JP5140899B2 - Boiler water treatment method - Google Patents

Boiler water treatment method Download PDF

Info

Publication number
JP5140899B2
JP5140899B2 JP2001260542A JP2001260542A JP5140899B2 JP 5140899 B2 JP5140899 B2 JP 5140899B2 JP 2001260542 A JP2001260542 A JP 2001260542A JP 2001260542 A JP2001260542 A JP 2001260542A JP 5140899 B2 JP5140899 B2 JP 5140899B2
Authority
JP
Japan
Prior art keywords
water
boiler
acid
sulfite
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001260542A
Other languages
Japanese (ja)
Other versions
JP2003073865A (en
Inventor
將之 板東
武之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Works Co Ltd
Original Assignee
Katayama Chemical Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Works Co Ltd filed Critical Katayama Chemical Works Co Ltd
Priority to JP2001260542A priority Critical patent/JP5140899B2/en
Publication of JP2003073865A publication Critical patent/JP2003073865A/en
Application granted granted Critical
Publication of JP5140899B2 publication Critical patent/JP5140899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術の分野】
この発明は、ボイラの水処理方法に関する。さらに詳しくは、高温・高圧下でボイラ水と接触する鉄系金属の腐食とくに孔食の発生を防止することができる水処理方法に関する
【0002】
【従来の技術】
ボイラには、工業用水、井戸水などの原水をそのまま使用する原水ボイラ、および処理した原水、つまり軟水または純水を使用するボイラがある。最近では、伝熱面の熱負荷数が高く、濃縮速度が極めて速い条件下で運転されるためスケール化の程度が著しいため、硬度成分が除去された軟水を使用するボイラ(軟水ボイラ)および純水を使用するボイラ(純水ボイラ)が一般的に使用されている。通常、ボイラは、ボイラ水の水温を圧力下で110℃〜臨界温度に設定して運転されている。
このような硬度成分を除去した軟水ボイラや純水ボイラでは、スケール障害が緩和される一方、ボイラ水と接触する鉄系金属が腐食し、重大な障害につながる孔食(ピッチング)が発生し易い。そこで、従来から、給水の脱気器による脱酸素処理もしくは亜硫酸塩、ヒドラジン等の脱酸素剤の添加による脱酸素処理またはそれらの併用による処理を行い、さらにより好ましくは、この脱酸素処理水にリン酸塩類と、必要に応じアルカリ剤を添加してpH10〜12に調整することによって、上記鉄系金属の腐食、ことに孔食を防止する方法が採用されている。
また、180℃までの水管ボイラを対象としたボイラの鉄系金属の腐食抑制剤として、カルボキシル基を2個以上持つ有機多塩基酸またはその塩を使用することも提案されている(特許第2681230号公報参照)。
【0003】
【発明が解決しようとする課題】
しかし、安全性の観点から脱酸素剤として使用されているヒドラジンは好ましくなく、亜硫酸塩はその添加量が不足すると溶存酸素との反応生成物である硫酸イオンの影響により鉄系金属の腐食を促進することになるため、ボイラ水中の亜硫酸イオン濃度を測定し、常に基準値以上に維持しなければならないという作業上煩雑な濃度管理が必要である。また、公害防止の観点から赤潮発生の主因とされるリン化合物を使用するのは好ましくない。また、有機多塩基酸またはその塩を添加する方法では、硬度成分を除去した純水ボイラや軟水ボイラにおいて溶存酸素が存在したり、200℃以上の高温条件においては、一旦形成された薄膜の一部が剥離したり、均一で強固な薄膜が形成されず、ピッチングが多数発生し、充分な腐食抑制効果が得られないという欠点がある。
【0004】
この発明は、安全で公害を発生させない薬剤を使用して、比較的低温域で運転される水管ボイラから200℃以上の高温域で運転される軟水ボイラ、純水ボイラにおいてボイラ水と接触する鉄系金属の腐食とくに孔食の発生を防止することができる水処理方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
この発明の発明者らは、上記課題を鑑み鋭意研究を行った結果、軟水ボイラや純水ボイラにおいて、従来脱酸素剤として使用されている亜硫酸塩を脱酸素の目的で使用するのではなく、ボイラ水に有効量の亜硫酸イオンの存在下、オキシカルボン酸またはその塩と併用することにより、両者の相乗効果により、ボイラ水と接触する鉄系金属の腐食ことに孔食が顕著に防止される事実を見出した。その理由は、X線回折分析結果から、鉄系金属の表面に四三酸化鉄の強固で均一な被膜が形成されていたからであることがわかった。また、被膜の断面をX線マイクロアナライザーより測定を行なったところ、四三酸化鉄は鉄母材の表層にまで達していることを確認して、この発明を完成させた。
【0006】
上記特許第2681230号の特許発明では、オキシカルボン酸またはそのイオンと鉄イオンが沈殿を生じて金属表面に吸着することにより薄膜を形成するか、またはオキシカルボン酸またはそのイオンが金属表面でキレートの緻密な薄膜を形成した状態となるという防食メカニズムが説明されている(公報の段落番号[0013]参照)。しかし、反射IRによる吸収を測定した結果、この発明で得られる被膜には、有機物の存在が認められず、上記特許発明の防食メカニズムと異なった作用機構を有していることがわかった。
【0007】
かくしてこの発明によれば、予め溶存酸素を除去した200℃以上の軟水または純水が使用されるボイラ水に、10〜20ミリグラム/リットルの亜硫酸イオンの存在下グルコン酸またはその塩を添加することを特徴とするボイラの鉄系金属の防食方法が提供される。
【0008】
【発明の実施の形態】
この発明の方法において、ボイラ水に有効量の亜硫酸塩を存在させるためには、公知の脱酸素剤や脱気装置を用いてボイラ水から溶存酸素を除去する必要がある。脱酸素剤としては亜硫酸塩、ヒドラジン、糖類、アミノピロリジン、タンニン、没食子酸、ジエチルヒドロキシルアミン、メチルエチルケトオキシム、タンニン酸塩、アスコルビン酸、エリソルビン酸、カルボヒドラジド等が挙げられるが、安全性と腐食性物質の生成の観点から、糖類、アミノピロリジン、タンニン、没食子酸、ジエチルヒドロキシルアミン、メチルエチルケトオキシム、タンニン酸塩、アスコルビン酸、エリソルビン酸、カルボヒドラジドを用いるのが好ましい。
【0009】
また、脱気装置を用いた脱気方法としては、棚段型・スプレー型または両型併用の給水加熱器、脱気加熱器を使用した過熱脱気法、真空ポンプ・蒸気エゼクタ等を使用した真空脱気法、窒素ガスを効率よく接触させて水中の飽和酸素濃度を低下させ溶存酸素を除去する窒素ガスばっ気法、アニオン交換樹脂に担持したパラジウムの触媒作用により水中溶存酸素を水素や水素含有還元物質と反応させて化学的に除去する触媒樹脂法、限外濾過膜等を用いる膜脱気法等が挙げられる(「水処理管理便覧」平成10年9月30日丸善(株)発行、P.169〜172参照)。
【0010】
この発明において、ボイラ水に亜硫酸イオンを存在させるためには、溶存酸素を除去した高温の軟水または純水が使用されるボイラ水に有効量の亜硫酸塩を添加する必要があり、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸リチウムが好適に用いられるが、亜硫酸水素塩やピロ亜硫酸水素塩等亜硫酸イオンを解離するものを使用してもよい。
【0011】
一方、この発明において、ボイラ水に添加されるオキシカルボン酸またはその塩としては、グルコン酸、クエン酸、コハク酸、リンゴ酸、グリコール酸、酒石酸、乳酸、ヒドロキシアクリル酸、オキシ酪酸など、またはそのアルカリ金属塩もしくはアンモニウム塩が挙げられる。これらのうち、グルコン酸またはそのナトリウム塩、カリウム塩あるいはアンモニウム塩を用いるのが孔食防止効果の点で好ましい。
【0012】
この発明において、有効量の亜硫酸イオン濃度とは、ボイラ水中に0.1〜50mg/l、好ましくは10〜20mg/lである。また、オキシカルボン酸またはその塩の添加量は、ボイラ水中に、オキシカルボン酸イオンとして100〜500mg/l、好ましくは150〜250mg/lとなるように給水に添加される。
【0013】
すなわち、この発明において、亜硫酸イオンは脱酸素剤としての機能を発揮するのではなく、オキシカルボン酸またはその塩と併用することで、鉄系金属の表面に四三酸化鉄の強固で均一な被膜を形成させる機能を発揮する。
【0014】
なお、この発明の方法では、この発明の効果を阻害しない限りにおいて、リン酸塩,亜硝酸塩,コバルト塩,モリブデン酸塩,タングステン塩,ジエチレントリアミン,水酸化ナトリウム,水酸化カリウム,水酸化リチウム,重合リン酸塩,高分子分散剤,デンプン,アミノ酸誘導体などの防食剤・分散剤・反応促進剤、モルホリン,シクロヘキシルアミン,ジメチルメタノールアミン,モノエタノールアミン,2−アミノ−2−メチル−1−プロパノール,ジエタノールアミン,アンモニア,オクタデシルアミン,メトキシプロピルアミンなどの炭酸捕捉剤等を適宜併用してもよい。
【0015】
【実施例】
この発明を実施例によりさらに詳細に説明するが、この発明はこれらの実施例により限定されるものではない。
実施例1(オートクレーブを用いた軟水ボイラにおける防食試験)試験水は、大阪市上水道水をカチオン交換樹脂を用いてイオン交換した軟水の10倍濃縮水に相当する合成水である。用いた水の水質を表2に示す。1.2リットルの試験水に所定量の薬剤を添加しオートクレーブ内容器に収容した。テストピース(市販品名:SPCC、形状50×30×1mmの板状で上部に径4mmの孔のあいた軟鋼の材質のもの)をオートクレーブの蓋に装備された攪拌棒に取付け試験水に浸漬する。マントルヒーターとサーモスタットを装着したオートクレーブを密閉し、予め105〜110℃の条件下で試験水を沸騰させ、脱気管のバルブを開けて、試験水水中の溶存酸素を脱気した。その後、脱気管のバルブを閉じて、攪拌棒をモーターと連動させ、100rpmで回転のもと、15kgf/cm2(約200℃)の加圧加熱の一定条件に保ちつつ3日間テストした。終了後テストピースを純水で洗浄し乾燥後、テストピースのMDDと孔食数を測定し、形成された被膜の状態を調査した。その結果を表1に示す。
【0016】
【表1】

Figure 0005140899
【0017】
≪考察≫
この発明の実施例(試験No.2)において形成された被膜についてX線回析分析を行ったところ、第1図に示すX線回析パターンが得られた。このパターンをASTMカードにより検索すると四三酸化鉄が確認されそれ以外の酸化鉄が検出されていない事により、被膜の成分は、四三酸化鉄といえる。
この被膜の表面および断面を電子顕微鏡により観察を行ったところ、その形状は、非常に綴密で欠落部分がなく一様な膜厚である事を確認した。
また、被膜の断面をX線マイクロアナライザーより測定を行ったところ、第2図に示す様に、四三酸化鉄は、母材の表層にまで達している事を確認した。
また、上記被膜が形成した試験片について反射IRによる吸収を調べたところ、有機物の存在は全く認められず、この被膜中にポリアルキレンポリアミンや脂肪族オキシカルボン酸が含まれていないことを確認した。
【0018】
【表2】
(大阪市上水道水軟化水の10倍濃縮水の水質)
Figure 0005140899
【0019】
【図面の簡単な説明】
【図1】この発明の水処理方法を実施した際に形成される暴食皮膜のX線回折チャート図
【図2】同じくX線マイクロアナライザーのチャート図である[0001]
[Field of the Invention]
The present invention relates to a boiler water treatment method. More particularly, the present invention relates to a water treatment method capable of preventing the occurrence of corrosion, particularly pitting corrosion, of iron-based metals that come into contact with boiler water under high temperature and high pressure.
[Prior art]
Boilers include raw water boilers that use raw water such as industrial water and well water as they are, and boilers that use processed raw water, that is, soft water or pure water. Recently, the scale of the heat transfer surface is high and the concentration rate is extremely high, so the degree of scaling is significant. Therefore, boilers using soft water from which hardness components have been removed (soft water boilers) and pure water Boilers that use water (pure water boilers) are generally used. Normally, the boiler is operated with the water temperature of the boiler water set at 110 ° C. to a critical temperature under pressure.
In soft water boilers and pure water boilers from which such hardness components have been removed, scale obstacles are alleviated, while iron-based metals that come into contact with boiler water are corroded, and pitting corrosion (pitching) that can lead to serious obstacles is likely to occur. . Therefore, conventionally, a deoxygenation treatment using a deaerator of the feed water or a deoxygenation treatment by adding a deoxidation agent such as sulfite or hydrazine or a combination thereof is performed. A method of preventing corrosion of the iron-based metal, particularly pitting corrosion, by adjusting the pH to 10 to 12 by adding phosphates and an alkali agent as necessary.
It has also been proposed to use an organic polybasic acid having two or more carboxyl groups or a salt thereof as a corrosion inhibitor for iron-based metal of a boiler intended for water tube boilers up to 180 ° C. (Patent No. 2681230). No. publication).
[0003]
[Problems to be solved by the invention]
However, hydrazine, which is used as an oxygen scavenger, is not preferred from the viewpoint of safety, and if the amount of sulfite added is insufficient, the corrosion of ferrous metals is accelerated by the influence of sulfate ions that are the reaction product with dissolved oxygen. For this reason, it is necessary to manage the concentration of sulfite ions in boiler water, and it is necessary to manage the concentration of the sulfite ion, which must be maintained at a reference value or higher. Moreover, it is not preferable to use a phosphorus compound which is a main cause of red tide generation from the viewpoint of pollution prevention. In addition, in the method of adding an organic polybasic acid or a salt thereof, dissolved oxygen is present in a pure water boiler or a soft water boiler from which hardness components have been removed, or a thin film once formed under high temperature conditions of 200 ° C. or higher. There is a drawback that the part peels off, a uniform and strong thin film is not formed, a lot of pitching occurs, and a sufficient corrosion-inhibiting effect cannot be obtained.
[0004]
The present invention relates to iron that is in contact with boiler water in a soft water boiler and a pure water boiler that are operated in a high temperature range of 200 ° C. or higher from a water tube boiler that is operated in a relatively low temperature range using a safe and non-polluting chemical. It is an object of the present invention to provide a water treatment method capable of preventing the corrosion of a base metal, particularly the occurrence of pitting corrosion.
[0005]
[Means for Solving the Problems]
Inventors of the present invention, as a result of earnest research in view of the above problems, in soft water boilers and pure water boilers, instead of using sulfites that have been used as conventional oxygen scavengers for the purpose of deoxygenation, When used in combination with oxycarboxylic acid or its salt in the presence of an effective amount of sulfite ion in boiler water, pitting corrosion is remarkably prevented due to the synergistic effect of both, and corrosion of ferrous metals in contact with boiler water. I found the facts. The reason was found from the result of X-ray diffraction analysis that a strong and uniform film of iron trioxide was formed on the surface of the iron-based metal. Further, when the cross section of the coating was measured with an X-ray microanalyzer, it was confirmed that the iron trioxide had reached the surface layer of the iron base material, and the present invention was completed.
[0006]
In the patent invention of the above-mentioned Patent No. 2681230, oxycarboxylic acid or its ions and iron ions precipitate and adsorb on the metal surface to form a thin film, or oxycarboxylic acid or its ions are chelated on the metal surface. An anticorrosion mechanism is described in which a dense thin film is formed (see paragraph [0013] of the publication). However, as a result of measuring absorption by reflection IR, it was found that the coating obtained by the present invention did not have the presence of organic substances and had an action mechanism different from the anticorrosion mechanism of the above-mentioned patented invention.
[0007]
Thus, according to the present invention, gluconic acid or a salt thereof is added in the presence of 10 to 20 milligrams / liter of sulfite ion to boiler water in which soft water or pure water of 200 ° C. or higher from which dissolved oxygen has been previously removed is used. A method for preventing corrosion of iron-based metal in a boiler is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, in order for an effective amount of sulfite to be present in the boiler water, it is necessary to remove dissolved oxygen from the boiler water using a known oxygen scavenger or deaerator. Examples of oxygen scavengers include sulfite, hydrazine, saccharides, aminopyrrolidine, tannin, gallic acid, diethylhydroxylamine, methylethylketoxime, tannate, ascorbic acid, erythorbic acid, carbohydrazide, etc., but they are safe and corrosive. From the viewpoint of production of the substance, it is preferable to use saccharides, aminopyrrolidine, tannin, gallic acid, diethylhydroxylamine, methyl ethyl ketoxime, tannate, ascorbic acid, erythorbic acid, carbohydrazide.
[0009]
In addition, as a deaeration method using a deaeration device, a water heater for a shelf type, a spray type or a combination of both types, a superheat deaeration method using a deaeration heater, a vacuum pump, a steam ejector, etc. were used. Vacuum degassing method, nitrogen gas aeration method that removes dissolved oxygen by reducing the saturated oxygen concentration in water by making nitrogen gas contact efficiently, dissolved oxygen in water by hydrogen or hydrogen by catalytic action of palladium supported on anion exchange resin Examples include a catalytic resin method that chemically removes it by reacting with the contained reducing substances, and a membrane degassing method that uses an ultrafiltration membrane (published by Maruzen Co., Ltd., September 30, 1998) , P.169-172).
[0010]
In this invention, in order to make sulfite ions exist in boiler water, it is necessary to add an effective amount of sulfite to boiler water in which high-temperature soft water or pure water from which dissolved oxygen has been removed is used. Sodium sulfite, sulfite Potassium and lithium sulfite are preferably used, but those capable of dissociating sulfite ions such as hydrogen sulfite and hydrogen bisulfite may be used.
[0011]
On the other hand, in the present invention, oxycarboxylic acid or a salt thereof added to boiler water includes gluconic acid, citric acid, succinic acid, malic acid, glycolic acid, tartaric acid, lactic acid, hydroxyacrylic acid, oxybutyric acid, or the like. Examples thereof include alkali metal salts and ammonium salts. Of these, gluconic acid or a sodium salt, potassium salt or ammonium salt thereof is preferably used from the viewpoint of the effect of preventing pitting corrosion.
[0012]
In the present invention, the effective amount of sulfite ion concentration is 0.1 to 50 mg / l, preferably 10 to 20 mg / l in boiler water. Moreover, the addition amount of oxycarboxylic acid or its salt is added to feed water so that it may become 100-500 mg / l, preferably 150-250 mg / l as oxycarboxylic acid ion in boiler water.
[0013]
That is, in this invention, sulfite ions do not function as an oxygen scavenger, but are used together with oxycarboxylic acid or a salt thereof to form a strong and uniform film of iron trioxide on the surface of an iron-based metal. Demonstrate the function of forming.
[0014]
In the method of the present invention, phosphate, nitrite, cobalt salt, molybdate, tungsten salt, diethylenetriamine, sodium hydroxide, potassium hydroxide, lithium hydroxide, polymerization, as long as the effects of the present invention are not impaired. Anti-corrosive agent / dispersant / reaction accelerator such as phosphate, polymer dispersant, starch, amino acid derivative, morpholine, cyclohexylamine, dimethylmethanolamine, monoethanolamine, 2-amino-2-methyl-1-propanol, Carbonate scavengers such as diethanolamine, ammonia, octadecylamine, methoxypropylamine, etc. may be used in combination as appropriate.
[0015]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1 (Anticorrosion test in a soft water boiler using an autoclave) Test water is synthetic water corresponding to 10-fold concentrated water of soft water obtained by ion-exchange of Osaka city water using a cation exchange resin. Table 2 shows the water quality used. Adding a predetermined amount of drug agent 1.2 liters of test water was housed in the autoclave inner container. A test piece (commercial product name: SPCC, shape of 50 × 30 × 1 mm plate and made of a mild steel material with a hole of 4 mm in diameter at the top) is attached to a stirring rod equipped on the lid of the autoclave and immersed in test water. The autoclave equipped with a mantle heater and a thermostat was sealed, and the test water was boiled in advance at 105 to 110 ° C., and the valve of the deaeration pipe was opened to deaerate dissolved oxygen in the test water. Thereafter, the valve of the deaeration tube was closed, the stirring rod was interlocked with the motor, and the test was conducted for 3 days while maintaining the constant pressure heating condition of 15 kgf / cm 2 (about 200 ° C.) while rotating at 100 rpm. After completion, the test piece was washed with pure water and dried, and then the MDD and the number of pitting corrosion of the test piece were measured, and the state of the formed film was investigated. The results are shown in Table 1.
[0016]
[Table 1]
Figure 0005140899
[0017]
≪Discussion≫
When the X-ray diffraction analysis was performed about the film formed in the Example (test No. 2) of this invention, the X-ray diffraction pattern shown in FIG. 1 was obtained. When this pattern is searched with an ASTM card, iron trioxide is confirmed and no other iron oxide is detected, so that the component of the film can be said to be iron trioxide.
When the surface and cross section of this film were observed with an electron microscope, it was confirmed that the shape was very tight and had a uniform thickness with no missing portions.
Further, when the cross section of the coating was measured with an X-ray microanalyzer, it was confirmed that the iron trioxide has reached the surface layer of the base material as shown in FIG.
Further, when the test piece formed with the coating was examined for absorption by reflection IR, the presence of organic substances was not observed at all, and it was confirmed that this coating did not contain polyalkylene polyamine or aliphatic oxycarboxylic acid. .
[0018]
[Table 2]
(10-fold concentrated water quality of Osaka city water softened water)
Figure 0005140899
[0019]
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction chart of a erosion coating formed when the water treatment method of the present invention is carried out. FIG. 2 is also a chart of an X-ray microanalyzer.

Claims (1)

予め溶存酸素を除去した200℃以上の軟水または純水が使用されるボイラ水に、10〜20ミリグラム/リットルの亜硫酸イオンの存在下グルコン酸またはその塩を添加することを特徴とするボイラの鉄系金属の防食方法。Boiler iron characterized by adding gluconic acid or a salt thereof in the presence of 10 to 20 mg / liter of sulfite ion to boiler water in which soft water or pure water of 200 ° C. or higher from which dissolved oxygen has been removed in advance is used. To prevent corrosion of metallic metals.
JP2001260542A 2001-08-30 2001-08-30 Boiler water treatment method Expired - Lifetime JP5140899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260542A JP5140899B2 (en) 2001-08-30 2001-08-30 Boiler water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260542A JP5140899B2 (en) 2001-08-30 2001-08-30 Boiler water treatment method

Publications (2)

Publication Number Publication Date
JP2003073865A JP2003073865A (en) 2003-03-12
JP5140899B2 true JP5140899B2 (en) 2013-02-13

Family

ID=19087724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260542A Expired - Lifetime JP5140899B2 (en) 2001-08-30 2001-08-30 Boiler water treatment method

Country Status (1)

Country Link
JP (1) JP5140899B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855961B2 (en) 2003-04-28 2006-12-13 栗田工業株式会社 Oxygen absorber and deoxygenation method
JP2008156700A (en) * 2006-12-22 2008-07-10 Miura Co Ltd Condensed water treatment agent
JP5685137B2 (en) * 2011-04-22 2015-03-18 オルガノ株式会社 Metal anticorrosive for boiler water system
CN112551728B (en) * 2019-09-25 2023-04-07 中国石油化工股份有限公司 Scaling inhibition method for coal gasification black ash water system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230238A (en) * 1975-09-02 1977-03-07 Kurita Industrial Co Ltd Anticorrosive for metals
JPH01212781A (en) * 1988-02-18 1989-08-25 Kurita Water Ind Ltd Corrosion inhibitor
JP2681230B2 (en) * 1990-12-28 1997-11-26 三浦工業 株式会社 Boiler corrosion inhibitor and corrosion prevention method
US5244600A (en) * 1992-03-02 1993-09-14 W. R. Grace & Co.-Conn. Method of scavenging oxygen in aqueous systems
JP3172744B2 (en) * 1992-12-25 2001-06-04 栗田工業株式会社 Boiler chemicals
JPH06306652A (en) * 1993-04-28 1994-11-01 Japan Organo Co Ltd Corrosion inhibitor for metal and corrosion inhibiting method for metal
JP3988175B2 (en) * 1999-03-31 2007-10-10 栗田工業株式会社 Corrosion inhibitor for boiler and method for inhibiting corrosion of boiler using the same

Also Published As

Publication number Publication date
JP2003073865A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US6861032B2 (en) Oxygen scavenger and boiler water treatment chemical
JP2608550B2 (en) Corrosion protection method for soft water boiler
EP3371347B1 (en) Corrosion control for water systems using tin corrosion inhibitor with a hydroxycarboxylic acid
KR0153475B1 (en) Water treatment agent and water treatment method for a boiler
JPS59193909A (en) Deposit control and composition
JP5140899B2 (en) Boiler water treatment method
FI97627B (en) Composition and method for preventing corrosion
CN115784474A (en) High-temperature-resistant high-pressure-resistant phosphorus-free sodium-free or low-sodium scale and corrosion inhibitor for boiler and preparation method and application thereof
KR890001377B1 (en) Corrosion inhibitor
JP2650196B2 (en) Water treatment agent and water treatment method for soft water boiler
JP6762010B2 (en) Boiler water treatment agent and boiler water treatment method using it
JP2013068341A (en) Method for preventing corrosion of economizer in boiler
JP5691697B2 (en) Water treatment method for steam generating equipment
JP5909956B2 (en) Method for inhibiting economizer corrosion in boilers
JPH0356681A (en) Water treating agent for pure water boiler and treatment of water
JPS5828349B2 (en) Boiler water treatment chemicals
JP2003047991A (en) Boiler water treatment method
JP3925296B2 (en) Anticorrosion method
JP2919765B2 (en) Underwater corrosion inhibitor
JP4414714B2 (en) Oxygen scavenger
JPH11123388A (en) Boiler water treatment agent
ZA200102275B (en) Inhibition of corrosion in aqueous systems.
JPH0254433B2 (en)
Raman Temperature effects on inhibitors and corrosion inhibition
RU2516176C2 (en) Inhibitor of carbonic acid corrosion for steam boilers of low and medium pressure aminat pk-2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5140899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term