JP5139033B2 - Waste water treatment method and waste water treatment equipment - Google Patents

Waste water treatment method and waste water treatment equipment Download PDF

Info

Publication number
JP5139033B2
JP5139033B2 JP2007282326A JP2007282326A JP5139033B2 JP 5139033 B2 JP5139033 B2 JP 5139033B2 JP 2007282326 A JP2007282326 A JP 2007282326A JP 2007282326 A JP2007282326 A JP 2007282326A JP 5139033 B2 JP5139033 B2 JP 5139033B2
Authority
JP
Japan
Prior art keywords
tank
aeration
wastewater
wastewater treatment
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007282326A
Other languages
Japanese (ja)
Other versions
JP2009106869A (en
Inventor
淳二 内田
正蔵 谷
俊彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP2007282326A priority Critical patent/JP5139033B2/en
Publication of JP2009106869A publication Critical patent/JP2009106869A/en
Application granted granted Critical
Publication of JP5139033B2 publication Critical patent/JP5139033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、曝気槽内を所定時間毎に間欠的に曝気して排水の処理を行う排水処理方法および排水処理装置に関するものである。   The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for performing wastewater treatment by intermittently aeration of an aeration tank every predetermined time.

従来より、排水の処理方法として、間欠曝気法が知られている。この間欠曝気法は、同一槽内で曝気と非曝気(曝気停止)を繰り返すことにより、好気状態と嫌気状態とを交互に作り、硝化脱窒を行う方法である。
このような、間欠曝気法に関する従来技術として、本件出願人は特許文献1および2において、嫌気性処理をした排水(嫌気処理水)を活性汚泥法で好気性処理する処理方法であって、嫌気処理水を活性汚泥槽に導き、該活性汚泥槽を断続的に曝気し、曝気停止時に無酸素状態を形成させて硝酸呼吸を行わせ、活性汚泥フロック形成を促進させることにより、活性汚泥処理水の水質を向上させ、かつ該活性汚泥槽において糸状性細菌や放線菌が優勢になるのを防ぎ、さらに前記活性汚泥槽の下流に設けられた沈殿槽への流入部のスカム、脱窒による浮上スカムを防止するようにした排水処理方法を開示している。
Conventionally, an intermittent aeration method is known as a wastewater treatment method. This intermittent aeration method is a method of performing nitrification denitrification by alternately creating an aerobic state and an anaerobic state by repeating aeration and non-aeration (aeration stop) in the same tank.
As a conventional technique related to such an intermittent aeration method, the applicant of the present invention disclosed in Patent Documents 1 and 2 is an aerobic treatment method using an activated sludge method for anaerobic wastewater (anaerobic treatment water), which is anaerobic. Activated sludge treated water by guiding the treated water to the activated sludge tank, intermittently aeration of the activated sludge tank, forming an oxygen-free state at the time of aeration stop, performing nitric acid respiration, and promoting activated sludge floc formation The water quality of the activated sludge tank is improved and filamentous bacteria and actinomycetes are prevented from predominating in the activated sludge tank. Further, the scum of the inflow portion to the settling tank provided downstream of the activated sludge tank, and the levitation by denitrification A waste water treatment method for preventing scum is disclosed.

特許文献1および2では、嫌気処理水に対して行なう好気処理(活性汚泥処理)において、曝気を間欠的に行ないながら嫌気処理水のみを処理する場合(実施例1)、曝気を常時行ないながら嫌気処理水のみを処理する場合(比較例1)、および曝気を常時行ないながら嫌気処理水と総合排水(嫌気処理していない排水)との混合物を処理する場合(比較例2)の効果を比較し、各例における好気処理後の排水透視度の経時変化を検討し、段落[0017]において、以下のように記載している。   In patent documents 1 and 2, in an aerobic treatment (activated sludge treatment) performed on anaerobic treated water, when only anaerobic treated water is treated while intermittently performing aeration (Example 1), aeration is always performed. Compare the effects of treating only anaerobic treated water (Comparative Example 1) and treating a mixture of anaerobic treated water and general wastewater (drained water that has not been anaerobically treated) while performing aeration (Comparative Example 2) Then, the change with time of the drainage transparency after the aerobic treatment in each example was examined and described in paragraph [0017] as follows.

運転開始5日目(2月25日)以降の透視度は、適正負荷時(0.12kgBOD/kgMLVSS・日)および低負荷時(0.06kgBOD/kgMLVSS・日)の双方において、実施例1>比較例2>比較例1の順に高かった。特に、低負荷時においては、実施例1と比較例1および2との間で透視度に顕著な差異が認められ、従って、実施例1の条件では低負荷時においても透視度が低下しないことがわかった。また、実施例1では休日の間(2〜3日間)は運転を完全休止したが、再立上げ後3日目以降における透視度は80〜100cmで安定していた。ただし、再立上げ後2日目に透視度が一旦低下したが、その低下幅は、運転日数が経過するにつれて小さくなった。   The transparency after the fifth day of operation (February 25) is the same as in Example 1 at both appropriate load (0.12 kgBOD / kgMLVSS · day) and low load (0.06 kgBOD / kgMLVSS · day)> Comparative Example 2> Higher in the order of Comparative Example 1. In particular, at the time of low load, a remarkable difference is observed in the degree of transparency between Example 1 and Comparative Examples 1 and 2. Therefore, the degree of transparency does not decrease even under a low load under the conditions of Example 1. I understood. Further, in Example 1, the operation was completely stopped during the holidays (2 to 3 days), but the transparency after the third day after the restart was stable at 80 to 100 cm. However, although the degree of transparency once decreased on the second day after re-startup, the extent of the decrease became smaller as the number of operating days passed.

特開2004−174311号公報JP 2004-174411 A 特開2006−88158号公報JP 2006-88158 A

上述した引用文献1および2にも記載されている通り、間欠曝気法においては、休日の間、排水処理を長時間停止し、その後、再立上げした場合、透視度が悪化する場合があるという問題がある。   As described in the cited references 1 and 2 mentioned above, in the intermittent aeration method, when the wastewater treatment is stopped for a long time during a holiday and then restarted, the transparency may be deteriorated. There's a problem.

本発明は、上述の点に鑑みてなされたもので、排水処理を完全停止して再立上げした場合も、透視度に問題となるような影響を与えることなく、またT−P値を抑え、3次処理設備の稼働日数を減らしつつ、安定した排水処理を行うことができる排水処理方法および排水処理装置を提供することを目的とする。   The present invention has been made in view of the above points, and even when the wastewater treatment is completely stopped and restarted, the T-P value is suppressed without affecting the transparency. An object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus capable of performing stable wastewater treatment while reducing the number of working days of the tertiary treatment facility.

上記目的を達成するため、本発明の排水処理方法は、排水を受け入れるための調整槽と、前記調整槽から供給された排水を嫌気性処理して酸発酵を進める酸生成槽と、前記酸生成槽から供給された排水中に含まれる酸発酵でできたアルコールや有機酸を酢酸と水素に分解した後にメタンに転換する嫌気反応槽と、排水を汚泥と接触させるとともに間欠的に曝気して排水中の有機物を生物化学的に分解する曝気槽と、前記曝気槽から供給された汚泥混合液を汚泥と上澄み液に分離する沈殿槽とを備えた排水処理設備において排水処理を停止して再立上げする場合の排水処理方法であって、排水処理を停止した状態で曝気槽に排水がある状態から排水処理を再開する場合に、曝気槽への排水の流入と曝気槽での曝気開始とを略同時に実施し、前記排水処理の再開時に、前記曝気槽において曝気による汚泥へのリンの取り込みと排水流入による汚泥によるBODの取り込みとを略同時に開始することを特徴とする。
本発明によれば、曝気を実施することで汚泥にリンが取り込まれる。排水投入を同時に実施することで、汚泥によるBODの取り込みも同時に開始される。そのため、一時的な自己硝化が回避でき、ピンフロックが減少する。ピンフロックの減少により、処理水中のT−Pの上昇が抑えられ、透視度に問題となるような影響を与えることなく安定した排水処理を行うことができる。
In order to achieve the above object, the wastewater treatment method of the present invention includes an adjustment tank for receiving wastewater, an acid generation tank for anaerobically treating the wastewater supplied from the adjustment tank, and promoting acid fermentation, and the acid generation An anaerobic reaction tank that converts alcohol and organic acid produced by acid fermentation contained in the wastewater supplied from the tank into acetic acid and hydrogen and then converts it to methane, and drains the wastewater by contacting it with sludge and intermittently aeration The wastewater treatment facility is equipped with an aeration tank that biochemically decomposes organic matter in the tank and a sedimentation tank that separates the sludge mixed solution supplied from the aeration tank into sludge and supernatant liquid. When the wastewater treatment is resumed from the state where there is drainage in the aeration tank with the wastewater treatment stopped, the inflow of wastewater into the aeration tank and the start of aeration in the aeration tank substantially simultaneously performed, the Upon resumption of water treatment, and wherein the substantially be started simultaneously and BOD uptake by sludge by uptake and drainage inflow of phosphorus into the sludge by the aeration in the aeration tank.
According to the present invention, phosphorus is taken into sludge by carrying out aeration. By simultaneously performing drainage input, BOD uptake by sludge is started at the same time. Therefore, temporary self-nitrification can be avoided and pin flocs are reduced. Due to the decrease in pin floc, the rise in TP in the treated water is suppressed, and stable waste water treatment can be performed without affecting the transparency.

上記目的を達成するため、本発明の排水処理装置は、排水を受け入れるための調整槽と、前記調整槽から供給された排水を嫌気性処理して酸発酵を進める酸生成槽と、前記酸生成槽から供給された排水中に含まれる酸発酵でできたアルコールや有機酸を酢酸と水素に分解した後にメタンに転換する嫌気反応槽と、排水を汚泥と接触させるとともに間欠的に曝気して排水中の有機物を生物化学的に分解する曝気槽と、前記曝気槽から供給された汚泥混合液を汚泥と上澄み液に分離する沈殿槽とを備えた排水処理設備において排水処理を停止して再立上げする場合の排水処理装置であって、曝気槽内の排水を曝気する曝気手段と、曝気槽へ排水を投入する投入手段と、曝気槽への排水の流入と曝気槽での曝気開始とを制御する制御装置とを備え、前記制御装置は、排水処理を停止した状態で曝気槽に排水がある状態から排水処理を再開する場合に、曝気槽への排水の流入と曝気槽での曝気開始とを略同時に実施し、前記排水処理の再開時に、前記曝気槽において曝気による汚泥へのリンの取り込みと排水流入による汚泥によるBODの取り込みとを略同時に開始するようにしたことを特徴とする。
本発明によれば、曝気を実施することで汚泥にリンが取り込まれる。排水投入を同時に実施することで、汚泥によるBODの取り込みも同時に開始される。そのため、一時的な自己硝化が回避でき、ピンフロックが減少する。ピンフロックの減少により、処理水中のT−Pの上昇が抑えられ、透視度に問題となるような影響を与えることなく安定した排水処理を行うことができる。
In order to achieve the above object, the wastewater treatment apparatus of the present invention includes an adjustment tank for receiving wastewater, an acid generation tank for anaerobically treating the wastewater supplied from the adjustment tank and promoting acid fermentation, and the acid generation An anaerobic reaction tank that converts alcohol and organic acid produced by acid fermentation contained in the wastewater supplied from the tank into acetic acid and hydrogen and then converts it to methane, and drains the wastewater by contacting it with sludge and intermittently aeration The wastewater treatment facility is equipped with an aeration tank that biochemically decomposes organic matter in the tank and a sedimentation tank that separates the sludge mixed solution supplied from the aeration tank into sludge and supernatant liquid. a waste water treatment apparatus in the case of raising, the aeration means for aerating the wastewater in the aeration tank, the dosing means for introducing wastewater into the aeration tank, the aeration starts at the inflow and aeration tanks of waste water into the aeration tank and a control unit for controlling, When the wastewater treatment is resumed from the state where there is drainage in the aeration tank while the wastewater treatment is stopped, the control device performs the inflow of wastewater into the aeration tank and the start of aeration in the aeration tank almost simultaneously, When the wastewater treatment is resumed, the uptake of phosphorus into the sludge by aeration and the uptake of BOD by the sludge by inflow of wastewater are started substantially simultaneously in the aeration tank .
According to the present invention, phosphorus is taken into sludge by carrying out aeration. By simultaneously performing drainage input, BOD uptake by sludge is started at the same time. Therefore, temporary self-nitrification can be avoided and pin flocs are reduced. Due to the decrease in pin floc, the rise in TP in the treated water is suppressed, and stable waste water treatment can be performed without affecting the transparency.

本発明によれば、排水処理を停止した状態から排水処理を再開する場合、あるいは、排水負荷が低負荷の状態から高負荷の状態に切り替わる場合でも、透視度に問題となるような影響を与えることなく安定して排水処理することが可能である。また、T−P値を抑えることができ、3次処理設備の稼働日数を減らすことができる。   According to the present invention, even when the wastewater treatment is restarted from the state where the wastewater treatment is stopped, or even when the wastewater load is switched from the low load state to the high load state, the transparency is affected. It is possible to stably treat the waste water without any problems. Further, the TP value can be suppressed, and the number of working days of the tertiary processing facility can be reduced.

以下、本発明に係る排水処理方法及び装置の実施の態様を図面に基づいて説明する。図1は、本発明の排水処理装置を備えた排水処理設備を示す概略図である。
図1に示すように、排水処理設備は、ビール工場等の飲料製造工程等で発生した排水を受け入れるための調整槽1と、調整槽1から供給された排水を嫌気性処理して酸発酵を進める酸生成槽2と、酸生成槽2から供給された排水中に含まれる酸発酵でできたアルコールや有機酸を酢酸と水素に分解した後にメタンに転換する嫌気反応槽3と、排水を汚泥と接触させるとともに間欠的に曝気して排水中の有機物を生物化学的に分解する曝気槽4と、曝気槽4から供給された汚泥混合液を汚泥と上澄み液に分離する沈殿槽5と、沈殿槽5で凝集した汚泥を加圧浮上させて分離する加圧浮上分離槽6とを備えている。
Hereinafter, embodiments of the wastewater treatment method and apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a wastewater treatment facility equipped with the wastewater treatment apparatus of the present invention.
As shown in FIG. 1, the wastewater treatment facility performs an acid fermentation by anaerobically treating the effluent supplied from the adjustment tank 1 and the adjustment tank 1 for receiving the wastewater generated in a beverage manufacturing process such as a beer factory. The acid generation tank 2 to be advanced, the anaerobic reaction tank 3 that converts the alcohol and organic acid produced by the acid fermentation contained in the wastewater supplied from the acid generation tank 2 into acetic acid and hydrogen, and then converts them into methane, and the wastewater as sludge An aeration tank 4 in which the organic matter in the waste water is biochemically decomposed by being aerated intermittently, a precipitation tank 5 for separating the sludge mixed solution supplied from the aeration tank 4 into sludge and a supernatant, and a precipitation And a pressurized flotation separation tank 6 for separating the sludge agglomerated in the tank 5 by flotation under pressure.

図1に示すように、調整槽1、嫌気反応槽3、曝気槽4、沈殿槽5および加圧浮上分離槽6は、それぞれ2系統設けられている。   As shown in FIG. 1, two systems of the adjustment tank 1, the anaerobic reaction tank 3, the aeration tank 4, the precipitation tank 5, and the pressurized flotation separation tank 6 are provided.

なお、調整槽1内の排水は、第1バイパス配管BP1によって酸生成槽2および嫌気反応槽3を経由しないで曝気槽4に供給できるようになっている。また、沈殿槽5で最終処理として、加圧浮上分離槽6における処理をしなくても済むように、第2バイパス配管BP2が設置されている。   In addition, the waste water in the adjustment tank 1 can be supplied to the aeration tank 4 without passing through the acid generation tank 2 and the anaerobic reaction tank 3 by the first bypass pipe BP1. In addition, the second bypass pipe BP2 is installed so that the final treatment in the sedimentation tank 5 does not require the treatment in the pressurized flotation separation tank 6.

図1に示すように構成された排水処理設備において、工場排水は、一旦、調整槽1に受け入れられ、調整槽1において流量調整と水質の均質化を行う。排水の発生する量は時間帯により異なるが、下流の各槽には、できるだけ一定流量で排水を注入するのが原則であるため、調整槽1において流量調整を行う。酸生成槽2では、調整槽1から一定流量で供給された排水を嫌気性処理して酸発酵を進める。すなわち、排水中の高分子有機物(炭水化物、たんぱく質、脂質)が加水分解や酸生成によって、糖、アルコール、有機酸、二酸化炭素等に分解される。酸生成までの段階では物質転換は進行するが、排水のCOD(化学的酸素要求量)は減らない。嫌気反応槽3では、酸生成槽2で出来た、アルコールや有機酸が酢酸と水素に分解された後、最終的に酢酸と水素がメタンに転換される。硫酸塩があれば、硫化水素への還元も並行して進む。このメタンガスへの転換により、有機物が排水中から除去され、排水のCODが減少する。   In the wastewater treatment facility configured as shown in FIG. 1, factory wastewater is once received in the adjustment tank 1, and the adjustment tank 1 performs flow rate adjustment and water quality homogenization. Although the amount of wastewater generated varies depending on the time zone, in principle, the wastewater is injected into each downstream tank at a constant flow rate as much as possible. In the acid production tank 2, acid fermentation is advanced by anaerobically treating the wastewater supplied from the adjustment tank 1 at a constant flow rate. That is, macromolecular organic substances (carbohydrates, proteins, lipids) in the wastewater are decomposed into sugar, alcohol, organic acid, carbon dioxide and the like by hydrolysis and acid generation. Material conversion proceeds until the stage of acid generation, but the COD (chemical oxygen demand) of the wastewater does not decrease. In the anaerobic reaction tank 3, after the alcohol or organic acid produced in the acid generation tank 2 is decomposed into acetic acid and hydrogen, finally, acetic acid and hydrogen are converted into methane. If there is sulfate, the reduction to hydrogen sulfide proceeds in parallel. By this conversion to methane gas, organic substances are removed from the wastewater, and the COD of the wastewater is reduced.

曝気槽4は、活性汚泥法による処理施設の中心をなす設備で、排水で汚泥と十分接触させ、さらに有機物の代謝に必要な酸素を供給するために曝気し、槽内に乱流状態を作り出す。このような条件のもとで有機物を生物化学的に分解して、排水を浄化する。活性汚泥法は、好気性微生物に排水中の有機物を処理させる方法であり、このとき微生物には酸素が必要なため、曝気槽の槽底部には散気管を設置し、散気管から空気を微細な気泡として槽内に噴出させることで、曝気槽内の排水に酸素を溶解させるようにしている。   The aeration tank 4 is a facility that forms the center of a treatment facility based on the activated sludge process. The aeration tank 4 is sufficiently brought into contact with sludge by drainage, and is aerated to supply oxygen necessary for metabolism of organic matter, thereby creating a turbulent state in the tank. . Under such conditions, organic matter is biochemically decomposed to purify wastewater. The activated sludge method is a method in which aerobic microorganisms process the organic matter in the wastewater. At this time, the microorganisms require oxygen, so an aeration tube is installed at the bottom of the aeration tank, and air is finely discharged from the aeration tube. Oxygen is dissolved in the waste water in the aeration tank by ejecting it into the tank as a simple bubble.

曝気槽には、好気性微生物を多量に含んだ数十μm〜数mmの塊が3500〜5000mg/lの濃度で浮遊している。この塊を活性汚泥のフロックと呼び、ここに含まれる微生物は、ズーグレア、シュードモナス、バチルスなど、多種類の細菌が主体であり、ほかにはツリガネ虫、ワムシなどの原生動物も含まれている。   In the aeration tank, a mass of several tens of μm to several mm containing a large amount of aerobic microorganisms floats at a concentration of 3500 to 5000 mg / l. This lump is called activated sludge floc, and the microorganisms contained here are mainly composed of many kinds of bacteria such as Zooglea, Pseudomonas, and Bacillus, and also include protozoa such as worms and rotifers.

曝気槽4と連結している沈殿槽5は、曝気槽4で有機物を分解した処理水と活性汚泥のフロックを自然沈降によって分離させる役割をもっている。すなわち、沈殿槽5において、汚泥混合液を所定時間静置させ、活性汚泥のフロックを沈降させ、上澄み液を処理水として放流する。沈殿槽5に堆積した活性汚泥の一部は、汚泥ポンプ(図示せず)により曝気槽4に返送され、再度、種汚泥として処理に使用される。また、沈殿槽5に堆積した活性汚泥の一部は、余剰汚泥として系外に取り出される。   The settling tank 5 connected to the aeration tank 4 has a role of separating the treated water obtained by decomposing the organic matter in the aeration tank 4 and the floc of activated sludge by natural sedimentation. That is, in the settling tank 5, the sludge mixed liquid is allowed to stand for a predetermined time, the floc of activated sludge is allowed to settle, and the supernatant liquid is discharged as treated water. A part of the activated sludge accumulated in the settling tank 5 is returned to the aeration tank 4 by a sludge pump (not shown) and again used as a seed sludge for the treatment. A part of the activated sludge accumulated in the settling tank 5 is taken out of the system as surplus sludge.

加圧浮上分離槽6は、凝集した汚泥を加圧浮上させ、水から分離する。加圧浮上法は、加圧水に含まれている微細な空気により懸濁質を包み、フロックを水より軽くして浮上分離させ除去しようとするものである。   The pressurized flotation separation tank 6 raises the agglomerated sludge under pressure and separates it from water. In the pressurized levitation method, the suspended solids are wrapped with fine air contained in pressurized water, and the floc is made lighter than water to be separated by levitation.

図2は、曝気槽4およびその周辺機器を備えた排水処理装置の詳細を示す模式的な概略図である。図2に示すように、曝気槽4は、3パス構成になっており、曝気槽4に流入した排水は、1パス、2パス、3パスの順に流れるようになっている。曝気槽4内の各パスには、多数の散気管11が設けられており、各散気管11は管路21および開閉バルブV1,V2を介して曝気用ブロワ12に接続されている。散気管11および曝気用ブロワ12は、曝気槽4内の排水を曝気する曝気手段を構成している。また、曝気槽4内の1パスおよび2パスには、多数の攪拌機13が設けられている。   FIG. 2 is a schematic diagram showing details of the waste water treatment apparatus including the aeration tank 4 and its peripheral devices. As shown in FIG. 2, the aeration tank 4 has a three-pass configuration, and the wastewater flowing into the aeration tank 4 flows in the order of one pass, two passes, and three passes. Each path in the aeration tank 4 is provided with a number of aeration pipes 11, and each of the aeration pipes 11 is connected to the aeration blower 12 via a conduit 21 and opening / closing valves V <b> 1 and V <b> 2. The air diffuser 11 and the aeration blower 12 constitute an aeration means for aerating the waste water in the aeration tank 4. A large number of stirrers 13 are provided in the first pass and the second pass in the aeration tank 4.

曝気槽4には、曝気槽4内の各パスに排水(原水)を投入するための多数の投入口14が設けられている。また各投入口14には、管路22および流入弁VIN−1,VIN−2を介して排水(原水)を供給するようになっている。投入口14および流入弁VIN−1,VIN−2は、曝気槽4へ排水を投入する投入手段を構成している。曝気用ブロワ12、攪拌機13、開閉バルブV1,V2および流入弁VIN−1,VIN−2は、制御装置15によって、それらの作動が制御されるようになっている。なお、図2においては、稼働中の散気管11、攪拌機13および投入口14をそれぞれ実線で示し、停止中の散気管11、攪拌機13および投入口14をそれぞれ点線で示している。 The aeration tank 4 is provided with a number of input ports 14 for supplying drainage (raw water) to each path in the aeration tank 4. In addition, drainage (raw water) is supplied to each input port 14 via a pipeline 22 and an inflow valve VIN- 1 and VIN- 2. The input port 14 and the inflow valves V IN −1 and V IN −2 constitute an input unit that inputs waste water into the aeration tank 4. The operation of the aeration blower 12, the stirrer 13, the on-off valves V 1 and V 2 and the inflow valves V IN −1 and V IN −2 is controlled by the control device 15. In FIG. 2, the diffuser tube 11, the stirrer 13, and the inlet 14 that are operating are indicated by solid lines, and the stopped diffuser tube 11, the agitator 13, and the inlet 14 are indicated by dotted lines.

図2に示すように構成された排水処理装置において、制御装置15は、流入弁VIN−1又はVIN−2の開動作と曝気用ブロワ12の始動とを同時又は略同時に行うように制御する。この制御により、曝気槽4への排水の流入と曝気槽4での曝気開始とを同時又は略同時に実施することができる。この制御は、排水処理を停止した状態から排水処理を再開する場合に行うと効果的である。すなわち、排水処理を停止した状態から排水処理を再開する場合に、制御装置15は、流入弁VIN−1又はVIN−2の開動作と曝気用ブロワ12の始動とを同時又は略同時に行うように制御し、曝気槽4への排水の流入と曝気槽4での曝気開始とを同時又は略同時に実施する。 In the waste water treatment apparatus configured as shown in FIG. 2, the control device 15 performs control so that the opening operation of the inflow valve V IN −1 or V IN −2 and the start of the aeration blower 12 are performed simultaneously or substantially simultaneously. To do. By this control, the inflow of waste water into the aeration tank 4 and the start of aeration in the aeration tank 4 can be performed simultaneously or substantially simultaneously. This control is effective when the wastewater treatment is restarted from the state where the wastewater treatment is stopped. That is, when the wastewater treatment is resumed from the state where the wastewater treatment is stopped, the control device 15 performs the opening operation of the inflow valve V IN -1 or V IN -2 and the start of the aeration blower 12 simultaneously or substantially simultaneously. Thus, the inflow of wastewater into the aeration tank 4 and the start of aeration in the aeration tank 4 are performed simultaneously or substantially simultaneously.

次に、排水処理を停止した状態から排水処理を再開する場合について、従来の処理方法と本発明とを比較して説明する。
図1および図2に示す排水処理設備において、通常の連続処理の際は、放流水の水質に変化はなかったが、間欠処理後の立上げ時にT−P(total phosphorus:総リン)が上昇する傾向が見られた。
当初は立上げ時には、曝気を先行し、目標DO(溶存酸素)に達した時点で排水(原水)の投入を実施していた。
各種試験を実施したところ、曝気と原水投入(排水投入)を同時に実施する(DOが目標値にいかないうちに原水を投入する)ことにより、T−Pの上昇が抑えられ、3次処理設備(加圧浮上分離槽)を使用しなくても良くなった。なお、今回の全量嫌気処理テスト中、放流水のT−Pを抑えつつ透視度も安定し処理状況は良好であった。
Next, the case where the wastewater treatment is restarted from the state where the wastewater treatment is stopped will be described by comparing the conventional treatment method and the present invention.
In the wastewater treatment facility shown in FIG. 1 and FIG. 2, the quality of the discharged water did not change during normal continuous treatment, but TP (total phosphorous) increased during startup after intermittent treatment. The tendency to do was seen.
Initially, at the time of start-up, aeration was preceded and wastewater (raw water) was introduced when the target DO (dissolved oxygen) was reached.
When various tests were conducted, aeration and raw water input (drainage input) were performed simultaneously (input of raw water before DO was not at the target value), thereby suppressing an increase in TP and tertiary treatment equipment. (Pressurized flotation separation tank) is not required. In addition, during the current total amount anaerobic treatment test, the transparency was stable while suppressing the TP of the discharged water, and the treatment condition was good.

曝気と原水投入を同時に実施することでT−Pの上昇が抑えられたのは、下記の汚泥メカニズムが理由であると考えられる。
すなわち、通常処理(好気状態)時には、リンは汚泥に取り込まれている。処理停止(嫌気状態)時には、汚泥に取り込まれていたリンが放出される。
It is thought that the following sludge mechanism is the reason why the increase in TP was suppressed by carrying out aeration and raw water input simultaneously.
That is, during normal processing (aerobic state), phosphorus is taken into sludge. When the treatment is stopped (anaerobic state), phosphorus that has been taken into sludge is released.

従来の処理方法においては、曝気を実施することで汚泥にリンが取り込まれる。目標DO値になるまで原水を投入しない(負荷がない)ため、汚泥の自己硝化が一時的に発生する。その結果、汚泥が解体し、ピンフロックが増加する。ピンフロック内にはリンが取り込まれているため、処理水のT−Pが上昇する。   In the conventional treatment method, phosphorus is taken into sludge by performing aeration. Since raw water is not input until there is a target DO value (no load), sludge self-nitrification occurs temporarily. As a result, sludge is dismantled and pin flocs increase. Since phosphorus is taken into the pin floc, the TP of the treated water rises.

これに対し、本発明においては、曝気を実施することで汚泥にリンが取り込まれる。原水投入を同時に実施することで、汚泥によるBODの取り込みも同時に開始される。そのため、一時的な自己硝化が回避でき、ピンフロックが減少する。ピンフロックの減少により、処理水中のT−Pの上昇が抑えられ、透視度に問題となるような影響を与えることなく安定した排水処理を行うことができる。   On the other hand, in this invention, phosphorus is taken in into sludge by implementing aeration. By introducing raw water at the same time, BOD uptake by sludge is started at the same time. Therefore, temporary self-nitrification can be avoided and pin flocs are reduced. Due to the decrease in pin floc, the rise in TP in the treated water is suppressed, and stable waste water treatment can be performed without affecting the transparency.

また、上述の制御は、排水負荷が低負荷の状態から高負荷に切り替わる場合に行うと効果的である。すなわち、排水負荷が低負荷の状態から高負荷に切り替わる場合に、制御装置15は、流入弁VIN−1又はVIN−2の開動作と曝気用ブロワ12の始動とを同時又は略同時に行うように制御する。この制御により、曝気槽4への排水の流入と曝気槽4での曝気開始とを同時又は略同時に実施する。この場合にも、上述したように、処理水中のT−Pの上昇が抑えられ、透視度に問題となるような影響を与えることなく安定した排水処理を行うことができる。 The above-described control is effective when the drainage load is switched from a low load state to a high load. That is, when the drainage load is switched from the low load state to the high load, the control device 15 performs the opening operation of the inflow valve VIN- 1 or VIN- 2 and the start of the aeration blower 12 simultaneously or substantially simultaneously. To control. By this control, the inflow of waste water into the aeration tank 4 and the start of aeration in the aeration tank 4 are performed simultaneously or substantially simultaneously. Also in this case, as described above, an increase in TP in the treated water is suppressed, and stable drainage treatment can be performed without affecting the transparency.

(実施例及び比較例)
本実施例及び比較例における排水処理後の放流水中の平均T−P(総リン)量、3次処理量、3次処理設備(加圧浮上装置)の稼働日数、透視度、立上げ時の透視度のデータを表1に示す。この比較試験は2006年3月から12月に行った。
実施例では、間欠処理における立ち上げ時に、曝気槽において曝気と原水の投入を同時に実施、すなわちDO値が目標値に達する前に原水を投入した(8月から12月実施)。
比較例では、間欠処理の立ち上げ時に、曝気を先行して行い目標DO値に達した時点で原水を投入した(3月から7月実施)。
ここでは、容積が3,550mの曝気槽を2系統使用し、沈殿槽は面積が754mと452mのものを使用した。なお、調整槽の容積は2系統の合計で9,800m、酸生成槽の容積は3,500m、嫌気反応槽は2系統使用し1系統の容積が1,500mであった。3次処理設備としては加圧浮上分離槽を用いた。

Figure 0005139033
表1に示されるように、放流水の月平均T−P(ppm)は、10月を除き0.9ppmから1.5ppmの範囲に入っており、処理水中の総リン量の上昇が抑えられている。3次処理設備(加圧浮上装置)の稼働タイミングは、比較例である3月から7月の間は4月を除き、週初めの立上げ時にはほとんど稼働させた。一方、実施例である8月から12月の間は、設備を保護するための暖機目的で稼働する時及び処理状況が悪化した時のみ3次処理設備を稼働させた。また透視度(月平均)の数値も比較的安定した透視度が得られた。立上げ時の透視度も、月平均の透視度と比較してみるとほぼ同様の数値が得られ、排水処理を完全に停止した後に再度立上げても透視度が落ちなかった。
実施例中の10月のデータに関しては、良好な結果が得られなかったが、これは春、秋に水温の変化などにより汚泥菌相が変化したためと考えられる。図3に、上記のものと同様の設備で2005年及び2006年に実施された排水処理の際の透視度の変化をグラフで示す。2005年は、上記比較例とほぼ同様の立上げ方法で実施した。図3の2005年(破線で示す)、2006年(実線で示す)の年間の透視度変化を表すグラフから明らかであるように、春先また秋、特に10月の透視度が低くなる傾向があった。 (Examples and Comparative Examples)
The average TP (total phosphorus) amount in the effluent after drainage treatment in this example and the comparative example, the tertiary treatment amount, the working days of the tertiary treatment equipment (pressurization flotation device), the transparency, and the startup time The transparency data is shown in Table 1. This comparative test was conducted from March to December 2006.
In the example, at the time of start-up in the intermittent treatment, aeration and raw water were simultaneously introduced into the aeration tank, that is, raw water was introduced before the DO value reached the target value (implemented from August to December).
In the comparative example, when the intermittent treatment was started, aeration was performed in advance, and raw water was added when the target DO value was reached (from March to July).
Here, two aeration tanks having a volume of 3,550 m 3 were used, and precipitation tanks having an area of 754 m 2 and 452 m 2 were used. Incidentally, the volume of the adjustment tank 9,800M 3 the sum of two systems, the volume of the acid generating tank 3,500m 3, anaerobic reaction vessel and the volume of the two systems use with one system was 1,500 m 3. A pressurized flotation separation tank was used as the tertiary treatment facility.
Figure 0005139033
As shown in Table 1, the monthly average TP (ppm) of the discharged water is in the range of 0.9 ppm to 1.5 ppm except for October, and the increase in the total phosphorus amount in the treated water can be suppressed. ing. The operation timing of the tertiary treatment equipment (pressure levitation device) was almost in operation at the beginning of the week except for April between March and July, which is a comparative example. On the other hand, during the period from August to December, which is an example, the tertiary processing equipment was operated only when it was operated for warm-up purposes to protect the equipment and when the processing status deteriorated. In addition, the degree of transparency (monthly average) was also relatively stable. Compared with the monthly average transparency, the same degree of transparency was obtained at the time of startup, and the transparency did not drop even when the wastewater treatment was stopped completely and started up again.
Regarding the October data in the examples, good results were not obtained, but this is considered to be due to changes in the sludge microflora due to changes in the water temperature in spring and autumn. FIG. 3 is a graph showing changes in the degree of transparency during wastewater treatment carried out in 2005 and 2006 using the same equipment as described above. In 2005, the start-up method was almost the same as the comparative example. As is apparent from the graph showing the change in the transparency of the year 2005 (shown by a broken line) and 2006 (shown by the solid line) in FIG. It was.

図1は、本発明の排水処理装置を備えた排水処理設備を示す概略図である。FIG. 1 is a schematic view showing a wastewater treatment facility equipped with the wastewater treatment apparatus of the present invention. 図2は、曝気槽およびその周辺機器を備えた排水処理装置の詳細を示す模式的な概略図である。FIG. 2 is a schematic diagram showing details of a wastewater treatment apparatus including an aeration tank and its peripheral devices. 図3は、透視度の通年変化を表すグラフである。FIG. 3 is a graph showing a year-round change in transparency.

符号の説明Explanation of symbols

1 調整槽
2 酸生成槽
3 嫌気反応槽
4 曝気槽
5 沈殿槽
6 加圧浮上分離槽
11 散気管
12 曝気用ブロワ
13 攪拌機
14 投入口
15 制御装置
21,22 管路
V1,V2 開閉バルブ
IN−1,VIN−2 流入弁
DESCRIPTION OF SYMBOLS 1 Adjustment tank 2 Acid production tank 3 Anaerobic reaction tank 4 Aeration tank 5 Precipitation tank 6 Pressurization flotation separation tank 11 Aeration pipe 12 Aeration blower 13 Stirrer 14 Inlet 15 Controllers 21 and 22 Lines V1 and V2 Open / close valve V IN -1, V IN -2 Inlet valve

Claims (2)

排水を受け入れるための調整槽と、前記調整槽から供給された排水を嫌気性処理して酸発酵を進める酸生成槽と、前記酸生成槽から供給された排水中に含まれる酸発酵でできたアルコールや有機酸を酢酸と水素に分解した後にメタンに転換する嫌気反応槽と、排水を汚泥と接触させるとともに間欠的に曝気して排水中の有機物を生物化学的に分解する曝気槽と、前記曝気槽から供給された汚泥混合液を汚泥と上澄み液に分離する沈殿槽とを備えた排水処理設備において排水処理を停止して再立上げする場合の排水処理方法であって、
排水処理を停止した状態で曝気槽に排水がある状態から排水処理を再開する場合に、曝気槽への排水の流入と曝気槽での曝気開始とを略同時に実施し、前記排水処理の再開時に、前記曝気槽において曝気による汚泥へのリンの取り込みと排水流入による汚泥によるBODの取り込みとを略同時に開始することを特徴とする排水処理方法。
An adjustment tank for receiving waste water, an acid generation tank for anaerobically treating the waste water supplied from the adjustment tank to advance acid fermentation, and acid fermentation contained in the waste water supplied from the acid generation tank An anaerobic reaction tank that converts alcohol or organic acid into acetic acid and hydrogen and then converts to methane; an aeration tank that contacts wastewater with sludge and aerated intermittently to biochemically decompose organic matter in the wastewater; and A wastewater treatment method for stopping and re-starting wastewater treatment in a wastewater treatment facility comprising a sedimentation tank that separates sludge mixed liquid supplied from an aeration tank into sludge and supernatant liquid ,
When the wastewater treatment is resumed from the state in which there is drainage in the aeration tank with the wastewater treatment stopped, the inflow of wastewater into the aeration tank and the start of aeration in the aeration tank are performed substantially simultaneously, and when the wastewater treatment is resumed In the aeration tank, the wastewater treatment method is characterized in that the uptake of phosphorus into the sludge by aeration and the uptake of BOD by the sludge by inflow of wastewater are started substantially simultaneously .
排水を受け入れるための調整槽と、前記調整槽から供給された排水を嫌気性処理して酸発酵を進める酸生成槽と、前記酸生成槽から供給された排水中に含まれる酸発酵でできたアルコールや有機酸を酢酸と水素に分解した後にメタンに転換する嫌気反応槽と、排水を汚泥と接触させるとともに間欠的に曝気して排水中の有機物を生物化学的に分解する曝気槽と、前記曝気槽から供給された汚泥混合液を汚泥と上澄み液に分離する沈殿槽とを備えた排水処理設備において排水処理を停止して再立上げする場合の排水処理装置であって、
曝気槽内の排水を曝気する曝気手段と、曝気槽へ排水を投入する投入手段と、曝気槽への排水の流入と曝気槽での曝気開始とを制御する制御装置とを備え
前記制御装置は、排水処理を停止した状態で曝気槽に排水がある状態から排水処理を再開する場合に、曝気槽への排水の流入と曝気槽での曝気開始とを略同時に実施し、前記排水処理の再開時に、前記曝気槽において曝気による汚泥へのリンの取り込みと排水流入による汚泥によるBODの取り込みとを略同時に開始するようにしたことを特徴とする排水処理装置。
An adjustment tank for receiving waste water, an acid generation tank for anaerobically treating the waste water supplied from the adjustment tank to advance acid fermentation, and acid fermentation contained in the waste water supplied from the acid generation tank An anaerobic reaction tank that converts alcohol or organic acid into acetic acid and hydrogen and then converts to methane; an aeration tank that contacts wastewater with sludge and aerated intermittently to biochemically decompose organic matter in the wastewater; and A wastewater treatment apparatus for stopping and restarting wastewater treatment in a wastewater treatment facility equipped with a sedimentation tank that separates sludge mixed liquid supplied from an aeration tank into sludge and supernatant liquid,
Comprising a aeration means for aerating the wastewater in the aeration tank, the dosing means for introducing wastewater into the aeration tank, and a control device for controlling the aeration initiation at the inflow and aeration tanks of waste water into the aeration tank,
When the wastewater treatment is resumed from the state where there is drainage in the aeration tank with the wastewater treatment stopped, the control device performs the inflow of wastewater into the aeration tank and the start of aeration in the aeration tank almost simultaneously, The wastewater treatment apparatus, wherein when the wastewater treatment is resumed, the uptake of phosphorus into the sludge by aeration and the uptake of BOD by the sludge by inflow of wastewater are started substantially simultaneously in the aeration tank .
JP2007282326A 2007-10-30 2007-10-30 Waste water treatment method and waste water treatment equipment Expired - Fee Related JP5139033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282326A JP5139033B2 (en) 2007-10-30 2007-10-30 Waste water treatment method and waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282326A JP5139033B2 (en) 2007-10-30 2007-10-30 Waste water treatment method and waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2009106869A JP2009106869A (en) 2009-05-21
JP5139033B2 true JP5139033B2 (en) 2013-02-06

Family

ID=40776000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282326A Expired - Fee Related JP5139033B2 (en) 2007-10-30 2007-10-30 Waste water treatment method and waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP5139033B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150485A (en) * 1981-03-13 1982-09-17 Nippon Kentetsu Co Ltd Batch-wise activated sludge treatment device
JPS59115790A (en) * 1982-12-24 1984-07-04 Shusuke Kobayashi Sewage treating device
JPS6142398A (en) * 1984-07-31 1986-02-28 Hitachi Plant Eng & Constr Co Ltd Batchwise sewage treatment apparatus
JPS61138594A (en) * 1984-12-10 1986-06-26 Nishihara Environ Sanit Res Corp Rebuilding process of filthy water treating apparatus
JPS62152598A (en) * 1985-12-26 1987-07-07 Kurita Water Ind Ltd Treatment of organic waste water
JPH01148396A (en) * 1987-12-03 1989-06-09 Hitachi Plant Eng & Constr Co Ltd Operation of batch type filthy water treating apparatus
JP2874183B2 (en) * 1989-04-27 1999-03-24 株式会社安川電機 Batch activated sludge treatment control device
JPH09168793A (en) * 1995-12-20 1997-06-30 Kubota Corp Operation of batchwise activated sludge method

Also Published As

Publication number Publication date
JP2009106869A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP3332722B2 (en) Organic wastewater treatment method and organic wastewater treatment device
US20070119763A1 (en) Floating sequencing batch reactor and method for wastewater treatment
JP5419697B2 (en) Organic waste treatment method and apparatus
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP2018138292A (en) Water treatment method and apparatus
KR20070016079A (en) Method of treating organic waste water
AU2010228488B2 (en) Process for producing reclaimed water and system for producing reclaimed water
JP2008114215A (en) Method and apparatus for treating sludge
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
CN111777291A (en) Treatment system for coal chemical industry wastewater
JP4386054B2 (en) Intermittent biological treatment method
JP5139033B2 (en) Waste water treatment method and waste water treatment equipment
JP3483081B2 (en) Organic wastewater treatment method and treatment device
WO2005028380A1 (en) Activated sludge process and apparatus with high biomass concentration using a downflow sludge blanket filtration
US6280624B1 (en) Biological waste water purification process and device
CN211770554U (en) A processing apparatus for leachate short cut nitrification denitrification
JP3750923B2 (en) Method for adjusting activated sludge, method and apparatus for treating organic wastewater using the same
US11352275B2 (en) High solids dissolved air flotation system and methods
US11447408B2 (en) Combination of captivator and fixed film bioreactor solutions
JP6875059B2 (en) Wastewater treatment method and wastewater treatment equipment
US20120181233A1 (en) Wastewater treatment system and method
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
CN105314788B (en) Integrated multi-zone wastewater treatment system and process
KR20010003936A (en) Advanced Sewage and Wastewater Treatment Process using the Autotrophic Denitrifiers
JP2002346585A (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees