JP5144346B2 - Fuel oil composition - Google Patents

Fuel oil composition Download PDF

Info

Publication number
JP5144346B2
JP5144346B2 JP2008094085A JP2008094085A JP5144346B2 JP 5144346 B2 JP5144346 B2 JP 5144346B2 JP 2008094085 A JP2008094085 A JP 2008094085A JP 2008094085 A JP2008094085 A JP 2008094085A JP 5144346 B2 JP5144346 B2 JP 5144346B2
Authority
JP
Japan
Prior art keywords
base material
fuel oil
light
oil composition
light base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008094085A
Other languages
Japanese (ja)
Other versions
JP2009242744A (en
Inventor
嘉朗 江頭
重行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2008094085A priority Critical patent/JP5144346B2/en
Publication of JP2009242744A publication Critical patent/JP2009242744A/en
Application granted granted Critical
Publication of JP5144346B2 publication Critical patent/JP5144346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、燃料油組成物に関し、更に詳しくは、動粘度安定性に優れる燃料油組成物に関し、特に舶用燃料油に好適な燃料油組成物に関する。   The present invention relates to a fuel oil composition, and more particularly to a fuel oil composition excellent in kinematic viscosity stability, and particularly to a fuel oil composition suitable for marine fuel oil.

舶用燃料油は、常圧蒸留や減圧蒸留等の残渣油といった重質基材に対し、粘度調整のために軽質基材として軽油留分を配合し、製造される。重質基材と軽質基材には様々な種類が存在するが、重質基材、軽質基材ともに一種または二種以上の基材が用いられている。
舶用燃料油は、船舶のタンクに貯蔵されている。そして、一般に、舶用燃料油は、常温より高い温度で貯蔵され、その結果、含有されているアスファルテンなどの成分の平衡状態が崩れて、スラッジが生成し、動粘度が上昇する場合があるため、舶用燃料油において貯蔵安定性は重要な要求項目である。舶用燃料油における動粘度上昇は、噴霧状態の悪化を引き起こし、燃焼不良を起こす場合があり、これを抑制することは重要である。舶用燃料油におけるスラッジ生成の原因としては、舶用燃料油中に含まれる僅かな溶存酸素によって、舶用燃料油の一部が酸化変質を引き起こすこと、又は、熱履歴によるアスファルテン・ミセルとマルテンとのバランスの崩壊が考えられる(例えば、非特許文献1参照)。
一方、舶用燃料油などの燃料油組成物のスラッジ生成を抑制する方法として、一定の性状を持つ重質基材に、一定の性状の特定の芳香族留分を混合する方法が知られている(例えば、特許文献1参照)。
しかしながら、上記のようなスラッジ生成を抑制する方法によっても、舶用燃料油においては、常温での輸送や燃料タンク貯蔵中にしばしば動粘度が上昇してしまうという課題が残されている。
「舶用燃料の科学」(成山堂書店)、第100〜107頁 特開2001−98288号公報
Marine fuel oil is produced by blending a light oil fraction as a light base material for adjusting the viscosity of a heavy base material such as residual oil such as atmospheric distillation or vacuum distillation. There are various types of heavy substrates and light substrates, and one or two or more substrates are used for both the heavy substrate and the light substrate.
Marine fuel oil is stored in a marine tank. And generally, marine fuel oil is stored at a temperature higher than room temperature, and as a result, the equilibrium state of components such as asphaltenes collapses, sludge is generated, and kinematic viscosity may increase. Storage stability is an important requirement for marine fuel oils. An increase in kinematic viscosity in marine fuel oil may cause deterioration of the spray state and cause poor combustion, and it is important to suppress this. The cause of sludge formation in marine fuel oil is that a part of marine fuel oil causes oxidative alteration due to slight dissolved oxygen contained in marine fuel oil, or the balance between asphaltene micelle and marten due to thermal history. (For example, refer nonpatent literature 1).
On the other hand, as a method for suppressing sludge generation of a fuel oil composition such as marine fuel oil, a method in which a specific aromatic fraction having a certain property is mixed with a heavy base material having a certain property is known. (For example, refer to Patent Document 1).
However, even with the above-described method for suppressing sludge generation, there remains a problem that in the case of marine fuel oil, the kinematic viscosity often increases during transportation at normal temperature and storage of the fuel tank.
“Science of Marine Fuel” (Naruyamado Shoten), pp. 100-107 JP 2001-98288 A

本発明の目的は、上記状況に鑑み、貯蔵中の動粘度上昇を抑制した動粘度安定性に優れる燃料油組成物を提供することである。   In view of the above situation, an object of the present invention is to provide a fuel oil composition excellent in kinematic viscosity stability in which an increase in kinematic viscosity during storage is suppressed.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、燃料油組成物において調合に用いる重質基材中のアスファルテン分における平均構造パラメータ値が燃料油組成物の常温における動粘度上昇に影響を与えること、及び、燃料油組成物の重質基材の含有割合と、重質基材または混合重質基材に混合する軽質基材の後記式1または2により算出されるH値またはH’値との関係が燃料油組成物の常温における動粘度上昇に影響を与えることを見出し、このアスファルテン分の平均構造パラメータ、及びこの重質基材の含有割合と軽質基材のH値またはH’値との関係を特定の範囲内に制御することにより、常温における動粘度の上昇が少なく安定性に優れる燃料油組成物を提供することで、上記目的を達成できることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have found that the average structural parameter value in the asphaltene content in the heavy base material used for the preparation in the fuel oil composition is the kinematic viscosity at normal temperature of the fuel oil composition. H which is calculated by the following formula 1 or 2 which influences an increase and the content ratio of the heavy base material of a fuel oil composition, and the light base material mixed with a heavy base material or a mixed heavy base material Value or H ′ value affects the increase in kinematic viscosity at normal temperature of the fuel oil composition, and the average structural parameter of this asphaltene component, the content of the heavy substrate and the H of the light substrate The above-mentioned object can be achieved by providing a fuel oil composition having a small increase in kinematic viscosity at room temperature and excellent stability by controlling the relationship with the value or H ′ value within a specific range. Departure It was completed.

すなわち、本発明は、上記目的を達成するために、以下に示す燃料油組成物を提供するものである。
1)重質基材に、または該重質基材と軽質基材(1)との混合重質基材に、軽質基材(2)を混合してなる燃料油組成物において、
前記重質基材または混合重質基材は、アスファルテン分10質量%以下を含有し、該アスファルテン分の平均構造パラメータ値の芳香環数が80以下であり、
式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−230〜32で、軽質基材(1)または軽質基材(2)はアロマ分を10〜80容量%含有し、かつ
前記燃料油組成物は、前記重質基材の含有量が56〜65容量%で、50℃における動粘度が121〜180mm/sであることを特徴とする燃料油組成物。
H値=870×Log(Log(50℃における動粘度+0.8))+154 (式1)
H’値={(軽質基材(1)のH値)×(燃料油組成物中の軽質基材(1)の容量比率)+(軽質基材(2)のH値)×(燃料油組成物中の軽質基材(2)の容量比率)}/{(燃料油組成物中の軽質基材(1)の容量比率)+(燃料油組成物中の軽質基材(2)の容量比率)} (式2)
2)(a)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−230以上−94未満であり、燃料油組成物における前記重質基材の含有量が62容量%以上65容量%以下であるか、又は、
(b)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−94以上−19未満であり、燃料油組成物における前記重質基材の含有量が59容量%以上62容量%未満であるか、又は、
(c)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−19以上32以下であり、燃料油組成物における前記重質基材の含有量が56容量%以上59容量%未満であることを特徴とする上記1)に記載の燃料油組成物。
That is, in order to achieve the above object, the present invention provides the following fuel oil composition.
1) In the fuel oil composition obtained by mixing the light base material (2) with the heavy base material or the mixed heavy base material with the heavy base material and the light base material (1),
The heavy substrate or mixed heavy substrate contains an asphaltene content of 10% by mass or less, and the average structural parameter value of the asphaltene content is 80 or less,
The H value of the light base material (2) calculated from the formula 1, or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the light weight calculated from the formula 1. The H ′ values calculated by Equation 2 using the H values of the base material (1) and the light base material (2) are both −230 to 32, and the light base material (1) or the light base material (2) is an aroma. The fuel oil composition has a content of the heavy base material of 56 to 65% by volume and a kinematic viscosity at 50 ° C. of 121 to 180 mm 2 / s. A fuel oil composition characterized.
H value = 870 × Log (Log (kinematic viscosity at 50 ° C. + 0.8)) + 154 (Formula 1)
H ′ value = {(H value of light base material (1)) × (Volume ratio of light base material (1) in fuel oil composition) + (H value of light base material (2)) × (fuel oil Volume ratio of light substrate (2) in composition)} / {(Volume ratio of light substrate (1) in fuel oil composition) + (Capacity of light substrate (2) in fuel oil composition) Ratio)} (Formula 2)
2) (a) H value of the light base material (2) calculated from the formula 1, or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 The H ′ values calculated by the formula 2 using the calculated H values of the light base material (1) and the light base material (2) are both −230 or more and less than −94. The content of the base material is 62 volume% or more and 65 volume% or less, or
(B) H value of the light base material (2) calculated from the formula 1, or a volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 The H ′ values calculated by Equation 2 using the H values of the light base material (1) and the light base material (2) are both −94 or more and less than −19, and the heavy group in the fuel oil composition The content of the material is 59% by volume or more and less than 62% by volume, or
(C) H value of the light base material (2) calculated from the formula 1 or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 Both of the light base material (1) and the light base material (2), the H ′ value calculated by Formula 2 is −19 to 32, and the heavy base material in the fuel oil composition The fuel oil composition as described in 1) above, wherein the content of is not less than 56% by volume and less than 59% by volume.

本発明によれば、動粘度の上昇を抑制し、動粘度の安定性に優れた燃料油組成物を提供することができる。本発明の燃料油組成物は、舶用燃料油として特に好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the raise of kinematic viscosity can be suppressed and the fuel oil composition excellent in stability of kinematic viscosity can be provided. The fuel oil composition of the present invention can be particularly suitably used as marine fuel oil.

以下、本発明の内容を更に詳しく説明する。
本発明の燃料油組成物は、重質基材に軽質基材(2)を混合してなるか、または該重質基材と軽質基材(1)との混合重質基材に軽質基材(2)を混合してなる。
軽質基材(1)と軽質基材(2)は、同一組成でも良いし、異なる組成でも良い。また、混合重質基材を用いる場合、軽質基材(1)と、軽質基材(2)の量的関係は、任意であるが、一般に、軽質基材(1)と軽質基材(2)の合計量に対する軽質基材(1)の量が5〜60容量%であることが適当である。
Hereinafter, the contents of the present invention will be described in more detail.
The fuel oil composition of the present invention is obtained by mixing a light base material (2) with a heavy base material, or by mixing a heavy base material with a light base material (1). The material (2) is mixed.
The light substrate (1) and the light substrate (2) may have the same composition or different compositions. When a mixed heavy substrate is used, the quantitative relationship between the light substrate (1) and the light substrate (2) is arbitrary, but generally the light substrate (1) and the light substrate (2 It is appropriate that the amount of the light base material (1) with respect to the total amount of

また、本発明の燃料油組成物においては、前記軽質基材(2)のH値、または前記軽質基材(1)と軽質基材(2)を用いたH’値は、式1または式2により算出した値と、燃料油組成物の重質基材の含有量との関係を、下記一定の関係に維持する。以下、本願明細書において、「前記軽質基材(2)、または前記軽質基材(1)と軽質基材(2)」を総称して「軽質基材」とも記す。
すなわち、軽質基材のH値またはH’値は、50℃における動粘度から式1または式2により算出した値が−230〜32で、アロマ分を10〜80容量%含有し、かつ燃料油組成物は、前記重質基材の含有量が56〜65容量%で、50℃における動粘度が121〜180mm/sである。
本発明は、好ましくは
(a)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−230以上−94未満であり、燃料油組成物における前記重質基材の含有量が62容量%以上65容量%以下であるか、又は、
(b)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−94以上−19未満であり、燃料油組成物における前記重質基材の含有量が59容量%以上62容量%未満であるか、又は、
(c)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−19以上32以下であり、燃料油組成物における前記重質基材の含有量が56容量%以上59容量%未満である。
このように、軽質基材の50℃における動粘度から下記式1または式2により算出したH値またはH’値と、燃料油組成物の重質基材の含有量との関係を維持することにより、重質基材に含まれるアスファルテン分の平均構造パラメータ値の芳香環数が80以下であることと相俟って、燃料油組成物の動粘度を、所期のようにその上昇を抑制し、その安定化を図ることができる。
H値=870×Log(Log(50℃における動粘度+0.8))+154 (式1)
(出典:石油精製技術便覧(第3版)、産業図書(株))
なお、軽質基材の50℃における動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により定量できる。
Further, in the fuel oil composition of the present invention, the H value of the light base material (2) or the H ′ value using the light base material (1) and the light base material (2) is expressed by Formula 1 or Formula The relationship between the value calculated by 2 and the content of the heavy base material of the fuel oil composition is maintained in the following fixed relationship. Hereinafter, in the present specification, “the light substrate (2), or the light substrate (1) and the light substrate (2)” is also collectively referred to as “light substrate”.
That is, the H value or H ′ value of the light base material is −230 to 32 calculated from the kinematic viscosity at 50 ° C. according to the formula 1 or the formula 2, contains 10 to 80% by volume of the aromatic content, and fuel oil. In the composition, the content of the heavy substrate is 56 to 65% by volume, and the kinematic viscosity at 50 ° C. is 121 to 180 mm 2 / s.
In the present invention, preferably, (a) the H value of the light base material (2) calculated from Equation 1 or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition The H ′ values calculated by the formula 2 using the H values of the light base material (1) and the light base material (2) calculated by the formula 1 and the formula 1 are both −230 or more and less than −94, and the fuel oil composition The content of the heavy substrate in the product is 62 vol% or more and 65 vol% or less, or
(B) H value of the light base material (2) calculated from the formula 1, or a volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 The H ′ values calculated by Equation 2 using the H values of the light base material (1) and the light base material (2) are both −94 or more and less than −19, and the heavy group in the fuel oil composition The content of the material is 59% by volume or more and less than 62% by volume, or
(C) H value of the light base material (2) calculated from the formula 1 or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 Both of the light base material (1) and the light base material (2), the H ′ value calculated by Formula 2 is −19 to 32, and the heavy base material in the fuel oil composition Is 56 volume% or more and less than 59 volume%.
Thus, maintaining the relationship between the H value or H ′ value calculated from the kinematic viscosity at 50 ° C. of the light base material by the following formula 1 or 2 and the content of the heavy base material of the fuel oil composition. In combination with the fact that the number of aromatic rings in the average structural parameter value of asphaltenes contained in the heavy base material is 80 or less, the kinematic viscosity of the fuel oil composition is suppressed as expected. However, the stabilization can be achieved.
H value = 870 × Log (Log (kinematic viscosity at 50 ° C. + 0.8)) + 154 (Formula 1)
(Source: Petroleum Refining Technology Handbook (3rd edition), Sangyo Tosho Co., Ltd.)
The kinematic viscosity at 50 ° C. of the light base material can be quantified by JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.

本発明の燃料油組成物の調製に当たり、混合重質基材調製に使用する軽質基材(1)と、燃料油調製で混合重質基材と混合する軽質基材(2)が、異なっている場合、燃料油組成物に含まれる軽質基材の50℃におけるH’値は、式2より算出することができる。軽質基材(1)と軽質基材(2)が同じ場合も式2を適用できるが、H値と同じとなる。
H’値={(軽質基材(1)のH値)×(燃料油組成物中の軽質基材(1)の容量比率)+(軽質基材(2)のH値)×(燃料油組成物中の軽質基材(2)の容量比率)}/{(燃料油組成物中の軽質基材(1)の容量比率)+(燃料油組成物中の軽質基材(2)の容量比率)} (式2)
In preparing the fuel oil composition of the present invention, the light base material (1) used for preparing the mixed heavy base material is different from the light base material (2) mixed with the mixed heavy base material in the fuel oil preparation. The H ′ value at 50 ° C. of the light base material contained in the fuel oil composition can be calculated from Equation 2. Equation 2 can also be applied when the light substrate (1) and the light substrate (2) are the same, but it is the same as the H value.
H ′ value = {(H value of light base material (1)) × (Volume ratio of light base material (1) in fuel oil composition) + (H value of light base material (2)) × (fuel oil Volume ratio of light substrate (2) in composition)} / {(Volume ratio of light substrate (1) in fuel oil composition) + (Capacity of light substrate (2) in fuel oil composition) Ratio)} (Formula 2)

更にまた、本発明の燃料油組成物においては、燃料油組成物の50℃における動粘度は、121〜180mm/sであり、好ましくは130〜170mm/sである。50℃における動粘度が121〜180mm/sの範囲であれば、この動粘度を仕様とする低速ディーゼルエンジンの噴射装置において、燃料油組成物の噴霧状態が良好であるため、低速ディーゼルエンジンで好適に使用できる。なお、燃料油組成物の50℃における動粘度は、軽質基材の50℃における動粘度と同様、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により定量できる。
また、本発明の燃料油組成物の硫黄分は、4.5質量%以下であることが好ましく、更に好ましくは3.5質量%以下である。
In addition, the fuel oil composition of the present invention, kinematic viscosity at 50 ° C. of the fuel oil composition is 121~180mm 2 / s, preferably 130~170mm 2 / s. If the kinematic viscosity at 50 ° C. is in the range of 121 to 180 mm 2 / s, since the spray state of the fuel oil composition is good in the low speed diesel engine injection device that uses this kinematic viscosity, It can be used suitably. The kinematic viscosity at 50 ° C. of the fuel oil composition can be quantified by JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”, similarly to the kinematic viscosity at 50 ° C. of the light base material.
Moreover, it is preferable that the sulfur content of the fuel oil composition of this invention is 4.5 mass% or less, More preferably, it is 3.5 mass% or less.

本発明の燃料油組成物においては、用いる重質基材または混合重質基材に含まれるアスファルテン分の平均構造パラメータ値の芳香環数が80以下が好ましい。しかし重質基材を使用することから、通常、芳香族環数は40以上となる。この芳香環数が大きいと、スラッジが生成しやすく、動粘度を上昇させる場合がある。芳香環数が80以下であれば、得られた燃料油組成物は、貯蔵しても動粘度上昇が顕著になることがなく、動粘度の安定化が図れる。
なお、重質基材または混合重質基材のアスファルテン分の平均構造パラメータ値である芳香環数は、JPI−5S−22−83に準拠して抽出したアスファルテン分について、「電子計算機を用いた芳香族系重質油類の構造解析法」(日本化学会誌、1975年、(1)、第127〜134頁)に準拠して、炭素分、水素分、窒素分、硫黄分、平均分子量、芳香族水素、芳香族α位水素、側鎖水素、末端メチル基水素、炭素芳香族性を測定し、それらデータより算出した。
In the fuel oil composition of the present invention, the number of aromatic rings in the average structural parameter value of asphaltenes contained in the heavy substrate or mixed heavy substrate to be used is preferably 80 or less. However, since a heavy substrate is used, the number of aromatic rings is usually 40 or more. When this aromatic ring number is large, sludge is likely to be generated and the kinematic viscosity may be increased. When the aromatic ring number is 80 or less, the obtained fuel oil composition does not show a significant increase in kinematic viscosity even when stored, and the kinematic viscosity can be stabilized.
In addition, the aromatic ring number which is the average structure parameter value of the asphaltene content of the heavy substrate or the mixed heavy substrate is “as for the asphaltene component extracted according to JPI-5S-22-83” In accordance with “Structural analysis method of aromatic heavy oil” (Journal of Chemical Society of Japan, 1975, (1), pages 127-134), carbon content, hydrogen content, nitrogen content, sulfur content, average molecular weight, Aromatic hydrogen, aromatic α-position hydrogen, side chain hydrogen, terminal methyl group hydrogen, and carbon aromaticity were measured and calculated from these data.

本発明の燃料油組成物に用いる重質基材または混合重質基材は、上記のように含まれるアスファルテン分の平均構造パラメータ値の芳香環数が一定範囲であることの他、含まれるアスファルテン分量が10質量%以下であり、好ましくは8質量%以下であり、さらに好ましくは7質量%以下である。しかし、重質基材を使用することから、通常、アスファルテン分量は1質量%以上となる。アスファルテン分は、それ自体は固くてもろい褐色ないし黒褐色の粉末で、分子量の大きい炭素化された物質であり、通常は重油中のレジン分を吸着して、重油の中に分散して、平衡を保ち、安定な液状を呈している。しかし、平衡が破られるとアスファルテン分は凝集しスラッジを生成し、動粘度を上昇させる場合がある。重質基材または混合重質基材に含まれるアスファルテン分量が10質量%以下であれば、得られる燃料油組成物のスラッジの発生を抑制できる。   The heavy base material or mixed heavy base material used in the fuel oil composition of the present invention includes the asphaltene contained in addition to the number of aromatic rings in the average structural parameter value of the asphaltenes contained as described above being within a certain range. The amount is 10% by mass or less, preferably 8% by mass or less, and more preferably 7% by mass or less. However, since a heavy substrate is used, the amount of asphaltene is usually 1% by mass or more. Asphaltene is a hard, brittle brown or black-brown powder, a carbonized substance with a high molecular weight. Maintains a stable liquid state. However, when the equilibrium is broken, the asphaltenes may aggregate to produce sludge, which may increase the kinematic viscosity. If the amount of asphaltenes contained in the heavy substrate or mixed heavy substrate is 10% by mass or less, generation of sludge in the obtained fuel oil composition can be suppressed.

また、本発明の燃料油組成物に用いる重質基材または混合重質基材においては、含まれるレジン分量は、10〜30質量%であり、好ましくは12〜25質量%であり、さらに好ましくは15〜21質量%である。レジン分は、アスファルテン分に吸着され、アスファルテン分と吸着平衡を保って、アスファルテン分を重質基材または混合重質基材中に分散させる作用を有し、重質基材または混合重質基材が安定な液状を呈すようにする。しかし、レジン分とアスファルテン分の吸着平衡が破られると吸着されていたアスファルテン分が凝集スラッジを生成し、動粘度を上昇させる場合がある。重質基材または混合重質基材に含まれるレジン分が10〜30質量%であれば、得られる燃料油組成物の貯蔵時のスラッジの発生を抑制できる。   Moreover, in the heavy base material or mixed heavy base material used for the fuel oil composition of the present invention, the resin content is 10 to 30% by mass, preferably 12 to 25% by mass, and more preferably. Is 15 to 21% by mass. The resin component is adsorbed on the asphaltene component and maintains the adsorption equilibrium with the asphaltene component, and has an action of dispersing the asphaltene component in the heavy substrate or mixed heavy substrate. Ensure that the material exhibits a stable liquid state. However, if the adsorption balance of the resin and asphaltenes is broken, the adsorbed asphaltenes may generate agglomerated sludge and increase the kinematic viscosity. If the resin content contained in the heavy substrate or mixed heavy substrate is 10 to 30% by mass, the generation of sludge during storage of the obtained fuel oil composition can be suppressed.

また、重質基材または混合重質基材に含まれる芳香族分量は、35〜55質量%であり、好ましくは37〜53質量%であり、さらに好ましくは40〜49質量%である。芳香族分は、溶解性に優れているが、燃焼性やエンジン始動性に悪影響を与える。重質基材に含まれる芳香族分量が35質量%以上であれば、得られる燃料油組成物において溶解性が保てるため、スラッジの発生を抑制でき、また、55質量%以下であれば、得られる燃料油組成物において燃焼性やエンジン始動性の悪化を防止できる。   Moreover, the aromatic content contained in a heavy base material or a mixed heavy base material is 35-55 mass%, Preferably it is 37-53 mass%, More preferably, it is 40-49 mass%. The aromatic component is excellent in solubility, but adversely affects flammability and engine startability. If the aromatic content contained in the heavy base material is 35% by mass or more, solubility can be maintained in the obtained fuel oil composition, so that the generation of sludge can be suppressed. In the fuel oil composition obtained, deterioration of combustibility and engine startability can be prevented.

また、重質基材または混合重質基材に含まれる飽和分量は、20〜45質量%であり、好ましくは22〜43質量%であり、さらに好ましくは24〜39質量%である。飽和分は、溶解性が低いが、燃焼性に優れている。重質基材または混合重質基材に含まれる飽和分量が20質量%以上であれば、得られる燃料油組成物の燃焼性が優れる。また、45質量%以下であれば、得られる燃料油組成物において溶解性が保てるため、スラッジの発生を抑制できる。   Moreover, the saturated amount contained in a heavy base material or a mixed heavy base material is 20-45 mass%, Preferably it is 22-43 mass%, More preferably, it is 24-39 mass%. The saturated component is low in solubility but excellent in combustibility. If the saturated content contained in the heavy substrate or mixed heavy substrate is 20% by mass or more, the combustibility of the obtained fuel oil composition is excellent. Moreover, if it is 45 mass% or less, since solubility can be maintained in the obtained fuel oil composition, generation | occurrence | production of sludge can be suppressed.

なお、重質基材または混合重質基材に含まれるアスファルテン分、レジン分、芳香族分、飽和分は、JPI−5S−22−83「アスファルトのカラムクロマトグラフィー法による組成分析法」に基づいて定量できる。   The asphaltene content, resin content, aromatic content, and saturation content contained in the heavy base material or mixed heavy base material are based on JPI-5S-22-83 “Composition Analysis Method by Asphalt Column Chromatography”. Can be quantified.

本発明の燃料油組成物に用いる軽質基材は、上記のようにその50℃における動粘度から上記式1により算出したH値(軽質基材(1)と軽質基材(2)の組成が異なる場合はH値3)が一定範囲であることの他、軽質基材(1)または(2)に含まれるアロマ分量は10〜80容量%であり、好ましくは15〜77容量%であり、さらに好ましくは17〜74容量%である。アロマ分は、溶解性に優れているが、燃焼性やエンジン始動性に悪影響を与える。軽質基材(1)または軽質基材(2)に含まれるアロマ分量が10容量%以上であれば、得られる燃料油組成物において溶解性が保てるため、スラッジの発生を抑制できる。また、80容量%以下であれば、得られる燃料油組成物において燃焼性やエンジン始動性の悪化を防止できる。   As described above, the light base material used in the fuel oil composition of the present invention has an H value (the composition of the light base material (1) and the light base material (2) calculated from the kinematic viscosity at 50 ° C. according to the above formula 1. If different, the H value 3) is in a certain range, the amount of aroma contained in the light substrate (1) or (2) is 10 to 80% by volume, preferably 15 to 77% by volume, More preferably, it is 17 to 74% by volume. The aroma component is excellent in solubility, but adversely affects the combustibility and engine startability. If the amount of aroma contained in the light base material (1) or the light base material (2) is 10% by volume or more, solubility can be maintained in the obtained fuel oil composition, and sludge generation can be suppressed. Moreover, if it is 80 volume% or less, the deterioration of combustibility and engine startability can be prevented in the obtained fuel oil composition.

また、本発明の燃料油組成物に用いる軽質基材(1)または(2)においては、含まれるオレフィン分量は、15容量%以下であり、好ましくは13容量%以下であり、さらに好ましくは12容量%以下である。また、含まれるオレフィン分量は0容量%であってもよい。オレフィン分は、熱に対しての安定性が悪い。軽質基材(1)または軽質基材(2)に含まれるオレフィン分量が15容量%以下であれば、得られる燃料油組成物の熱に対しての影響が少なく、スラッジの発生が抑制できる。
また、該軽質基材(1)または軽質基材(2)に含まれる飽和分量は、20〜85容量%であり、好ましくは22〜83容量%であり、さらに好ましくは24〜80容量%である。飽和分は、燃焼性に優れているが、溶解性が低い。軽質基材(1)または軽質基材(2)に含まれる飽和分量が20容量%以上であれば、得られる燃料油組成物が燃焼性に優れる。また、85容量%以下であれば、得られる燃料油組成物において溶解性が保てるため、スラッジの発生を抑制できる。
Further, in the light base material (1) or (2) used in the fuel oil composition of the present invention, the olefin content contained is 15% by volume or less, preferably 13% by volume or less, more preferably 12%. The capacity is less than%. The olefin content included may be 0% by volume. The olefin content has poor heat stability. When the olefin content in the light base material (1) or the light base material (2) is 15% by volume or less, there is little influence on the heat of the obtained fuel oil composition, and sludge generation can be suppressed.
In addition, the amount of saturation contained in the light substrate (1) or the light substrate (2) is 20 to 85% by volume, preferably 22 to 83% by volume, more preferably 24 to 80% by volume. is there. The saturated component is excellent in combustibility but has low solubility. When the saturated content contained in the light base material (1) or the light base material (2) is 20% by volume or more, the obtained fuel oil composition is excellent in combustibility. Moreover, if it is 85 volume% or less, since solubility can be maintained in the obtained fuel oil composition, generation | occurrence | production of sludge can be suppressed.

なお、軽質基材(1)または軽質基材(2)に含まれる飽和分、オレフィン分、アロマ分は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法(HPLC)」に基づいて定量できる。   In addition, the saturated content, olefin content, and aroma content contained in the light base material (1) or the light base material (2) are as follows. (HPLC) ".

本発明の燃料油組成物には、必要に応じて、各種の添加剤を適宜配合することができる。このような添加剤としては、酸化防止剤、スラッジ分散剤、エマルション防止剤、燃焼促進剤、腐食防止剤、低温流動性向上剤など公知の燃料添加剤が挙げられる。これらを一種又は数種組み合わせて添加することができる。   Various additives can be appropriately blended in the fuel oil composition of the present invention as necessary. Examples of such additives include known fuel additives such as antioxidants, sludge dispersants, emulsion inhibitors, combustion accelerators, corrosion inhibitors, and low temperature fluidity improvers. These can be added singly or in combination.

本発明に用いられる重質基材としては、上記要件を満たすものであれば、特に制限されるべきものではないが、例えば、常圧残渣油、減圧残渣油、接触分解残渣油、熱分解残渣油、脱硫重油等が挙げられ、これらの中から選ばれた少なくとも1種の基材が用いられる。また、軽質基材としても、上記要件を満たすものであれば、特に制限されるべきものではないが、直留軽油、脱硫軽油、接触分解軽油、熱分解軽油等が挙げられ、これらの中から選ばれた少なくとも一種の基材が用いられる。   The heavy base material used in the present invention is not particularly limited as long as it satisfies the above requirements. For example, normal pressure residue oil, vacuum residue oil, catalytic cracking residue oil, pyrolysis residue Examples thereof include oil, desulfurized heavy oil, and the like, and at least one substrate selected from these is used. In addition, the light base material is not particularly limited as long as it satisfies the above requirements, but includes straight run light oil, desulfurized light oil, catalytic cracking light oil, pyrolysis light oil, and the like. At least one selected substrate is used.

本発明の燃料組成物の製造方法は、前記した性状を満足する限り特に制限されない。重質基材に軽質基材を混合する回数は、1回でも良いし、2回以上でも良い。
本発明の燃料油組成物を上記1回の混合で調製する場合は、混合重質基材を用いない場合である。例えば、重質基材としてアスファルテン分の平均構造パラメータ値が芳香環数80以下の減圧残渣油に、軽質基材(2)としてアロマ分を10〜80容量%含有する流動接触分解装置から得られた軽質接触分解軽油を、燃料油組成物中の前記重質基材の含有量が56〜65容量%となるよう混合することにより得られる。
また、本発明の燃料油組成物を上記2回以上の混合で調製する場合は、混合重質基材を用いる場合である。
例えば、重質基材(減圧残渣油、常圧残渣油など)に軽質基材(1)(軽質接触分解軽油、重質接触分解軽油、接触分解残渣油など)を任意の組み合わせで1回以上混合し、流動性を持たせた半製品である混合重質基材を製造する。混合重質基材の50℃における動粘度の下限は、目的とする製品の動粘度より高くする。また上限は、製造装置上の制限値となるが、181〜3500mm/sであり、好ましくは400〜3000mm/sであり、さらに好ましくは400〜2000mm/sである。
このように半製品である混合重質基材を調製することにより、軽質基材(2)の調合割合を調整することで本願燃料油組成物で50℃における動粘度が規定の範囲を有する燃料油組成物を製造することができ、また、本願以外の50℃における動粘度の燃料油組成物も得ることができる。
つまり、混合重質基材を調製することにより、本願も含めた幅広い50℃における動粘度を有する燃料油組成物を製造することができる利点がある。
該混合重質基材に軽質分解軽油、直留軽油など1種または2種以上の軽質基材を混合することにより50℃における動粘度が121〜180mm/sである燃料油組成物が得られる。
また、上記燃料油組成物には、必要に応じて、酸化防止剤、スラッジ分散剤など公知の燃料添加剤を一種又は数種組み合わせて添加しても良い。
The method for producing the fuel composition of the present invention is not particularly limited as long as the above properties are satisfied. The number of times that the light base material is mixed with the heavy base material may be one time or two or more times.
When the fuel oil composition of the present invention is prepared by the above-mentioned single mixing, the mixed heavy substrate is not used. For example, it is obtained from a fluid catalytic cracking apparatus containing 10-80% by volume of aroma as a light base material (2) in a vacuum residue oil having an average structure parameter value of asphaltene of 80 or less as a heavy base material. It is obtained by mixing the light catalytic cracked light oil so that the content of the heavy base material in the fuel oil composition is 56 to 65% by volume.
Moreover, when preparing the fuel oil composition of this invention by the said 2 times or more mixing, it is a case where a mixed heavy base material is used.
For example, a light base material (1) (light catalytic cracking light oil, heavy catalytic cracking light oil, catalytic cracking residual oil, etc.) is combined once or more in any combination with a heavy base material (vacuum residue oil, atmospheric pressure residue oil, etc.) A mixed heavy substrate that is a semi-finished product that is mixed and fluidized is produced. The lower limit of the kinematic viscosity at 50 ° C. of the mixed heavy substrate is set higher than the kinematic viscosity of the target product. The upper limit is the limit of the manufacturing apparatus, a 181~3500mm 2 / s, preferably is 400~3000mm 2 / s, more preferably 400~2000mm 2 / s.
Thus, by preparing the mixed heavy base material which is a semi-finished product, the fuel having the kinematic viscosity at 50 ° C. within the specified range in the fuel oil composition of the present application by adjusting the mixing ratio of the light base material (2) An oil composition can be produced, and a fuel oil composition having a kinematic viscosity at 50 ° C. other than the present application can also be obtained.
That is, by preparing a mixed heavy substrate, there is an advantage that a fuel oil composition having a wide kinematic viscosity at 50 ° C. including the present application can be produced.
A fuel oil composition having a kinematic viscosity at 50 ° C. of 121 to 180 mm 2 / s is obtained by mixing one or two or more light base materials such as light cracked light oil and straight-run light oil with the mixed heavy base material. It is done.
Moreover, you may add 1 type or several types of well-known fuel additives, such as antioxidant and a sludge dispersing agent, to the said fuel oil composition as needed.

以下に本発明の内容を実施例及び比較例により更に詳しく説明するが、本発明はこれらによって制限されるものではない。   The content of the present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

実施例及び比較例において、重質基材及び混合重質基材の飽和分、芳香族分、レジン分、アスファルテン分は、JPI−5S−22−83に準拠して測定した。
重質基材及び混合重質基材のアスファルテン分の平均構造パラメータである芳香環数は、JPI−5S−22−83に準拠して抽出したアスファルテン分について、「電子計算機を用いた芳香族系重質油類の構造解析法」(日本化学会誌、1975年、(1)、第127〜134頁)に準拠して、炭素分、水素分、窒素分、硫黄分、平均分子量、芳香族水素、芳香族α位水素、側鎖水素、末端メチル基水素、炭素芳香族性を測定し、それらのデータより算出した。
In Examples and Comparative Examples, the saturated content, aromatic content, resin content, and asphaltene content of the heavy substrate and mixed heavy substrate were measured according to JPI-5S-22-83.
The number of aromatic rings, which is the average structural parameter of the asphaltene content of the heavy base material and the mixed heavy base material, is as follows. For the asphaltene content extracted in accordance with JPI-5S-22-83, “Aromatic system using electronic computer” According to “Structural analysis method of heavy oils” (Journal of Chemical Society of Japan, 1975, (1), pages 127-134), carbon content, hydrogen content, nitrogen content, sulfur content, average molecular weight, aromatic hydrogen Aromatic α-position hydrogen, side chain hydrogen, terminal methyl group hydrogen, and carbon aromaticity were measured and calculated from these data.

上記芳香族水素、芳香族α位水素、側鎖水素、末端メチル基水素は、H−NMRにより測定した。測定条件を以下に示す。
装置:JNM−ECX400
試料濃度:10mg/0.5mL
測定溶媒:CDCl(重クロロホルム)
NMR試料管:5mmΦ
測定パルス:single_pulse
パルス幅:45deg(6.05μsec)
パルス待ち時間:5sec
積算回数:8scans
The aromatic hydrogen, aromatic α-position hydrogen, side chain hydrogen, and terminal methyl group hydrogen were measured by 1 H-NMR. The measurement conditions are shown below.
Device: JNM-ECX400
Sample concentration: 10 mg / 0.5 mL
Measurement solvent: CDCl 3 (deuterated chloroform)
NMR sample tube: 5mmΦ
Measurement pulse: single_pulse
Pulse width: 45 deg (6.05 μsec)
Pulse waiting time: 5 sec
Integration count: 8 scans

上記炭素芳香族性は、13C−NMRにより測定した。測定条件を以下に示す。
装置:JNM−ECX400
試料濃度:100mg/0.5mL
測定溶媒:CDCl
NMR試料管:5mmΦ
測定パルス:single_pulse_dec(NNE)
パルス幅:45deg(4.57μsec)
パルス待ち時間:8sec
積算回数:5120scans
The carbon aromaticity was measured by 13 C-NMR. The measurement conditions are shown below.
Device: JNM-ECX400
Sample concentration: 100 mg / 0.5 mL
Measuring solvent: CDCl 3
NMR sample tube: 5mmΦ
Measurement pulse: single_pulse_dec (NNE)
Pulse width: 45 deg (4.57 μsec)
Pulse waiting time: 8 sec
Integration count: 5120 scans

また、軽質基材の飽和分、オレフィン分、アロマ分は、JPI−5S−49−97に準拠して測定した。
実施例及び比較例において、用いた重質基材及び混合重質基材の組成の詳細を表1に、軽質基材の組成の詳細を表2に、燃料油組成物の組成の詳細を表3に示す。表1において、重質基材として減圧残渣油を用いた(重質基材2〜6の組成は不記載)。混合重質基材は、表2記載の組成を有する軽質基材を用いて上記重質基材と混合して調製した。分解軽油は、軽質接触分解軽油である。
なお、密度は、JIS K 2249「原油及び石油製品−密度試験方法」、硫黄分は、JIS K 2541「原油及び石油製品−硫黄分試験方法」、窒素分は、JIS K 2609「原油及び石油製品−窒素分試験方法」、蒸留は、重質基材では、JIS K 2254「石油製品−蒸留試験方法」の「6.ガスクロマトグラフ法蒸留試験方法」、軽質基材では、JIS K 2254「石油製品−蒸留試験方法」の「4.常圧蒸留試験方法」に準拠した。
Further, the saturation content, olefin content, and aroma content of the light base material were measured according to JPI-5S-49-97.
In Examples and Comparative Examples, the details of the composition of the heavy substrate and the mixed heavy substrate used are shown in Table 1, the details of the composition of the light substrate are shown in Table 2, and the composition of the fuel oil composition is shown in detail. 3 shows. In Table 1, reduced-pressure residue oil was used as a heavy substrate (the compositions of heavy substrates 2 to 6 are not shown). The mixed heavy substrate was prepared by mixing with the heavy substrate using a light substrate having the composition shown in Table 2. The cracked light oil is a light catalytic cracked light oil.
The density is JIS K 2249 “Crude oil and petroleum products-density test method”, the sulfur content is JIS K 2541 “Crude oil and petroleum products—sulfur content test method”, and the nitrogen content is JIS K 2609 “Crude oil and petroleum products”. -Nitrogen content test method ", distillation is JIS K 2254" Petroleum products-Distillation test method "" 6. Gas chromatographic distillation test method "for heavy substrates, JIS K 2254" Petroleum products "for light substrates According to “4. Atmospheric distillation test method” in “Distillation test method”.

また、得られた燃料油組成物の貯蔵における動粘度経時変化確認試験を下記試験条件で実施した。
試験温度:25℃
光の有無:暗所
測定項目:50℃における動粘度
1サンプルあたりの動粘度測定回数:1週間毎、4回
1サンプルあたりの試料量:200mL
サンプル小分け量:50mL
小分けサンプル用試験容器:ガラス製50mLサンプル管
Moreover, the kinematic viscosity time-change confirmation test in storage of the obtained fuel oil composition was implemented on the following test conditions.
Test temperature: 25 ° C
Presence of light: Dark place Measurement item: Kinematic viscosity at 50 ° C. Number of kinematic viscosity measurements per sample: Every week, 4 times Sample amount per sample: 200 mL
Sample aliquot: 50 mL
Test container for small sample: Glass 50mL sample tube

また、軽質基材、及び燃料油組成物の50℃における動粘度を、JIS K 2283に準拠して測定した。なお、結果については4週間後の動粘度変化量ではなく、4週間の間の動粘度変化最大量(動粘度増加分)とした。   Further, the kinematic viscosity at 50 ° C. of the light base material and the fuel oil composition was measured according to JIS K 2283. The results are not the amount of change in kinematic viscosity after 4 weeks, but the maximum amount of change in kinematic viscosity during 4 weeks (the increase in kinematic viscosity).

実施例1〜12、比較例1〜6
表1及び2に記載の重質基材と軽質基材を表3に示すように用いて燃料油組成物を調製した。燃料油組成物の軽質基材、重質基材の比率(軽質基材比率、重質基材比率)、軽質基材のH値またはH’値、燃料油組成物の50℃における動粘度及び硫黄分を表3に上記と合わせて示す。また、燃料油組成物の動粘度増加分を表4に示す。
Examples 1-12, Comparative Examples 1-6
Fuel oil compositions were prepared using the heavy and light substrates described in Tables 1 and 2 as shown in Table 3. Light base material of fuel oil composition, ratio of heavy base material (light base material ratio, heavy base material ratio), H value or H ′ value of light base material, kinematic viscosity of fuel oil composition at 50 ° C. and The sulfur content is shown in Table 3 together with the above. Table 4 shows the increase in kinematic viscosity of the fuel oil composition.

Figure 0005144346
Figure 0005144346

Figure 0005144346
Figure 0005144346

Figure 0005144346
Figure 0005144346

Figure 0005144346
Figure 0005144346

上記表に示した結果から、本発明に従った燃料油組成物が、動粘度安定性に優れることは明らかである。   From the results shown in the above table, it is clear that the fuel oil composition according to the present invention is excellent in kinematic viscosity stability.

Claims (2)

重質基材に、または該重質基材と軽質基材(1)との混合重質基材に、軽質基材(2)を混合してなる燃料油組成物において、
前記重質基材または混合重質基材は、アスファルテン分10質量%以下を含有し、該アスファルテン分の平均構造パラメータ値の芳香環数が80以下であり、
式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−230〜32で、軽質基材(1)または軽質基材(2)はアロマ分を10〜80容量%含有し、かつ
前記燃料油組成物は、前記重質基材の含有量が56〜65容量%で、50℃における動粘度が121〜180mm/sであることを特徴とする燃料油組成物。
H値=870×Log(Log(50℃における動粘度+0.8))+154 (式1)
H’値={(軽質基材(1)のH値)×(燃料油組成物中の軽質基材(1)の容量比率)+(軽質基材(2)のH値)×(燃料油組成物中の軽質基材(2)の容量比率)}/{(燃料油組成物中の軽質基材(1)の容量比率)+(燃料油組成物中の軽質基材(2)の容量比率)} (式2)
In the fuel oil composition obtained by mixing the light base material (2) with the heavy base material or the mixed heavy base material with the heavy base material and the light base material (1),
The heavy substrate or mixed heavy substrate contains an asphaltene content of 10% by mass or less, and the average structural parameter value of the asphaltene content is 80 or less,
The H value of the light base material (2) calculated from the formula 1, or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the light weight calculated from the formula 1. The H ′ values calculated by Equation 2 using the H values of the base material (1) and the light base material (2) are both −230 to 32, and the light base material (1) or the light base material (2) is an aroma. The fuel oil composition has a content of the heavy base material of 56 to 65% by volume and a kinematic viscosity at 50 ° C. of 121 to 180 mm 2 / s. A fuel oil composition characterized.
H value = 870 × Log (Log (kinematic viscosity at 50 ° C. + 0.8)) + 154 (Formula 1)
H ′ value = {(H value of light base material (1)) × (Volume ratio of light base material (1) in fuel oil composition) + (H value of light base material (2)) × (fuel oil Volume ratio of light substrate (2) in composition)} / {(Volume ratio of light substrate (1) in fuel oil composition) + (Capacity of light substrate (2) in fuel oil composition) Ratio)} (Formula 2)
(a)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−230以上−94未満であり、燃料油組成物における前記重質基材の含有量が62容量%以上65容量%以下であるか、又は、
(b)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−94以上−19未満であり、燃料油組成物における前記重質基材の含有量が59容量%以上62容量%未満であるか、又は、
(c)式1より算出される前記軽質基材(2)のH値、または燃料油組成物中の前記軽質基材(1)と軽質基材(2)の容量比率と式1により算出される前記軽質基材(1)と軽質基材(2)のH値を用いて式2により算出されるH’値が共に−19以上32以下であり、燃料油組成物における前記重質基材の含有量が56容量%以上59容量%未満であることを特徴とする請求項1に記載の燃料油組成物。
(A) H value of the light base material (2) calculated from the formula 1 or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 The H ′ values calculated by the formula 2 using the H values of the light base material (1) and the light base material (2) are both −230 or more and less than −94, and the heavy group in the fuel oil composition The content of the material is 62 volume% or more and 65 volume% or less, or
(B) H value of the light base material (2) calculated from the formula 1, or a volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 The H ′ values calculated by Equation 2 using the H values of the light base material (1) and the light base material (2) are both −94 or more and less than −19, and the heavy group in the fuel oil composition The content of the material is 59% by volume or more and less than 62% by volume, or
(C) H value of the light base material (2) calculated from the formula 1 or the volume ratio of the light base material (1) and the light base material (2) in the fuel oil composition and the formula 1 Both of the light base material (1) and the light base material (2), the H ′ value calculated by Formula 2 is −19 to 32, and the heavy base material in the fuel oil composition The fuel oil composition according to claim 1, wherein the content of is not less than 56% by volume and less than 59% by volume.
JP2008094085A 2008-03-31 2008-03-31 Fuel oil composition Active JP5144346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094085A JP5144346B2 (en) 2008-03-31 2008-03-31 Fuel oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094085A JP5144346B2 (en) 2008-03-31 2008-03-31 Fuel oil composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012254297A Division JP5390683B2 (en) 2012-11-20 2012-11-20 Fuel oil composition

Publications (2)

Publication Number Publication Date
JP2009242744A JP2009242744A (en) 2009-10-22
JP5144346B2 true JP5144346B2 (en) 2013-02-13

Family

ID=41305011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094085A Active JP5144346B2 (en) 2008-03-31 2008-03-31 Fuel oil composition

Country Status (1)

Country Link
JP (1) JP5144346B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868754B2 (en) * 2012-03-27 2016-02-24 昭和シェル石油株式会社 C heavy oil composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331470A (en) * 1992-03-31 1993-12-14 Nippon Zeon Co Ltd Sludge dispersant for heavy oil and heavy oil composition containing the same
JPH0776690A (en) * 1993-09-08 1995-03-20 Kao Corp Ultra-heavy oil emulsion fuel
JP3945798B2 (en) * 1998-11-11 2007-07-18 株式会社ジョモテクニカルリサーチセンター High performance A heavy oil
JP4409677B2 (en) * 1999-09-28 2010-02-03 出光興産株式会社 Fuel oil composition
JP4827349B2 (en) * 2001-09-27 2011-11-30 出光興産株式会社 Fuel oil composition
JP4456333B2 (en) * 2003-01-09 2010-04-28 新日本石油株式会社 A heavy oil

Also Published As

Publication number Publication date
JP2009242744A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP6941581B2 (en) Fuel oil composition and its manufacturing method
JP2006233087A (en) Kerosene composition
US8741002B2 (en) Gasoline compositions
JP5632523B2 (en) Fuel oil composition
JP2012197354A (en) Gas oil composition and method of manufacturing the same
JP2009503173A (en) Fuel composition
JP5144345B2 (en) Fuel oil composition
JP5144344B2 (en) Fuel oil composition
BR112014022491B1 (en) use of a viscosity-improving additive
JP5144346B2 (en) Fuel oil composition
JP5128633B2 (en) Kerosene composition
JP5390683B2 (en) Fuel oil composition
JP5395247B2 (en) Fuel oil composition
JP5390684B2 (en) Fuel oil composition
JP2007510787A (en) Fuel composition containing C4-C8 alkyl levulinate
JP5348821B2 (en) Kerosene composition
JP4568008B2 (en) Low foaming kerosene
JP5615216B2 (en) Light oil composition and method for producing the same
JP2022100573A (en) A-type heavy oil composition
JP5684181B2 (en) Light oil composition
JP5068034B2 (en) Fuel additives and compositions
JP6389432B2 (en) Fuel composition
JP6059573B2 (en) Method for producing desulfurized vacuum gas oil base material and light oil composition containing the base material
JP2001226683A (en) Fuel for gasoline engine
JP6042874B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250