JP5145215B2 - Heat storage body with cover layer for heat exchange - Google Patents

Heat storage body with cover layer for heat exchange Download PDF

Info

Publication number
JP5145215B2
JP5145215B2 JP2008516105A JP2008516105A JP5145215B2 JP 5145215 B2 JP5145215 B2 JP 5145215B2 JP 2008516105 A JP2008516105 A JP 2008516105A JP 2008516105 A JP2008516105 A JP 2008516105A JP 5145215 B2 JP5145215 B2 JP 5145215B2
Authority
JP
Japan
Prior art keywords
coating layer
storage body
heat storage
heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008516105A
Other languages
Japanese (ja)
Other versions
JP2008544201A (en
Inventor
▲恵▼敏 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2008544201A publication Critical patent/JP2008544201A/en
Application granted granted Critical
Publication of JP5145215B2 publication Critical patent/JP5145215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/042Bricks shaped for use in regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/06Coatings; Surface treatments having particular radiating, reflecting or absorbing features, e.g. for improving heat transfer by radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は熱交換装置、特に熱交換用被覆層付き蓄熱体に関するものである。   The present invention relates to a heat exchange device, and more particularly to a heat storage body with a heat exchange coating layer.

冶金、機械等の工業分野、農産物加工業において、熱交換器が広く使用されている。空気やガスを加熱するのは熱交換器の主な機能である。その中、ひとつの方法は直接石炭、ガス、石油、電気を熱源とする。もうひとつの方法は、余熱を熱源とする。   Heat exchangers are widely used in industrial fields such as metallurgy and machinery, and in the agricultural product processing industry. Heating air and gas is the main function of the heat exchanger. One method uses coal, gas, oil, and electricity as heat sources. Another method uses residual heat as a heat source.

まず熱源にて熱交換器の蓄熱体を熱する、その後、熱した蓄熱体を加熱したい対象の空気又はガス中に入れ、蓄熱体が空気又はガスとの熱交換により、蓄熱体の熱エネルギーが吸いあげられ、空気又はガスを加熱する目的に至る。通常、蓄熱体は一般的に耐熱材質、セラミックス材質、あるいは鋼鉄材で出来ている。   First, the heat storage body of the heat exchanger is heated with a heat source, and then the heated heat storage body is put into the air or gas of the target to be heated, and the heat storage body heat exchanges with air or gas, so that the heat energy of the heat storage body Suctioned up to the purpose of heating air or gas. Usually, the heat storage body is generally made of a heat-resistant material, a ceramic material, or a steel material.

蓄熱体の吸熱、放熱能力は熱交換器の熱交換能力にとって重要な要素であり、省エネルギーにも直結している。熱交換器の熱交換効率をアップさせるため、特許CN2462326YやCN2313197Yのように、数多くの特許により熱交換器の構造に対して改善を行っている。但し、これまで高レベル輻射材質の被覆層を増加により蓄熱体の蓄熱能力を改善し、熱交換効率向上を図る熱交換器についての報道はなかった。
中国特許CN2462326Y 中国特許CN2313197Y
The heat absorption and heat dissipation capacity of the heat storage element is an important element for the heat exchange capacity of the heat exchanger, and is directly linked to energy saving. In order to increase the heat exchange efficiency of the heat exchanger, the structure of the heat exchanger is improved by a number of patents such as patents CN2462326Y and CN2313197Y. However, there has been no report about a heat exchanger that improves the heat storage capacity of the heat storage body by increasing the coating layer of high-level radiation material and improves the heat exchange efficiency.
Chinese patent CN2462326Y Chinese patent CN23113197Y

本発明は従来技術の欠点を克服し、効果が優れ且つ省エネルギーの熱交換用被覆層付き蓄熱体を提供する。   The present invention overcomes the drawbacks of the prior art, and provides a heat storage body with a heat exchange coating layer that is highly effective and energy-saving.

本発明にて提供される熱交換用被覆層付き蓄熱体について、少なくとも一側面に高レベル輻射材質被覆層が塗布されること。
上記高レベル輻射材質の被覆層厚みは0.02乃至3mmである。
The heat storage body with a heat exchange coating layer provided in the present invention is coated with a high-level radiation material coating layer on at least one side surface.
The coating layer thickness of the high level radiation material is 0.02 to 3 mm.

上記高レベル輻射材質は蓄熱体本体より、吸収率、輻射率が高い。   The high level radiation material has higher absorption rate and radiation rate than the heat storage body.

それにより、高レベル放射性物質にはある利点がある。それはその吸収率及び放射率が、熱保持器の中心が出来ている基材より高いことである。   Thereby, the high level radioactive material has certain advantages. That is, its absorptance and emissivity are higher than the substrate on which the center of the heat retainer is made.

上記蓄熱体の形状はハニカム状、フィン状、ボール状、楕円状、板状の中、何れ一種の形状となる。   The shape of the heat storage body is any one of honeycomb, fin, ball, ellipse, and plate.

上記蓄熱体の内部に穴があり、その内部の穴の形状は円形、正方形、長方形、菱形、六角形、あるいは多辺形である。蓄熱体本体は耐熱材質、セラミックス材質又は鋼鉄材質で作られる。   There is a hole inside the heat storage body, and the shape of the hole inside the heat storage body is a circle, a square, a rectangle, a diamond, a hexagon, or a polygon. The heat storage body is made of a heat resistant material, a ceramic material or a steel material.

上記蓄熱体の切断面形状は円形、正方形、長方形、菱形、六角形或いは多辺形である。   The shape of the cut surface of the heat storage body is a circle, a square, a rectangle, a diamond, a hexagon, or a polygon.

上記高レベル輻射材質は、耐熱材質、セラミックス材質又は鋼鉄材質等で出来た蓄熱体の領域においてあらゆる高レベル輻射遠赤外材質に適用する。   The high-level radiation material is applied to all high-level radiation far-infrared materials in the region of a heat storage body made of a heat-resistant material, a ceramic material, a steel material, or the like.

上記高レベル輻射性物質の被覆層はペースト塗布、吹き付け塗装または含浸塗布等方式にて完成させ、被覆層が塗布された後、直接でも使用できるし、また、高温にて固まってから使用しても良い。   The above high-level radioactive material coating layer is completed by paste coating, spray coating or impregnation coating, etc., and can be used directly after the coating layer is applied, or it can be used after it has hardened at high temperature. Also good.

被覆層を塗布、吹き付け塗装または含浸塗布する前に、蓄熱体本体の表面に高温粘着剤を含む前処理液を塗布することにより、高レベル輻射性物質の被覆層が蓄熱体本体との間の粘着力をより一層アップすることができる。   Before the coating layer is applied, sprayed or impregnated, a pretreatment liquid containing a high-temperature adhesive is applied to the surface of the heat storage body, so that the coating layer of the high-level radioactive material is between the heat storage body. The adhesive force can be further increased.

上記前処理液はPA80というポリアミン硬化剤又はアルカリ金属ケイ酸塩を含む水溶液である。   The pretreatment liquid is an aqueous solution containing a polyamine curing agent PA80 or an alkali metal silicate.

高レベル輻射性物質被覆層に含まれる固体成分の粒径が20〜900nmになるように超微細化処理される。それらの処理より、高レベル輻射性物質被覆層が本体との付着力を向上させる。   Ultra-fine processing is performed so that the particle size of the solid component contained in the high-level radioactive material coating layer is 20 to 900 nm. Through these treatments, the high-level radioactive material coating layer improves the adhesion to the main body.

本発明は熱交換器の被覆層付き蓄熱体の表面に、蓄熱体本体材質より輻射率の高い高レベル輻射性物質を塗布することに適用する。本発明は熱交換器の吸熱及び放熱能力を向上させ、従来技術の熱交換器より、吸熱及び放熱が早く、蓄熱容量を増加し、熱交換温度上昇する効果がある。   The present invention is applied to the application of a high-level radiation material having a higher emissivity than the material of the heat storage body main body to the surface of the heat storage body with a coating layer of the heat exchanger. The present invention improves the heat absorption and heat dissipation capability of the heat exchanger, and has the effect of increasing heat storage capacity and increasing the heat exchange temperature, faster heat absorption and heat dissipation than conventional heat exchangers.

同時に、熱交換器の熱交換率を上げることで省エネルギーにも効果が得られる。特に、鋼鉄を生産する高炉熱風炉の格子煉瓦及び蓄熱ボールの表面に高レベル輻射性物質層を塗布する場合、熱風炉内の温度が均等になり、蓄熱容量が著しく増加される。これにより循環空気の温度を上げることができ、炉交換周期が短縮され、ガス消費量及び空気流量が低減される。これらの消費量が低減されることにより、更なる電気を節約することができる。   At the same time, it is possible to save energy by increasing the heat exchange rate of the heat exchanger. In particular, when a high-level radioactive material layer is applied to the surface of lattice bricks and heat storage balls of a blast furnace hot air furnace that produces steel, the temperature in the hot air furnace becomes uniform and the heat storage capacity is remarkably increased. Thereby, the temperature of circulating air can be raised, a furnace exchange period is shortened, and gas consumption and an air flow rate are reduced. By reducing these consumptions, further electricity can be saved.

また従来の風力タービンの型式を変更することができるため、コストダウンにも繋がる。尚、被覆層が蓄熱体の本体を保護する働きもある。 鉄鋼圧延蓄熱方式加熱炉の蓄熱体の表面にその高レベル輻射性物質被覆層を塗布しておけば、蓄熱箱内部の温度が大幅にアップすることができる。   Moreover, since the model of the conventional wind turbine can be changed, it leads also to a cost reduction. In addition, a coating layer also has a function which protects the main body of a thermal storage body. If the high-level radiation material coating layer is applied to the surface of the heat storage body of the steel rolling heat storage type heating furnace, the temperature inside the heat storage box can be significantly increased.

[実用例1]
図1に示しているように鋼鉄生産の高炉熱風炉の蓄熱体―格子煉瓦に適用する場合。格子煉瓦内部に円形穴1があり、格子煉瓦(蓄熱体)の全ての表面及び内部穴の表面に高レベル輻射性物層2が塗布される。被覆層の厚さは0.02mm。蓄熱体本体は耐火材質であり、高レベル輻射性物層2は蓄熱体本体より遠赤外領域における輻射率が高い物質である。その高レベル輻射性被覆層おける成分の重さ割合は下記となる。Cr2Oは110、粘土は80、モンモリロナイトは90、褐色コランダムは300、炭化ケイ素は100、接着型PA80は400、水は100となる。 その中固体物質において粒径が25から700nmまでにて超微細加工され、既存の熱交換器より、本実用例の蓄熱体を使用する熱交換器の方は20%以上の省エネルギー効果が得られる。
[Practical example 1]
As shown in Fig. 1, when applying to a steel storage blast furnace hot stove regenerator-lattice brick. There are circular holes 1 inside the lattice brick, and the high-level radiation material layer 2 is applied to all surfaces of the lattice brick (heat storage body) and the surfaces of the internal holes. The thickness of the coating layer is 0.02mm. The heat storage body is a refractory material, and the high-level radiation material layer 2 is a substance having a higher emissivity in the far infrared region than the heat storage body. The weight ratio of the components in the high level radiation coating layer is as follows. Cr 2 O 3 is 110, clay is 80, montmorillonite is 90, brown corundum is 300, silicon carbide is 100, adhesive PA80 is 400, and water is 100. Among them, the solid material is ultra-fine processed with a particle size of 25 to 700 nm, and the heat exchanger using the heat accumulator of this practical example has an energy saving effect of 20% or more than the existing heat exchanger. .

[実用例2]
上記実例1と同様であるが、以下の相違点がある:ハニカム状蓄熱体の断面は外形は長方形であり、円形穴3及び高レベル輻射性物質の被覆層4がある。(図2参照)
[Practical example 2]
Similar to Example 1 with the following differences: the cross section of the honeycomb-shaped heat storage body is rectangular in shape, with a circular hole 3 and a coating layer 4 of a high level radiation material. (See Figure 2)

[実用例3]
図3に示しているように、熱交換用蓄熱体がフィン状であり、蓄熱体内部に長方形の穴5がある。蓄熱体の全ての表面(内部穴の表面を含む)に高レベル輻射性物質の被覆層6が塗布される。被覆層の厚みは0.03mmである。蓄熱体本体はセラミックス材質であり、高レベル輻射性物質の被覆層6は蓄熱体本体の材質より遠赤外輻射率が高い物質である。輻射性物質の成分重さの割合は下記となる:ZrOは15、Cr2Oは8、TiO2は10、モンモリロナイトは2、Al2Oは15、カーボランダムは10、接着型PA80は30、水は10である。既存の熱交換器より、本実用例の蓄熱体を使用する熱交換器の方は10%以上の省エネルギー効果が得られる。
[Practical example 3]
As shown in FIG. 3, the heat exchange heat storage body has a fin shape, and a rectangular hole 5 is provided inside the heat storage body. The coating layer 6 of the high level radiation material is applied to all the surfaces of the heat storage body (including the surface of the internal hole). The thickness of the coating layer is 0.03 mm. The main body of the heat storage body is a ceramic material, and the coating layer 6 of the high level radiation material is a substance having a higher far-infrared emissivity than the material of the main body of the heat storage body. The ratio of the component weight of the radioactive material is as follows: ZrO is 15, Cr 2 O 3 is 8, TiO 2 is 10, Montmorillonite is 2, Al 2 O 3 is 15, Carborundum is 10, Adhesive PA80 is 30, water is 10. Compared to the existing heat exchanger, the heat exchanger using the heat storage body of this practical example can obtain an energy saving effect of 10% or more.

[実用例4]
図4に示しているように、熱交換用蓄熱体は板状であり、蓄熱体の表面に高レベル輻射性物質の被覆層7が塗布される。被覆層の厚さは0.1mmである。蓄熱体本体8の材質は鋼鉄であり、高レベル輻射性物質の被覆層7は蓄熱体本体の材質より遠赤外輻射率が高い物質である。高レベル輻射性物質の成分重さの割合は下記となる。Cr2Oは60、褐色コランダムは200、粘土は50、モンモリロナイトは30、カーボランダムは200、ケイ酸ナトリウムは200、水は100である。 被覆層7の外側表面は熱交換面9である。高レベル輻射性物質の被覆層を塗布する前に、蓄熱体の表面に処理液を塗布しておく。処理液は10%PA80(ケイ酸ナトリウム)を含む水溶液である。 既存の熱交換器より、本実用例の蓄熱体を使用する熱交換器の方は10%以上の省エネルギー効果が得られる。
[Practical example 4]
As shown in FIG. 4, the heat exchange heat storage body is plate-shaped, and a coating layer 7 of a high-level radiation material is applied to the surface of the heat storage body. The thickness of the coating layer is 0.1 mm. The material of the heat storage body 8 is steel, and the coating layer 7 of the high-level radiation material is a substance having a far infrared radiation rate higher than that of the material of the heat storage body. The ratio of the component weight of the high-level radioactive material is as follows. Cr 2 O 3 is 60, brown corundum is 200, clay is 50, montmorillonite is 30, carborundum is 200, sodium silicate is 200, and water is 100. The outer surface of the coating layer 7 is a heat exchange surface 9. Before applying the coating layer of the high level radiation material, the treatment liquid is applied to the surface of the heat storage body. The treatment liquid is an aqueous solution containing 10% PA80 (sodium silicate). Compared to the existing heat exchanger, the heat exchanger using the heat storage body of this practical example can obtain an energy saving effect of 10% or more.

[実用例5]
図5に示しているように、熱交換蓄熱体はボール状である。蓄熱体の表面に高レベル輻射性物質の被覆層11が塗布される。被覆層の厚さは2mmである。被覆層の外側表面は熱交換面12である。蓄熱体本体10は耐火材質であり、高レベル輻射性物質の被覆層11は蓄熱体本体の材質より遠赤外輻射率が高い物質である。高レベル輻射性物質の成分重さの割合は下記となる。ZrOは5、カーボランダムは10、チタニウムは5、粘土は3、褐色コランダムは40、水酸化アルミニウムは10、燐酸は15、水は12である。既存の熱交換器より、本実用例の蓄熱体を使用する熱交換器の相対温度が摂氏15度以上上昇している。本実用例は内部に熱交換用ボール状蓄熱体を有する蓄熱方式加熱炉に適用する。
[Practical example 5]
As shown in FIG. 5, the heat exchange regenerator has a ball shape. A coating layer 11 of a high level radiation material is applied to the surface of the heat storage body. The thickness of the coating layer is 2 mm. The outer surface of the coating layer is a heat exchange surface 12. The heat storage body main body 10 is a fireproof material, and the coating layer 11 of the high-level radiation material is a substance having a higher far-infrared radiation rate than the material of the heat storage body main body. The ratio of the component weight of the high-level radioactive material is as follows. ZrO is 5, carborundum is 10, titanium is 5, clay is 3, brown corundum is 40, aluminum hydroxide is 10, phosphoric acid is 15, water is 12. Compared to existing heat exchangers, the relative temperature of heat exchangers using the heat storage material of this practical example is 15 degrees Celsius or higher. This practical example is applied to a regenerative heating furnace having a ball heat storage for heat exchange inside.

[実用例6]
上記実用例5と同様であるが、以下の相違点がある:熱交換蓄熱体は楕円である。(図6参照)
[Practical example 6]
Similar to practical example 5 above, with the following differences: the heat exchange regenerator is elliptical. (See Figure 6)

[実用例7]
高炉熱風炉内部のボール状蓄熱体に適用する。ボール状蓄熱体の表面に厚み2.5mmの高レベル輻射性物質被覆層が塗布される。高レベル輻射性物質被覆層の成分重さの割合は下記となる。カーボランダムは15、褐色コランダムは2、ジルコニアは35、モンモリロナイトは2、酸化クロムは6、接着型PA80は27、水は13である。
[Practical example 7]
Applies to ball-shaped heat storage body inside blast furnace hot stove. A high-level radioactive material coating layer having a thickness of 2.5 mm is applied to the surface of the ball-shaped heat storage element. The ratio of the component weight of the high level radiation material coating layer is as follows. Carborundum is 15, brown corundum is 2, zirconia is 35, montmorillonite is 2, chromium oxide is 6, adhesive PA80 is 27, and water is 13.

高レベル輻射性物質の被覆層を塗布する前に、蓄熱体の表面に処理液を塗布しておく。処理液は10%PA80(アルカリ金属ケイ酸塩)を含む水溶液である。   Before applying the coating layer of the high level radiation material, the treatment liquid is applied to the surface of the heat storage body. The treatment liquid is an aqueous solution containing 10% PA80 (alkali metal silicate).

[実用例8]
図7に示しているように、セラミックス蓄熱体本体13の上表面に厚み3mmの高レベル輻射性物質の被覆層14が塗布される。被覆層の外側表面は熱交換面15である。高レベル輻射性物質の成分重さの割合は下記となる。Fe2Oは60、ジルコニアは5、ケイ酸ナトリウムは20、水は15である。高レベル輻射性物質の被覆層を塗布する前に、蓄熱体の表面に処理液を塗布しておく。処理液は8%PA80(ケイ酸ナトリウム)を含む水溶液である。
[Practical example 8]
As shown in FIG. 7, a coating layer 14 of a high level radiation material having a thickness of 3 mm is applied to the upper surface of the ceramic heat storage body main body 13. The outer surface of the coating layer is a heat exchange surface 15. The ratio of the component weight of the high-level radioactive material is as follows. Fe 2 O 3 is 60, zirconia is 5, sodium silicate is 20, and water is 15. Before applying the coating layer of the high level radiation material, the treatment liquid is applied to the surface of the heat storage body. The treatment liquid is an aqueous solution containing 8% PA80 (sodium silicate).

蓄熱体の高レベル輻射性物質被覆層の材質は自由に選択、組み合わせることは可能であり、上記の実用例は技術案に対しての説明に過ぎなく、発明を制限するものではない。   The material of the high-level radiation material coating layer of the heat storage body can be freely selected and combined, and the above practical examples are merely explanations for the technical solutions and do not limit the invention.

ハニカム状の熱交換用被覆層付き蓄熱体に適用する場合を示す。The case where the present invention is applied to a honeycomb-shaped heat storage body with a heat exchange coating layer is shown. ハニカム状の熱交換用被覆層付き蓄熱体に適用するもう一つ実用例場合を示す。Another practical example applied to a honeycomb-shaped heat storage body with a heat exchange coating layer will be described. フィン状の熱交換用被覆層付き蓄熱体に適用する場合を示す。The case where it applies to the heat storage body with the coating layer for fin-shaped heat exchange is shown. 板状の熱交換用被覆層付き蓄熱体の局部断面を示す。The local cross section of a plate-shaped heat storage body with a coating layer for heat exchange is shown. ボール状の熱交換用被覆層付き蓄熱体の局部断面を示す。The local cross section of the thermal storage body with a coating layer for heat exchange of a ball shape is shown. 楕円状の熱交換用被覆層付き蓄熱体の外形を示す。The external shape of the elliptical heat storage body with a heat exchange coating layer is shown. 非金属の熱交換用被覆層付き蓄熱体の局部断面を示す。The local cross section of the thermal storage body with the coating layer for nonmetallic heat exchange is shown.

符号の説明Explanation of symbols

1・・・内部円形穴 2・・・高レベル輻射性物質の被覆層 3・・・内部円形穴
4・・・高レベル輻射性物質の被覆層 5・・・内部長方形穴
6・・・高レベル輻射性物質の被覆層 7・・・高レベル輻射性物質の被覆層
8・・・本体 9・・・熱交換面 10・・・本体 11・・・高レベル輻射性物質の被覆層
12・・・熱交換面 13・・・本体 14・・・高レベル輻射性物質の被覆層 15・・・熱交換面
1 ... Inner circular hole 2 ... Coating layer of high-level radioactive material 3 ... Inner circular hole
4 ... Coating layer of high-level radiation material 5 ... Inner rectangular hole
6 ... High-level radioactive material coating layer 7 ... High-level radioactive material coating layer
8 ... Main body 9 ... Heat exchange surface 10 ... Main body 11 ... Coating layer of high-level radioactive material
12 ... Heat exchange surface 13 ... Main body 14 ... Coating layer of high-level radioactive material 15 ... Heat exchange surface

Claims (1)

鋼鉄生産の高炉熱風炉又は鉄鋼圧延蓄熱方式加熱炉においてガスの熱交換を行う熱交換器の被覆層付き熱交換用蓄熱体であって、内部穴が形成され、該蓄熱体の表面と内部穴において、前記被覆層は、塗布された、蓄熱体本体より高い輻射率を有する高レベル輻射材質の被覆層であり、
前記高レベル輻射材質の被覆層の厚さは0.02〜3mmであり、
前記高レベル輻射材質の被覆層がペースト塗布、吹き付け塗装または含浸塗布される前に、前記蓄熱体本体の表面に、ポリアミン硬化剤、又は、アルカリ金属ケイ酸塩を含む水溶液である処理液を塗布しておくこと、
前記高レベル輻射材質の被覆層に含まれる固体成分の粒径が20〜900nmになるように超微細化処理されること、を特徴とする被覆層付き熱交換用蓄熱体。
A heat exchanger with a covering layer of a heat exchanger that performs heat exchange of gas in a blast furnace hot air furnace or a steel rolling regenerative heating furnace for steel production , wherein an internal hole is formed, and the surface of the heat storage body and the internal hole The coating layer is a coated high-radiation material coating layer having a higher emissivity than the heat storage body.
The thickness of the coating layer of the high level radiation material is 0.02 to 3 mm,
Before the coating layer of the high-level radiation material is applied by paste application, spray coating or impregnation application, a treatment liquid which is an aqueous solution containing a polyamine curing agent or an alkali metal silicate is applied to the surface of the heat storage body. Keep it,
A heat exchange regenerator with a coating layer, characterized in that the ultrafine processing is performed so that the particle size of the solid component contained in the coating layer of the high-level radiation material is 20 to 900 nm.
JP2008516105A 2005-06-17 2005-11-25 Heat storage body with cover layer for heat exchange Active JP5145215B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200510043838.X 2005-06-17
CNB200510043838XA CN100412495C (en) 2005-06-17 2005-06-17 Heat exchanger with covering layer
PCT/CN2005/002010 WO2006133608A1 (en) 2005-06-17 2005-11-25 A heat storage body with a coated layer for heat exchanging

Publications (2)

Publication Number Publication Date
JP2008544201A JP2008544201A (en) 2008-12-04
JP5145215B2 true JP5145215B2 (en) 2013-02-13

Family

ID=35349426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008516105A Active JP5145215B2 (en) 2005-06-17 2005-11-25 Heat storage body with cover layer for heat exchange

Country Status (7)

Country Link
US (1) US20080128121A1 (en)
JP (1) JP5145215B2 (en)
KR (1) KR20080028914A (en)
CN (1) CN100412495C (en)
DE (1) DE112005003606T5 (en)
RU (1) RU2387938C2 (en)
WO (1) WO2006133608A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130168470A1 (en) * 2008-10-01 2013-07-04 John W. Olver Burner Tips
CN101737969A (en) * 2008-11-05 2010-06-16 上海神曦太阳能科技有限公司 Solar energy heat storage device and preparation method thereof
US8308438B2 (en) * 2010-06-30 2012-11-13 Mitsubishi Heavy Industries, Ltd Wind power generator
US10267571B2 (en) * 2012-01-31 2019-04-23 University Of South Florida Thermal energy storage systems and methods
US9210832B2 (en) 2012-08-13 2015-12-08 Asustek Computer Inc. Thermal buffering element
CN104654872A (en) * 2013-11-17 2015-05-27 成都奥能普科技有限公司 Honeycomb blocks for high temperature heat energy and manufacturing method of same
CN104650820A (en) * 2013-11-17 2015-05-27 成都奥能普科技有限公司 Formula of chemical heat storage material for heat transfer
CN104654870A (en) * 2013-11-17 2015-05-27 成都奥能普科技有限公司 Solid granule blocks for high temperature heat transferring
CN104650821A (en) * 2013-11-17 2015-05-27 成都奥能普科技有限公司 Solid particle blocks for chemical heat storage
CN104654864A (en) * 2013-11-17 2015-05-27 成都奥能普科技有限公司 Honeycomb block for chemical heat storage
FR3026473A1 (en) 2014-09-29 2016-04-01 Saint Gobain Ct Recherches THERMAL STORAGE UNIT.
DE102015205547A1 (en) * 2015-02-26 2016-09-01 Dürr Systems GmbH Shaped body for tempering a fluid and constructed with such moldings heat exchanger
JP6194068B2 (en) * 2015-08-05 2017-09-06 東京窯業株式会社 Thermal storage
DE102015117256B4 (en) * 2015-10-09 2024-05-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vehicle component and method for producing a vehicle component
CN105651092A (en) * 2016-03-29 2016-06-08 东莞市兆荣节能科技有限公司 Assembled phase-change cold storage ball
US10809017B2 (en) * 2016-05-10 2020-10-20 Mitsubishi Electric Corporation Heat sink with projection and recess shaped fins
JP6680668B2 (en) * 2016-12-19 2020-04-15 東京窯業株式会社 Method for manufacturing heat storage body
FI3641925T3 (en) * 2017-06-22 2023-08-02 Kelvin Thermal Energy Inc Stabilized thermal energy output system
JP7507141B2 (en) 2021-12-27 2024-06-27 東京窯業株式会社 Regenerative burner device, heat storage body, and method for manufacturing heat storage body

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT251164B (en) * 1963-08-02 1966-12-27 Nikex Nehezipari Kulkere Regenerative heat exchanger
US3339627A (en) * 1965-03-22 1967-09-05 Philips Corp Regenerator
US3252506A (en) * 1965-07-20 1966-05-24 Chrysler Corp Rotary heat exchanger
JPS4936361B1 (en) * 1969-03-08 1974-09-30
US4111189A (en) * 1977-01-03 1978-09-05 Cities Service Company Combined solar radiation collector and thermal energy storage device
US4249386A (en) * 1978-06-16 1981-02-10 Smith Otto J Apparatus for providing radiative heat rejection from a working fluid used in a Rankine cycle type system
JPS5598958U (en) * 1978-12-28 1980-07-09
JPS55158135A (en) * 1979-05-29 1980-12-09 Asahi Glass Co Ltd Glass melting method and its furnace
JPS5622639A (en) * 1979-07-31 1981-03-03 Asahi Glass Co Ltd Regenerator
JPS5948876B2 (en) * 1980-03-11 1984-11-29 三菱電機株式会社 Heat sink surface treatment method
JPS60251186A (en) * 1984-05-28 1985-12-11 橋本 卓彦 Heat resistant sintered body with ceramic infrared high effeciency radiation layer
CN2149596Y (en) * 1992-07-22 1993-12-15 鞍山钢铁公司 Porous radiation brick for smoke mouth of soaking furnace
CN2141824Y (en) * 1992-09-21 1993-09-08 鞍山钢铁公司 Heat-collecting radiation perforated hollow brick
JP2703728B2 (en) * 1994-06-17 1998-01-26 日本碍子株式会社 Honeycomb regenerator
JP2003100311A (en) * 2001-09-25 2003-04-04 Hokkaido Technology Licence Office Co Ltd Heat absorber, heat accumulator and manufacturing methods of these
CN1168787C (en) * 2002-03-01 2004-09-29 迟贵庆 Far infrared energy saving paint
DE10234771B4 (en) * 2002-07-30 2004-08-26 Rauschert Verfahrenstechnik Gmbh Heat storage bed for regenerative heat transfer
CN2559935Y (en) * 2002-08-05 2003-07-09 陈明 All-weather vacuum heat collecting tube
JP2006517507A (en) * 2003-01-13 2006-07-27 チョースン リフラクトリーズ カンパニー リミテッド Insulating bricks installed in industrial furnaces and methods for producing the same
CN1285876C (en) * 2003-12-18 2006-11-22 周惠敏 Construction process for spraying paint of high-temperature furnace internal wall and water-cooled wall surface
CN1235990C (en) * 2003-12-18 2006-01-11 周惠敏 High-temperature far infrared paint and preparing method thereof
CN2793669Y (en) * 2005-06-17 2006-07-05 周惠敏 High-efficient and energy-saving heat exchanger

Also Published As

Publication number Publication date
DE112005003606T5 (en) 2008-04-30
KR20080028914A (en) 2008-04-02
CN1696596A (en) 2005-11-16
WO2006133608A1 (en) 2006-12-21
JP2008544201A (en) 2008-12-04
RU2007148680A (en) 2009-07-27
CN100412495C (en) 2008-08-20
RU2387938C2 (en) 2010-04-27
US20080128121A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5145215B2 (en) Heat storage body with cover layer for heat exchange
CN110395971A (en) A kind of high-performance ceramic-alloy composite heat storage ball and preparation method thereof
CN106927839B (en) A kind of micropore insulation brick
CN107032735B (en) Heat insulation coating for boiler, preparation method and construction method
CN107815148A (en) A kind of high temperature resistant infrared radiative energy-saving coating and preparation method thereof
CN205561609U (en) Enhanced heat transfer's mesh honeycomb package and kiln
CN2793669Y (en) High-efficient and energy-saving heat exchanger
CN204063953U (en) A kind of hearth inner lining
CN207095299U (en) A kind of energy-saving atmosphere controlled heat treatment furnace burner hearth thermal insulation structure
CN205851308U (en) A kind of cumulative ceramic coating
WO2018184259A1 (en) High temperature furnace wall protection system
CN104744973B (en) A kind of effective high radiation ceramic coating of heating-furnace and its preparation, application method
CN210464155U (en) Combined honeycomb ceramic
CN202393208U (en) Domestic ceramic kiln
CN202092466U (en) Ceramic furnace based on energy saving coatings
CN205537264U (en) Modular ceramic honey comb heat accumulator
CN207229943U (en) A kind of steel sleeve steel insulating tube with air sac thermal insulating layer
CN205803555U (en) The belt type roasting machine of energy-conserving and environment-protective
CN207299914U (en) A kind of energy-saving zinc pot heating furnace
CN205601286U (en) Rock wool composite insulation board is used to heat energy equipment
CN102702808A (en) Infrared radiation coating capable of forming coating with low conductivity factor
CN212158145U (en) External embedded heat insulation kiln
CN203148214U (en) High-radiation heat transfer energy-saving heating furnace
CN212274627U (en) Energy-saving trolley for resistance furnace
CN110028308B (en) Ceramic heat-insulating composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110804

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5145215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250