JP5144143B2 - Superconducting material and manufacturing method thereof - Google Patents

Superconducting material and manufacturing method thereof Download PDF

Info

Publication number
JP5144143B2
JP5144143B2 JP2007171802A JP2007171802A JP5144143B2 JP 5144143 B2 JP5144143 B2 JP 5144143B2 JP 2007171802 A JP2007171802 A JP 2007171802A JP 2007171802 A JP2007171802 A JP 2007171802A JP 5144143 B2 JP5144143 B2 JP 5144143B2
Authority
JP
Japan
Prior art keywords
superconducting
substrate
region
carbon
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007171802A
Other languages
Japanese (ja)
Other versions
JP2009007216A (en
Inventor
雅夫 永瀬
創 岡本
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007171802A priority Critical patent/JP5144143B2/en
Publication of JP2009007216A publication Critical patent/JP2009007216A/en
Application granted granted Critical
Publication of JP5144143B2 publication Critical patent/JP5144143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

本発明は、ナノテクノロジーを基盤技術とする超伝導材料に関し、新規な超伝導ナノ複合材料を製造・利用するための超伝導材料及びその製造方法に関するものである。   The present invention relates to a superconducting material based on nanotechnology, and relates to a superconducting material for producing and using a novel superconducting nanocomposite material and a method for producing the same.

超伝導を発現する材料の探索は、1911年に超伝導現象が発見されて以来、非常に多くの材料系について検討されてきた。ニオブ系の超伝導材料が、超伝導磁石、SQUIDデバイスなどの実用に供されている現在においても未だに盛んに探索がなされてており、新規な超伝導材料への期待は高い(特許文献1,2,3,4,非特許文献1,2,4,5,6,7,8参照)。   Since the discovery of the superconducting phenomenon in 1911, the search for materials that exhibit superconductivity has been investigated for a large number of material systems. Niobium-based superconducting materials are still being actively searched even at present when superconducting magnets and SQUID devices are put into practical use, and expectations for new superconducting materials are high (Patent Document 1, 2, 3, 4, see Non-Patent Documents 1, 2, 4, 5, 6, 7, and 8).

特開平10−053494号公報Japanese Patent Laid-Open No. 10-053494 特開平8−306973号公報Japanese Patent Application Laid-Open No. 8-306973 特許第2701732号公報Japanese Patent No. 2701732 特許第3248210号公報Japanese Patent No. 3248210 特開2003−096555号公報JP 2003-096555 A 特開2002−162374号公報JP 2002-162374 A J.Mannhart, et al.,"Influence of Effect Fields on Pinning in YBa2Cu3O7-σ Films", Phys. Rev. Lett., Vol.67,No.15, pp.2099-2101,1991.J. Mannhart, et al., "Influence of Effect Fields on Pinning in YBa2Cu3O7-σ Films", Phys. Rev. Lett., Vol. 67, No. 15, pp. 2099-2101, 1991. H.Takayanagi, et al.,"Superconductivity Proximity Effect in the Native Inversion Layer on InAs",Phys. Rev. Lett., Vol.54,No.22, pp.2449-2452,1985.H. Takayanagi, et al., "Superconductivity Proximity Effect in the Native Inversion Layer on InAs", Phys. Rev. Lett., Vol.54, No.22, pp.2449-2452,1985. S.Hirono, et al.," Superhard conductive carbon nanocrystallite films", Appl. Phys. Lett., Vol.80,No.3, pp.425-427,2002.S. Hirono, et al., "Superhard conductive carbon nanocrystallite films", Appl. Phys. Lett., Vol. 80, No. 3, pp. 425-427, 2002. Y.Takano, et al.,"Superconductivity in diamond thin films well above liquid helium temperature",Appl. Phys. Lett., Vol.85,No.4, pp.2851-2853,2004.Y. Takano, et al., "Superconductivity in diamond thin films well above liquid helium temperature", Appl. Phys. Lett., Vol. 85, No. 4, pp.2851-2853, 2004. M.Kocial, et al.,"Superconductivity in Ropes of Single-Walled Carbon Nanotubes",Phys. Rev. Lett., Vol.86,No.11, pp.2416-2419,2001.M. Kocial, et al., "Superconductivity in Ropes of Single-Walled Carbon Nanotubes", Phys. Rev. Lett., Vol.86, No.11, pp.2416-2419, 2001. I.Takesue, et al.,"Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes",Phys. Rev. Lett., PRL 96, pp.057001-1-057001-4,2006.I. Takesue, et al., "Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes", Phys. Rev. Lett., PRL 96, pp. 057001-1-057001-4, 2006. T.E.Weller, et al.,"Superconductivity in the intercalatedgraphite compounds C6Yb and C6Ca", Nature Physics, Vol.1, pp.39-41,2004.T.E.Weller, et al., "Superconductivity in the intercalatedgraphite compounds C6Yb and C6Ca", Nature Physics, Vol.1, pp.39-41, 2004. K.Tanigaki, et al.,"Superconductivity in sodium- and lithium-containing alkai-metal fullerides",Vol.356,.pp.419-421,1992.K. Tanigaki, et al., "Superconductivity in sodium- and lithium-containing alkai-metal fullerides", Vol.356, .pp.419-421,1992.

ところで、1980年代に発見された銅酸化物高温超伝導体や2000年代に発見された二硼化マグネシウムの例を見ても判るように、発見以前は超伝導性が期待されていない材料系での偶発的な発見が超伝導新材料系開発のキーポイントである。このような状況は、超伝導現象発現に強い制約条件があることによる。一般には、高い電子濃度と大きな電子−格子間相互作用が必要とされ、超伝導状態が発現する材料系には限りがある。   By the way, as you can see from the examples of copper oxide high-temperature superconductors discovered in the 1980s and magnesium diboride discovered in the 2000s, it was a material system that was not expected to have superconductivity before the discovery. This accidental discovery is the key to the development of new superconducting materials. Such a situation is due to strong constraints on the appearance of the superconducting phenomenon. In general, a high electron concentration and a large electron-lattice interaction are required, and there is a limit to a material system in which a superconducting state appears.

超伝導の研究開発は、ほとんどの場合、まず超伝導性を示す材料があり、この材料の精密な組成制御、及び、構造制御により所望の性能を得る。バルクレベルで超伝導状態とならない材料は一般に検討対象とならない。しかし、これまで既に多くの材料系での検討が行われており、バルクレベルで超伝導状態となる新規な材料系を見出すことが困難な状況にある。   In most cases of superconducting research and development, there is a material exhibiting superconductivity first, and a desired performance is obtained by precise composition control and structure control of this material. Materials that do not become superconducting at the bulk level are generally not considered. However, many material systems have already been studied so far, and it is difficult to find a new material system that is in a superconducting state at a bulk level.

本発明は、以上のような問題点を解消するためになされたものであり、バルクレベルで超伝導状態となる新規な材料系を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel material system that is in a superconducting state at a bulk level.

本発明に係る超伝導材料は、基質と、この基質内に配置され、基質と同じ元素からなる所定条件で超伝導特性を示す複数の超伝導領域とを備え、隣り合う超伝導領域は、超伝導近接効果を示す距離離間しているようにしたものである。   The superconducting material according to the present invention includes a substrate and a plurality of superconducting regions that are disposed in the substrate and that exhibit superconducting characteristics under a predetermined condition made of the same element as the substrate. It is designed to be separated by a distance indicating a conductive proximity effect.

また、発明に係る超伝導材料は、基質と、基質を部分的に改質することで形成され、基質内に配置された所定条件で超伝導特性を示す複数の超伝導領域とを備え、隣り合う超伝導領域は、超伝導近接効果を示す距離離間しているようにしたものである。   The superconducting material according to the invention includes a substrate and a plurality of superconducting regions formed by partially modifying the substrate and exhibiting superconducting characteristics under predetermined conditions disposed in the substrate. The matching superconducting regions are separated by a distance exhibiting a superconducting proximity effect.

上記超伝導材料において、例えば、基質は、超伝導領域に比較してキャリア濃度が低くされている。   In the superconducting material, for example, the substrate has a lower carrier concentration than the superconducting region.

上記超伝導材料において、基質は、アモルファス状態の炭素から構成され、超伝導領域は、sp2混成軌道による結合の炭素から構成されたものである。なお、基質内に配置され、sp3混成軌道による結合の炭素から構成された複数の領域を備えるようにするとよい。 In the superconducting material, the substrate is composed of carbon atoms of A Amorphous state, the superconducting region, Ru der those composed of carbon binding by sp 2 hybrid orbital. Incidentally, disposed within the substrate, it may be to include a plurality of regions made up of carbon binding by sp 3 hybrid orbital.

また、本発明に係る超伝導材料の製造方法は、基板の上に基質が形成された状態とする工程と、基質に粒子線を照射することで局所的に構造変調を行い基質と同じ元素からなる所定条件で超伝導特性を示す複数の超伝導領域が、隣り合う超伝導領域が超伝導近接効果を示す距離離間して基質内に形成された状態とする工程とを少なくとも備え、基質は、アモルファス状態の炭素から構成し、超伝導領域は、sp 2 混成軌道による結合の炭素から構成するようにしたものである。 The superconducting material manufacturing method according to the present invention includes a step in which a substrate is formed on a substrate, and the substrate is irradiated with a particle beam to locally modulate the structure and use the same element as the substrate. A plurality of superconducting regions exhibiting superconducting characteristics under a predetermined condition, wherein the superconducting regions adjacent to each other are formed in the substrate at a distance apart from each other to exhibit a superconducting proximity effect , and the substrate comprises: consist of carbon in the amorphous state, the superconducting region is obtained by the so that configure carbon binding by sp 2 hybrid orbital.

以上説明したように、本発明によれば、基質内に配置され、基質と同じ元素からなる所定条件で超伝導特性を示す複数の超伝導領域とを備え、隣り合う超伝導領域は、超伝導近接効果を示す距離離間しているようにしたので、バルクレベルで超伝導状態となる新規な材料系が提供できるという優れた効果が得られる。   As described above, according to the present invention, it is provided with a plurality of superconducting regions arranged in a substrate and having superconducting characteristics under a predetermined condition made of the same element as the substrate, and adjacent superconducting regions are superconducting. Since the distance indicating the proximity effect is separated, an excellent effect of providing a new material system that is in a superconducting state at the bulk level can be obtained.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

始めに、本発明の実施の形態について説明する。図1は、本発明の実施の形態における超伝導材料よりなる超伝導薄膜101の構成例を模式的に示す断面図である。超伝導薄膜101は、アモルファス状態の炭素よりなる基質111と、基質111の中に局所的に形成されたsp2混成軌道による結合(sp2結合)の部分からなる微細な複数のナノグラファイト(超伝導領域)112と、基質111の中に局所的に形成されたsp3混成軌道による結合(sp3結合)の部分からなる微細な複数のナノダイアモンド113とを備えるようにしたものである。隣り合うナノグラファイト112は、超伝導近接効果を示す距離離間して形成されている。 First, an embodiment of the present invention will be described. FIG. 1 is a sectional view schematically showing a configuration example of a superconducting thin film 101 made of a superconducting material in an embodiment of the present invention. The superconducting thin film 101 includes a substrate 111 made of amorphous carbon, and a plurality of fine nanographites (super 2 ) composed of a portion of sp 2 hybrid orbitals locally formed in the substrate 111 (sp 2 bond). Conductive region) 112 and a plurality of fine nanodiamonds 113 composed of a portion of sp 3 hybrid orbitals locally formed in substrate 111 (sp 3 bonding). Adjacent nanographite 112 is formed at a distance that exhibits a superconducting proximity effect.

sp2結合の炭素は、バルク状態では超伝導性を示すようにはならないが、機械的強度に優れるsp3結合に富むダイアモンド状態の部分(ナノダイアモンド113)を同時に備えることで、ナノグラファイト112には、大きな歪みが加わる状態となる。本実施例における超伝導材料では、ナノダイアモンド113の高い機械的強度に由来する内部応力により、ナノグラファイト112に歪みを誘起させて超伝導性を示すようにしている。 The sp 2 -bonded carbon does not exhibit superconductivity in the bulk state, but has a diamond state portion (nanodiamond 113) rich in sp 3 bonds that have excellent mechanical strength. Is in a state where a large distortion is applied. In the superconducting material in the present embodiment, the internal stress derived from the high mechanical strength of the nanodiamond 113 causes the nanographite 112 to be strained to exhibit superconductivity.

この超伝導材料は、従来では超伝導性が確認されていない材料系の1つである炭素に対して局所的な構造変調がなされている部分を形成し、局所的に超伝導状態となる部分が形成されているようにしたものである。よく知られているように、2つの超伝導状態の領域が接近している状態では、2つの超伝導状態の領域間の非超伝導状態の領域を超伝導電流が流れる(超伝導近接効果;特許文献1,2,4,非特許文献2参照)。従って、本実施の形態における超伝導材料によれば、隣り合うナノグラファイト112が、各々超伝導近接効果により接続されており、全体として超伝導体となっている。このように、本実施の形態によれば、バルクレベルで超伝導状態となる新規な材料が得られている。   This superconducting material forms a part where local structural modulation is made on carbon, which is one of the material systems that have not been confirmed to be superconducting in the past. Is formed. As is well known, when two superconducting regions are close to each other, a superconducting current flows in a non-superconducting region between the two superconducting regions (superconducting proximity effect; (See Patent Documents 1, 2, 4, and Non-Patent Document 2). Therefore, according to the superconducting material in the present embodiment, adjacent nanographites 112 are connected to each other by the superconducting proximity effect, and the superconductor is formed as a whole. Thus, according to this Embodiment, the novel material which will be in a superconducting state in a bulk level is obtained.

次に、超伝導薄膜101の製造方法について図2を用いて簡単に説明する。まず図2(a)に示すように、単結晶シリコンよりなる基板102を用意し、次に、図2(b)に示すように、よく知られた熱酸化法により基板102の表面に酸化シリコンからなる絶縁層103が形成された状態とする。次に、よく知られたECR(Electron Cyclotron Resonance)スパッタ装置を用い、高純度グラファイトをターゲットとしてアルゴンのECRプラズマによりスパッタリングし、絶縁層103の上に炭素を堆積する。このことにより、図2(c)に示すように、絶縁層103の上に超伝導薄膜101が形成された状態が得られる。   Next, a method for manufacturing the superconducting thin film 101 will be briefly described with reference to FIG. First, as shown in FIG. 2A, a substrate 102 made of single crystal silicon is prepared. Next, as shown in FIG. 2B, silicon oxide is formed on the surface of the substrate 102 by a well-known thermal oxidation method. An insulating layer 103 made of is formed. Next, using a well-known ECR (Electron Cyclotron Resonance) sputtering apparatus, sputtering is performed by argon ECR plasma using high-purity graphite as a target, and carbon is deposited on the insulating layer 103. As a result, as shown in FIG. 2C, a state in which the superconducting thin film 101 is formed on the insulating layer 103 is obtained.

上述した超伝導薄膜101の形成におけるスパッタでは、ECRイオン源を用いてイオン化したアルゴンガスのECRイオン流が、絶縁層103(基板102)の上に照射されており、絶縁層103の上に堆積している炭素の膜に、低エネルギーで高密度のイオンが照射されていることになる。このイオン照射により、絶縁層103の上に堆積している炭素膜が部分的に改質され、基質111の中に、ナノグラファイト112とナノダイアモンド113とが形成されるようになる。これらの状態は、透過型電子顕微鏡の観察により確認されている。また、基板102にRF(バイアス)を印加してイオンの照射エネルギーを正確に制御して調整することで、形成される炭素の膜の局所的(部分的)な改質の状態を調整することも可能である。このような成膜の制御により、より高性能な超伝導材料の製造可能となり、例えば、超電導状態(電気抵抗が0)となる温度をより高くすることが可能になるものと考えられる。   In sputtering in the formation of the superconducting thin film 101 described above, an ECR ion flow of argon gas ionized using an ECR ion source is irradiated onto the insulating layer 103 (substrate 102) and deposited on the insulating layer 103. The carbon film is irradiated with low energy and high density ions. By this ion irradiation, the carbon film deposited on the insulating layer 103 is partially modified, and the nanographite 112 and the nanodiamond 113 are formed in the substrate 111. These states are confirmed by observation with a transmission electron microscope. Further, by applying RF (bias) to the substrate 102 to accurately control and adjust the ion irradiation energy, the state of local (partial) modification of the formed carbon film can be adjusted. Is also possible. Such film formation control makes it possible to manufacture a higher-performance superconducting material, and for example, it is considered possible to increase the temperature at which the superconducting state (electric resistance is 0) can be increased.

以上のようにすることで形成した超伝導薄膜101を、公知のフォトリソグラフィ技術とエッチング技術とによりパターニングして所定のパターンに成形し、得られたパターンを用いて4端子測定により電流電圧特性を調査したところ、温度4Kで電気抵抗が0になることが確認された。また、測定された電流電圧特性より、超伝導転移温度(Tc)は25Kであることが計算された。   The superconducting thin film 101 formed as described above is formed into a predetermined pattern by patterning using a known photolithography technique and etching technique, and the current-voltage characteristics are measured by four-terminal measurement using the obtained pattern. As a result of the investigation, it was confirmed that the electric resistance became 0 at a temperature of 4K. Moreover, it was calculated from the measured current-voltage characteristic that the superconducting transition temperature (Tc) was 25K.

ところで、上記では、ナノダイアモンドの高機械強度に由来する内部応力によりナノグラファイトに歪みを誘起して超伝導材料とする例を示したが、ナノグラファイトのみでもそのサイズ、及び、エッジの状態を精密に制御すれば超伝導状態を実現することが可能である。例えば、図3に示すように、アモルファス状態の炭素よりなる基質301と、基質301の中に局所的に形成されたsp2混成軌道による結合(sp2結合)の部分からなる微細な複数のナノグラファイト302とを備える構成とすればよい。隣り合うナノグラファイト302は、超伝導近接効果を示す距離離間して形成されている。 By the way, in the above, an example was shown in which a nano-graphite was induced to be a superconducting material by internal stress derived from the high mechanical strength of nano-diamond. It is possible to realize a superconducting state by controlling to. For example, as shown in FIG. 3, a plurality of fine nano-particles composed of a substrate 301 made of amorphous carbon and a bond (sp 2 bond) part formed by sp 2 hybrid orbitals locally formed in the substrate 301. What is necessary is just to set it as the structure provided with the graphite 302. FIG. Adjacent nanographites 302 are formed at a distance apart that exhibits a superconducting proximity effect.

ナノグラファイト302の寸法(粒径)及び縁(角,エッジ)の部分の状態を精密に制御して形成することで、ナノグラファイト302大きな歪みが加わった状態とすることが可能である。このようにナノグラファイト302に大きな歪みを加えることで超伝導特性を与えれば、前述同様に、超伝導特性を示す複数の微細な領域を備えた超伝導材料が得られる。   By forming the nanographite 302 by controlling the dimensions (particle diameter) and the state of the edges (corners, edges) precisely, the nanographite 302 can be in a state in which a large strain is applied. If superconducting properties are imparted by applying a large strain to the nanographite 302 as described above, a superconducting material having a plurality of fine regions exhibiting superconducting properties can be obtained as described above.

ところで、不純物原子を導入したグラファイトやフラーレンなどの炭素材料において、超伝導現象が観測されることが報告されている。これらのことより、上述した実施の形態における超伝導材料においても、同様の不純物を導入することで超伝導特性の向上が見込める。例えば、10%未満のカリウム及びカルシウムなどのアルカリ金属及びアルカリ土類金属の導入により、超伝導特性の向上が見込める。   By the way, it has been reported that a superconducting phenomenon is observed in carbon materials such as graphite and fullerene into which impurity atoms are introduced. From these facts, the superconducting material in the above-described embodiment can be expected to improve the superconducting characteristics by introducing similar impurities. For example, superconducting properties can be improved by introducing less than 10% of alkali metals and alkaline earth metals such as potassium and calcium.

また、上述した実施の形態において、ナノグラファイト112は、不純物が導入されていなくても十分なキャリア濃度を有するため、超伝導領域となり得るが、ナノダイアモンド113の部分には、キャリアを誘起することはできず、超伝導領域とはならない。しかしながら、ボロンなどの不純物を導入することで、ナノダイアモンド113の部分においても、十分なキャリアの誘起が可能となり、この領域も超伝導領域として機能させることができる。この場合、ナノグラファイト112に加え、ナノダイアモンド113の部分も、各々超伝導近接効果を示す距離離間して形成された状態とすればよい。   In the above-described embodiment, the nanographite 112 has a sufficient carrier concentration even if no impurity is introduced, and thus can be a superconducting region. However, the nanographite 112 induces carriers in the nanodiamond 113 portion. It cannot be a superconducting region. However, by introducing impurities such as boron, sufficient carriers can be induced even in the nano diamond 113 portion, and this region can also function as a superconducting region. In this case, in addition to the nanographite 112, the nanodiamond 113 portion may be formed in a state of being spaced apart by a distance indicating the superconducting proximity effect.

なお、炭素膜を作製する方法としては、スパッタ法が好適でありターゲットとしては高純度のグラファイト、スパッタガスとしては高純度の不活性ガスを使用すると良好な結果得られることが判明しているが、これ以外のターゲット、スパッタガスを用いても同様な効果が得られれば問題は無い。   As a method for producing the carbon film, it is known that a sputtering method is suitable, and high results can be obtained by using high-purity graphite as a target and a high-purity inert gas as a sputtering gas. Even if other targets and sputtering gas are used, there is no problem as long as the same effect can be obtained.

カーボンターゲットを用いたスパッタ法以外で作製したカーボン系薄膜、例えばsp3結合を主体とするアダマンタン(C1016)薄膜、あるいは、これに類似した化合物、又は、sp2結合を主体とするフェナントレン(C1410)、ペンタセン(C2214)などの多環芳香族を、昇華法あるいはスピンコートなどにより基板に被着させても構わない。ただし、カーボン膜に水素が含まれていると電気特性が良好な膜は得られないため、これを超伝導体とするには少なくとも超伝導領域とする部分の水素を完全に除去するような改質を行う必要がある。 Carbon-based thin films prepared by methods other than sputtering using a carbon target, such as adamantane (C 10 H 16 ) thin films mainly composed of sp 3 bonds, or similar compounds, or phenanthrenes mainly composed of sp 2 bonds Polycyclic aromatics such as (C 14 H 10 ) and pentacene (C 22 H 14 ) may be deposited on the substrate by a sublimation method or spin coating. However, if hydrogen is contained in the carbon film, a film having good electrical characteristics cannot be obtained. Therefore, in order to make this a superconductor, at least a part to be used as a superconducting region is completely removed. It is necessary to do quality.

また、水素を含まないカーボン系材料としてHOPG(Highly Oriented Pyrolytic Graphite:高配向熱分解黒鉛)を用い、これにイオン照射などの粒子線の照射を施して部分的に改質された微小な領域を確率的に形成することで、前述同様の超伝導材料としても良い。ただし、通常の改質手段では材料の表層のみしか改質されないためこれを考慮して使用するする必要がある。   In addition, HOPG (Highly Oriented Pyrolytic Graphite) is used as a carbon-based material that does not contain hydrogen, and a minute region that has been partially modified by irradiation with particle beams such as ion irradiation. By forming it stochastically, a superconducting material similar to that described above may be used. However, since only the surface layer of the material is modified by ordinary modification means, it is necessary to use it in consideration of this.

以上に説明したように、本発明では、従来、超伝導性が確認されていない材料系に対し、局所的な構造変調を行い部分的に超伝導特性を備えさせることで、全体として超伝導特性が得られるようにしている。従来、組成及び構造の均質な材料の超伝導特性が最も良好であると考えられているため、多くの超伝導材料探索においては均質な材料系がその対象となってきた。この材料探索の過程で、通常の比較的簡便な手法で均質な試料が得られる材料系であって、特に見るべき超伝導特性が得られない材料系に於いては、その後、ほとんど探索がなされていない。   As described above, according to the present invention, a material system that has not been confirmed to have superconductivity has been subjected to local structural modulation and partially provided with superconductivity. Is to be obtained. Heretofore, since the superconducting properties of a material having a uniform composition and structure are considered to be the best, a homogeneous material system has been the object in many superconducting material searches. In the material search process, a material system that can obtain a homogeneous sample by a normal and relatively simple method, and in particular a material system that does not provide superconducting properties to be observed, is almost searched. Not.

しかし、発明者らはナノ構造制御技術を適用すれば、従来、超伝導特性を示さない材料系においても超伝導特性が発現するのではないかと推測し、各種の検討を行った結果、その実現が可能であることを発見し、本発明の想起に至つた。局所的な構造制御により、従来超伝導性が報告されていない材料であるバルク状態の炭素で超伝導状態が発現することを発明者らは発見した。   However, the inventors have speculated that if nanostructure control technology is applied, superconducting properties will be developed even in material systems that do not exhibit superconducting properties, and various studies have been conducted. It was discovered that this is possible, leading to the recall of the present invention. The inventors discovered that a superconducting state is manifested in bulk carbon, which is a material that has not been reported so far, by local structural control.

炭素は、上述した局所的に実現できる超伝導領域をある一定以上の割合で増大させた場合に、超伝導性能が著しく劣化する材料である。従って、炭素と同様に、局所的に実現できる超伝導領域をある一定以上の割合で増大させると、超伝導性能が著しく劣化する系、すなわち、均質な系では特に見るべき超伝導特性が得られない材料であれば、炭素以外の材料においても本発明が適用可能であると考えられる。従って、本発明の第1の本質的な要件は、均質な材料中に超伝導を発現する一定以上の領域を発現せしめることにある。これは、例えばナノ構造制御技術を用いることで実現できる。   Carbon is a material whose superconducting performance is significantly deteriorated when the above-described superconducting region that can be realized locally is increased at a certain rate or more. Therefore, as in the case of carbon, if the superconducting region that can be realized locally is increased at a certain rate, superconducting properties that are particularly noticeable can be obtained in systems where the superconducting performance is significantly degraded, that is, in homogeneous systems. It is considered that the present invention can be applied to materials other than carbon as long as the material is not present. Therefore, the first essential requirement of the present invention is to develop a certain region that develops superconductivity in a homogeneous material. This can be realized, for example, by using a nanostructure control technique.

また、本発明における超伝導材料では、局所的に発現した超伝導領域を接続して、全体として超伝導体として動作することを可能とするために、超伝導的性質が、超伝導状態となった領域から、ある一定の距離だけ外へ漏れ出す性質が関与しているものと考えられる。これが、本発明の第2の本質的な要件である。この性質は、超伝導近接効果と呼ばれ超伝導状態に付随する普遍的な現象である。例えば、超伝導状態の2つの領域が接近してなる構造においては、2つの超伝導状態の領域間の非超伝導状態の領域を超伝導電流が流れることが知られている。   Further, in the superconducting material in the present invention, the superconducting property becomes a superconducting state in order to connect the locally developed superconducting regions and operate as a superconductor as a whole. It is considered that the property of leaking out from the region by a certain distance is involved. This is the second essential requirement of the present invention. This property is called a superconducting proximity effect and is a universal phenomenon associated with the superconducting state. For example, in a structure in which two superconducting regions are close to each other, it is known that a superconducting current flows in a non-superconducting region between the two superconducting regions.

2つの超伝導領域が非常に接近した状態で絶縁膜に隔てられている状態で、超伝導電流がトンネル効果を利用して流れることを利用する電子デバイスはジョセフソン素子と呼ばれ、超伝導デバイスとしては一般的なデバイスである。また、材料系によつてはリソグラフィ技術で作製されるギャップを隔てても超伝導電流が流れる場合があり、このような場合には、ギャップ領域の電子物性を制御することにより、超伝導電流を制御して、あたかも電界効果素子として動作されることも可能である。   An electronic device that utilizes the fact that a superconducting current flows using the tunnel effect when two superconducting regions are separated from each other by an insulating film is called a Josephson element. As a general device. Also, depending on the material system, a superconducting current may flow even if a gap produced by lithography technology is separated. In such a case, the superconducting current is controlled by controlling the electronic properties of the gap region. It is possible to control and operate as if it were a field effect element.

超伝導状態とならない材料系においても、局所的に超伝導状態が実現される領域があり、かつ、その領域が超伝導近接効果により接続されていれば全体として超伝導体として活用できるものと考えられる。この実現には特殊なナノ構造制御技術が重要となる。   Even in a material system that is not in a superconducting state, if there is a region where the superconducting state is locally realized and the region is connected by the superconducting proximity effect, it can be used as a superconductor as a whole. It is done. Special nanostructure control technology is important for this realization.

比較的均質な材料が容易に得られる手法、例えばスパッタリング法により均質な材料の膜を作製する。この状態では、この材料は超伝導特性を有さなくてもかまわない。この膜を、堆積中、或いは、堆積後に膜の構造を改質する処理を行い、部分的に超伝導特性を有するように改質する。超伝導領域を近接効果が有効に働く程度に接近するように改質を行うことにより、材料全体が超伝導材料として動作することになる。この時、超伝導領域の周囲の非超伝導領域の特性は特に問わない。   A film of a homogeneous material is produced by a technique that can easily obtain a relatively homogeneous material, for example, a sputtering method. In this state, the material may not have superconducting properties. This film is subjected to a treatment for modifying the structure of the film during or after the deposition to partially modify the film so as to have superconducting properties. By modifying the superconducting region so that the proximity effect works effectively, the entire material operates as a superconducting material. At this time, the characteristics of the non-superconducting region around the superconducting region are not particularly limited.

ただし、上述した超伝導領域の改質の度合いが進み、ある一定以上の割合を占めた場合、超伝導特性が著しく劣化するか消失するため、改質条件には十分注意を払う必要がある。この状態を図4に示す。改質の度合いが進行し、基質401に分散している超伝導特性を示す部分402が、互いに接触した状態となると、これは一般的な物質の構成と同様である。   However, when the above-described degree of modification of the superconducting region progresses and occupies a certain ratio or more, the superconducting characteristics are remarkably deteriorated or lost, and therefore it is necessary to pay sufficient attention to the modification conditions. This state is shown in FIG. When the degree of modification proceeds and the portions 402 exhibiting superconducting properties dispersed in the substrate 401 come into contact with each other, this is the same as the structure of a general substance.

この時、あまり複雑な材料系を用いると局所的な改質の効果が十分では無くなる可能性があるため、なるべく単純な系、望ましくは主成分が単一元素で構成されているとよい。ただし、複雑な化合物系でも局所的な改質により全体として超伝導特性が発現させられれば良い。   At this time, if a too complicated material system is used, the effect of local modification may not be sufficient. Therefore, it is preferable that the system is as simple as possible, preferably the main component is composed of a single element. However, superconducting properties may be expressed as a whole by local modification even in complex compound systems.

また、堆積の手法は特に限定しないが、ナノオーダーの改質を行うには、熱平衡状態で作製された膜は好ましくないため、熱CVDやMBEといつた手法よりも、プラズマCVDやスパッタリング法、蒸着法などの熱的に非平衡なプロセスで膜形成を行う方が良い。   Further, the deposition method is not particularly limited, but in order to perform nano-order modification, since a film produced in a thermal equilibrium state is not preferable, plasma CVD, sputtering, It is better to form the film by a thermally non-equilibrium process such as vapor deposition.

膜改質手法については、局所的な構造変調を行うことが可能な、比較的エネルギーの低いイオンの均一的な照射により行えばよい。また、高エネルギー粒子線(イオン又は電子)の照射であれば、不均一な分布での部分的な照射により、上述した部分的に超伝導状態とする膜改質を行えばよい。ただし、他の手法でも局所的な改質が行えれば問題は無い。また、改質を堆積中に行うか、堆積後に行うかはどちらでも構わないが、堆積中に行うことができれば工程を簡略化できる。   The film modification method may be performed by uniform irradiation with ions having relatively low energy capable of performing local structure modulation. Further, in the case of irradiation with high energy particle beams (ions or electrons), the above-described film modification for making a partially superconducting state may be performed by partial irradiation with non-uniform distribution. However, there is no problem if other methods can perform local modification. Further, it does not matter whether the modification is performed during the deposition or after the deposition, but if it can be performed during the deposition, the process can be simplified.

次に、構造変調を行った局所的な部分(超伝導領域)の間の距離について考える。近接効果が及ぶ距離については材料系により大きく異なることが知られている。いわゆる高温超伝導材料に於いては、1nm以下であることが知られている。この状態を得るためには、非常に困難な制御を行う必要がある。残念ながら現状ではこのような局所構造制御技術は存在しない。従つて、隣り合う超伝導領域の距離としては現実的には10nm以上1μm以下とすることが実際上は有利である。改質して超伝導状態となった材料の近接効果が及ぶ距離がこの程度であれば、前述した改質方法により全体として超伝導特性を示すような材料系を構成することが可能である。   Next, let us consider the distance between local parts (superconducting regions) subjected to structural modulation. It is known that the distance to which the proximity effect reaches varies greatly depending on the material system. In so-called high-temperature superconducting materials, it is known that the thickness is 1 nm or less. In order to obtain this state, it is necessary to perform very difficult control. Unfortunately, there is no such local structure control technology at present. Accordingly, it is practically advantageous that the distance between adjacent superconducting regions is 10 nm or more and 1 μm or less. A material system that exhibits superconducting properties as a whole can be configured by the above-described modification method as long as the proximity effect of the proximity effect of the material that has been modified to be in the superconducting state can reach.

局所的な構造制御により発現した超伝導の近接効果距離は、既知の超伝導材料に比較して大きくすることも可能であるので、このような改質系は従来の超伝導材料に比較して高性能な特性を有する。もちろん、将来的に技術の進歩により局所改質技術が向上して、1nm程度まで接近した局所領域を改質する技術の出現を否定するものではない。
だたし、もし1μm以上の距離が有っても十分な近接効果特性を示す材料系が発見された場合は、このような系は、既知のリソグラフィ技術を援用してより高精度に局所改質を行つた方がより高性能な材料を得られるものと思われる。
Since the proximity effect distance of superconductivity expressed by local structure control can be made larger than that of known superconducting materials, such a modified system can be compared with conventional superconducting materials. High performance characteristics. Of course, it does not deny the advent of a technology for improving the local region approaching to about 1 nm by improving the local reforming technology in the future due to technological progress.
However, if a material system is discovered that exhibits sufficient proximity effect characteristics even with a distance of 1 μm or more, such a system can be locally modified with higher accuracy with the aid of known lithography techniques. It seems that higher quality materials can be obtained by quality.

ところで、上述したような局所改質による超伝導の近接効果結合を基盤とする材料が実現できても、微細な超伝導領域の周囲の基質の部分が良導体である場合、従来の超伝導材料と区別するには、高度な顕微鏡法を用いる必要がある。これに対し、基質の部分が絶縁体である、もしくは超伝導発現温度域でキャリアが少ない半導体である場合、特性の温度依存性から従来よりある超伝導材料を区別することが可能である。   By the way, even if a material based on proximity effect coupling of superconductivity by local modification as described above can be realized, if the substrate portion around the fine superconducting region is a good conductor, To distinguish, it is necessary to use advanced microscopy. On the other hand, when the substrate portion is an insulator or a semiconductor with few carriers in the superconducting temperature range, it is possible to distinguish a conventional superconducting material from the temperature dependence of characteristics.

良導体の基質の中に部分的に超伝導領域を形成した超伝導材料では、電気抵抗の温度依存性は図5に示すようになり、従来の超伝導材料の特性と区別が付かない。この状態では、局所的な超伝導状態を確認するには、MFMやローレンツ顕微鏡などの高分解能の観察手段で特定をする必要がある。   In a superconducting material in which a superconducting region is partially formed in a substrate of a good conductor, the temperature dependence of the electrical resistance is as shown in FIG. 5, which is indistinguishable from the characteristics of a conventional superconducting material. In this state, in order to confirm the local superconducting state, it is necessary to specify with a high-resolution observation means such as an MFM or a Lorentz microscope.

一方、絶縁体の基質の中に部分的に超伝導領域を形成した超伝導材料では、電気抵抗の温度依存性が、図6に示すようになる。また、半導体の基質の中に部分的に超伝導領域を形成した超伝導材料では、電気抵抗の温度依存性が、図7に示すようになる。改質した超伝導領域の周囲の領域が絶縁体の場合、超伝導転移温度より高い状態では、全体として絶縁体となっており、図6に示すように、超伝導温度以上ではほとんど電流が流れない。この材料は、改質した領域が超伝導状態となり近接効果により近接した超伝導領域が接続することにより初めて導電性を示すことになる。   On the other hand, in the superconducting material in which the superconducting region is partially formed in the insulating substrate, the temperature dependence of the electrical resistance is as shown in FIG. Further, in a superconducting material in which a superconducting region is partially formed in a semiconductor substrate, the temperature dependence of the electrical resistance is as shown in FIG. When the region surrounding the modified superconducting region is an insulator, it is an insulator as a whole when the temperature is higher than the superconducting transition temperature, and almost no current flows above the superconducting temperature as shown in FIG. Absent. This material exhibits conductivity only when the modified region becomes a superconducting state and the adjacent superconducting regions are connected by the proximity effect.

また、基質が超伝導発現温度域でキャリアが少ない半導体である場合は、高温状態では全体として半導体的な性質を示し、温度の低下と共にキャリアが減少するため抵抗が大幅に上昇する。さらに温度が低下して、改質した領域が超伝導状態となると、近接効果により全体として超伝導状態となる。前述した実施の形態における超伝導薄膜101この場合に当たり、このような特性を有する材料は発見されておらず、本発明により初めて見出されたものである。sp2結合の部分とsp3結合の部分とが混在している炭素膜は、機械的強度が高く、また、化学的に安定であるため、保護被膜や電気化学分析の電極などに応用されている(特許文献5,6,非特許文献3参照)。しかしながら、sp2結合の部分とsp3結合の部分とが混在している炭素膜が、上述したように超伝導特性を示すことは、発明者らが初めて見出したものである。 In addition, when the substrate is a semiconductor with few carriers in the superconducting temperature range, it exhibits semiconducting properties as a whole in a high temperature state, and the resistance is greatly increased because the number of carriers decreases as the temperature decreases. When the temperature further decreases and the modified region becomes a superconducting state, the entire region becomes superconducting due to the proximity effect. In this case, the superconducting thin film 101 in the above-described embodiment has not been found yet, and has been found for the first time by the present invention. A carbon film with a mixture of sp 2 and sp 3 bonds has high mechanical strength and is chemically stable, so it is applied to protective coatings and electrodes for electrochemical analysis. (See Patent Documents 5 and 6 and Non-Patent Document 3). However, the inventors have found for the first time that a carbon film in which a sp 2 bond portion and a sp 3 bond portion are mixed exhibits superconducting properties as described above.

従来の超伝導体は、材料全域が超伝導状態になる場合が多く、この場合、キャリア濃度が高いため電界により伝導特性を制御することができなかった。本発明による超伝導材料においては、既に報告がある超伝導近接効果デバイスの例から推測すると、良好な電界効果を示すことは容易に推測される。これは、超伝導材料としてはこれまで実現されていなかった特性であり、ナノ構造制御技術により初めて実現される効果である。   Conventional superconductors often have a superconductive state throughout the material. In this case, since the carrier concentration is high, the conduction characteristics cannot be controlled by an electric field. In the superconducting material according to the present invention, it is easily inferred that a good electric field effect is exhibited from an example of a superconducting proximity effect device already reported. This is a characteristic that has not been realized so far as a superconducting material, and is an effect realized for the first time by the nanostructure control technology.

ところで、前述したように、イオン照射などの改質手段により局所的に非平衡状態を発現させ、限定された領域を超伝導材料とするのが本発明の本質であるが、この手法により得られる改質領域を例えば1μm程度まで大きくすることは困難である。非平衡状態である改質領域が大きくなると平衡状態への緩和が起こり易くなり、これが超伝導特性を劣化させることになる。これは望ましい状況では無い。このような緩和を防ぐためには、改質領域の寸法が非平衡状態を保持できる程度に微細であることが必要である。   By the way, as described above, it is the essence of the present invention that a non-equilibrium state is expressed locally by modifying means such as ion irradiation, and the limited region is a superconducting material. It is difficult to enlarge the modified region to about 1 μm, for example. When the reformed region that is in a non-equilibrium state becomes large, relaxation to the equilibrium state is likely to occur, which deteriorates the superconducting characteristics. This is not a desirable situation. In order to prevent such relaxation, it is necessary that the dimensions of the modified region be fine enough to maintain a non-equilibrium state.

この寸法は材料系により異なるが、概ね100nm以下である。例えば、熱平衡状態での成長法である熱CVDにより得られる最小の結晶粒寸法が参考になろう。例えば多くの金属材料においては最小の結晶粒寸法は概ね100nm程度である。またシリコンなどの半導体でも多くの場合、数十nmである。また、特殊な例としてカーボン系ではフラーレン、CNTが1nm級の結晶寸法を有する。   This dimension varies depending on the material system, but is generally 100 nm or less. For example, the minimum grain size obtained by thermal CVD, which is a growth method in a thermal equilibrium state, may be helpful. For example, in many metal materials, the minimum crystal grain size is approximately 100 nm. In many cases, semiconductors such as silicon are several tens of nanometers. As a special example, fullerene and CNT have a crystal size of 1 nm class in a carbon system.

本発明の本質は、上記のような寸法を目安とする非平衡状態にある改質領域を均一な組成の材料中に発現させることであるものと考えられる。多元素で構成される材料でも原理的には可能であると思われるが、一般には局所改質により相分離が起こりむしろ緩和された平衡状態に近い組織が形成される。この状況は望ましく無い。構成元素数が少なければ制御はより容易になる。この観点からは主要構成元素が例えば1種類であれば、不純物レベルで多数の種類の元素が導入されていても問題はない。   It is considered that the essence of the present invention is to develop a modified region in a non-equilibrium state with the above dimensions as a guide in a material having a uniform composition. Although it seems that it is possible in principle even with materials composed of multiple elements, in general, phase reforming occurs by local modification, and a structure close to an equilibrium state is formed rather than relaxed. This situation is undesirable. Control is easier when the number of constituent elements is small. From this point of view, if the main constituent element is, for example, one kind, there is no problem even if many kinds of elements are introduced at the impurity level.

既知の手段による改質を行う場合、一般的な化合物の場合、局所的な組成の変調が起こり易い。組成の変調は、原子オーダーのスケールで起こる場合が多く、欠陥、原子欠損の様な形態で発現し、超伝導特性の向上には不利である。一方、単体材料、特に遷移金属系の場合、改質により局所的な構造変調を発現させるのは困難である。これらに対し、ボロン、カーボン、シリコンなどの比較的軽い元素の場合、局所的な構造変調を発現させ易い。   When the modification is performed by a known means, local modulation of the composition is likely to occur in the case of a general compound. The modulation of the composition often occurs at the atomic order scale, and is manifested in a form such as a defect or an atomic defect, which is disadvantageous for improving the superconducting properties. On the other hand, in the case of a single material, particularly a transition metal system, it is difficult to develop local structural modulation by modification. On the other hand, in the case of relatively light elements such as boron, carbon, and silicon, local structural modulation is easily expressed.

特に、カーボンの場合は、単体元素の状態で、その主な原子間の結合様式には、sp2混成軌道による結合(sp2結合)とsp3混成軌道による結合(sp3結合)があり、各々を一定の領域で安定に存在させることが可能である。このように単体元素において2種類の結合様式が個別に安定に存在するのはカーボンのみであり、これは局所改質を行う上では有効な特性である。前述した実施の形態における超伝導材料は、この特性を生かしたものである。 In particular, in the case of carbon, in the state of a single element, the bonding mode between main atoms includes a bond by sp 2 hybrid orbital (sp 2 bond) and a bond by sp 3 hybrid orbital (sp 3 bond). Each can be present stably in a certain region. As described above, in the simple element, the two types of bonding modes exist stably only for carbon, and this is an effective characteristic for local modification. The superconducting material in the embodiment described above makes use of this characteristic.

sp2結合を持つグラファイトは、バルク状態では超伝導にはならないが、大きな歪みを加えれば超伝導特性を示す。一方、sp3結合を有するダイアモンドは機械的な強度に優れる。これらの特性を組み合わせて、機械的強度に優れてsp3結合に富むナノダイアモンドを含むカーボンマトリクス中に超伝導特性を有するカーボン構造として歪みの大きなナノグラファイトを埋め込み、ナノグラファイト同士を超伝導近接効果により結合される程度の距離に配置することにより高性能な超伝導材料を創製することが可能となる。 Graphite having sp 2 bonds does not become superconducting in the bulk state, but exhibits superconducting properties when a large strain is applied. On the other hand, diamond having sp 3 bonds is excellent in mechanical strength. Combining these properties, embedding nanographite with large strain as a carbon structure with superconducting properties in a carbon matrix containing nanodiamonds with excellent mechanical strength and rich sp 3 bonds, and superconducting proximity effect between nanographites It is possible to create a high-performance superconducting material by disposing them at such a distance that they can be coupled together.

ところで、カーボンナノチューブを金属酸化物マトリクスに埋め込むことで、超伝導特性が発現することが報告されている(非特許文献6参照)。このカーボンナノチューブの超伝導特性に比べ、前述した本実施の形態の超伝導材料では、磁気ピン留め効果が大きく、臨界磁場を大きくできる点がある。これも炭素のマトリクスの効果であり、主要構成元素を炭素とする超伝導材料の有効な点である。   By the way, it has been reported that superconducting properties are expressed by embedding carbon nanotubes in a metal oxide matrix (see Non-Patent Document 6). Compared with the superconducting property of the carbon nanotube, the superconducting material of the present embodiment described above has a large magnetic pinning effect and a large critical magnetic field. This is also an effect of a carbon matrix, which is an effective point of a superconducting material whose main constituent element is carbon.

本発明の実施の形態における超伝導材料よりなる超伝導薄膜101の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the superconducting thin film 101 which consists of a superconducting material in embodiment of this invention. 本発明の実施の形態における超伝導薄膜101の形成方法の一例を示す工程図である。It is process drawing which shows an example of the formation method of the superconducting thin film 101 in embodiment of this invention. 本発明の実施の形態における他の超伝導材料の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the other superconducting material in embodiment of this invention. 超伝導領域の改質の度合いが進んである一定以上の割合を占め、超伝導特性が著しく劣化しまた消失する状態を説明するための構成図である。It is a block diagram for demonstrating the state in which the superconducting region occupies a certain proportion of the degree of modification and the superconducting properties are significantly deteriorated and disappear. 良導体の基質の中に部分的に超伝導領域を形成した超伝導材料における電気抵抗の温度依存性を示す特性図である。It is a characteristic view which shows the temperature dependence of the electrical resistance in the superconductive material which formed the superconductive area | region partially in the substrate of a good conductor. 絶縁体の基質の中に部分的に超伝導領域を形成した超伝導材料における電気抵抗の温度依存性を示す特性図である。It is a characteristic view which shows the temperature dependence of the electrical resistance in the superconducting material which formed the superconducting region partially in the substrate of the insulator. 半導体の基質の中に部分的に超伝導領域を形成した超伝導材料における電気抵抗の温度依存性を示す特性図である。It is a characteristic view which shows the temperature dependence of the electrical resistance in the superconductive material which formed the superconductive area | region partially in the semiconductor substrate.

符号の説明Explanation of symbols

101…超伝導薄膜、102…基板、103…絶縁層、111…基質、112…ナノグラファイト、113…ナノダイアモンド。   DESCRIPTION OF SYMBOLS 101 ... Superconductive thin film, 102 ... Substrate, 103 ... Insulating layer, 111 ... Substrate, 112 ... Nano graphite, 113 ... Nano diamond

Claims (5)

基質と、
前記基質内に配置され、前記基質と同じ元素からなる所定条件で超伝導特性を示す複数の超伝導領域と
を備え、
前記基質は、アモルファス状態の炭素から構成され、
前記超伝導領域は、sp 2 混成軌道による結合の炭素から構成されたものであり、
隣り合う前記超伝導領域は、超伝導近接効果を示す距離離間している
ことを特徴とする超伝導材料。
A substrate,
A plurality of superconducting regions disposed in the substrate and exhibiting superconducting properties under predetermined conditions comprising the same elements as the substrate,
The substrate is composed of amorphous carbon,
The superconducting region is composed of carbon bonded by sp 2 hybrid orbitals,
The adjacent superconducting regions are separated by a distance exhibiting a superconducting proximity effect.
基質と、
前記基質を部分的に改質することで形成され、前記基質内に配置された所定条件で超伝導特性を示す複数の超伝導領域と
を備え、
前記基質は、アモルファス状態の炭素から構成され、
前記超伝導領域は、sp 2 混成軌道による結合の炭素から構成されたものであり、
隣り合う前記超伝導領域は、超伝導近接効果を示す距離離間している
ことを特徴とする超伝導材料。
A substrate,
A plurality of superconducting regions formed by partially modifying the substrate and exhibiting superconducting properties under predetermined conditions disposed within the substrate;
The substrate is composed of amorphous carbon,
The superconducting region is composed of carbon bonded by sp 2 hybrid orbitals,
The adjacent superconducting regions are separated by a distance exhibiting a superconducting proximity effect.
請求項1又は2記載の超伝導材料において、
前記基質内に配置され、sp3混成軌道による結合の炭素から構成された複数の領域を備える
ことを特徴とする超伝導材料。
The superconducting material according to claim 1 or 2,
A superconducting material comprising a plurality of regions arranged in the substrate and composed of carbon bonded by sp 3 hybrid orbitals.
請求項1〜3のいずれか1項に記載の超伝導材料において、
前記基質は、前記超伝導領域に比較してキャリア濃度が低くされている
ことを特徴とする超伝導材料。
In the superconducting material according to any one of claims 1 to 3 ,
The substrate has a carrier concentration lower than that in the superconducting region.
基板の上に基質が形成された状態とする工程と、
前記基質に粒子線を照射することで局所的に構造変調を行い前記基質と同じ元素からなる所定条件で超伝導特性を示す複数の超伝導領域が、隣り合う前記超伝導領域が超伝導近接効果を示す距離離間して前記基質内に形成された状態とする工程と
を少なくとも備え
前記基質は、アモルファス状態の炭素から構成し、
前記超伝導領域は、sp 2 混成軌道による結合の炭素から構成することを特徴とする超伝導材料の製造方法。
A step of forming a substrate on the substrate; and
A plurality of superconducting regions exhibiting superconducting characteristics under a predetermined condition consisting of the same elements as the substrate by locally modulating the structure by irradiating the substrate with particle beams, and adjacent superconducting regions are superconducting proximity effects the by distance apart shown comprising at least a step of a state of being formed on said substrate,
The substrate is composed of amorphous carbon,
It said superconducting region, method for producing a superconducting material, characterized that you consists of carbon atoms of the bond by the sp 2 hybrid orbitals.
JP2007171802A 2007-06-29 2007-06-29 Superconducting material and manufacturing method thereof Expired - Fee Related JP5144143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171802A JP5144143B2 (en) 2007-06-29 2007-06-29 Superconducting material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171802A JP5144143B2 (en) 2007-06-29 2007-06-29 Superconducting material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009007216A JP2009007216A (en) 2009-01-15
JP5144143B2 true JP5144143B2 (en) 2013-02-13

Family

ID=40322680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171802A Expired - Fee Related JP5144143B2 (en) 2007-06-29 2007-06-29 Superconducting material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5144143B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010010764A1 (en) * 2008-07-25 2012-01-05 川島 康 Room temperature superconductor, perfect conductor, proton conductor, ferromagnetic material, electromagnetic coil, and manufacturing method thereof
WO2011077531A1 (en) * 2009-12-24 2011-06-30 Kawashima Yasushi Room-temperature superconductor, perfect conductor, ferromagnetic material, electromagnetic coil, magnetism-generating complex, and processes for production of those products
JP2014146838A (en) * 2014-04-14 2014-08-14 Yasushi Kawashima Room temperature superconductor, perfect conductor, magnetic material, proton conductor, electromagnetic coil, and manufacturing method therefor
JP2016104692A (en) * 2015-12-15 2016-06-09 川島 康 Perfect conductor, method for the production thereof, and electromagnetic coil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096076A (en) * 1996-09-20 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> Formation of amorphous carbon coating
JP2001110031A (en) * 1999-10-08 2001-04-20 Hitachi Ltd Carbon coating, magnetic disk applying the same, method of producing the same, and magnetic head
JP2003096555A (en) * 2001-09-21 2003-04-03 Ntt Afty Corp Method for forming carbon nano-cluster film
JP2003095627A (en) * 2001-09-21 2003-04-03 Ntt Afty Corp Carbon nanocluster film
JP2004059958A (en) * 2002-07-25 2004-02-26 Seiko Instruments Inc Method and apparatus for depositing superconducting film by irradiating substrate surface with gas fed thereto with fib

Also Published As

Publication number Publication date
JP2009007216A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
Bonilla et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
Averyanov et al. High-temperature magnetism in graphene induced by proximity to EuO
Peng et al. Aharonov–Bohm interference in topological insulator nanoribbons
Li et al. Recent progresses of quantum confinement in graphene quantum dots
First et al. Epitaxial graphenes on silicon carbide
Brzhezinskaya et al. Engineering of numerous moiré superlattices in twisted multilayer graphene for twistronics and straintronics applications
US20200259066A1 (en) High temperature superconducting structures
Lin et al. Diverse quantization phenomena in layered materials
Park et al. Realization of 5he2 with graphene quantum Hall resistance array
Chen et al. Carbon-based spintronics
JP5144143B2 (en) Superconducting material and manufacturing method thereof
Liu et al. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons
Haruyama Quantum-spin-Hall phases and 2D topological insulating states in atomically thin layers
Song et al. Magnetotransport in ultrathin 2-D superconducting Mo 2 C Crystals
Ding et al. Multivalley superconductivity in monolayer transition metal dichalcogenides
Xue et al. Surface engineering of substrates for chemical vapor deposition growth of graphene and applications in electronic and spintronic devices
Jia et al. Superconductivity from on-chip metallization on 2D topological chalcogenides
Wakamura et al. Novel transport phenomena in graphene induced by strong spin-orbit interaction
Ishii et al. Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid
Zhang et al. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling
Mlack et al. Substrate-independent catalyst-free synthesis of high-purity Bi2Se3 nanostructures
Cha et al. Perspectives on nanotechnology for RF and terahertz electronics
Enoki Diamond-to-graphite conversion in nanodiamond and the electronic properties of nanodiamond-derived carbon system
Hwang et al. Tunable Kondo resonance at a pristine two-dimensional Dirac semimetal on a Kondo insulator
Bozhko et al. Composite Fe3O4–W (100) probes for scanning tunneling microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5144143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees