JP5141875B2 - Exhaust gas treatment method and exhaust gas treatment apparatus - Google Patents
Exhaust gas treatment method and exhaust gas treatment apparatus Download PDFInfo
- Publication number
- JP5141875B2 JP5141875B2 JP2007195803A JP2007195803A JP5141875B2 JP 5141875 B2 JP5141875 B2 JP 5141875B2 JP 2007195803 A JP2007195803 A JP 2007195803A JP 2007195803 A JP2007195803 A JP 2007195803A JP 5141875 B2 JP5141875 B2 JP 5141875B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- gas treatment
- combustion
- mercury
- halogen compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treating Waste Gases (AREA)
Description
本発明は、石炭などの化石燃料をボイラなどの燃焼装置によって燃焼させる際に、この燃焼装置から排出される排ガス中に含まれる水銀を除去するのに用いられる排ガス処理方法及び排ガス処理装置に関するものである。 The present invention relates to an exhaust gas treatment method and an exhaust gas treatment device used to remove mercury contained in exhaust gas discharged from a combustion device when fossil fuel such as coal is burned by a combustion device such as a boiler. It is.
上記した化石燃料の燃焼装置、例えば、石炭焚きボイラから排出される石炭の燃焼排ガスには、石炭に起因する微量の水銀が含まれている。この水銀は、難溶性の金属水銀Hg0と、水溶性の2価水銀Hg2+(HgCl2)と、燃焼灰に付着した粒子状水銀HgPとの三つの形態に分かれて排ガス中に存在する。
この水銀を排ガスから除去する排ガス処理装置としては、例えば、石炭焚きボイラから煙突に至るまでの煙道に、脱硝部、脱塵部及び脱硫部を順次配置して成るものがある。
The above-mentioned fossil fuel combustion apparatus, for example, coal combustion exhaust gas discharged from a coal-fired boiler contains a trace amount of mercury due to coal. This mercury is present in the exhaust gas in three forms: hardly soluble metallic mercury Hg 0 , water-soluble divalent mercury Hg 2+ (HgCl 2 ), and particulate mercury Hg P adhering to combustion ash. .
As an exhaust gas treatment apparatus that removes mercury from exhaust gas, for example, there is an apparatus in which a denitration unit, a dedusting unit, and a desulfurization unit are sequentially arranged in a flue from a coal-fired boiler to a chimney.
排ガス中に含まれる水銀のうちの粒子状水銀HgPは、その大半がこの排ガス処理装置の電気集じん器やバグフィルタなどの脱塵部で除去され、2価水銀Hg2+は、湿式の脱硫部で高効率に除去されるが、排ガス中に含まれる金属水銀Hg0は、脱塵部や脱硫部でほとんど除去されずに大部分が大気に放出されているのが現状である。
大気中に放出された金属水銀Hg0は、環境中でより有害な有機水銀(メチル水銀)に変換されるので、この有機水銀が魚貝類などの食用生物に蓄積されて、これが食物連鎖を経て人体内へ入り込むことが懸念されている。
Of the mercury contained in the exhaust gas, most of the particulate mercury Hg P is removed by a dust removal part such as an electric dust collector or a bag filter of this exhaust gas treatment device, and the divalent mercury Hg 2+ is wet desulfurization. However, most of the metallic mercury Hg 0 contained in the exhaust gas is released to the atmosphere without being almost removed by the dedusting part or the desulfurization part.
Metallic mercury Hg 0 released into the atmosphere is converted into more harmful organic mercury (methylmercury) in the environment, and this organic mercury is accumulated in edible organisms such as fish and shellfish, which passes through the food chain. There is concern about entering the human body.
この現状を踏まえて、米国環境保護局では、石炭焚き火力発電所からの水銀排出量を規制することを決定していて、水銀排出量を2010年までに現行の30%削減し、さらに、2018年までに現行の70%削減することを義務付けており、これと同様に、カナダでも石炭焚き火力発電所からの水銀排出量の規制を決定している。
排ガス中に含まれる金属水銀Hg0は、水銀と同じく石炭に含まれる塩素に起因する塩化水素(HCl)によって、反応式(1)に示すように、脱硝触媒や石炭灰や未燃焼分炭素の表面上で酸化される。
In light of this situation, the US Environmental Protection Agency has decided to regulate mercury emissions from coal-fired thermal power plants, reducing mercury emissions by 30% by 2010, and 2018 In the same way, Canada has decided to regulate mercury emissions from coal-fired thermal power plants.
Metallic mercury Hg 0 contained in the exhaust gas is converted into denitration catalyst, coal ash, and unburned carbon as shown in the reaction formula (1) by hydrogen chloride (HCl) caused by chlorine contained in coal as well as mercury. Oxidized on the surface.
Hg0+2HCl+1/2O2 → HgCl2+H2O 反応式(1)
但し、2価水銀Hg2+はHgCl2である。
脱硝触媒上での水銀酸化効率は、HCl濃度が高い程高くなる。つまり、HCl濃度が高い程HgCl2の生成割合が増加することとなり、その結果、脱塵部や脱硫部で捕集される水銀の割合も増加する。
Hg 0 + 2HCl + 1 / 2O 2 → HgCl 2 + H 2 O Reaction formula (1)
However, divalent mercury Hg 2+ is HgCl 2 .
The mercury oxidation efficiency on the denitration catalyst increases as the HCl concentration increases. That is, the higher the HCl concentration, the higher the generation ratio of HgCl 2. As a result, the ratio of mercury collected in the dedusting section and desulfurization section also increases.
HgCl2は、Hg0に比べて吸着性が強いことから、脱塵部において灰の表面に吸着して粒子状水銀HgPとして捕集される。この際、脱塵部で捕集される水銀の割合は、灰中の未燃分炭素の量に依存するので、未燃分炭素が少ない場合は、脱塵部において灰により捕集される割合は少なくなる。
このように、脱塵部において粒子状水銀HgPとして捕集される割合がそれほど高くなければ、脱硝触媒上で酸化された金属水銀Hg0及び2価水銀Hg2+(HgCl2)のうちの相当量は、脱塵部を通過して脱硫部の排水中に捕集されることとなる。
Since HgCl 2 has a stronger adsorptivity than Hg 0 , it is adsorbed on the surface of ash in the dust removal part and collected as particulate mercury Hg P. At this time, since the proportion of mercury collected in the dust removal part depends on the amount of unburned carbon in the ash, if there is little unburned carbon, the percentage collected by the ash in the dust removal part Will be less.
Thus, if the ratio collected as particulate mercury Hg P in the dedusting part is not so high, it is equivalent to metal mercury Hg 0 oxidized on the denitration catalyst and divalent mercury Hg 2+ (HgCl 2 ). The amount passes through the dedusting part and is collected in the drainage of the desulfurization part.
ここで、脱塵部で捕集された灰は、セメントやコンクリート材料として有効に利用されるが、水銀を従来よりも多く含むため、水銀溶出等の対策に一層の配慮が必要である。
一方、脱硫部に到達した水銀は、脱硫部の排水中における汚泥の一部として捕集され、産業廃棄物として管理された状態で処理し得ることとなる。
したがって、脱硝触媒上で酸化された水銀は、脱塵部で捕集するよりも脱硫部で捕集した方がより望ましいと考えられる。
Here, the ash collected in the dust removal part is effectively used as a cement or concrete material. However, since it contains more mercury than in the past, further consideration must be given to measures such as mercury elution.
On the other hand, mercury that has reached the desulfurization section is collected as part of the sludge in the drainage of the desulfurization section, and can be treated in a state managed as industrial waste.
Therefore, it is considered that mercury oxidized on the denitration catalyst is more preferably collected in the desulfurization part than in the dust removal part.
従来において、燃焼装置から排出される排ガス中の水銀を除去する技術として、煤塵を除去する電気集じん器やバグハウスなどの脱塵部の上流に、活性炭などの水銀吸着剤を吹き込み、この吸着剤表面に水銀を吸着させて除去する方法が提案されている(例えば、特許文献1参照)。
しかし、この吸着剤を用いた除去技術では、吸着剤を常時吹き込む必要があるため、ランニングコストが高くつくうえ、排ガス中のHCl濃度などのガス性状により効率が変化するといった欠点がある。
Conventionally, as a technology for removing mercury in exhaust gas discharged from combustion equipment, mercury adsorbents such as activated carbon are blown upstream of dust removal parts such as electric dust collectors and bag houses that remove soot and dust. There has been proposed a method for removing mercury by adsorbing mercury on the surface of the agent (for example, see Patent Document 1).
However, this removal technique using an adsorbent has the disadvantages that the adsorbent needs to be constantly blown, so that the running cost is high and the efficiency varies depending on the gas properties such as HCl concentration in the exhaust gas.
この排ガス中のHCl濃度に関して言えば、元来、石炭中に含まれる塩素の量が、数ppmから数100ppmと少ないのに加えて、石炭の種類によって含有量に大きなバラツキがあり、これを燃焼排ガス中のHCl濃度に換算すると、1ppm未満から数10ppmとなってしまい、このように排ガス中のHCl濃度が低い場合には、排ガスの性状にもよるが、脱硝触媒や未燃分炭素上での水銀酸化効率が低下し、これに伴って脱塵部及び脱硫部での水銀捕集効率も低下する。 In terms of the concentration of HCl in the exhaust gas, the amount of chlorine contained in the coal is originally small, from several ppm to several hundred ppm, and the content varies greatly depending on the type of coal. When converted to the HCl concentration in the exhaust gas, it becomes less than 1 ppm to several tens of ppm. If the HCl concentration in the exhaust gas is low as described above, it depends on the denitration catalyst and unburned carbon depending on the properties of the exhaust gas. As a result, the mercury oxidation efficiency decreases, and the mercury collection efficiency in the dedusting section and desulfurization section also decreases.
これに対応するべく、石炭焚きボイラから煙突に至るまでの煙道中にハロゲンを含む物質を注入する方法(例えば、特許文献2参照)や、塩素化合物を石炭とともに燃焼装置に供給して燃焼させた後、電気集じん器などの脱塵部の前で排ガス温度を150℃以下に冷却して、脱塵部において水銀の除去を行う方法(例えば、特許文献3参照)が提案されている。
ところが、上記した水銀除去方法において、煙道中にハロゲンを含む物質を注入する前者の方法では、塩素化合物を想定した場合、CaCl2やNaClやNH4Clなどの化合物が例示され、これらの化合物は、加熱によりHClに分解されてHg0を酸化することができるが、HClを直接煙道に注入する場合を除いて、ハロゲン化合物を注入した場合には、十分な温度で加熱し、且つ、分解を進行させるべく十分な滞留時間を取る必要がある。 However, in the mercury removal method described above, in the former method in which a halogen-containing substance is injected into the flue, compounds such as CaCl 2 , NaCl, and NH 4 Cl are exemplified when chlorine compounds are assumed. Although it can be decomposed into HCl by heating to oxidize Hg 0 , except for the case of injecting HCl directly into the flue, when a halogen compound is injected, it is heated at a sufficient temperature and decomposed. It is necessary to take sufficient residence time to proceed.
一方、脱塵部において水銀の除去を行う後者の方法では、水銀の一部しか除去することができないうえ、上述したように、脱塵部で捕集された灰は水銀を多く含むため、セメントやコンクリート材料として利用する場合には、厳しい管理が求められるという問題があり、これらの問題を解決することが従来の課題となっていた。
本発明は、上記した課題を解決するためになされたもので、化石燃料、例えば、石炭をボイラなどの燃焼装置によって燃焼させる際に、石炭の種類や燃焼装置から排出される排ガスの性状にかかわりなく、水銀を高効率且つ低コストで除去することが可能であり、加えて、除去した水銀の管理が容易な排ガス処理方法及び排ガス処理装置を提供することを目的としている。
On the other hand, in the latter method of removing mercury in the dust removal part, only a part of the mercury can be removed, and as described above, the ash collected in the dust removal part contains a large amount of mercury. When using it as a concrete material, there is a problem that strict management is required, and it has been a conventional problem to solve these problems.
The present invention has been made to solve the above-described problems, and relates to the type of coal and the properties of exhaust gas discharged from the combustion device when fossil fuel, for example, coal, is burned by a combustion device such as a boiler. In addition, an object of the present invention is to provide an exhaust gas treatment method and an exhaust gas treatment device that can remove mercury at high efficiency and at low cost, and that can easily manage the removed mercury.
本発明の請求項1に係る発明は、化石燃料を燃焼装置で燃焼させる際に当該燃焼装置から排出される排ガス中に含まれる水銀を除去する排ガス処理方法であって、粉砕した化石燃料と、累状塩素化合物,フレーク状塩素化合物及び塩素を含む鉱物のうちのいずれかを粉砕して成るハロゲン化合物とを前記燃焼装置に供給して燃焼させた後、前記燃焼装置からの煙道に配置した湿式脱硫部で前記排ガス中に含まれる水銀を汚泥中に取り込んで捕集し、水銀を含んだ汚泥を回収処理する構成としたことを特徴としており、この排ガス処理方法の構成を前述した従来の課題を解決するための手段としている。
An invention is an exhaust gas treatment method for removing mercury contained in exhaust gases discharged from the combustion apparatus when burning a fossil fuel combustion apparatus according to
この場合、ハロゲン化合物として塩素化合物を想定すると、CaCl2やNaClやNH4Clなどの化合物が挙げられる。一般的に販売されているCaCl2では、純度が高いほど粉末状になり、純度が低いほど大きな累状やフレーク状になるが、純度の低いフレーク状のものも粉砕が可能である。
また、NH4Clでは、粉末状の試薬だけでなく、安価な鉱物(塩化アンモン石)を直接利用することができる。
In this case, assuming a chlorine compound as the halogen compound, compounds such as CaCl 2 , NaCl, and NH 4 Cl are listed. In general, CaCl 2 that is sold becomes powdery as the purity increases, and becomes larger and flakes as the purity decreases. However, flakes with low purity can be pulverized.
Further, in NH 4 Cl, not only a powdery reagent but also an inexpensive mineral (ammonite chloride) can be directly used.
さらに、粉砕して得られるハロゲン化合物の粒子の大きさは、分解効果を促進するために、200メッシュ(75μm)の通過割合を70〜80%とすることが望ましく、100メッシュ(150μm)の通過割合を90%前後とすることが望ましい。
さらにまた、燃焼装置に供給するハロゲン化合物の量は、Hg0の酸化効率を上昇させるべく、化石燃料、例えば、石炭に含有される塩素濃度に基づいて決定する。
Further, the size of the halogen compound particles obtained by pulverization is preferably 70 to 80% for the passage ratio of 200 mesh (75 μm), and the passage of 100 mesh (150 μm) in order to promote the decomposition effect. It is desirable that the ratio be around 90%.
Furthermore, the amount of halogen compound is supplied to the combustion apparatus, in order to increase the oxidation efficiency of Hg 0, fossil fuels, for example, be determined based on the concentration of chlorine contained in coal.
本発明の請求項2に係る発明は、前記化石燃料及びハロゲン化合物を一緒に粉砕混合して成る微粉末状の混合物を前記燃焼装置に供給して燃焼させる構成としている。
本発明の請求項3に係る発明は、前記化石燃料及びハロゲン化合物を個々に粉砕し、粉砕した化石燃料を前記燃焼装置に供給すると共に、前記燃焼装置に用いる二次燃焼用空気をキャリヤとして粉砕したハロゲン化合物を前記燃焼装置に供給して燃焼させる構成としている。
The invention according to claim 2 of the present invention is configured such that a fine powder mixture obtained by pulverizing and mixing the fossil fuel and the halogen compound together is supplied to the combustion device and burned.
According to a third aspect of the present invention, the fossil fuel and the halogen compound are individually pulverized, the pulverized fossil fuel is supplied to the combustion device, and the secondary combustion air used in the combustion device is pulverized as a carrier. The produced halogen compound is supplied to the combustion device and burned.
一方、本発明の請求項4に係る発明は、化石燃料を燃焼装置で燃焼させる際に当該燃焼装置から排出される排ガス中に含まれる水銀を除去する排ガス処理装置であって、粉砕した化石燃料と、累状塩素化合物,フレーク状塩素化合物及び塩素を含む鉱物のうちのいずれかを粉砕して成るハロゲン化合物とを前記燃焼装置に供給する供給部と、前記燃焼装置からの煙道に配置されて、前記燃焼装置から排出される排ガス中に含まれる水銀を汚泥中に取り込んで捕集する湿式脱硫部を備えている構成としている。
Meanwhile, according to the invention of
本発明の請求項5に係る発明において、前記供給部は、前記化石燃料及びハロゲン化合物を一緒に粉砕混合して前記燃焼装置に供給するミルを具備している構成としている。
本発明の請求項6に係る発明において、前記供給部は、前記化石燃料を粉砕して前記燃焼装置に供給する燃料用ミルと、ハロゲン化合物を粉砕する化合物用ミルと、粉砕したハロゲン化合物を前記化合物用ミルから前記燃焼装置に用いる二次燃焼用空気の流路に導く導入路を具備している構成としている。
In the invention according to
In the invention according to
本発明の排ガス処理方法及び排ガス処理装置において、燃焼装置から湿式脱硫部に至るまでの煙道には、通常、脱硝部や脱塵部が順次配置され、脱硝部内(及び煙道中)に存在する未燃炭素分や灰分の表面などで、Hg0とHClとを反応させてHgCl2に酸化させる。
一方、脱塵部において水銀が灰に吸着されるのを抑えるために、特に限定はしないが、脱塵部を150℃以上の比較的高い温度で運用することが望ましい。
In the exhaust gas treatment method and the exhaust gas treatment apparatus of the present invention, the flue from the combustion device to the wet desulfurization unit is usually arranged with a denitration unit and a dedusting unit in sequence, and exists in the denitration unit (and in the flue) On the surface of unburned carbon or ash, Hg 0 and HCl are reacted to oxidize to HgCl 2 .
On the other hand, in order to prevent mercury from being adsorbed by the ash in the dust removing portion, although not particularly limited, it is desirable to operate the dust removing portion at a relatively high temperature of 150 ° C. or higher.
本発明の請求項1に係る排ガス処理方法及び請求項4に係る排ガス処理装置では、上記した構成としているので、化石燃料、例えば、石炭をボイラなどの燃焼装置によって燃焼させる際に、水銀の除去に吸着剤を用いない分だけランニングコスト少なく抑えることができるうえ、排ガス中のHCl濃度などのガス性状により水銀捕集効率が変化することもない。
Since the exhaust gas treatment method according to
つまり、石炭の種類や燃焼装置から排出される排ガスの性状にかかわりなく、水銀を高効率且つ低コストで除去することが可能であり、加えて、水銀を含んだ汚泥を回収処理するので、除去した水銀の管理が容易なものになるという非常に優れた効果がもたらされる。
また、本発明の請求項2に係る排ガス処理方法及び請求項5に係る排ガス処理装置では、上記した構成としたから、化石燃料及びハロゲン化合物の微粉末状の混合物を燃焼装置のバーナノズルに供給して、高温下で一気に気化分解させることができるので、ガス状のHClを効率よく生成させることが可能である。
In other words, it is possible to remove mercury with high efficiency and low cost regardless of the type of coal and the nature of the exhaust gas discharged from the combustion device, and in addition, the sludge containing mercury is recovered and treated. As a result, it is possible to easily manage mercury.
In addition, since the exhaust gas treatment method according to claim 2 and the exhaust gas treatment apparatus according to
さらに、本発明の請求項3に係る排ガス処理方法及び請求項6に係る排ガス処理装置では、ハロゲン化合物の固体をミルで粉砕し、燃焼装置に用いる二段燃焼用空気を用いて微粉状のハロゲン化合物を燃焼装置に導入するようにしているので、ハロゲン化合物を供給するための機構の追加が少なくて済むという効果が得られる。
Further, in the exhaust gas treatment method according to claim 3 of the present invention and the exhaust gas treatment apparatus according to
以下、本発明の実施形態を図面に基づいて説明する。
図1及び図2は、本発明の一実施形態による排ガス処理装置を示しており、この実施形態では、本発明の排ガス処理方法及び排ガス処理装置を石炭焚きボイラ(燃焼装置)から排出される排ガスの処理に適用した場合を例に挙げて説明する。
図1に示すように、この排ガス処理装置1は、石炭焚きボイラBから煙突2に至るまでの煙道Rに順次配置した脱硝部3、エアヒータ4、脱塵部5、熱交換器6、脱硫部7及び熱交換器8を備えているほか、化石燃料としての石炭C及びハロゲン化合物としての塩素化合物Clを石炭焚きボイラBに供給する供給部を備えており、この供給部は、図2に示すように、石炭C及び塩素化合物Clを一緒に粉砕混合して石炭焚きボイラBに供給するミル9としている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an exhaust gas treatment apparatus according to an embodiment of the present invention. In this embodiment, the exhaust gas treatment method and the exhaust gas treatment apparatus of the present invention are exhausted from a coal-fired boiler (combustion device). A case where this is applied to the process will be described as an example.
As shown in FIG. 1, the exhaust
この場合、煙道Rにおける脱硝部3の上流側にアンモニアを添加して、排ガスに含まれるNOXを還元して窒素と水に変換するようにしている。
また、脱硝部3内及び煙道R中において、存在する未燃炭素分や灰分の表面などで、金属水銀Hg0とHClとを反応させて水溶性の2価水銀Hg2+(HgCl2)に酸化させるようにしており、この際、2価水銀Hg2+が脱塵部5において灰に吸着されるのを抑えるために、エアヒータ4を加減して脱塵部5を150℃以上の温度で運用するようにしている。
In this case, by adding ammonia to the upstream side of the denitration unit 3 in the flue R, so that converted by reducing NO X contained in the exhaust gas to nitrogen and water.
Further, in the denitration unit 3 and in the flue R, metal mercury Hg 0 and HCl are reacted with each other on the surface of unburned carbon and ash present to form water-soluble divalent mercury Hg 2+ (HgCl 2 ). At this time, in order to prevent divalent mercury Hg 2+ from being adsorbed by the ash in the
そして、湿式脱硫部7において、脱塵部5を通過した2価水銀Hg2+(HgCl2)を液相吸収し、汚泥中に取り込んで捕集するようにしている。
この排ガス処理装置1では、予めミル9によって石炭C及び塩素化合物Clを一緒に粉砕混合し、その混合物を石炭焚きボイラBに供給して燃焼を開始させる。そして、石炭焚きボイラBから排出される排ガスの処理を行う場合には、まず、煙道Rにおける脱硝部3の上流側にアンモニアを添加して、排ガスに含まれるNOXを還元して窒素と水に変換する。
Then, the wet desulfurization unit 7, divalent mercury Hg 2+ which has passed through the
In this exhaust
上記石炭焚きボイラBから排出される排ガス中に含まれる水銀のうち、金属水銀Hg0は、脱硝部3内及び煙道R中に存在する未燃炭素分や灰分の表面などで、HClと反応して水溶性の2価水銀Hg2+(HgCl2)に変換される。
この際、脱塵部5は、エアヒータ4の加減により150℃以上の温度で運用されているので、2価水銀Hg2+が脱塵部5の灰に吸着されるのが回避される。
Of the mercury contained in the exhaust gas discharged from the coal-fired boiler B, metallic mercury Hg 0 reacts with HCl on the surface of unburned carbon and ash present in the denitration section 3 and in the flue R. Thus, it is converted into water-soluble divalent mercury Hg 2+ (HgCl 2 ).
At this time, since the
湿式脱硫部7では、上記脱塵部5を通過した2価水銀Hg2+(HgCl2)を液相で吸収して汚泥中に取り込んで捕集し、この後、水銀を含んだ汚泥を回収処理するようにしている。
上記したように、この実施形態の排ガス処理方法及び排ガス処理装置1では、石炭Cを石炭焚きボイラBによって燃焼させる際に、水銀の除去に吸着剤を用いていないので、その分だけランニングコスト少なく抑えることができ、加えて、排ガス中のHCl濃度などのガス性状により水銀捕集効率が変化することもない。
In the wet desulfurization unit 7, the divalent mercury Hg 2+ (HgCl 2 ) that has passed through the
As described above, in the exhaust gas treatment method and the exhaust
したがって、石炭Cの種類や排ガスの性状にかかわりなく、水銀を高効率且つ低コストで除去し得ることとなり、水銀を含んだ汚泥を回収処理するので、除去した水銀の管理が容易なものになる。
また、この実施形態の排ガス処理方法及び排ガス処理装置1では、石炭C及び塩素化合物Clの微粉末状の混合物を石炭焚きボイラBのバーナノズルに供給するようにしているので、高温下で一気に気化分解させることができ、ガス状のHClを効率よく生成させることが可能である。
Therefore, regardless of the type of coal C and the nature of the exhaust gas, mercury can be removed with high efficiency and low cost, and the sludge containing mercury is recovered and treated, so that the management of the removed mercury becomes easy. .
In the exhaust gas treatment method and exhaust
図3は、本発明の他の実施形態による排ガス処理装置を示しており、この実施形態の排ガス処理装置11が先の排ガス処理装置1と異なるところは、供給部が、石炭Cを粉砕して石炭焚きボイラBに供給する燃料用ミル19Aと、塩素化合物Clを粉砕する化合物用ミル19Bと、粉砕した塩素化合物Clを化合物用ミル19Bから石炭焚きボイラBに用いる二次燃焼用空気Aの流路に導く導入路20を具備している点にあり、この実施形態の排ガス処理装置11では、石炭C及び塩素化合物Clを個々に粉砕し、粉砕した石炭Cを石炭焚きボイラBに供給すると共に、この石炭焚きボイラBに用いる二次燃焼用空気Aをキャリヤとして粉砕した塩素化合物Clを石炭焚きボイラBに供給して燃焼させるようにしている。
FIG. 3 shows an exhaust gas treatment apparatus according to another embodiment of the present invention. The difference between the exhaust
この排ガス処理装置11においても、石炭Cの種類や排ガスの性状にかかわりなく、水銀を高効率且つ低コストで除去し得ることとなり、水銀を含んだ汚泥を回収処理するので、除去した水銀の管理が容易なものになる。
また、この排ガス処理装置11では、石炭焚きボイラBに用いる二段燃焼用空気Aを用いて微粉状の塩素化合物Clを石炭焚きボイラBに導入するようにしているので、塩素化合物Clを供給するための機構の追加が少なくて済む。
In this exhaust
Further, in the exhaust
1,11 排ガス処理装置
3 脱硝部
5 脱塵部
7 脱硫部
9 ミル(供給部)
19A 燃料用ミル(供給部)
19B 化合物用ミル(供給部)
20 導入路(供給部)
A 二段燃焼用空気
B 石炭焚きボイラ(燃焼装置)
C 石炭(化石燃料)
Cl 塩素化合物(ハロゲン化合物)
R 煙道
1,11 Exhaust gas treatment equipment 3
19A Fuel Mill (Supply Unit)
19B Compound Mill (Supplying Section)
20 Introduction route (supply section)
A Two-stage combustion air B Coal-fired boiler (combustion device)
C Coal (fossil fuel)
Cl chlorine compound (halogen compound)
R Flue
Claims (6)
粉砕した化石燃料と、累状塩素化合物,フレーク状塩素化合物及び塩素を含む鉱物のうちのいずれかを粉砕して成るハロゲン化合物とを前記燃焼装置に供給して燃焼させた後、前記燃焼装置からの煙道に配置した湿式脱硫部で前記排ガス中に含まれる水銀を汚泥中に取り込んで捕集し、水銀を含んだ汚泥を回収処理することを特徴とする排ガス処理方法。 Is the exhaust gas treatment method for removing mercury contained in exhaust gas discharged the fossil fuel from the combustion apparatus when burned in combustion devices,
A ground fossil fuels, cumulative like chlorine compounds, after the halogen compound formed by pulverizing any of the minerals containing flake chlorine compounds and chlorine are burned by supplying to the combustion device, from the combustion device An exhaust gas treatment method characterized in that mercury contained in the exhaust gas is taken in and collected in the sludge by a wet desulfurization section arranged in the flue, and the sludge containing mercury is recovered.
粉砕した化石燃料と、累状塩素化合物,フレーク状塩素化合物及び塩素を含む鉱物のうちのいずれかを粉砕して成るハロゲン化合物とを前記燃焼装置に供給する供給部と、
前記燃焼装置からの煙道に配置されて、前記燃焼装置から排出される排ガス中に含まれる水銀を汚泥中に取り込んで捕集する湿式脱硫部を備えている
ことを特徴とする排ガス処理装置。 Is the exhaust gas treatment apparatus for removing mercury contained in exhaust gas discharged from the combustion apparatus when burning a fossil fuel combustion apparatus,
A ground fossil fuels, cumulative like chlorine compound, a supply unit for supplying the halogen compound formed by grinding one to the combustion device of the minerals containing flake chlorine compounds and chlorine,
An exhaust gas treatment apparatus, comprising a wet desulfurization unit that is disposed in a flue from the combustion device and takes in and collects mercury contained in the exhaust gas discharged from the combustion device into sludge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007195803A JP5141875B2 (en) | 2007-07-27 | 2007-07-27 | Exhaust gas treatment method and exhaust gas treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007195803A JP5141875B2 (en) | 2007-07-27 | 2007-07-27 | Exhaust gas treatment method and exhaust gas treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009028655A JP2009028655A (en) | 2009-02-12 |
JP5141875B2 true JP5141875B2 (en) | 2013-02-13 |
Family
ID=40399791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007195803A Active JP5141875B2 (en) | 2007-07-27 | 2007-07-27 | Exhaust gas treatment method and exhaust gas treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5141875B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110064293B (en) * | 2019-04-30 | 2022-02-11 | 中南大学 | Method for desulfurization, denitrification and demercuration of flue gas |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3935547B2 (en) * | 1997-02-19 | 2007-06-27 | 三菱重工業株式会社 | Exhaust gas treatment method and exhaust gas treatment apparatus |
JP3698916B2 (en) * | 1999-05-19 | 2005-09-21 | バブコック日立株式会社 | Method and apparatus for removing mercury from coal flue gas |
US7514052B2 (en) * | 2004-01-06 | 2009-04-07 | General Electric Company | Method for removal of mercury emissions from coal combustion |
JP5371172B2 (en) * | 2005-06-30 | 2013-12-18 | 三菱重工業株式会社 | Exhaust gas treatment apparatus and method |
-
2007
- 2007-07-27 JP JP2007195803A patent/JP5141875B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009028655A (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7371357B2 (en) | Process for removal of pollutants | |
JP4242297B2 (en) | Method and apparatus for removing mercury species from hot flue gas | |
Srivastava et al. | Control of mercury emissions from coal-fired electric utility boilers | |
Olson et al. | The reduction of gas phase air toxics from combustion and incineration sources using the MET–Mitsui–BF activated coke process | |
ES2357647T3 (en) | DEVICE AND PROCEDURE FOR THE PROCESSING OF EXHAUST GAS COMBUSTION. | |
US8980207B1 (en) | Method and system for removal of mercury from a flue gas | |
WO2009093576A1 (en) | System for treating discharge gas from coal-fired boiler and method of operating the same | |
KR20070011383A (en) | Bromine addition for the improved removal of mercury from flue gas | |
JP2019055903A (en) | Firing apparatus of ecological cement | |
US20080282889A1 (en) | Oil shale based method and apparatus for emission reduction in gas streams | |
CN104514599A (en) | Method of exhaust gas treatment for a gas turbine system and exhaust gas treatment assembly | |
JP4936002B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP2012213744A (en) | Apparatus and method for treating exhaust gas and coal upgrading process facility | |
JP5231957B2 (en) | Wet desulfurization equipment | |
JP5003887B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP5141875B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP5299601B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP5299600B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP2007325989A (en) | Treatment method and system of exhaust combustion gas | |
JP2007181757A (en) | Method of removing mercury from exhaust gas | |
KR100760236B1 (en) | Mercury control process from flue gas by halogenated compounds-impregnated activated carbon | |
JP4241693B2 (en) | Combustion exhaust gas treatment method | |
Jędrusik et al. | Methods to Reduce Mercury and Nitrogen Oxides Emissions from Coal Combustion Processes | |
Elliott et al. | Novel mercury control strategy utilizing wet FGD in power plants burning low chlorine coal | |
JP4952935B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121024 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5141875 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |