JP5140313B2 - Recombinant microorganism - Google Patents

Recombinant microorganism Download PDF

Info

Publication number
JP5140313B2
JP5140313B2 JP2007125905A JP2007125905A JP5140313B2 JP 5140313 B2 JP5140313 B2 JP 5140313B2 JP 2007125905 A JP2007125905 A JP 2007125905A JP 2007125905 A JP2007125905 A JP 2007125905A JP 5140313 B2 JP5140313 B2 JP 5140313B2
Authority
JP
Japan
Prior art keywords
gene
region
recombinant microorganism
control region
initiation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007125905A
Other languages
Japanese (ja)
Other versions
JP2007330255A (en
Inventor
和久 澤田
勝俊 荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007125905A priority Critical patent/JP5140313B2/en
Publication of JP2007330255A publication Critical patent/JP2007330255A/en
Application granted granted Critical
Publication of JP5140313B2 publication Critical patent/JP5140313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、有用なタンパク質又はポリペプチドの生産に用いる組換え微生物、及びタンパク質又はポリペプチドの生産方法に関する。   The present invention relates to a recombinant microorganism used for producing a useful protein or polypeptide, and a method for producing a protein or polypeptide.

微生物による有用物質の工業的生産は、アルコール飲料や味噌、醤油等の食品類をはじめとし、アミノ酸、有機酸、核酸関連物質、抗生物質、糖質、脂質、タンパク質等、その種類は多岐に渡っており、またその用途についても食品、医薬や、洗剤、化粧品等の日用品、或いは各種化成品原料に至るまで幅広い分野に広がっている。   The industrial production of useful substances by microorganisms includes a wide variety of types including foods such as alcoholic beverages, miso and soy sauce, as well as amino acids, organic acids, nucleic acid-related substances, antibiotics, carbohydrates, lipids, proteins, etc. In addition, its application has been extended to a wide range of fields from foods, medicines, daily necessaries such as detergents and cosmetics to various chemical raw materials.

こうした微生物による有用物質の工業生産においては、その生産性の向上が重要な課題の一つであり、その手法として、突然変異等の遺伝学的手法による生産菌の育種が行われてきた。特に最近では、微生物遺伝学、バイオテクノロジーの発展により、遺伝子組換え技術等を用いたより効率的な生産菌の育種が行われるようになっており、遺伝子組換えのための宿主微生物の開発が進められている。例えば、枯草菌(Bacillus subtilis) Marburg No.168系統株の様に宿主微生物として安全かつ優良と認められた微生物菌株に更に改良を加えた菌株が開発されている。 In industrial production of useful substances by such microorganisms, improvement of productivity is one of the important issues, and breeding of produced bacteria by genetic techniques such as mutation has been performed as a technique. In recent years, the development of microbial genetics and biotechnology has led to more efficient breeding of production microorganisms using genetic recombination techniques, and the development of host microorganisms for genetic recombination has been promoted. It has been. For example, a strain obtained by further improving a microbial strain recognized as safe and excellent as a host microorganism, such as Bacillus subtilis Marburg No.168 strain, has been developed.

また、微生物には、自然界での厳しい生存競争を生き残っていくために、生育環境中に存在する種々の栄養素を効率的に取り込み、炭素源、窒素源あるいはエネルギー源として利用するための多様な代謝系が存在することが知られている。枯草菌においては、ゲノム解読の結果、約900もの代謝に関わる遺伝子が存在することが明らかにされている(非特許文献1参照)。   In addition, in order to survive the severe survival competition in nature, microorganisms can efficiently incorporate various nutrients present in the growing environment and use various metabolisms for use as a carbon source, nitrogen source, or energy source. It is known that a system exists. In Bacillus subtilis, as a result of genome decoding, it has been clarified that there are about 900 genes involved in metabolism (see Non-Patent Document 1).

一方で、微生物を工業的な物資生産に用いる場合、限定した培地成分が豊富に供給され
、安定に生存が可能であるため、枯草菌の例のような多くの代謝関連遺伝子を必ずしも必要としないものと考えられる。
Kunst,F.,et al.,Nature,390,249-256,1997
On the other hand, when microorganisms are used for industrial material production, a limited amount of medium components are supplied and stable survival is possible, so many metabolic-related genes such as Bacillus subtilis are not necessarily required. It is considered a thing.
Kunst, F., et al., Nature, 390,249-256,1997

本発明は、タンパク質又はポリペプチドの生産性向上を可能にする宿主微生物に目的のタンパク質又はポリペプチドをコードする遺伝子を導入して得られる組換え微生物、更に当該組換え微生物を用いる目的のタンパク質又はポリペプチドの製造法を提供することを課題とする。   The present invention relates to a recombinant microorganism obtained by introducing a gene encoding a target protein or polypeptide into a host microorganism capable of improving the productivity of the protein or polypeptide, a target protein using the recombinant microorganism, It is an object of the present invention to provide a method for producing a polypeptide.

本発明者らは、微生物ゲノム上にコードされる各種遺伝子において、有用なタンパク質又はポリペプチドの生産に不要或いは有害な働きをする遺伝子群を鋭意探索したところ、意外にも、枯草菌等が栄養源を取り込み、代謝する際に用いる遺伝子群の中の特定の遺伝子又は当該遺伝子に相当する遺伝子をゲノム上から欠失又は不活性化した後、目的のタンパク質又はポリペプチドをコードする遺伝子を導入した場合に、目的のタンパク質又はポリペプチドの生産性が、欠失又は不活性化前と比較して向上することを見出した。   The present inventors diligently searched for genes that act unnecessary or harmful to the production of useful proteins or polypeptides in various genes encoded on the microbial genome. A gene encoding a target protein or polypeptide was introduced after deleting or inactivating a specific gene or a gene corresponding to the gene in a group of genes used for taking in and metabolizing the source. In some cases, it has been found that the productivity of the protein or polypeptide of interest is improved compared to that before deletion or inactivation.

すなわち本発明は、枯草菌の遺伝子ptsGsucCsucDproJasnOasnHargHrocGrocA若しくはrocFのいずれか、又は当該遺伝子に相当する遺伝子のいずれか1以上の遺伝子が欠失又は不活性化された微生物株に、目的のタンパク質又はポリペプチドをコードする遺伝子を導入した組換え微生物に関する。 That is, the present invention relates to a Bacillus subtilis gene ptsG , sucC , sucD , proJ , asnO , asnH , argH , rocG , rocA or rocF , or any one or more genes corresponding to the gene is deleted or The present invention relates to a recombinant microorganism in which a gene encoding a target protein or polypeptide is introduced into an inactivated microorganism strain.

また本発明は、当該組換え微生物を用いた目的のタンパク質又はポリペプチドの製造方法に関する。   The present invention also relates to a method for producing a target protein or polypeptide using the recombinant microorganism.

本発明の組換え微生物を用いることにより、目的のタンパク質又はポリペプチドの生産性向上を図ることができる。   By using the recombinant microorganism of the present invention, the productivity of the target protein or polypeptide can be improved.

本発明においてアミノ酸配列および塩基配列の同一性はLipman-Pearson法 (Science, 227, 1435, 1985)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Win(ソフトウェア開発)のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。   In the present invention, the identity of amino acid sequences and nucleotide sequences is calculated by the Lipman-Pearson method (Science, 227, 1435, 1985). Specifically, it is calculated by performing an analysis with Unit size to compare (ktup) set to 2 using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win (software development).

本発明の微生物を構築するための親微生物としては、各種栄養源を利用するための代謝関連遺伝子、具体的には表1に示す枯草菌の遺伝子又は当該遺伝子に相当する糖の取り込み、糖代謝、アミノ酸代謝などに関与する遺伝子を有するものであればよい。これらは、野生型のものでも変異を施したものでもよい。具体的には、バチルス(Bacillus)属細菌や、クロストリジウム(Clostridium)属細菌、或いは酵母等が挙げられ、中でもBacillus属細菌が好ましい。更に、全ゲノム情報が明らかにされ、遺伝子工学、ゲノム工学技術が確立されている点、またタンパク質を菌体外に分泌生産させる能力を有する点から特に枯草菌(Bacillus subtilis)が好ましい。 As the parent microorganism for constructing the microorganism of the present invention, metabolism-related genes for utilizing various nutrient sources, specifically, Bacillus subtilis genes shown in Table 1 or sugar uptake corresponding to the genes, sugar metabolism Any gene having a gene involved in amino acid metabolism or the like may be used. These may be wild-type or mutated. Specific examples include bacteria belonging to the genus Bacillus, bacteria belonging to the genus Clostridium , yeast, etc. Among them, bacteria belonging to the genus Bacillus are preferred. Furthermore, Bacillus subtilis is particularly preferred from the viewpoint that whole genome information has been clarified, genetic engineering and genome engineering techniques have been established, and that it has the ability to secrete and produce proteins outside the cells.

枯草菌ゲノム上に散在する、糖、有機酸、アミノ酸代謝及びそれら遺伝子の発現制御にに関わる遺伝子としては、例えば、解糖系に関わる遺伝子群gapA(BG10827)、gapB(BG12592)、glcK(BG11685)、glvA(BG11839)、pgi(BG12366)、pps(BG12657)、ptsG(BG10198)、ptsH(BG10200)、ptsI(BG10201)、pykA(BG12661)、有機酸代謝に関わる遺伝子群ackA(BG10813)、acsA(BG10370)、alsD(BG10472)、alsR(BG10470)、alsS(BG10471)、dhaS(BG12582)、lctP(BG12001)、ldh(BG19003)、malS(BG12614)、pckA(BG11841)、pta(BG10634)、ydaP(BG12063)、アミノ酸代謝に関わる遺伝子群ansA(BG10300)、ansZ(BG12755)、argC(BG10191)、argD(BG10194)、argE(BG12569)、argF(BG10197)、argG(BG12570)、argH(BG12571)、argJ(BG10192)、asnH(BG11116)、asnO(BG12240)、aspB (BG11513)、carA(BG10195)、carB(BG10196)、glnA(BG10425)、gltA(BG10811)、gltB(BG12594)、gltC(BG10810)、nadB(BG10867)、proA(BG10964)、proB(BG10963)、proJ(BG12658)、rocA(BG10622)、rocD(BG10722)、rocF(BG10932)、rocG(BG10621)、さらに、トリカルボン酸回路に関わる遺伝子群acoA(BG12558)、acoB(BG12559)、acoC(BG12560)、acoL(BG12561)、acoR(BG11790)、citA(BG10854)、citB(BG10478)、citC(BG10856)、citG(BG10384)、citZ(BG10855)、mdh(BG11386)、mmgD(BG11322)、pdhB(BG10208)、pdhC(BG10209)、pdhD(BG10210)、sdhA(BG10352)、sdhB(BG10353)、sdhC(BG10351)、sucC(BG12680)、sucD(BG12681)等が知られているが、本発明において欠失、又は不活性の対象となる遺伝子は、このうち、以下の表1に示す枯草菌遺伝子のいずれか又は当該遺伝子に相当する遺伝子から選択されるものである。斯かる遺伝子群は、目的のタンパク質又はポリペプチドの生産には直接関与しておらず、また、通常の工業的生産培地における微生物の生育にも不要であることが本発明者らによって見出された。 Examples of genes involved in sugar, organic acid, amino acid metabolism, and expression control of these genes scattered on the Bacillus subtilis genome include the gene groups gapA (BG10827), gapB (BG12592), glcK (BG11685) related to glycolysis. ), GlvA (BG11839), pgi (BG12366), pps (BG12657), ptsG (BG10198), ptsH (BG10200), ptsI (BG10201), pykA (BG12661), genes related to organic acid metabolism ackA (BG10813), acsA (BG10370), alsD (BG10472), alsR (BG10470), alsS (BG10471), dhaS (BG12582), lctP (BG12001), ldh (BG19003), malS (BG12614), pckA (BG11841), pta (BG10634), ydaP (BG12063), genes related to amino acid metabolism ansA (BG10300), ansZ (BG12755), argC (BG10191), argD (BG10194), argE (BG12569), argF (BG10197), argG (BG12570), argH (BG12571), argJ (BG10192), asnH (BG11116 ), asnO (BG12240), aspB (BG11513), carA (BG10195), carB (BG10196), glnA (BG10425), gltA (BG10811), gltB (BG12594), gltC (BG10810), nadB (B G10867), proA (BG10964), proB (BG10963), proJ (BG12658), rocA (BG10622), rocD (BG10722), rocF (BG10932), rocG (BG10621), further genes acoA (BG12558 involved in tricarboxylic acid cycle ), AcoB (BG12559), acoC (BG12560), acoL (BG12561), acoR (BG11790), citA (BG10854), citB (BG10478), citC (BG10856), citG (BG10384), citZ (BG10855), mdh (BG11386) ), MmgD (BG11322), pdhB (BG10208), pdhC (BG10209), pdhD (BG10210), sdhA (BG10352), sdhB (BG10353), sdhC (BG10351), sucC (BG12680), sucD (BG12681), etc. However, the gene to be deleted or inactivated in the present invention is selected from any of the Bacillus subtilis genes shown in Table 1 below or a gene corresponding to the gene. The inventors have found that such genes are not directly involved in the production of the protein or polypeptide of interest, and are not necessary for the growth of microorganisms in normal industrial production media. It was.

尚、表中の各遺伝子の名称、番号及び機能等は、Kunstらによって報告され(Nature,390,249-256,1997)、JAFAN: Japan Functional Analysis Network for Bacillus subtilis(BSORF DB)でインターネット公開(http://bacillus.genome.ad.jp/、2004年3月10日更新)された枯草菌ゲノムデーターに基づいて記載している。   The names, numbers, functions, etc. of each gene in the table were reported by Kunst et al. (Nature, 390, 249-256, 1997) and published on the Internet at JAFAN: Japan Functional Analysis Network for Bacillus subtilis (BSORF DB) (http: //bacillus.genome.ad.jp/, updated March 10, 2004), based on genome data of Bacillus subtilis.

Figure 0005140313
Figure 0005140313

また、表1に示される枯草菌の各遺伝子と同じ機能を有する、または、表1の各遺伝子と塩基配列において70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上の同一性を有する、他の微生物由来、好ましくはBacillus属細菌由来の遺伝子は、表1に記載の遺伝子に相当する遺伝子と考えられ、本発明において欠失、不活性化すべき遺伝子に含まれる。 Moreover, it has the same function as each gene of Bacillus subtilis shown in Table 1, or 70% or more, preferably 80% or more, more preferably 90% or more, more preferably 95% in each gene and base sequence of Table 1. % Or more, particularly preferably 98% or more of the genes derived from other microorganisms, preferably derived from bacteria belonging to the genus Bacillus , are considered to be genes corresponding to the genes listed in Table 1, and are deleted in the present invention. Included in the gene to be inactivated.

本発明の遺伝子のうち、ptsG遺伝子産物は膜に存在し、ヒスチジン残基がリン酸化したHPrタンパク(ptsH遺伝子産物)からリン酸基を受け取り、グルコースをリン酸化しながら細胞内に取り込むグルコース-PTS(Phosphotransferase system)系として知られている(特許文献2;Sonenshein, A.L.,et al. Bacillus subtilis and its closest relatives from genes to cells, ASM press,2002)。また、sucCsucD遺伝子産物はトリカルボン酸サイクル(TCA回路)において、スクシニルCoAのスクシネートへの変換を触媒することが知られている(同特許文献2)。次いで、proJrocGrocA遺伝子は、細胞内においてグルタミン酸の代謝、そして、argH遺伝子産物は尿素回路においてアルギノスクシネートからアルギニンとフマル酸の生成、rocF遺伝子産物は同じく尿素回路においてアルギニンからオルニチンと尿素の生成、さらに、asnO及びasnH遺伝子産物はアスパラギン酸からアスパラギンの生成、にそれぞれに関わることが知られている(同特許文献2)。 Among the genes of the present invention, the ptsG gene product is present in the membrane, and glucose- PTS that receives a phosphate group from the HPr protein ( ptsH gene product) in which the histidine residue is phosphorylated and takes up the glucose while phosphorylating it. It is known as a (Phosphotransferase system) system (Patent Document 2; Sonenshein, AL, et al. Bacillus subtilis and its closest relatives from genes to cells, ASM press, 2002). In addition, sucC and sucD gene products are known to catalyze the conversion of succinyl CoA to succinate in the tricarboxylic acid cycle (TCA cycle) (Patent Document 2). The proJ , rocG , and rocA genes are then metabolized by glutamate in the cell, and the argH gene product is produced from arginosuccinate and arginine and fumaric acid in the urea cycle, and the rocF gene product is also produced from arginine and ornithine in the urea cycle. It is known that the production of urea and the asnO and asnH gene products are involved in the production of asparagine from aspartic acid, respectively (Patent Document 2).

上記遺伝子を欠失又は不活性化することにより、培地成分中の栄養源の資化速度及び資化経路が変化した宿主細胞を構築することが可能となると考えられる。   It is considered that by deleting or inactivating the above gene, it is possible to construct a host cell in which the utilization rate and utilization pathway of nutrient sources in the medium components are changed.

ここで、欠失又は不活性化する遺伝子は1以上であればよく、上記以外の遺伝子群の欠失又は不活性化を組み合わせることも可能である。更には上記遺伝子群の欠失の他に、それ以外の遺伝子群の発現強化及び機能強化を組み合わせることも可能であり、生産性向上に対してより大きな効果が期待される。また、本発明は目的遺伝子中に他のDNA断片を挿入する、あるいは、当該遺伝子の転写・翻訳開始領域に変異を与える等の方法によっても目的遺伝子を不活性化することができるが、好適には、標的遺伝子を物理的に欠失させる方がより望ましい。   Here, the number of genes to be deleted or inactivated may be one or more, and deletion or inactivation of genes other than those described above can be combined. Furthermore, in addition to the deletion of the above gene group, expression enhancement and function enhancement of other gene groups can be combined, and a greater effect is expected for improving productivity. In addition, the present invention can inactivate a target gene by a method such as inserting another DNA fragment into the target gene or giving a mutation to the transcription / translation initiation region of the gene. It is more desirable to physically delete the target gene.

斯かる遺伝子の欠失又は不活性化の手順としては、表1に示す標的遺伝子を計画的に欠失又は不活性化する方法のほか、ランダムな遺伝子の欠失又は不活性化変異を与えた後、適当な方法によりタンパク質生産性の評価及び遺伝子解析を行う方法が挙げられる。   As a procedure for the deletion or inactivation of such a gene, in addition to the method of systematically deleting or inactivating the target gene shown in Table 1, random gene deletion or inactivation mutation was given. Thereafter, a method for evaluating protein productivity and performing gene analysis by an appropriate method may be mentioned.

標的とする遺伝子を欠失又は不活性化するには、例えば相同組換えによる方法を用いればよい。すなわち、標的遺伝子の一部を含むDNA断片を適当なプラスミドベクターにクローニングして得られる環状の組換えプラスミドを親微生物細胞内に取り込ませ、標的遺伝子の一部領域に於ける相同組換えによって親微生物ゲノム上の標的遺伝子を分断して不活性化することが可能である。或いは、塩基置換や塩基挿入等の変異によって不活性化した標的遺伝子、又は図1のように標的遺伝子の上流、下流領域を含むが標的遺伝子を含まない直鎖状のDNA断片等をPCR等の方法によって構築し、これを親微生物細胞内に取り込ませて親微生物ゲノムの標的遺伝子内の変異箇所の外側の2ヶ所、又は標的遺伝子上流側、下流側で2回交差の相同組換えを起こさせることにより、ゲノム上の標的遺伝子を欠失或いは不活性化した遺伝子断片と置換することが可能である。   In order to delete or inactivate the target gene, for example, a method by homologous recombination may be used. That is, a circular recombinant plasmid obtained by cloning a DNA fragment containing a part of the target gene into an appropriate plasmid vector is introduced into the parent microbial cell, and the parent gene is homologously recombined in a part of the target gene. It is possible to disrupt and inactivate target genes on the microbial genome. Alternatively, a target gene inactivated by mutation such as base substitution or base insertion, or a linear DNA fragment containing the upstream and downstream regions of the target gene but not the target gene as shown in FIG. Constructed by the method, this is incorporated into the parent microbial cells to cause two crossover homologous recombination at two locations outside the mutation site in the target gene of the parent microbial genome, or upstream and downstream of the target gene Thus, it is possible to replace the target gene on the genome with a deleted or inactivated gene fragment.

特に、本発明微生物を構築するための親微生物として枯草菌を用いる場合、相同組換えにより標的遺伝子を欠失又は不活性化する方法については、既にいくつかの報告例があり(Mol.Gen.Genet.,223,268,1990等)、こうした方法を繰り返すことによって、本発明の宿主微生物を得ることができる。   In particular, when Bacillus subtilis is used as a parental microorganism for constructing the microorganism of the present invention, there have already been several reports on methods for deleting or inactivating a target gene by homologous recombination (Mol. Gen. Genet., 223, 268, 1990, etc.), the host microorganism of the present invention can be obtained by repeating these methods.

また、ランダムな遺伝子の欠失又は不活性化についてもランダムにクローニングしたDNA断片を用いて上述の方法と同様な相同組換えを起こさせる方法や、親微生物にγ線等を照射すること等によっても実施可能である。   In addition, random gene deletion or inactivation can be achieved by a method of causing homologous recombination similar to the above method using a randomly cloned DNA fragment, or by irradiating a parental microorganism with γ rays, etc. Can also be implemented.

以下に、より具体的にSOE(splicing by overlap extension)−PCR法(Gene,77,61,1989)によって調製される欠失用DNA断片を用いた二重交差法による欠失方法について説明するが、本発明に於ける遺伝子欠失方法は下記に限定されるものではない。   Hereinafter, the deletion method by the double crossing method using the DNA fragment for deletion prepared by SOE (splicing by overlap extension) -PCR method (Gene, 77, 61, 1989) will be described. The gene deletion method in the present invention is not limited to the following.

本方法で用いる欠失用DNA断片は、欠失対象遺伝子の上流に隣接する約1.0kb断片と、同じく下流に隣接する約1.0kb断片の間に、薬剤耐性マーカー遺伝子断片を挿入した断片である。まず、1回目のPCRによって、欠失対象遺伝子の上流断片及び下流断片、並びに薬剤耐性マーカー遺伝子断片の3断片を調製するが、この際、例えば、上流断片の下流末端に薬剤耐性マーカー遺伝子の上流側10〜30塩基対配列、逆に下流断片の上流末端には薬剤耐性マーカー遺伝子の下流側10〜30塩基対配列が付加される様にデザインしたプライマーを用いる(図1)。   The deletion DNA fragment used in this method is a fragment in which a drug resistance marker gene fragment is inserted between the approximately 1.0 kb fragment adjacent to the upstream of the deletion target gene and the approximately 1.0 kb fragment adjacent to the downstream. . First, an upstream fragment and a downstream fragment of a deletion target gene and three fragments of a drug resistance marker gene fragment are prepared by the first PCR. In this case, for example, upstream of the drug resistance marker gene is formed at the downstream end of the upstream fragment. A primer designed so that a 10-30 base pair sequence on the side and, on the contrary, a 10-30 base pair sequence downstream of the drug resistance marker gene is added to the upstream end of the downstream fragment is used (FIG. 1).

次いで、1回目に調製した3種類のPCR断片を鋳型とし、上流断片の上流側プライマーと下流断片の下流側プライマーを用いて2回目のPCRを行うことによって、上流断片の下流末端及び下流断片の上流末端に付加した薬剤耐性マーカー遺伝子配列に於いて、薬剤耐性マーカー遺伝子断片とのアニールが生じ、PCR増幅の結果、上流側断片と下流側断片の間に、薬剤耐性マーカー遺伝子を挿入したDNA断片を得ることができる(図1)。   Next, using the 3 types of PCR fragments prepared in the first round as a template, and performing the second round of PCR using the upstream primer of the upstream fragment and the downstream primer of the downstream fragment, the downstream end of the upstream fragment and the downstream fragment In the drug resistance marker gene sequence added to the upstream end, annealing occurs with the drug resistance marker gene fragment, and as a result of PCR amplification, a DNA fragment in which the drug resistance marker gene is inserted between the upstream fragment and the downstream fragment Can be obtained (FIG. 1).

薬剤耐性マーカー遺伝子として、クロラムフェニコール耐性遺伝子を用いる場合、例えば表2に示したプライマーセットを用い、Pyrobest DNAポリメーラーゼ(宝酒造)などの一般のPCR用酵素キット等を用いて、成書(PCR Protocols. Current Methods and Applications, Edited by B.A.White, Humana Press pp251 ,1993、Gene,77,61,1989)等に示される通常の条件によりSOE−PCRを行うことによって、各遺伝子の欠失用DNA断片が得られる。   When using a chloramphenicol resistance gene as a drug resistance marker gene, for example, using the primer set shown in Table 2, using a general PCR enzyme kit such as Pyrobest DNA polymerase (Takara Shuzo), etc. Protocols. Current Methods and Applications, Edited by BAWhite, Humana Press pp251, 1993, Gene, 77, 61, 1989) etc., by performing SOE-PCR under the usual conditions, etc., DNA fragments for deletion of each gene Is obtained.

かくして得られた欠失用DNA断片を、コンピテント法等によって細胞内に導入すると、同一性のある欠失対象遺伝子の上流及び下流の相同領域おいて、細胞内での遺伝子組換えが生じ、標的遺伝子が薬剤耐性遺伝子と置換した細胞、或いは標的遺伝子内に薬剤耐性遺伝子が挿入された細胞が薬剤耐性マーカーによる選択によって分離できる(図1)。即ち、表2に示したプライマーセットを用いて調製した欠失(不活性化)用DNA断片を導入した場合、クロラムフェニコールを含む寒天培地上に生育するコロニーを分離し、ゲノムを鋳型としたPCR法などによってゲノム上の目的遺伝子がクロラムフェニコール耐性遺伝子と置換、或いは目的遺伝子内にクロラムフェニコール耐性遺伝子が挿入されていることを確認すれば良い。   When the DNA fragment for deletion thus obtained is introduced into a cell by a competent method or the like, gene recombination occurs in the cell in the homologous region upstream and downstream of the identical deletion target gene, Cells in which the target gene is replaced with a drug resistance gene, or cells in which the drug resistance gene is inserted into the target gene can be separated by selection with a drug resistance marker (FIG. 1). That is, when a deletion (inactivation) DNA fragment prepared using the primer set shown in Table 2 was introduced, colonies growing on an agar medium containing chloramphenicol were isolated, and the genome was used as a template. The target gene on the genome may be replaced with the chloramphenicol resistance gene by the PCR method or the like, or it may be confirmed that the chloramphenicol resistance gene is inserted into the target gene.

上記の宿主微生物変異株を用いて生産させるタンパク質やポリペプチドは特に限定されず、洗浄剤用、食品加工用、繊維処理用、飼料処理用、化粧品用、医薬品用、診断薬用など各種産業用酵素や、生理活性ペプチドなどが含まれる。また、産業用酵素の機能別には、酸化還元酵素 (Oxidoreductase) 、転移酵素 (Transferase) 、加水分解酵素 (Hydrolase) 、脱離酵素 (Lyase)、異性化酵素 (Isomerase) 、合成酵素 (Ligase/Synthetase) 等が含まれるが、好適にはセルラーゼ、プロテアーゼ、α-アミラーゼ等の加水分解酵素の遺伝子が挙げられる。具体的には、多糖加水分解酵素の分類(Biochem.J.,280,309,1991)中でファミリー5に属するセルラーゼが挙げられ、中でも微生物由来、特にBacillus属細菌由来のセルラーゼが挙げられる。より具体的な例として、配列番号2で示されるアミノ酸配列からなるBacillus属細菌KSM-S237株(FERM BP-7875)由来のアルカリセルラーゼ、または、配列番号4で示されるアミノ酸配列からなるBacillus属細菌KSM-64株(FERM BP-2886)由来のアルカリセルラーゼ、或いは、当該アミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上の同一性を有するアミノ酸配列からなるセルラーゼが挙げられる。 Proteins and polypeptides produced using the above-mentioned host microorganism mutants are not particularly limited, and various industrial enzymes such as detergents, food processing, fiber processing, feed processing, cosmetics, pharmaceuticals, diagnostics, etc. And physiologically active peptides. In addition, industrial enzymes are classified according to their functions: oxidoreductase, transferase, hydrolase, lyase, isomerase, and synthase (Ligase / Synthetase). ) And the like, and preferred examples include genes for hydrolases such as cellulase, protease, and α-amylase. Specifically, cellulases belonging to Family 5 are listed in the classification of polysaccharide hydrolases (Biochem. J., 280, 309, 1991), among which cellulases derived from microorganisms, particularly Bacillus bacteria. As a more specific example, an alkaline cellulase derived from the Bacillus bacterium strain KSM-S237 (FERM BP-7875) comprising the amino acid sequence represented by SEQ ID NO: 2 or a Bacillus bacterium comprising the amino acid sequence represented by SEQ ID NO: 4 Alkaline cellulase derived from KSM-64 strain (FERM BP-2886) or the amino acid sequence and 70%, preferably 80%, more preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more. A cellulase consisting of an amino acid sequence having identity is exemplified.

また、プロテアーゼの具体例としては、微生物由来、特にBacillus属細菌由来のセリンプロテアーゼや金属プロテアーゼ等が挙げられる。より具体的な例として、配列番号8で示されるアミノ酸配列からなるバチルス クラウジ(Bacillus clausii)KSM-K16株(FERM BP-3376)由来のアルカリプロテアーゼや、当該アミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上の同一性を有するアミノ酸配列からなるプロテアーゼが挙げられる。 Specific examples of proteases include serine proteases and metalloproteases derived from microorganisms, in particular, Bacillus bacteria. More specific examples include alkaline protease derived from Bacillus clausii KSM-K16 strain (FERM BP-3376) comprising the amino acid sequence represented by SEQ ID NO: 8, and 70%, preferably 80% of the amino acid sequence. More preferred is a protease comprising an amino acid sequence having an identity of 90% or more, more preferably 95% or more, particularly preferably 98% or more.

また、α−アミラーゼの具体例としては、微生物由来のα−アミラーゼが挙げられ、特にBacillus属細菌由来の液化型アミラーゼが好ましい。より具体的な例として、配列番号6で示されるアミノ酸配列からなるBacillus属細菌KSM-K38株(FERM BP-6946)由来のアルカリアミラーゼや、当該アミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上の同一性を有するアミノ酸配列からなるアミラーゼが挙げられる。尚、アミノ酸配列の同一性はLipman-Pearson法 (Science,227,1435,1985)によって計算される。 Specific examples of α-amylase include α-amylase derived from microorganisms, and liquefied amylase derived from Bacillus bacteria is particularly preferable. More specific examples include alkaline amylase derived from Bacillus genus KSM-K38 strain (FERM BP-6946) consisting of the amino acid sequence represented by SEQ ID NO: 6, and 70%, preferably 80%, more preferably the amino acid sequence. Is an amylase consisting of an amino acid sequence having 90% or more, more preferably 95% or more, particularly preferably 98% or more. The amino acid sequence identity is calculated by the Lipman-Pearson method (Science, 227, 1435, 1985).

また、目的のタンパク質又はポリペプチド遺伝子は、その上流に当該遺伝子の転写、翻訳、分泌に関わる制御領域、即ち、プロモーター及び転写開始点を含む転写開始制御領域、リボソーム結合部位及び開始コドンを含む翻訳開始領域及び分泌シグナルペプチド領域から選ばれる1以上の領域が適正な形で結合されていることが望ましい。特に、転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が結合されていることが好ましく、更に分泌シグナルペプチド領域がBacillus属細菌のセルラーゼ遺伝子由来のものであり、転写開始領域及び翻訳開始領域が当該セルラーゼ遺伝子の上流0.6〜1 kb領域であるものが、目的タンパク質又はポリペプチド遺伝子と適正な形で結合されていることが望ましい。例えば、特開2000-210081号公報や特開平4-190793号公報等に記載されているBacillus属細菌、すなわちKSM-S237株(FERM BP-7875)、KSM-64株(FERM BP-2886)由来のセルラーゼ遺伝子の転写開始制御領域、翻訳開始領域及び分泌シグナルペプチド領域が目的タンパク質又はポリペプチドの構造遺伝子と適正に結合されていることが望ましい。より具体的には配列番号1で示される塩基配列の塩基番号1〜659の塩基配列、配列番号3で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1〜696の塩基配列、また当該塩基配列に対して70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上の同一性を有する塩基配列からなるDNA断片、あるいは上記いずれかの塩基配列の一部が欠失した塩基配列からなるDNA断片が、目的タンパク質又はポリペプチドの構造遺伝子と適正に結合されていることが望ましい。尚、ここで、上記塩基配列の一部が欠失した塩基配列からなるDNA断片とは、上記塩基配列の一部を欠失しているが、遺伝子の転写、翻訳、分泌に関わる機能を保持しているDNA断片を意味する。 In addition, the target protein or polypeptide gene is upstream and includes a control region related to transcription, translation and secretion of the gene, that is, a transcription initiation control region including a promoter and a transcription initiation site, a ribosome binding site and a start codon. It is desirable that one or more regions selected from the initiation region and the secretory signal peptide region are bound in a proper form. In particular, it is preferable that three regions consisting of a transcription initiation control region, a translation initiation control region, and a secretion signal region are combined, and the secretion signal peptide region is derived from a cellulase gene of Bacillus bacteria, It is desirable that the translation initiation region is a 0.6-1 kb region upstream of the cellulase gene to be bound to the target protein or polypeptide gene in an appropriate form. For example, the bacterium belonging to the genus Bacillus described in JP 2000-210081, JP 4-190793, etc., that is, KSM-S237 strain (FERM BP-7875), KSM-64 strain (FERM BP-2886) It is desirable that the transcription initiation regulatory region, translation initiation region, and secretory signal peptide region of the cellulase gene are appropriately bound to the structural gene of the target protein or polypeptide. More specifically, the base sequence of base numbers 1 to 659 of the base sequence shown in SEQ ID NO: 1, the base sequence of base numbers 1 to 696 of the cellulase gene consisting of the base sequence shown in SEQ ID NO: 3, and the base sequence Or a DNA fragment comprising a nucleotide sequence having the identity of 70% or more, preferably 80% or more, more preferably 90% or more, further preferably 95% or more, particularly preferably 98% or more, or any of the above bases It is desirable that a DNA fragment consisting of a base sequence from which a part of the sequence is deleted is appropriately bound to the structural gene of the target protein or polypeptide. Here, a DNA fragment consisting of a base sequence from which a part of the base sequence has been deleted is a part of the base sequence that has been deleted, but retains functions related to gene transcription, translation, and secretion. Means a DNA fragment.

上記の目的のタンパク質又はポリペプチド遺伝子を含むDNA断片と適当なプラスミドベクターを結合させた組換えプラスミドを、一般的な形質転換法によって宿主微生物細胞に取り込ませることによって、本発明の組換え微生物を得ることができる。また、当該DNA断片に宿主微生物ゲノムとの適当な相同領域を結合したDNA断片を用い、宿主微生物ゲノムに直接組み込むことによっても本発明の組換え微生物を得ることができる。   The recombinant microorganism of the present invention can be obtained by incorporating a recombinant plasmid obtained by binding a DNA fragment containing the target protein or polypeptide gene and an appropriate plasmid vector into a host microorganism cell by a general transformation method. Can be obtained. The recombinant microorganism of the present invention can also be obtained by using a DNA fragment in which an appropriate homologous region with the host microorganism genome is bound to the DNA fragment and directly integrating it into the host microorganism genome.

本発明の組換え微生物を用いた目的のタンパク質又はポリペプチドの生産は、当該菌株を同化性の炭素源、窒素源、その他の必須成分を含む培地に接種し、通常の微生物培養法にて培養し、培養終了後、タンパク質又はポリペプチドを採取・精製することにより行えばよい。   Production of the target protein or polypeptide using the recombinant microorganism of the present invention is carried out by inoculating the strain in a medium containing an assimilable carbon source, nitrogen source and other essential components, and cultivating it by a normal microorganism culture method. Then, after completion of the culture, the protein or polypeptide may be collected and purified.

以下に、枯草菌のptsG遺伝子(BG10198)を不活性化させた組換え枯草菌株構築の実施例を中心に、当該発明の組換え微生物の構築方法及び当該組換え微生物を用いたセルラーゼ及びプロテアーゼの生産方法について具体的に説明する。 In the following, focusing on the examples of the construction of recombinant Bacillus subtilis strains in which the ptsG gene (BG10198) of Bacillus subtilis has been inactivated, the method for constructing the recombinant microorganism of the present invention and cellulase and protease using the recombinant microorganism The production method will be specifically described.

実施例1
枯草菌168株から抽出したゲノムDNAを鋳型とし、表2に示したptsG-AFとptsG-A/CmR、及びptsG-B/CmFとptsG-BRの各プライマーセットを用いて、ゲノム上のptsG遺伝子の上流に隣接する1.0kb断片(A)、及び下流に隣接する1.0kb断片(B)をそれぞれ調製した。一方、プラスミドpC194(J.Bacteriol.,158,543,1984)を鋳型とし、表2に示したCmFWとCmRVのプライマーセットを用いて、クロラムフェニコール耐性遺伝子を含む0.9kb断片(C)を調製した。次に、得られた(A)(B)(C)3断片を混合して鋳型とし、ptsG-AFとptsG-BRのプライマーを用いてSOE−PCRを行ない、3断片を(A)-(C)-(B)の順になる様に結合させ、2.9kbのDNA断片を得た(図1参照)。このDNA断片を用いてコンピテント法により枯草菌168株の形質転換を行い、クロラムフェニコールを含むLB寒天培地上に生育したコロニーを形質転換体として分離した。さらに、得られた形質転換体からゲノムDNAを抽出し、これを鋳型とするPCRによってptsG遺伝子の構造遺伝子(ORF)内にクロラムフェニコール耐性遺伝子が挿入された、目的とする遺伝子不活性化株であることを確認した。
Example 1
Genomic DNA extracted from Bacillus subtilis 168 strain as a template, using the ptsG-AF and ptsG-A / CmR, and the primer set of ptsG-B / CmF and ptsG-BR shown in Table 2, ptsG on genomic A 1.0 kb fragment adjacent to the upstream of the gene (A) and a 1.0 kb fragment adjacent to the downstream (B) were prepared. On the other hand, a 0.9 kb fragment (C) containing the chloramphenicol resistance gene was prepared using plasmid pC194 (J. Bacteriol., 158, 543, 1984) as a template and using the CmFW and CmRV primer sets shown in Table 2. . Next, the 3 fragments obtained (A), (B), and (C) were mixed to form a template, SOE-PCR was performed using ptsG-AF and ptsG-BR primers, and the 3 fragments were (A)-( The DNA fragments were bound in the order of C)-(B) to obtain a 2.9 kb DNA fragment (see FIG. 1). Using this DNA fragment, Bacillus subtilis 168 strain was transformed by a competent method, and colonies grown on LB agar medium containing chloramphenicol were isolated as transformants. In addition, genomic DNA is extracted from the obtained transformant, and the gene inactivation in which the chloramphenicol resistance gene is inserted into the structural gene (ORF) of the ptsG gene by PCR using this as a template. Confirmed that it was a stock.

Figure 0005140313
Figure 0005140313

実施例2
一方、実施例1と同様にして表2に示したプライマーセット(遺伝子名-AFと遺伝子名-A/CmR、遺伝子名-B/CmFと遺伝子名-BR、CmFWとCmRV)を用いて欠失用DNA断片を調製し、ゲノム上のargH遺伝子(BG12571)、asnO遺伝子(BG12240)、asnH遺伝子(BG11116)、proJ遺伝子(BG12658)、rocA遺伝子(BG10622)、rocF遺伝子(BG10932)、rocG遺伝子(BG10621)、sucC遺伝子(BG12680)、sucD遺伝子(BG12681)の一部がクロラムフェニコール耐性遺伝子と置換した、或いは構造遺伝子(ORF)内にクロラムフェニコール耐性遺伝子が挿入された、目的とする遺伝子欠失株(不活性化株)を作製した。さらに、得られた変異株が目的とする遺伝子欠失株(不活性化株)であることを実施例1と同様の方法にて確認した。
Example 2
On the other hand, deletion was carried out using the primer sets (gene name-AF and gene name-A / CmR, gene name-B / CmF and gene name-BR, CmFW and CmRV) shown in Table 2 in the same manner as in Example 1. DNA fragments for the argH gene (BG12571), asnO gene (BG12240), asnH gene (BG11116), proJ gene (BG12658), rocA gene (BG10622), rocF gene (BG10932), rocG gene (BG10621) ), SucC gene (BG12680), part of sucD gene (BG12681) is replaced with chloramphenicol resistance gene, or chloramphenicol resistance gene is inserted into structural gene (ORF) A deletion strain (inactivated strain) was prepared. Furthermore, it was confirmed by the same method as in Example 1 that the obtained mutant strain was the target gene deletion strain (inactivated strain).

実施例3(セルラーゼ生産性評価)
実施例1〜2にて得られた各遺伝子欠失株、遺伝子不活性化株及び対照として枯草菌168株に、Bacillus属細菌 KSM-S237株(FERM BP-7875)由来のアルカリセルラーゼ遺伝子(特開2000-210081号公報)をコードするDNA断片(3.1kb)が、シャトルベクターpHY300PLKのBamHI制限酵素切断点に挿入された組換えプラスミドpHY-S237をプロトプラスト形質転換法によって導入した。これによって得られた形質転換株を5mLのLB培地で30℃にて15時間振盪培養を行い、更にこの培養液0.6mLを30mLの2xL−マルトース培地(2%トリプトン、1%酵母エキス、1%塩化ナトリウム、7.5%マルトース、7.5ppm硫酸マンガン4-5水和物、15ppmテトラサイクリン)に接種し、30℃で3日間、振盪培養を行った。培養後、遠心分離によって菌体を除いた培養液上清のアルカリセルラーゼ活性を、上記特許文献に記載の方法、またはp-nitrophenyl-β-cellotrioside(生化学工業)を基質として、pH7.0、温度30℃における吸光度(420nm)の変化を測定する方法により、菌体外に分泌生産されたアルカリセルラーゼの量を求めた。この結果、表3に示した様に、宿主として各遺伝子欠失株、不活性化株を用いた場合、対照の168株(野生型)の場合と比較して高いアルカリセルラーゼの分泌生産が認められた。
Example 3 (Evaluation of cellulase productivity)
To each of the gene-deleted strains, gene-inactivated strains obtained in Examples 1 and 2 and Bacillus subtilis 168 as a control, an alkaline cellulase gene derived from Bacillus genus KSM-S237 (FERM BP-7875) (special A recombinant plasmid pHY-S237 in which a DNA fragment (3.1 kb) encoding Kai 2000-210081 was inserted at the Bam HI restriction enzyme cleavage point of the shuttle vector pHY300PLK was introduced by protoplast transformation. The transformant thus obtained was cultured with shaking in 5 mL of LB medium at 30 ° C. for 15 hours, and 0.6 mL of this culture solution was further added to 30 mL of 2 × L-maltose medium (2% tryptone, 1% yeast extract, 1% Sodium chloride, 7.5% maltose, 7.5 ppm manganese sulfate 4-5 hydrate, 15 ppm tetracycline) and shaking culture at 30 ° C. for 3 days. After culturing, the alkaline cellulase activity of the culture supernatant from which the cells were removed by centrifugation was adjusted to pH 7.0, using the method described in the above patent document, or p-nitrophenyl-β-cellotrioside (Seikagaku Corporation) as a substrate. The amount of alkaline cellulase secreted and produced outside the cells was determined by measuring the change in absorbance (420 nm) at a temperature of 30 ° C. As a result, as shown in Table 3, when each gene-deleted strain and inactivated strain were used as the host, higher secretory production of alkaline cellulase was observed compared to the control 168 strain (wild type). It was.

Figure 0005140313
実施例4(プロテアーゼ生産性評価)
実施例1〜2にて得られた各遺伝子欠失株、遺伝子不活性化株及び対照として枯草菌168株に、Bacillus clausii KSM-K16株(FERM BP-3376)由来のアルカリプロテアーゼ遺伝子(Appl.Microbiol.Biotechnol.,43,473,1995)をコードするDNA断片(1.3kb)が、Bacillus属細菌 KSM-S237株(FERM BP-7875)由来のアルカリセルラーゼ遺伝子(特開2000-210081号公報)のプロモーター領域をコードするDNA断片(0.6kb)の下流に連結したDNA断片を、シャトルベクターpHY300PLKのBamHI−BglII制限酵素切断点に挿入した組換えプラスミドpHYKAP(S237p)をプロトプラスト形質転換法にて導入した。これによって得られた形質転換株を実施例3で示した条件にて培養を行ない、培養後、遠心分離によって菌体を除いた培養液上清のアルカリプロテアーゼ活性を上記文献記載の方法、またはSuccinyl-L-Alanyl-L-Alanyl-L-Alanine p-Nitroanilide(ペプチド研究所)を基質として、pH7.0、温度30℃における吸光度(420nm)の変化を測定する方法により、菌体外に分泌生産されたアルカリプロテアーゼの量を求めた。この結果、表4に示した様に、宿主として各遺伝子欠失株、不活性化株を用いた場合、対照の168株(野生型)の場合と比較して高いアルカリプロテアーゼの分泌生産が認められた。
Figure 0005140313
Example 4 (Protease productivity evaluation)
To each of the gene deletion strains, gene inactivation strains, and Bacillus subtilis 168 strains obtained in Examples 1-2, an alkaline protease gene derived from Bacillus clausii KSM-K16 strain (FERM BP-3376) (Appl. Microbiol. Biotechnol., 43, 473, 1995) DNA fragment (1.3 kb) is a promoter region of an alkaline cellulase gene (JP 2000-210081) derived from Bacillus genus KSM-S237 strain (FERM BP-7875) the DNA fragment was ligated downstream of DNA encoding fragment (0.6 kb), a shuttle vector pHY300PLK the Bam HI- Bgl II recombinant plasmid pHYKAP inserted into the restriction enzyme cleavage point (S237p) was introduced at the protoplast transformation method . The transformant thus obtained is cultured under the conditions shown in Example 3, and after culturing, the alkaline protease activity of the culture supernatant obtained by removing the cells by centrifugation is determined according to the method described in the above document or Succinyl. -L-Alanyl-L-Alanyl-L-Alanine p-Nitroanilide (Peptide Institute) is used as a substrate for secretion production outside the cells by measuring the change in absorbance (420 nm) at pH 7.0 and temperature 30 ° C. The amount of alkaline protease produced was determined. As a result, as shown in Table 4, when each gene-deleted strain and inactivated strain were used as the host, higher secretion of alkaline protease was observed compared to the control 168 strain (wild type). It was.

Figure 0005140313
Figure 0005140313

SOE−PCRによる遺伝子欠失用DNA断片の調製、及び当該DNA断片を用いて標的遺伝子を欠失する(薬剤耐性遺伝子と置換)方法を模式的に示したものである。The preparation of a DNA fragment for gene deletion by SOE-PCR and a method for deleting a target gene (substitution with a drug resistance gene) using the DNA fragment are schematically shown.

Claims (8)

枯草菌遺伝子sucC、sucD、asnO若しくはargHのいずれか、又は当該遺伝子に相当する遺伝子のいずれか1以上の遺伝子が欠失又は不活性化された微生物株に、目的のタンパク質又はポリペプチドをコードする遺伝子を導入した組換え微生物。   A microbial strain in which at least one of the Bacillus subtilis genes sucC, sucD, asnO or argH, or any of the genes corresponding to the gene is deleted or inactivated, encodes the protein or polypeptide of interest. A recombinant microorganism into which a gene has been introduced. 微生物がバチルス属(Bacillus)細菌である請求項1記載の組換え微生物。   The recombinant microorganism according to claim 1, wherein the microorganism is a Bacillus bacterium. バチルス(Bacillus)属細菌が枯草菌(Bacillus subtilis)である請求項2記載の組換え微生物。   The recombinant microorganism according to claim 2, wherein the bacterium belonging to the genus Bacillus is Bacillus subtilis. 目的のタンパク質又はポリペプチドをコードする遺伝子の上流に転写開始制御領域、翻訳開始制御領域又は分泌シグナル領域のいずれか1以上の領域を結合した請求項1〜3のいずれか1項記載の組換え微生物。 The recombination according to any one of claims 1 to 3, wherein any one or more of a transcription initiation control region, a translation initiation control region or a secretion signal region is linked upstream of a gene encoding the target protein or polypeptide. Microorganisms. 転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域を結合した請求項4記載の組換え微生物。   The recombinant microorganism according to claim 4, wherein three regions comprising a transcription initiation control region, a translation initiation control region, and a secretion signal region are combined. 分泌シグナル領域がバチルス(Bacillus)属細菌のセルラーゼ遺伝子由来のものであり、転写開始制御領域及び翻訳開始制御領域が当該セルラーゼ遺伝子の上流0.6〜1kb領域由来のものである請求項4又は5記載の組換え微生物。   The secretion signal region is derived from a cellulase gene of a bacterium belonging to the genus Bacillus, and the transcription initiation control region and the translation initiation control region are derived from a 0.6-1 kb region upstream of the cellulase gene. The recombinant microorganism described. 転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が、配列番号1で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1〜659の塩基配列、配列番号3で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1〜696の塩基配列又は当該塩基配列のいずれかと90%以上の同一性を有する塩基配列からなるDNA断片である請求項4〜6のいずれか1項記載の組換え微生物。 Three regions comprising a transcription initiation control region, a translation initiation control region, and a secretion signal region are derived from the base sequence of base numbers 1 to 659 of the cellulase gene comprising the base sequence represented by SEQ ID NO: 1, and the base sequence represented by SEQ ID NO: 3. recombinant any one of claims 4-6 which is a DNA fragment comprising a nucleotide sequence having any 90% identity or more nucleotide sequences or the nucleotide sequence of nucleotide numbers 1 to 696 of cellulase gene of Microorganisms. 請求項1〜7のいずれか1項記載の組換え微生物を用いる目的のタンパク質又はポリペプチドの製造方法。   The manufacturing method of the target protein or polypeptide using the recombinant microorganism of any one of Claims 1-7.
JP2007125905A 2006-05-16 2007-05-10 Recombinant microorganism Expired - Fee Related JP5140313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125905A JP5140313B2 (en) 2006-05-16 2007-05-10 Recombinant microorganism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006136858 2006-05-16
JP2006136858 2006-05-16
JP2007125905A JP5140313B2 (en) 2006-05-16 2007-05-10 Recombinant microorganism

Publications (2)

Publication Number Publication Date
JP2007330255A JP2007330255A (en) 2007-12-27
JP5140313B2 true JP5140313B2 (en) 2013-02-06

Family

ID=38930316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125905A Expired - Fee Related JP5140313B2 (en) 2006-05-16 2007-05-10 Recombinant microorganism

Country Status (1)

Country Link
JP (1) JP5140313B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828634B2 (en) * 2010-12-24 2015-12-09 花王株式会社 Protein production method using recombinant microorganism
JP5846476B2 (en) * 2011-07-08 2016-01-20 独立行政法人酒類総合研究所 Method for improving kojic acid productivity of microorganisms

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509743B2 (en) * 2003-11-07 2010-07-21 花王株式会社 Recombinant microorganism
JP4336184B2 (en) * 2003-11-07 2009-09-30 花王株式会社 Recombinant microorganism
JP2005137308A (en) * 2003-11-07 2005-06-02 Kao Corp Recombinant microorganism
JP2005348641A (en) * 2004-06-09 2005-12-22 Kao Corp Host microorganism
JP4643999B2 (en) * 2005-02-02 2011-03-02 花王株式会社 Recombinant microorganism

Also Published As

Publication number Publication date
JP2007330255A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP2006296268A (en) Recombinant microorganism
JP4336184B2 (en) Recombinant microorganism
JP4336082B2 (en) Host microorganism
JP5294666B2 (en) Recombinant microorganism
JP2005137308A (en) Recombinant microorganism
JP4915728B2 (en) Recombinant microorganism
JP4832153B2 (en) Recombinant microorganism
JP5513759B2 (en) Method for producing protein or polypeptide
JP4388272B2 (en) Host microorganism
JP2006345860A (en) Recombinant bacillus bacterium
JP4839144B2 (en) Host microorganism
JP4676848B2 (en) Recombinant microorganism
JP5140313B2 (en) Recombinant microorganism
JP4509743B2 (en) Recombinant microorganism
JP2014158430A (en) Cellulase production method
US7563611B2 (en) Recombinant microorganism
JP4643999B2 (en) Recombinant microorganism
JP4496000B2 (en) Host microorganism
JP4676847B2 (en) Recombinant microorganism
US8623631B2 (en) Modified promoter
JP2005278645A (en) Mutant bacterium of genus bacillus
JP4861659B2 (en) Recombinant microorganism
JP4463871B2 (en) Recombinant microorganism
JP2009034067A (en) Recombinant bacterium
JP4648038B2 (en) Modified promoter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees