面12b、第3外周面12c、第4外周面12dを有する断面半円弧状乃至U字状の外周面12を備えたプリフォーム本体10を有し、プリフォーム本体10の両端にフランジ部15、16が一体形成されている。   As shown in FIG. 9, this iron-based preform 51 is similar to the iron-based preform 1 in that the first inner peripheral surface 11a, the second inner peripheral surface 11b, the third inner peripheral surface 11c, and the fourth inner peripheral surface 11d. A semicircular or U-shaped inner peripheral surface 11 having a cross section and a first outer peripheral surface 12a, a second outer peripheral surface 12b, a third outer peripheral surface 12c, and a fourth outer peripheral surface 12d having a semicircular arc or U-shaped cross section. A preform body 10 having an outer peripheral surface 12 is provided, and flange portions 15 and 16 are integrally formed at both ends of the preform body 10.

プリフォーム本体10の外周面12と内周面11とを連通する貫通孔、及び外周面12に開口する複数の有底孔が複数穿設されている。これら有底孔は、貫通孔に比べ穿設の制約が少なく、貫通孔の穿設が制限される部位でも穿設することができる。本実施の形態では、中心軸芯Lと直交する基準線Laを有して第1外周面12に開口する第1有底孔61A、基準線Laと平行な基準線Lbを有して第2内周面11bと第2外周面12bの間を連通する貫通孔65、基準線Laと直交する基準線Lcを有して第3外周面12cに開口する第2有底孔61B、基準線Laと直交する基準線Ldを有して第4外周面12dに開口する第3有底孔61Cが穿設されている。   A plurality of through holes communicating with the outer peripheral surface 12 and the inner peripheral surface 11 of the preform main body 10 and a plurality of bottomed holes opening in the outer peripheral surface 12 are formed. These bottomed holes are less restrictive to drilling than through holes, and can be drilled even at sites where drilling of through holes is restricted. In the present embodiment, a first bottomed hole 61A having a reference line La orthogonal to the central axis L and opening in the first outer peripheral surface 12, and a reference line Lb parallel to the reference line La is second. A through hole 65 communicating between the inner peripheral surface 11b and the second outer peripheral surface 12b, a second bottomed hole 61B having a reference line Lc perpendicular to the reference line La and opening to the third outer peripheral surface 12c, a reference line La A third bottomed hole 61C that has a reference line Ld orthogonal to each other and opens in the fourth outer peripheral surface 12d is formed.

貫通孔65を形成することによって鉄系プリフォーム51の内周面11と外周面12が貫通孔65を介して連通してアルミニウム系合金により鋳包みした際に湯廻りが良好になるとともに、第1〜第3有底孔61A〜61Cを形成することによって鉄系プリフォーム51の表面積が増大してアルミニウム系合金の溶湯との密着性及び接合強度の向上が図られ、かつアルミニウム系合金溶湯が場合により溶浸して鉄系プリフォーム51のMMC化が得られる。これらの第1〜第3有底孔61A〜61C及び貫通孔65は金型による加圧成形時または焼結体の加工時に形成される。好ましくは金型による加圧成形時に同時に成形することにより製造の効率化が得られると共に製造コストの抑制が得られる。   By forming the through-hole 65, when the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 51 communicate with each other through the through-hole 65 and are cast with an aluminum-based alloy, the hot water circulation is improved. By forming the first to third bottomed holes 61 </ b> A to 61 </ b> C, the surface area of the iron-based preform 51 is increased to improve the adhesion and bonding strength with the molten aluminum alloy, and the molten aluminum alloy In some cases, the steel preform 51 is made into MMC by infiltration. These first to third bottomed holes 61A to 61C and the through hole 65 are formed at the time of pressure molding by a mold or at the time of processing a sintered body. Preferably, the molding is performed at the same time as the pressure molding with the mold, so that the production efficiency can be improved and the production cost can be suppressed.

貫通孔65は、断面円形で基準線Lb方向に連続する円筒状の内面を有して内方端66aが第2内周面11bに開口する貫通孔本体66と、貫通孔本体66の外方端66bに連続形成されて第2外周面12bに開口し、かつ貫通孔本体66の外方端66b側から第2外周面12b側に移行するに従って内径が漸次拡径するテーパ孔部67を有している。第1実施の形態の各貫通孔21A〜21Gと同様に貫通孔本体66の内径Aは、1〜19mm(1mm≦A≦19mm)が好ましく、内周面11に開口する貫通孔本体66の内方端66aと内周面11との連続部分が滑らかに連続する曲面、いわゆるR形状或いは面取り形状に形成され、貫通孔65の深さCは貫通孔本体66の内径Aの0.5倍以上乃至5倍以下(0.5A≦C≦5A)が好ましい。   The through-hole 65 has a cylindrical inner surface that has a circular cross section and continues in the direction of the reference line Lb, and an inner end 66a that opens to the second inner peripheral surface 11b, and an outer side of the through-hole main body 66. It has a tapered hole portion 67 which is continuously formed at the end 66b and opens to the second outer peripheral surface 12b, and whose inner diameter gradually increases as it moves from the outer end 66b side of the through-hole body 66 to the second outer peripheral surface 12b side. doing. Like the through holes 21A to 21G of the first embodiment, the inner diameter A of the through hole body 66 is preferably 1 to 19 mm (1 mm.ltoreq.A.ltoreq.19 mm). The continuous portion of the side end 66a and the inner peripheral surface 11 is formed into a smoothly curved surface, so-called R shape or chamfered shape, and the depth C of the through hole 65 is 0.5 times or more the inner diameter A of the through hole body 66. Or less than 5 times (0.5 A ≦ C ≦ 5 A) is preferable.

第1有底孔61Aは、断面円形で基準線La方向に連続する円筒状の内面を有して内方端62Aaに底部62Acを有する有底孔本体62Aと、有底孔本体62Aの外方端62Abに連続形成されて第1外周面12aに開口し、かつ有底孔本体62Aの外方端62Ab側から第1外周面12a側に移行するに従って内径が漸次拡径するテーパ孔部63Aを有している。   The first bottomed hole 61A has a cylindrical inner surface that is circular in cross section and continuous in the direction of the reference line La, and has a bottomed hole main body 62A having a bottom 62Ac at the inner end 62Aa, and an outer side of the bottomed hole main body 62A. A tapered hole portion 63A that is continuously formed at the end 62Ab, opens to the first outer peripheral surface 12a, and whose inner diameter gradually increases as it moves from the outer end 62Ab side of the bottomed hole body 62A to the first outer peripheral surface 12a side. Have.

第2有底孔61Bは、断面円形で基準線Lc方向に連続する円筒状の内面を有して内方端62Baに底部62Bcを有する有底孔本体62Bと、有底孔本体62Bの外方端62Bbに連続形成されて第3外周面12cに開口し、かつ有底孔本体62Bの外方端62Bb側から第3外周面12c側に移行するに従って内径が漸次拡径するテーパ孔部63Bを有している。   The second bottomed hole 61B has a cylindrical inner surface that is circular in cross section and continuous in the direction of the reference line Lc, and has a bottomed hole body 62B having a bottom 62Bc at the inner end 62Ba, and an outer side of the bottomed hole body 62B. A tapered hole portion 63B that is continuously formed at the end 62Bb, opens to the third outer peripheral surface 12c, and has an inner diameter that gradually increases from the outer end 62Bb side to the third outer peripheral surface 12c side of the bottomed hole body 62B. Have.

第3有底孔61Cは、断面円形で基準線Ld方向に連続する円筒状の内面を有して内方端62Caに底部62Ccを有する有底孔本体62Cと、有底孔本体62Cの外方端62Cbに連続形成されて第4外周面12dに開口し、かつ有底孔本体62Cの外方端62Cb側から第4外周面12d側に移行するに従って内径が漸次拡径するテーパ孔部63Cを有している。   The third bottomed hole 61C has a cylindrical inner surface that is circular in cross section and continuous in the direction of the reference line Ld, and has a bottomed hole main body 62C having a bottom 62Cc at the inner end 62Ca, and an outer side of the bottomed hole main body 62C. A tapered hole portion 63C that is continuously formed at the end 62Cb, opens to the fourth outer peripheral surface 12d, and whose inner diameter gradually increases as it moves from the outer end 62Cb side of the bottomed hole body 62C to the fourth outer peripheral surface 12d side. Have.

第1〜第3有底孔61A〜61C、及び貫通孔65の形状はMMC化する製品形状等の仕様により異なるが、第1〜第3有底孔61A〜61Cの有底孔本体62A〜62Cの内径aは1〜19mm(1mm≦a≦19mm)が好ましい。また、第1〜第3有底孔61A〜61Cの深さcは有底孔本体62A〜62Cの内径aの0.5倍以上乃至5倍以下(0.5a≦c≦5a)が好ましい。   The shapes of the first to third bottomed holes 61A to 61C and the through-hole 65 vary depending on the specifications such as the shape of the product to be converted into an MMC, but the bottomed hole bodies 62A to 62C of the first to third bottomed holes 61A to 61C The inner diameter a is preferably 1 to 19 mm (1 mm ≦ a ≦ 19 mm). Further, the depth c of the first to third bottomed holes 61A to 61C is preferably 0.5 to 5 times (0.5a ≦ c ≦ 5a) the inner diameter a of the bottomed hole main bodies 62A to 62C.

これら、各有底孔61A〜61Cの有底孔本体62A〜62Cの内径a及び有底孔61A〜61Cの深さc等は、MMC化する製品形状等の仕様により最適に設定するには、予め実験やシミュレーションにより、製品における界面の密着状態及び母材側のクラック等の発生状況により決定することが好ましい。   In order to optimally set the inner diameter a of the bottomed hole main bodies 62A to 62C of each of the bottomed holes 61A to 61C and the depth c of the bottomed holes 61A to 61C according to the specifications such as the product shape to be converted to MMC, It is preferably determined in advance by experiments and simulations based on the adhesion state of the interface in the product and the occurrence state of cracks on the base material side.

この鉄系プリフォーム51は、必要に応じてショットブラスト処理が施される。ショットブラスト処理を施すことにより、表面に形成された酸化被膜等が除去されて表面が清浄化され、基地中に分散する遊離Cu相が表面に露出されてアルミニウム系合金による鋳包み性が向上する。   This iron-based preform 51 is subjected to shot blasting as necessary. By performing the shot blasting process, the oxide film formed on the surface is removed to clean the surface, and the free Cu phase dispersed in the matrix is exposed to the surface, thereby improving the castability by the aluminum-based alloy. .

図10は、この鉄系プリフォーム51が用いられるジャーナル部の実施の形態を示すものであり、鉄系プリフォーム51は、各シリンダブロックの鋳造成形時に、その鋳造型のジャーナル部形成位置に配置して鋳包み工程においてMMC化して設ける。   FIG. 10 shows an embodiment of a journal part in which this iron-based preform 51 is used, and the iron-based preform 51 is arranged at the journal part forming position of the casting mold when casting each cylinder block. Then, it is provided as MMC in the casting process.

この鋳包み工程において、鉄系プリフォーム51の外周面12側に注湯されたアルミニウム系合金溶湯は、鉄系プリフォーム51の表面に沿って鉄系プリフォーム51の内周面11側に侵入すると共に、貫通孔65を経ても内周面11側に供給されて良好なアルミニウム系合金溶湯の湯廻り性が得られる。   In this casting process, molten aluminum alloy poured on the outer peripheral surface 12 side of the iron-based preform 51 enters the inner peripheral surface 11 side of the iron-based preform 51 along the surface of the iron-based preform 51. In addition, even through the through-hole 65, it is supplied to the inner peripheral surface 11 side, and good hot-rollability of the molten aluminum alloy is obtained.

このジャーナル部33、35の軸受面34、36と鉄系プリフォーム51の内周面11との間の薄肉部38、39に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面11に沿って周方向に収縮応力σ1が作用し、外周面12側に注湯されたアルミニウム系合金溶湯の凝固及び収縮によっても外周面12に沿って周方向に収縮応力σ2が作用する。一方、鉄系プリフォーム51の第1有底孔61A、貫通孔65、第2有底孔61B及び第3有底孔61C内に侵入したアルミニウム系合金溶湯の凝固及び収縮によって第1有底孔61A、貫通孔65、第2有底孔61B及び第3有底孔61Cに沿ってそれぞれ収縮応力σ3、σ4、σ5、σ6が作用する。   The inner peripheral surface 11 during solidification and shrinkage of the molten aluminum alloy poured into the thin wall portions 38 and 39 between the bearing surfaces 34 and 36 of the journal portions 33 and 35 and the inner peripheral surface 11 of the iron-based preform 51. The shrinkage stress σ1 acts in the circumferential direction along the outer circumferential surface 12, and the shrinkage stress σ2 acts along the outer circumferential surface 12 in the circumferential direction also by solidification and shrinkage of the molten aluminum alloy poured on the outer circumferential surface 12 side. On the other hand, the first bottomed hole 61A, the through hole 65, the second bottomed hole 61B, and the third bottomed hole 61C of the iron-based preform 51 are solidified and contracted by the molten aluminum alloy that has entered the first bottomed hole 61C. The contraction stresses σ3, σ4, σ5, and σ6 act along 61A, the through hole 65, the second bottomed hole 61B, and the third bottomed hole 61C, respectively.

これら鉄系プリフォーム51の貫通孔65に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ4による抗力によって、薄肉部38、39に注湯されたアルミニウム系合金溶湯の凝固及び収縮時に内周面11に沿って周方向に作用する収縮応力σ1が分散されて受け止められ、アルミニウム系合金溶湯の内周面11に沿う移動が抑制されると共に内周面11に密着し、収縮後の薄肉部38、39に生じる残留応力を軽減すると共に均等に分散することができ、薄肉部38、39の残留応力が緩和されて該部の割れ等が防止できる。   The inner circumference of the molten aluminum alloy poured into the thin portions 38 and 39 is solidified and contracted by the drag due to the contraction stress σ4 due to the solidification and contraction of the molten aluminum alloy that has entered the through hole 65 of the iron preform 51. The shrinkage stress σ1 acting in the circumferential direction along the surface 11 is dispersed and received, the movement of the molten aluminum alloy along the inner peripheral surface 11 is suppressed, and the thin-walled portion after the shrinkage is in close contact with the inner peripheral surface 11 Residual stress generated in 38 and 39 can be reduced and evenly distributed, and the residual stress in the thin-walled portions 38 and 39 can be relaxed to prevent cracking of the portions.

同様に、鉄系プリフォーム51の第1有底孔61A、貫通孔65、第2有底孔61B及び第3有底孔61C内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ3、σ4、σ5、σ6による抗力により、鉄系プリフォーム51の外周面12側に注湯されたアルミニウム系合金溶湯の凝固及び収縮によって外周面12に沿って作用する収縮応力σ2が分散されて受け止められ、アルミニウム系合金溶湯の外周面12に沿う移動が抑制されると共に外周面12に密着し、収縮後の該部に生じる残留応力を軽減すると共に均等に分散することができる。   Similarly, the shrinkage stress σ3 due to solidification and shrinkage of the molten aluminum alloy that has entered the first bottomed hole 61A, the through hole 65, the second bottomed hole 61B, and the third bottomed hole 61C of the iron-based preform 51, Due to the drag by σ4, σ5, and σ6, the shrinkage stress σ2 acting along the outer peripheral surface 12 by the solidification and shrinkage of the molten aluminum alloy poured on the outer peripheral surface 12 side of the iron-based preform 51 is dispersed and received. Further, the movement of the molten aluminum alloy along the outer peripheral surface 12 is suppressed, and the aluminum alloy molten metal is brought into close contact with the outer peripheral surface 12, and the residual stress generated in the portion after shrinkage can be reduced and evenly dispersed.

更に、アルミニウム合金溶湯の凝固及び収縮時におけるアルミニウム系合金溶湯の鉄系プリフォーム51の内周面11及び外周面12に沿う周方向の移動の抑制及び密着に伴って、鉄系プリフォーム51とアルミニウム系合金による母材との界面における隙間の発生が防止でき、鉄系プリフォーム51の内周面11及び外周面12と薄肉部38、39を含む母材との界面接合強度が確保できる。   Furthermore, the iron-based preform 51 and the iron-based preform 51 are restrained and closely adhered along the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 51 of the aluminum-based alloy melt during solidification and shrinkage of the molten aluminum alloy. Generation of a gap at the interface with the base material due to the aluminum-based alloy can be prevented, and the interface bonding strength between the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 51 and the base material including the thin portions 38 and 39 can be secured.

ここで、鉄系プリフォーム51は鉄系粉末焼結体からなるため空孔を有し、鋳包み時にアルミニウム系合金溶湯が鉄系プリフォーム51に容易に且つ安定的に密着し、場合により溶浸してMMC化され、MMC化された鉄系プリフォーム51の熱膨張係数と鉄系材料からなるクランクシャフト41との熱膨張係数の差が小さくなるので、ジャーナル部33、35の温度が上昇しても、クランクシャフト41と軸受面34、36とのクリアランスを許容範囲内に収めることができ、クランクシャフト41の回転中における振動や騒音の発生を防止することができる。   Here, since the iron-based preform 51 is made of an iron-based powder sintered body, the iron-based preform 51 has pores, and the molten aluminum-based alloy easily and stably adheres to the iron-based preform 51 during casting, and sometimes melts. Since the difference between the thermal expansion coefficient of the iron-based preform 51 soaked into MMC and the MMC-converted iron-based preform 51 and the crankshaft 41 made of iron-based material is reduced, the temperature of the journal portions 33 and 35 increases. However, the clearance between the crankshaft 41 and the bearing surfaces 34 and 36 can be within an allowable range, and vibration and noise during rotation of the crankshaft 41 can be prevented.

更に、鉄系プリフォーム51の内周面11及び外周面12との界面における隙間の発生を防止し、内周面11及び外周面12との界面強度を確保することで、アルミニウム系合金からなる母材と鉄系プリフォーム51との間の熱伝導効率が向上してジャーナル部33、35の周方向において熱伝導率が均一になり、ジャーナル部33、35の軸受面34、36側が均等に膨張してジャーナル部33、35による軸受メタルの支持が安定してクランクシャフトと軸受メタルとの間の摩擦係数の増加が抑制され、摩擦抵抗の減少に伴ってエンジンの燃費、性能、耐久性等が確保できる。   Further, the formation of a gap at the interface between the inner peripheral surface 11 and the outer peripheral surface 12 of the iron-based preform 51 is prevented, and the interface strength between the inner peripheral surface 11 and the outer peripheral surface 12 is ensured, thereby forming an aluminum-based alloy. The heat conduction efficiency between the base material and the iron-based preform 51 is improved, the heat conductivity becomes uniform in the circumferential direction of the journal portions 33, 35, and the bearing surfaces 34, 36 side of the journal portions 33, 35 are evenly distributed. The support of the bearing metal by the journal portions 33 and 35 is stably expanded, and the increase in the friction coefficient between the crankshaft and the bearing metal is suppressed, and the fuel consumption, performance, durability, etc. of the engine are reduced as the frictional resistance decreases. Can be secured.

更に、ジャーナル部33、35において薄肉部38、39と鉄系プリフォーム51との界面に隙間がなくなり、ジャーナル部33、35の軸受面34、36を機械加工する際に薄肉に形成された薄肉部38、39の加工時の負荷による変形が抑制されてジャーナル部33、35の加工精度が向上する。   Further, there is no gap at the interface between the thin wall portions 38, 39 and the iron-based preform 51 in the journal portions 33, 35, and the thin wall formed when the bearing surfaces 34, 36 of the journal portions 33, 35 are machined. The deformation of the portions 38 and 39 due to a load during processing is suppressed, and the processing accuracy of the journal portions 33 and 35 is improved.

ここで、貫通孔65の内周面11側に加わる収縮応力が過少の場合には、アルミニウム系合金溶湯の凝固及び収縮に伴う薄肉部38、39の応力σ1に対抗する拘束力が過少になり内周面11と母材の界面に連続した隙間が形成されて界面強度が不安定になる。そこで、本実施の形態では鉄系プリフォーム51に穿設される貫通孔65の貫通孔本体66を内径1〜19mmの断面円形で連続する内面を円筒状に形成したが、仮に貫通孔65の内径Aを1mmより小さくすると、アルミニウム系合金溶湯の凝固及び収縮に伴う薄肉部38、39の応力σ1に対抗する拘束力が過少になり界面の密着性向上の効果が極めて小さくなる。一方、貫通孔65の内径Aを19mmより大きくすると、鉄系プリフォーム51の体積が減少してプリフォーム本来の機能効果が減少することが懸念され、かつ貫通孔65内でアルミニウム系合金溶湯の凝固に伴う収縮の影響が大きく、貫通孔65内における母材との密着性が低下し、薄肉部38、39の応力σ1に対抗する拘束力が過少になり内周面11と母材との界面強度が不安定になる。   Here, when the shrinkage stress applied to the inner peripheral surface 11 side of the through-hole 65 is too small, the restraining force against the stress σ1 of the thin portions 38 and 39 accompanying the solidification and shrinkage of the molten aluminum alloy becomes too small. A continuous gap is formed at the interface between the inner peripheral surface 11 and the base material, and the interface strength becomes unstable. Therefore, in the present embodiment, the through hole body 66 of the through hole 65 formed in the iron-based preform 51 is formed in a cylindrical shape with a continuous inner surface having a circular shape with an inner diameter of 1 to 19 mm. If the inner diameter A is smaller than 1 mm, the restraining force against the stress σ1 of the thin wall portions 38 and 39 accompanying solidification and shrinkage of the molten aluminum alloy becomes too small, and the effect of improving the adhesion at the interface becomes extremely small. On the other hand, if the inner diameter A of the through-hole 65 is larger than 19 mm, there is a concern that the volume of the iron-based preform 51 is reduced and the original functional effect of the preform is reduced. The influence of shrinkage due to solidification is large, the adhesion with the base material in the through hole 65 is lowered, the restraining force against the stress σ1 of the thin wall portions 38 and 39 becomes too small, and the inner peripheral surface 11 and the base material Interfacial strength becomes unstable.

また、第1〜第3有底孔61A〜61C及び貫通孔65内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ3、σ5、σ6、σ4による抗力が過少の場合には、アルミニウム系合金溶湯の凝固及び収縮に伴う外周面12側の母材の応力σ2に対抗する拘束力が過少になり外周面12と母材の界面に連続した隙間が形成されて界面強度が不安定になる。そこで、本実施の形態では鉄系プリフォーム51に穿設される貫通孔65の内径A及び第1〜第3有底孔61A〜61Cの内径aを1〜19mmの断面円形で連続する内面を円筒状に形成したが、仮に貫通孔65の内径A及び各有底孔61A〜61Cの内径aを1mmより小さくすると、アルミニウム系合金溶湯の凝固及び収縮に伴う外周面12側の母材による応力σ2に対抗する拘束力が過少になり界面の密着性向上の効果が極めて小さく、また、ショットブラスト処理を施す場合に貫通孔本体66及び有底孔本体62A〜62Cの内面にショットが良好に吹き付け難く、ショットブラスト処理の効果が期待できない。   If the drag due to the shrinkage stress σ3, σ5, σ6, σ4 due to solidification and shrinkage of the molten aluminum alloy that has entered the first to third bottomed holes 61A to 61C and the through hole 65 is too small, the aluminum-based alloy The restraining force against the stress σ2 of the base material on the outer peripheral surface 12 side due to solidification and shrinkage of the molten alloy becomes insufficient, and a continuous gap is formed at the interface between the outer peripheral surface 12 and the base material, and the interface strength becomes unstable. . Therefore, in the present embodiment, the inner diameter A of the through-hole 65 formed in the iron-based preform 51 and the inner diameter a of the first to third bottomed holes 61A to 61C are continuous with a circular cross section of 1 to 19 mm. Although formed into a cylindrical shape, if the inner diameter A of the through hole 65 and the inner diameter a of each of the bottomed holes 61A to 61C are smaller than 1 mm, the stress caused by the base material on the outer peripheral surface 12 side due to solidification and shrinkage of the molten aluminum alloy The restraining force against σ2 becomes too small, and the effect of improving the adhesion at the interface is extremely small. In addition, when shot blasting is performed, shots are well sprayed on the inner surfaces of the through hole body 66 and the bottomed hole bodies 62A to 62C. It is difficult to expect the effect of shot blasting.

一方、貫通孔65の内径A及び各有底孔61A〜61Cの内径aを19mmより大きくすると、鉄系プリフォーム51の体積が減少してプリフォーム本来の機能効果が減少することが懸念され、かつ貫通孔本体66及び有底孔本体62A〜62C内でアルミニウム系合金溶湯の凝固に伴う収縮の影響が大きく、貫通孔本体66及び有底孔本体62A〜62C内における母材との密着性が低下し、外周面12と母材の応力σ2に対抗する拘束力が過少になり外周面12と母材との界面強度が不安定になる。   On the other hand, if the inner diameter A of the through-hole 65 and the inner diameter a of each of the bottomed holes 61A to 61C are larger than 19 mm, there is a concern that the volume of the iron-based preform 51 is reduced and the original functional effect is reduced. And the influence of the shrinkage | contraction accompanying solidification of aluminum alloy molten metal is large in the through-hole main body 66 and the bottomed hole main bodies 62A-62C, and the adhesiveness with the base material in the through-hole main body 66 and the bottomed hole main bodies 62A-62C is. As a result, the restraining force that counteracts the stress σ2 of the outer peripheral surface 12 and the base material becomes insufficient, and the interface strength between the outer peripheral surface 12 and the base material becomes unstable.

また、貫通孔65の深さC及び第1〜第3有底孔61A〜61Cの深さcが、それぞれ内径A、内径aの0.5倍より小さいと、鋳包みの際に貫通孔65及び第1〜第3有底孔61A〜61C内にアルミニウム系合金溶湯の侵入が困難になり、また内径A、内径aの5倍を超えると鉄系プリフォーム51を金型による加圧成形が困難になり、機械加工等により貫通孔65及び第1〜第3有底孔61A〜61Cを追加加工するには大幅な製造コストの増大を招く要因となる。   Further, if the depth C of the through hole 65 and the depth c of the first to third bottomed holes 61A to 61C are smaller than 0.5 times the inner diameter A and the inner diameter a, respectively, the through hole 65 is cast at the time of casting. In addition, it becomes difficult for the molten aluminum-based alloy to enter the first to third bottomed holes 61A to 61C, and when the inner diameter A exceeds five times the inner diameter a, the iron-based preform 51 is pressed by a mold. It becomes difficult to cause additional machining of the through hole 65 and the first to third bottomed holes 61A to 61C by machining or the like, which causes a significant increase in manufacturing cost.

なお、鉄系プリフォーム51の第1〜第3有底孔61A〜61Cの有底孔本体62A〜62Cの内面を図11(a)に断面を示し、V矢視図を同図(b)に示すように有底孔本体62A〜62Cの内面に螺旋状の溝62cを形成したり、図12(a)に断面を示し、VI矢視図を同図(b)に示すように有底孔本体62A〜62Cの内面に複数のリブ62dを形成することによって、或いはスリット等を形成して有底孔本体62A〜62Cの内面に表面積拡大処理を施すことにより有底孔本体62A〜62Cの内面の面積を増大させて、第1〜第3有底孔61A〜61C内に侵入したアルミニウム系合金溶湯の凝固及び収縮による収縮応力σ3、σ5、σ6を増大させることができる。これにより、外周面12に沿って周方向に作用する収縮応力σ2をより確実に受け止めて、アルミニウム系合金溶湯の外周面12に沿う移動を抑制して外周面12と母材との密着効果を向上すると共に、収縮後の母材に生じる残留応力を軽減させることができる。   In addition, the inner surface of the bottomed hole main bodies 62A to 62C of the first to third bottomed holes 61A to 61C of the iron-based preform 51 is shown in cross section in FIG. 11 (a), and the V arrow view is shown in FIG. A spiral groove 62c is formed on the inner surfaces of the bottomed hole main bodies 62A to 62C as shown in FIG. 12, a cross section is shown in FIG. 12 (a), and a bottom view as shown in FIG. By forming a plurality of ribs 62d on the inner surfaces of the hole bodies 62A to 62C, or by forming surface areas on the inner surfaces of the bottomed hole bodies 62A to 62C by forming slits or the like, the bottomed hole bodies 62A to 62C are formed. By increasing the area of the inner surface, it is possible to increase the shrinkage stresses σ3, σ5, and σ6 due to solidification and shrinkage of the molten aluminum alloy that has entered the first to third bottomed holes 61A to 61C. Thereby, the shrinkage stress σ2 acting in the circumferential direction along the outer peripheral surface 12 is more reliably received, and the movement along the outer peripheral surface 12 of the molten aluminum alloy is suppressed, and the adhesion effect between the outer peripheral surface 12 and the base material is achieved. While improving, the residual stress which arises in the base material after shrinkage | contraction can be reduced.

また、本実施の形態では、外周面12に開口する第1有底孔61A〜61Cを穿設したが、内周面11に開口する有底孔を配置することもできる。更に貫通孔及び有底孔の数及び配置、大きさ等をMMC化する製品形状等の仕様により最適に設定することができる。これら貫通孔の数、配置、大きさ等は、予め実験やシミュレーションにより、製品における界面の密着状態及び母材側のクラック等の発生状況により決定すること好ましい。   Further, in the present embodiment, the first bottomed holes 61 </ b> A to 61 </ b> C that open to the outer peripheral surface 12 are drilled, but the bottomed holes that open to the inner peripheral surface 11 can also be arranged. Furthermore, the number, arrangement, size, and the like of the through holes and the bottomed holes can be optimally set according to specifications such as a product shape to be converted into an MMC. The number, arrangement, size, and the like of these through holes are preferably determined in advance by experiments and simulations based on the state of close contact of the interface and the occurrence of cracks on the base material side.

1 金属基複合材形成用鉄系プリフォーム
10 プリフォーム本体
11 内周面
12 外周面
21A〜21H 第1〜第8貫通孔(貫通孔)
22c 螺旋状の溝(表面積拡大処理)
22d リブ(表面積拡大処理)
33、35 ジャーナル部
34、36 軸受面(凹面)
38、39 薄肉部
51 鉄系プリフォーム
61A〜61C 第1〜第3有底孔
62c 螺旋状の溝(表面積拡大処理)
62d リブ(表面積拡大処理)
65 貫通孔
A 貫通孔の内径
B 貫通孔の間隔
C 貫通孔の深さ
a 有底孔の内径
c 有底孔の深さ
DESCRIPTION OF SYMBOLS 1 Iron-type preform 10 for metal matrix composite formation Preform main body 11 Inner peripheral surface 12 Outer peripheral surface 21A-21H The 1st-8th through-hole (through-hole)
22c Spiral groove (surface area expansion treatment)
22d rib (surface area expansion treatment)
33, 35 Journal part 34, 36 Bearing surface (concave surface)
38, 39 Thin-walled portion 51 Iron-based preforms 61A to 61C First to third bottomed holes 62c Spiral groove (surface area enlargement process)
62d rib (surface area expansion treatment)
65 Through-hole A Through-hole inner diameter B Through-hole spacing C Through-hole depth a Inner diameter of bottomed hole c Bottomed hole depth

Claims (6)

断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面を有するアルミニウム系合金母材で鋳包みされ、上記凹面に沿う断面半円弧状乃至U字状で上記中心軸芯延在方向に沿って連続する内周面及び外周面を有するプリフォーム本体を備えた金属基複合材形成用鉄系プリフォームにおいて、
上記プリフォーム本体は、上記内周面と外周面とを連通する貫通孔が穿設され、上記貫通孔の内面に表面積拡大処理が施されていることを特徴とする金属基複合材形成用鉄系プリフォーム。
It is cast with an aluminum-based alloy base material having a concave surface continuously formed along the direction in which the central axis extends in a semicircular cross section, and the central axis extends in a semicircular arc or U shape in cross section along the concave surface. In an iron-based preform for forming a metal matrix composite comprising a preform body having an inner peripheral surface and an outer peripheral surface continuous along a direction,
The preform body has a through-hole that communicates the inner peripheral surface and the outer peripheral surface, and an inner surface of the through-hole is subjected to a surface area enlargement process. System preform.
上記プリフォーム本体の内周面及び/または外周面に開口する有底孔が穿設されていることを特徴とする請求項1に記載の金属基複合材形成用鉄系プリフォーム。   The iron-based preform for forming a metal matrix composite according to claim 1, wherein a bottomed hole is formed in the inner peripheral surface and / or outer peripheral surface of the preform body. 上記有底孔の内面に表面積拡大処理が施されていることを特徴とする請求項2に記載の金属基複合材形成用鉄系プリフォーム。   The iron-based preform for forming a metal matrix composite according to claim 2, wherein the inner surface of the bottomed hole is subjected to a surface area enlargement process. 断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面を有するアルミニウム系合金母材で鋳包みされ、上記凹面に沿う断面半円弧状乃至U字状で上記中心軸芯延在方向に沿って連続する内周面及び外周面を有するプリフォーム本体を備えた金属基複合材形成用鉄系プリフォームにおいて、
上記プリフォーム本体は、内周面及び/または外周面に開口する有底孔が穿設され、上記有底孔の内面に表面積拡大処理が施されていることを特徴とする金属基複合材形成用鉄系プリフォーム。
It is cast with an aluminum-based alloy base material having a concave surface continuously formed along the direction in which the central axis extends in a semicircular cross section, and the central axis extends in a semicircular arc or U shape in cross section along the concave surface. In an iron-based preform for forming a metal matrix composite comprising a preform body having an inner peripheral surface and an outer peripheral surface continuous along a direction,
The preform body is formed with a bottomed hole that opens to an inner peripheral surface and / or an outer peripheral surface, and a surface area enlargement process is performed on the inner surface of the bottomed hole. Iron-based preform.
上記プリフォーム本体は、上記内周面と外周面とを連通する貫通孔が穿設されていることを特徴とする請求項4に記載の金属基複合材形成用鉄系プリフォーム。   5. The metal-based composite material-forming iron-based preform according to claim 4, wherein the preform body has a through-hole that communicates the inner peripheral surface with the outer peripheral surface. 上記請求項1〜5のいずれか1項に記載の金属基複合材形成用鉄系プリフォームを、上記プリフォーム本体の内周面に沿う断面半円弧状で中心軸芯延在方向に沿って連続形成された凹面状の軸受面を有するアルミニウム系合金母材で鋳包みしたことを特徴とするジャーナル部構造。   The metal-based composite material-forming iron-based preform according to any one of claims 1 to 5 is formed in a semicircular cross section along the inner peripheral surface of the preform main body along the central axis extending direction. A journal part structure characterized by being cast with an aluminum alloy base material having a concave bearing surface formed continuously.
JP2010287019A 2010-12-24 2010-12-24 Iron-based preform and journal structure for forming metal matrix composites Active JP5147025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287019A JP5147025B2 (en) 2010-12-24 2010-12-24 Iron-based preform and journal structure for forming metal matrix composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287019A JP5147025B2 (en) 2010-12-24 2010-12-24 Iron-based preform and journal structure for forming metal matrix composites

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005287941A Division JP2007100122A (en) 2005-09-30 2005-09-30 Iron-base preform for forming metal matrix composite and journal part structure

Publications (2)

Publication Number Publication Date
JP2011069372A JP2011069372A (en) 2011-04-07
JP5147025B2 true JP5147025B2 (en) 2013-02-20

Family

ID=44014840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287019A Active JP5147025B2 (en) 2010-12-24 2010-12-24 Iron-based preform and journal structure for forming metal matrix composites

Country Status (1)

Country Link
JP (1) JP5147025B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156025A1 (en) * 2014-04-07 2015-10-15 日産自動車株式会社 Bearing cap
JP6445858B2 (en) 2014-12-12 2018-12-26 住友電工焼結合金株式会社 Sintered part manufacturing method and drill
JP2019070194A (en) * 2018-11-29 2019-05-09 住友電工焼結合金株式会社 Sintered component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115826B2 (en) * 2002-12-25 2008-07-09 富士重工業株式会社 Iron-based sintered body excellent in aluminum alloy castability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011069372A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP4498255B2 (en) Iron-based preform for forming metal matrix composite and journal part structure having the iron-based preform
JP5107837B2 (en) Cylinder liner, cylinder block, and cylinder liner manufacturing method
CN100473477C (en) Cast hollow crankshaft and method for manufacturing the same
US20070277645A1 (en) Lightweight Crankshaft
JP2006194195A (en) Cylinder liner and cylinder block
CN105473255A (en) Cylinder liner with bonding layer
JP5147025B2 (en) Iron-based preform and journal structure for forming metal matrix composites
JP2007100122A (en) Iron-base preform for forming metal matrix composite and journal part structure
JP5249832B2 (en) Crankshaft and manufacturing method thereof
JP2008095723A (en) Rolling bearing
US20180111231A1 (en) Method for metallurgically bonding a cylinder liner into a bore in an engine block
CN201818664U (en) Laser-etched main shaft bushing
JPS60182338A (en) Cylinder block for internal-combustion engine made of light metal
CN110894850B (en) Bearing with bearing pin for use in engines and other devices
RU133224U1 (en) INTERNAL COMBUSTION ENGINE CONNECTOR
JP4434127B2 (en) Composite member and manufacturing method thereof
JP5090309B2 (en) Preform made of sintered iron powder
JPH0313549Y2 (en)
JP2006170095A (en) Cylinder block and method for manufacturing the same
CN113333684A (en) Process for solving shrinkage porosity of isolated hot node center of vertical casting cylinder cover by using graphite chill
JPH03138069A (en) Cast iron-made cylinder block
JP2012202351A (en) Cylinder block and method for manufacturing the same
JPH0566245U (en) piston
JP2014031828A (en) Crankshaft and method for manufacturing crankshaft

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

R150 Certificate of patent or registration of utility model

Ref document number: 5147025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250