JP4241693B2 - Combustion exhaust gas treatment method - Google Patents

Combustion exhaust gas treatment method Download PDF

Info

Publication number
JP4241693B2
JP4241693B2 JP2005241100A JP2005241100A JP4241693B2 JP 4241693 B2 JP4241693 B2 JP 4241693B2 JP 2005241100 A JP2005241100 A JP 2005241100A JP 2005241100 A JP2005241100 A JP 2005241100A JP 4241693 B2 JP4241693 B2 JP 4241693B2
Authority
JP
Japan
Prior art keywords
heavy metal
exhaust gas
combustion exhaust
dust
metal adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005241100A
Other languages
Japanese (ja)
Other versions
JP2005334885A (en
Inventor
健一 薗田
寛 守富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2005241100A priority Critical patent/JP4241693B2/en
Publication of JP2005334885A publication Critical patent/JP2005334885A/en
Application granted granted Critical
Publication of JP4241693B2 publication Critical patent/JP4241693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、廃棄物焼却炉等から排出される重金属を含む燃焼排ガスの処理方法に関するものである。   The present invention relates to a method for treating combustion exhaust gas containing heavy metals discharged from a waste incinerator or the like.

廃棄物の燃焼排ガス中には、ダストのほかにPb,Cd,As,Se等の重金属が含有されている。このような燃焼排ガスを処理する従来の代表的なシステムは図6に示す通りである。すなわち、焼却炉1から排出される800℃以上の排ガスを空気予熱器2、白煙防止器3に通し、更に冷却器4に通して200℃以下にまで冷却したうえでバグフィルタ5に導いてダストを除去し、更にスクラバ6に通してNOやSOを除去して大気中に放出している。 Waste combustion exhaust gas contains heavy metals such as Pb, Cd, As, and Se in addition to dust. A conventional typical system for treating such flue gas is as shown in FIG. That is, the exhaust gas of 800 ° C. or higher discharged from the incinerator 1 is passed through the air preheater 2 and the white smoke preventer 3, and further passed through the cooler 4 to be cooled to 200 ° C. or lower and led to the bag filter 5. to remove dust, it is released further to remove NO X and SO X through scrubber 6 to the atmosphere.

このような処理方法によれば、ダストと重金属とをバグフィルタ5で一挙に除去することができる。しかし、バグフィルタ5により回収されるダスト中に重金属及びダイオキシンが含まれるため、このダストの後処理が容易ではなく、埋設処分した場合にもダストからの重金属溶出のおそれがある。また図5に示すようにシステム構成が複雑となるうえ、スクラバ6等からの廃液処理の必要も生ずるために多くのコストがかかるという問題がある。   According to such a processing method, dust and heavy metal can be removed at once by the bag filter 5. However, since the heavy metal and dioxin are contained in the dust collected by the bag filter 5, post-treatment of this dust is not easy, and there is a risk of heavy metal elution from the dust even when buried. Further, as shown in FIG. 5, there is a problem that the system configuration is complicated and a waste liquid treatment from the scrubber 6 or the like is required, so that a lot of costs are required.

このほか、セラミックフィルタ等の高温集塵機を用いて500〜800℃の高温場でダストの除去を行う燃焼排ガスの処理方法も知られている。この方法はシステム構成が簡単となり廃液処理の必要もない利点がある。しかしこのような温度においては重金属成分の多くがガス化しているため、重金属は高温集塵機を通過してしまい、捕捉することは容易ではないという問題がある。   In addition, a combustion exhaust gas treatment method is also known in which dust is removed in a high temperature field of 500 to 800 ° C. using a high temperature dust collector such as a ceramic filter. This method has the advantage that the system configuration is simple and there is no need for waste liquid treatment. However, since many of the heavy metal components are gasified at such temperatures, there is a problem that the heavy metal passes through the high-temperature dust collector and cannot be easily captured.

排ガス経路に、高温集塵装置と低温集塵装置を設けて、ダストと重金属類を除去する技術が特許文献1に記載されている。また排ガス中の酸性物質の固定化生成物を集塵した後、残留している水銀を活性炭などの助剤によって集塵除去する技術が特許文献2に記載されている。また、排ガス経路に粘土粉体充填層を設けて灰ガス中の金属ヒュームを除去する技術が特許文献3に記載されている。これらの方法では、排ガス経路に重金属除去用装置を準備する必要があるため、設備費と運転費が嵩む問題がある。
特開平10−165742号公報:特許請求の範囲、図5 特開平04−45827号公報:特許請求の範囲、図5 特開昭52−68039号公報:特許請求の範囲、図5
Patent Document 1 describes a technique for removing dust and heavy metals by providing a high-temperature dust collector and a low-temperature dust collector in an exhaust gas path. Further, Patent Document 2 discloses a technique for collecting and removing residual mercury by using an auxiliary agent such as activated carbon after collecting a fixed product of an acidic substance in exhaust gas. Patent Document 3 describes a technique for removing a metal fume in ash gas by providing a clay powder packed layer in an exhaust gas path. In these methods, since it is necessary to prepare an apparatus for removing heavy metals in the exhaust gas path, there is a problem that equipment costs and operating costs increase.
Japanese Patent Laid-Open No. 10-165742: Claims, FIG. JP 04-45827 A: Claims, FIG. JP 52-68039 A: Claims, FIG.

本発明は上記した従来の問題点を解決して、高温場において燃焼排ガス中からダストと重金属とを経済的に除去することができ、しかもダストの後処理が容易である燃焼排ガスの処理方法を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and provides a method for treating combustion exhaust gas that can economically remove dust and heavy metals from the combustion exhaust gas in a high-temperature field and that is easy to post-process dust. It was made to provide.

上記の課題を解決するためになされた本発明の燃焼排ガスの処理方法は、流動炉である廃棄物焼却炉の燃焼排ガスを高温集塵機に通してダストを除去する燃焼排ガスの処理方法であって、重金属吸着材を粒状とし、前記流動炉の炉内で燃焼排ガスと接触させて重金属を吸着させた後、サイクロンでダストと分離して炉内に戻すとともに、前記流動炉から排出されたダストを含む排ガスを前記高温集塵機に通してそのダストを除去することを特徴とするものである。
また、定期的に重金属吸着材を交換するか、新しい重金属吸着材を投入して古いものを抜き出すようにするのがよい。また、重金属吸着材が粘土鉱物からなるものであることが好ましい。さらに、重金属吸着材がアロフェン、イモゴライト、ゼオライトのいずれかであることが好ましい。また、重金属吸着材が粘土鉱物に、CaOを併用したものが好ましい。
Combustion exhaust gas treatment method of the present invention made to solve the above problems is a combustion exhaust gas treatment method of removing dust by passing the combustion exhaust gas of a waste incinerator that is a fluidized furnace through a high-temperature dust collector, The heavy metal adsorbent is granulated and contacted with combustion exhaust gas in the furnace of the fluidized furnace to adsorb heavy metal, and then separated from dust by a cyclone and returned to the furnace, and also includes dust discharged from the fluidized furnace The exhaust gas is passed through the high-temperature dust collector to remove the dust.
Also, it is preferable to periodically replace the heavy metal adsorbent or to insert a new heavy metal adsorbent and extract the old one. Moreover, it is preferable that a heavy metal adsorption material consists of clay minerals. Furthermore, the heavy metal adsorbent is preferably any of allophane, imogolite, and zeolite. In addition, the heavy metal adsorbent is preferably a clay mineral combined with CaO.

さらに、重金属を吸着させた重金属吸着材をpH3〜12の溶出液と接触させて分離回収する工程を付加することもできる。   Further, a step of separating and recovering the heavy metal adsorbent adsorbed with heavy metals by contacting with an eluate having a pH of 3 to 12 can be added.

本発明の燃焼排ガスの処理方法によれば、高温集塵機により高温場でダストを除去するためにシステム構成が簡単となり、また高温場においてガス化している重金属成分を粘土鉱物等からなる重金属吸着材に吸着させるため、重金属が大気中に放出されることがない。しかもダスト中には重金属は含まれないのでその後処理は容易であり、重金属が溶出するおそれもない。以下に図面を参照しつつ、本発明の好ましい実施形態を示す。   According to the combustion exhaust gas treatment method of the present invention, the system configuration is simplified to remove dust in a high-temperature field by a high-temperature dust collector, and the heavy metal component gasified in the high-temperature field is converted into a heavy metal adsorbent made of clay mineral or the like. Because it is adsorbed, heavy metals are not released into the atmosphere. Moreover, since heavy metals are not contained in the dust, the subsequent treatment is easy, and there is no possibility that heavy metals will elute. Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は第1の参考形態を示す図であり、10は例えば都市ごみや下水汚泥等を焼却するための廃棄物焼却炉である。この実施形態では流動床炉が用いられているが、これに限定されるものではない。その燃焼排ガス中には焼却灰を主体とするダストとともに、前記したような重金属が含まれていることがある。ダイオキシンの発生を抑制するために、燃焼排ガスは800℃前後に維持されているのが普通である。なお、廃棄物焼却炉10の炉内にはCaCl等の脱硫剤を投入しておくものとする。 FIG. 1 is a diagram showing a first reference form , and 10 is a waste incinerator for incinerating, for example, municipal waste, sewage sludge and the like. In this embodiment, a fluidized bed furnace is used, but the present invention is not limited to this. The combustion exhaust gas may contain heavy metals as described above together with dust mainly composed of incineration ash. In order to suppress the generation of dioxins, the combustion exhaust gas is usually maintained at around 800 ° C. It is assumed that a desulfurization agent such as CaCl 2 is put into the furnace of the waste incinerator 10.

11はセラミックフィルタ等の高温集塵機である。廃棄物焼却炉10の燃焼排ガスは高温集塵機11に導かれ、高温場でダストが除去される。ここで高温場とは500〜800℃の温度域を意味するものである。このような温度域では燃焼排ガス中の重金属成分の多くがガス化しており、高温集塵機11で捕捉されることなく通過してしまう。そこで本発明ではガス化している重金属を重金属吸着材により吸着して除去する。この実施形態では、重金属吸着材が固定された吸着装置12の内部に500〜800℃の燃焼排ガスを通し、重金属成分を吸着させる。   Reference numeral 11 denotes a high-temperature dust collector such as a ceramic filter. The combustion exhaust gas from the waste incinerator 10 is guided to the high temperature dust collector 11, and dust is removed in a high temperature field. Here, the high temperature field means a temperature range of 500 to 800 ° C. In such a temperature range, most of the heavy metal components in the combustion exhaust gas are gasified and pass without being captured by the high temperature dust collector 11. Therefore, in the present invention, the gasified heavy metal is adsorbed and removed by the heavy metal adsorbent. In this embodiment, the combustion exhaust gas at 500 to 800 ° C. is passed through the inside of the adsorption device 12 to which the heavy metal adsorbent is fixed, and the heavy metal component is adsorbed.

本発明では、好ましい重金属吸着材として粘土鉱物が用いられる。具体的には、モンモリロナイト、ハロイサイト、カオリン、ベントナイト、ディッカイト、イライト等の鉱物である。これらの粘土鉱物はSi,Alを主成分とする層状の結晶構造を有し、PbやCd等の重金属は層間に入り込んで固定されるものと考えられる。例えばカオリンの場合には、高温場においてはメタカオリンとなり、水分子が付加されるとSi−O、Al−Oの層状構造ができる。そこに燃焼排ガス中のPbClやCdClが通過すると、Si−O、Al−Oの構造の間に取り込まれ、PbO、CdO結合として固定される。またAsも高温場では不対電子により+にチャージされており、PbやCdと同様に、Si−O、Al−Oの層状構造の間に入り込んで固定されるものと考えられる。
このほか、重金属吸着材としてアロフェン、イモゴライト、ゼオライトのいずれかを用いることもできる。アロフェンはアルミニウムの含水珪酸塩であり、ガラス状の塊または粉末として産する。またゼオライトは周知のように珪酸質のイオン交換体である。
In the present invention, clay mineral is used as a preferred heavy metal adsorbent. Specifically, it is a mineral such as montmorillonite, halloysite, kaolin, bentonite, dickite, illite. These clay minerals have a layered crystal structure mainly composed of Si and Al, and heavy metals such as Pb and Cd are considered to enter and be fixed between the layers. For example, in the case of kaolin, it becomes metakaolin in a high temperature field, and when a water molecule is added, a layered structure of Si—O and Al—O is formed. When PbCl 2 or CdCl 2 in the combustion exhaust gas passes there, it is taken in between the structures of Si—O and Al—O and fixed as PbO and CdO bonds. In addition, As is charged to + by unpaired electrons in a high temperature field, it is considered that As is penetrated between the layered structures of Si—O and Al—O as in the case of Pb and Cd.
In addition, any one of allophane, imogolite, and zeolite can be used as the heavy metal adsorbent. Allophane is a hydrous silicate of aluminum and is produced as a glassy mass or powder. Zeolite is a siliceous ion exchanger as is well known.

このように、Pb、Cd、Asは粘土鉱物等からなる重金属吸着材に高温場で確実に吸着されるが、燃焼排ガスに含まれる重金属のうちSeは粘土鉱物を用いてもあまり吸着されない。このため、Seの吸着材としてはCaOを用いることが好ましい。高温場でSeはCaOと反応してCaSeとなり、80%以上を除去することができる。このほか、珪藻土や下水汚泥の焼却灰にもPb、Cd、As等の重金属を吸着する能力があることが確認されているため、前記した粘土鉱物と併用することができる。
参考のため、上記した粘土鉱物等の重金属吸着効果を表1として示す。数値は実験に使用した試料ガス中から重金属を回収できた割合である。特にアロフェン、イモゴライト、ゼオライトを用いれば優れた回収率を達成できる。
As described above, Pb, Cd, and As are reliably adsorbed on the heavy metal adsorbent made of clay mineral or the like in a high temperature field, but Se is not so much adsorbed even if clay mineral is used among the heavy metals contained in the combustion exhaust gas. For this reason, it is preferable to use CaO as the Se adsorbent. In a high temperature field, Se reacts with CaO to become CaSe, and 80% or more can be removed. In addition, it has been confirmed that the incineration ash of diatomaceous earth and sewage sludge has the ability to adsorb heavy metals such as Pb, Cd, As, etc., and can be used in combination with the clay mineral described above.
For reference, Table 1 shows the effect of adsorbing heavy metals such as clay minerals. The numerical value is the rate at which heavy metals were recovered from the sample gas used in the experiment. In particular, if allophane, imogolite, or zeolite is used, an excellent recovery rate can be achieved.

Figure 0004241693
Figure 0004241693

このような重金属吸着材は種々の形態で用いることができるが、第1の参考形態では重金属吸着材を粒状またはハニカム状とし、吸着装置12の内部に固定層として配置しておく。高温集塵機11から出た高温の燃焼排ガスは吸着装置12を通過する間にガス状の重金属成分を吸着される。なお重金属の種類により吸着に最適な温度が異なるため、吸着装置12の内部に粒状またはハニカム状の重金属吸着材を直列に配置しておけば、次第にガス温度が低下してくるために、各温度域においてそれぞれ重金属を効率よく吸着させることができる。このようにしてダスト及び重金属が除去された燃焼排ガスは、空気予熱器13で冷却されたうえ煙突14から大気中に放出される。 Such a heavy metal adsorbent can be used in various forms. In the first reference embodiment, the heavy metal adsorbent is in the form of particles or honeycomb, and is arranged as a fixed layer inside the adsorber 12. The high-temperature combustion exhaust gas emitted from the high-temperature dust collector 11 is adsorbed with gaseous heavy metal components while passing through the adsorption device 12. Since the optimum temperature for adsorption differs depending on the type of heavy metal, if a granular or honeycomb heavy metal adsorbent is arranged in series in the adsorption device 12, the gas temperature gradually decreases. In each region, heavy metals can be adsorbed efficiently. The combustion exhaust gas from which dust and heavy metals have been removed in this manner is cooled by the air preheater 13 and then released from the chimney 14 into the atmosphere.

図2は第2の参考形態を示す図である。
この第2の参考形態では、吸着装置12を別個に設けずに重金属吸着材を高温集塵機11のフィルタエレメントに塗布して燃焼排ガスと接触させる。この場合、フィルタエレメントをハニカム状としてそのクリーン側に重金属吸着材を層状に塗布して焼結させておけば、重金属吸着材がダストにより覆われて接触効率が低下することがなく、また吸着重金属とダストとの分別が容易である。
FIG. 2 is a diagram showing a second reference embodiment.
In the second reference embodiment, the heavy metal adsorbent is applied to the filter element of the high-temperature dust collector 11 without separately providing the adsorbing device 12 and brought into contact with the combustion exhaust gas. In this case, if the filter element is formed in a honeycomb shape and the heavy metal adsorbent is applied in layers on the clean side and sintered, the heavy metal adsorbent is covered with dust and the contact efficiency does not decrease. And dust can be easily separated.

図3は第3の参考形態を示す図である。
この第3の参考形態では、重金属吸着材を粉粒状として高温集塵機11の入口で燃焼排ガス内に噴霧し、燃焼排ガスと高温場で接触させる。噴霧された重金属吸着材は重金属を吸着し、高温集塵機11のフィルタエレメントによりダストとともに回収される。重金属吸着材とダストとは粒度や比重が異なるために後工程で分離可能ではあるが、回収時には両者が混合状態にあるため、そのままでは従来法と同様に重金属を含むダストとなる欠点がある。またダスト量に重金属吸着材量が上乗せされるため、ダスト回収量が増加してしまう欠点もある。従ってこの第3の実施形態のような使用法は、前記した重金属吸着材を固定層として使用する方法が適用できない場合にのみ有効である。
FIG. 3 is a diagram showing a third reference embodiment.
In the third reference embodiment, the heavy metal adsorbent is sprayed into the combustion exhaust gas at the inlet of the high-temperature dust collector 11 in the form of powder and brought into contact with the combustion exhaust gas in a high temperature field. The sprayed heavy metal adsorbent adsorbs heavy metal and is collected together with dust by the filter element of the high-temperature dust collector 11. Since the heavy metal adsorbent and dust are separable in the subsequent process because the particle size and specific gravity are different, they are in a mixed state at the time of recovery. In addition, since the amount of heavy metal adsorbent is added to the amount of dust, there is a disadvantage that the amount of dust recovered increases. Therefore, the method of use as in the third embodiment is effective only when the method of using the heavy metal adsorbent described above as a fixed layer cannot be applied.

図4は本発明の実施形態を示す図である。
この第4の実施形態では、重金属吸着材を粒状とし、流動炉である廃棄物焼却炉1の炉内で燃焼排ガスと接触させる。廃棄物焼却炉1が流動炉であるので、燃焼排ガスとの間で高い接触効率を得ることができる。また重金属吸着材の粒度を適切に設定しておけば、サイクロンによりダストと分離して炉内に戻すことも可能である。この方法では炉内の重金属濃度が次第に増加するため、定期的に重金属吸着材を交換するか、常に新しい重金属吸着材を投入して古いものを抜き出す必要がある。なお、図4に示されるように、流動炉である廃棄物焼却炉1から排出されたダストを含む排ガスは、高温集塵機11に通してそのダストを除去される。
FIG. 4 is a diagram showing an embodiment of the present invention .
In the fourth embodiment, the heavy metal adsorbent is granulated and brought into contact with the combustion exhaust gas in the furnace of the waste incinerator 1 which is a fluidized furnace . Since waste incinerator 1 is a flow reactor, it is possible to obtain a high contact efficiency between the flue gas. If the particle size of the heavy metal adsorbent is set appropriately, it can be separated from dust by a cyclone and returned to the furnace. In this method, since the heavy metal concentration in the furnace gradually increases, it is necessary to periodically replace the heavy metal adsorbent or to always introduce a new heavy metal adsorbent and extract the old one. In addition, as FIG. 4 shows, the waste gas containing the dust discharged | emitted from the waste incinerator 1 which is a fluidized furnace passes the high temperature dust collector 11, and the dust is removed.

図5は第4の参考形態を示す図である。
この実施形態では、重金属を吸着した重金属吸着材を溶出槽15において溶出液と接触させ、重金属を溶離させる。溶出液としては排煙処理塔16からの廃液を用いることができる。溶出液と重金属吸着剤との混合物は脱水機17で固液分離され、重金属吸着材は再利用される。また溶出液はイオン交換樹脂18に通液して重金属を回収したうえ、再び溶出槽15に戻される。
FIG. 5 is a diagram showing a fourth reference embodiment .
In this embodiment, the heavy metal adsorbent adsorbing heavy metal is brought into contact with the eluent in the elution tank 15 to elute heavy metal. As the eluent, the waste liquid from the flue gas treatment tower 16 can be used. The mixture of the eluate and the heavy metal adsorbent is solid-liquid separated by the dehydrator 17 and the heavy metal adsorbent is reused. The eluate is passed through the ion exchange resin 18 to recover heavy metals and then returned to the elution tank 15 again.

なお、重金属吸着材としてカオリンを使用して塩化鉛を吸着させたうえ、pHを3から12の範囲内で変化させ、時間を0.5〜12時間の範囲内で変化させながら溶出試験を行ったところ、表2の通りの結果が得られた。このデータに示されるように、pHや溶出時間にかかわらず重金属吸着材に吸着された重金属を高い溶出率で溶出させることができることが確認された。   In addition, lead chloride was adsorbed using kaolin as a heavy metal adsorbent, and the elution test was performed while changing the pH within the range of 3 to 12 and changing the time within the range of 0.5 to 12 hours. As a result, the results shown in Table 2 were obtained. As shown in this data, it was confirmed that the heavy metal adsorbed on the heavy metal adsorbent can be eluted at a high elution rate regardless of pH and elution time.

Figure 0004241693
Figure 0004241693

以上に示したいずれの実施形態においても、高温集塵機により高温場でダストを除去するために図6に示した従来法よりもシステム構成が簡単となり、廃液処理の必要もない。また高温場においてガス化している重金属成分を粘土鉱物等からなる重金属吸着材に吸着させて除去するため、燃焼排ガス中の重金属が大気中に放出されることがないうえ、ダイオキシンの吸着効果も期待できる。またダスト中には重金属は含まれないのでダストの後処理は容易であり、ダスト中から重金属が溶出するおそれもない。更に使用される重金属吸着材は粘土鉱物等の安価な天然鉱物であるから、経済性に優れる利点もある。   In any of the above-described embodiments, the system configuration is simpler than the conventional method shown in FIG. 6 for removing dust in a high temperature field by a high temperature dust collector, and there is no need for waste liquid treatment. In addition, heavy metal components gasified in high-temperature fields are adsorbed and removed by heavy metal adsorbents made of clay minerals, etc., so that heavy metals in combustion exhaust gas are not released into the atmosphere, and dioxin adsorption is also expected. it can. Further, since heavy metal is not contained in the dust, the post-treatment of the dust is easy, and there is no possibility that the heavy metal is eluted from the dust. Furthermore, since the heavy metal adsorbent used is an inexpensive natural mineral such as clay mineral, there is an advantage that it is excellent in economy.

本発明の第1の参考形態を示す系統図である。It is a systematic diagram which shows the 1st reference form of this invention. 本発明の第2の参考形態を示す系統図である。It is a systematic diagram which shows the 2nd reference form of this invention. 本発明の第3の参考形態を示す系統図である。It is a systematic diagram which shows the 3rd reference form of this invention. 本発明の実施形態を示す系統図である。It is a systematic diagram showing an embodiment of the present invention . 本発明の第4の参考形態を示す系統図であるIt is a systematic diagram which shows the 4th reference form of this invention. 従来例を示す系統図である。It is a systematic diagram which shows a prior art example.

符号の説明Explanation of symbols

1 焼却炉、2 空気予熱器、3 白煙防止器、4 冷却器、5 バグフィルタ、6 スクラバ、10 廃棄物焼却炉、11 高温集塵機、12 吸着装置、13 空気予熱器、14 煙突、15 溶出槽、16 排煙処理塔、17 脱水機、18 イオン交換樹脂   DESCRIPTION OF SYMBOLS 1 Incinerator, 2 Air preheater, 3 White smoke preventer, 4 Cooler, 5 Bag filter, 6 Scrubber, 10 Waste incinerator, 11 High temperature dust collector, 12 Adsorber, 13 Air preheater, 14 Chimney, 15 Elution Tank, 16 Flue gas treatment tower, 17 Dehydrator, 18 Ion exchange resin

Claims (4)

流動炉である廃棄物焼却炉の燃焼排ガスを高温集塵機に通してダストを除去する燃焼排ガスの処理方法であって、重金属吸着材を粒状とし、前記流動炉の炉内で燃焼排ガスと接触させて重金属を吸着させた後、サイクロンでダストと分離して炉内に戻すとともに、前記流動炉から排出されたダストを含む排ガスを前記高温集塵機に通してそのダストを除去することを特徴とする燃焼排ガスの処理方法。 A combustion exhaust gas treatment method for removing dust by passing a combustion exhaust gas from a waste incinerator , which is a fluidized furnace , through a high-temperature dust collector, wherein the heavy metal adsorbent is granulated and brought into contact with the combustion exhaust gas in the furnace of the fluidized furnace. Combustion exhaust gas characterized in that after heavy metal is adsorbed, it is separated from dust with a cyclone and returned to the furnace, and exhaust gas containing dust discharged from the fluidized furnace is passed through the high-temperature dust collector to remove the dust. Processing method. 前記重金属吸着材を定期的に交換する、または新しい重金属吸着材を投入して古い重金属吸着材を抜き出すようにした請求項1に記載の燃焼排ガスの処理方法。   The method for treating a combustion exhaust gas according to claim 1, wherein the heavy metal adsorbent is periodically replaced or a new heavy metal adsorbent is introduced to extract an old heavy metal adsorbent. 重金属吸着材が粘土鉱物からなるものである請求項1または2に記載の燃焼排ガスの処理方法。   The method for treating a combustion exhaust gas according to claim 1 or 2, wherein the heavy metal adsorbent is made of clay mineral. 重金属吸着材が粘土鉱物に、CaOを併用したものである請求項1または2に記載の燃焼排ガスの処理方法。   The method for treating combustion exhaust gas according to claim 1 or 2, wherein the heavy metal adsorbent is a clay mineral combined with CaO.
JP2005241100A 1999-11-26 2005-08-23 Combustion exhaust gas treatment method Expired - Fee Related JP4241693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241100A JP4241693B2 (en) 1999-11-26 2005-08-23 Combustion exhaust gas treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33569899 1999-11-26
JP2005241100A JP4241693B2 (en) 1999-11-26 2005-08-23 Combustion exhaust gas treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000165304A Division JP3725763B2 (en) 1999-11-26 2000-06-02 Combustion exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2005334885A JP2005334885A (en) 2005-12-08
JP4241693B2 true JP4241693B2 (en) 2009-03-18

Family

ID=35489009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241100A Expired - Fee Related JP4241693B2 (en) 1999-11-26 2005-08-23 Combustion exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4241693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2767281A1 (en) * 2009-07-13 2011-01-20 S.A. Lhoist Recherche Et Developpement Solid mineral composition, method for preparing same and use thereof for reducing heavy metals in flue gas
CN115779595B (en) * 2023-01-31 2023-05-12 深圳市迈珂斯环保科技有限公司 Environment volatile organic compound measurement and control detection processing system and detection method

Also Published As

Publication number Publication date
JP2005334885A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US5556447A (en) Process for treating metal-contaminated materials
JP4022403B2 (en) Adsorbed powder for removing mercury from hot and humid gas streams
US6103205A (en) Simultaneous mercury, SO2, and NOx control by adsorption on activated carbon
KR100991761B1 (en) Sorbents and methods for the removal of mercury from combustion gases
KR101250702B1 (en) Method for cleaning exhaust gases produced by a sintering process for ores and/or other metal-containing materials in metal production
CN100528299C (en) Method and apparatus for removing mercury species from hot flue gas
TW412434B (en) Process of removing mercury, mercury compounds, and polyhalogenated hydrocarbons from oxygen-containing exhaust gases produced by the combustion of garbage, industrial waste materials, and sewage sludge
US6589318B2 (en) Adsorption powder for removing mercury from high temperature, high moisture gas streams
US6582497B1 (en) Adsorption power for removing mercury from high temperature high moisture gas streams
CN1033689C (en) Process of purifying loaded waste gases from oil burning device
WO1993012842A1 (en) Process for treating metal-contaminated materials
JP2004528172A (en) Method for adsorbing metals and organic compounds from vapor streams
KR20070011383A (en) Bromine addition for the improved removal of mercury from flue gas
US7524472B1 (en) Mercury removal from coal emissions using montmorillonite clay
JP2007039296A (en) Method and system for treating exhaust gas in cement manufacturing plant
JP2004532722A (en) Adsorbed powder containing copper chloride
JPH07299328A (en) Method of purifying exhaust gas
HU210398B (en) Method for purifying polluted gases, in particular those from waste-incineration plants
JP4241693B2 (en) Combustion exhaust gas treatment method
JP3725763B2 (en) Combustion exhaust gas treatment method
Li et al. Reduction of heavy metal emissions by adding modified attapulgite to sludge in bubbling fluidized bed incineration process
JPH11114366A (en) Treatment of released gas in waste gas treating device for refuse incinerator
JP3545266B2 (en) Dry exhaust gas treatment method and apparatus
JP2560931B2 (en) Method of removing harmful substances in exhaust gas
US5229097A (en) Process for the production of chlorosilicates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees