JP5138884B2 - Super wide angle lens - Google Patents

Super wide angle lens Download PDF

Info

Publication number
JP5138884B2
JP5138884B2 JP2005331930A JP2005331930A JP5138884B2 JP 5138884 B2 JP5138884 B2 JP 5138884B2 JP 2005331930 A JP2005331930 A JP 2005331930A JP 2005331930 A JP2005331930 A JP 2005331930A JP 5138884 B2 JP5138884 B2 JP 5138884B2
Authority
JP
Japan
Prior art keywords
lens
lenses
diagram
wide
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331930A
Other languages
Japanese (ja)
Other versions
JP2007139985A (en
Inventor
直樹 茂庭
靖 高橋
克行 山影
伸夫 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2005331930A priority Critical patent/JP5138884B2/en
Publication of JP2007139985A publication Critical patent/JP2007139985A/en
Application granted granted Critical
Publication of JP5138884B2 publication Critical patent/JP5138884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

この発明は超広角レンズに関する。   The present invention relates to an ultra-wide angle lens.

超広角レンズは、車載カメラ用や防犯カメラ用として幅広く用いられている。これらのカメラには性能はもとより小型、低コストであることが求められる。
従来、このような超広角レンズとして、2群6枚の超広角レンズが提案されている(特許文献1)。この超広角レンズは、2群6枚という少ないレンズ枚数で、166度を超える広画角を実現しているが、後群に貼り合せレンズを使用しており、レンズ製造における貼り合せの工数などを考えると低コスト化が容易でない。
Ultra-wide-angle lenses are widely used for in-vehicle cameras and security cameras. These cameras are required not only to have performance but also to be small and low cost.
Conventionally, as such an ultra-wide-angle lens, two groups and six super-wide-angle lenses have been proposed (Patent Document 1). This super wide-angle lens achieves a wide angle of view exceeding 166 degrees with a small number of 6 lenses in 2 groups, but it uses a bonded lens in the rear group, and the number of bonding steps in lens manufacturing, etc. Therefore, it is not easy to reduce the cost.

特開2002−72085JP 2002-72085 A

この発明は上述した事情に鑑み、レンズ枚数が少なく、コンパクトで安価かつ高性能の超広角レンズの実現を課題とする。   In view of the circumstances described above, an object of the present invention is to realize a compact, inexpensive and high-performance ultra-wide-angle lens with a small number of lenses.

この発明の超広角レンズは、複数枚の正レンズと複数枚の負レンズを有し、レンズ面のうちの少なくとも1面が回折光学面である
そして、絞りを挟んで前群3枚と後群3枚の6枚のレンズによる構成、前群において物体側の2枚のレンズ(物体側から数えて1枚目と2枚目のレンズ)がそれぞれ負の焦点距離を持ち、後群において像面側の2枚のレンズ(像面側から数えて1枚目と2枚目のレンズ)がそれぞれ正の焦点距離を持つ。
回折光学面は、後群に設けることが好ましい(請求項2)。
Ultra wide-angle lens of this invention has a plurality of positive lenses and a plurality of negative lens, at least one surface of the lens surface is a diffractive optical surface.
Then, in the configuration according to the prior three and rear three six lens group group across the aperture, before the two lenses (1 sheet and second sheet lens counted from the object side) of the object side group Each have a negative focal length, and in the rear group, the two lenses on the image plane side (the first lens and the second lens counted from the image plane side) each have a positive focal length .
The diffractive optical surface is preferably provided in the rear group.

請求項1、2記載の超広角レンズは何れも、前群において物体側から数えて1枚目と2枚目の負レンズの合成焦点距離:f1、後群において像面側から数えて1枚目と2枚目の正レンズの合成焦点距離:f2、レンズ全体の焦点距離:fが、条件:
(1) −4≦f1/f≦−2
(2) 2.5≦f2/f≦4.5
満足する
Each of the super wide-angle lenses described in claims 1 and 2 has a combined focal length f1 of the first and second negative lenses counted from the object side in the front group, and one lens counted from the image plane side in the rear group. The combined focal length of the second positive lens and the second lens is f2, and the focal length of the entire lens is f.
(1) -4 ≦ f1 / f ≦ -2
(2) 2.5 ≦ f2 / f ≦ 4.5
Satisfied .

発明者らは、超広角レンズにおける画角の更なる拡大を目指して研究を行ってきたが、画角を拡大してなおかつ良好な性能を実現する際に、色収差の補正が重要であることを見出した。特許文献1には色収差に関する言及はないが、同文献記載の超広角レンズのように、レンズ系内に貼り合わせレンズを用いることは色収差補正手段として有効である。しかし、貼り合わせレンズを用いることは前述した如く、レンズの製造工程として面倒な張り合わせ工程を必要とし、低コストの超広角レンズの実現が困難である。   The inventors have conducted research aimed at further widening the angle of view in an ultra-wide-angle lens, but it is important to correct chromatic aberration when expanding the angle of view and achieving good performance. I found it. Although there is no mention of chromatic aberration in Patent Document 1, it is effective as a means for correcting chromatic aberration to use a cemented lens in the lens system as in the super wide-angle lens described in the document. However, using a bonded lens requires a troublesome bonding process as a manufacturing process of the lens as described above, and it is difficult to realize a low-cost super-wide-angle lens.

発明者らは、回折光学面のアッベ数が負であることに着目し、色収差の補正に回折光学面を利用できるとの認識にいたった。   The inventors noticed that the Abbe number of the diffractive optical surface is negative, and came to recognize that the diffractive optical surface can be used for correcting chromatic aberration.

回折光学面がアッベ数を有することから、回折光学面とレンズとの組合わせにより色収差を補正することができる。一般に、色収差の補正には、アッベ数の異なる正負のレンズが組合わせられるが、アッベ数はレンズ材料により一義的に定まるため、色収差補正のために適当なアッベ数をもったレンズ材質を選択しなければならず、材料選択の自由度はさほど大きくない。   Since the diffractive optical surface has an Abbe number, chromatic aberration can be corrected by a combination of the diffractive optical surface and the lens. In general, positive and negative lenses with different Abbe numbers are combined to correct chromatic aberration. However, since the Abbe number is uniquely determined by the lens material, a lens material having an appropriate Abbe number is selected for correcting chromatic aberration. The degree of freedom of material selection is not so great.

これに対し、回折光学面の有する負のアッベ数は、回折光学面自体の形態に応じて設計的に設定できるので、色収差補正に最適なアッベ数を容易に実現可能である。また、回折光学面は色収差の補正のみならず、球面収差等他の収差の補正にも有効に利用できる。   On the other hand, the negative Abbe number of the diffractive optical surface can be set by design according to the form of the diffractive optical surface itself, so that the optimum Abbe number for chromatic aberration correction can be easily realized. Further, the diffractive optical surface can be effectively used not only for correcting chromatic aberration but also for correcting other aberrations such as spherical aberration.

請求項1記載の超広角レンズでは、上記の如く、レンズ面のうちの少なくとも1面を回折光学面とすることにより、回折光学面の有する収差補正機能を利用して、レンズ枚数を必要以上に増やすことなく、光学収差、特に色収差の補正を効果的に行ない、超広角を実現と良好な性能とを実現する。   In the super wide-angle lens according to claim 1, as described above, by using at least one of the lens surfaces as a diffractive optical surface, the aberration correction function of the diffractive optical surface is used, so that the number of lenses is more than necessary. Without increasing, optical aberrations, particularly chromatic aberrations, are effectively corrected to achieve super wide angle and good performance.

請求項1記載の超広角レンズのように「絞りを挟んで前群3枚と後群3枚の6枚のレンズから構成」することにより、光学性能を高めることができる。また、6群6枚構成は、特許文献1記載の超広角レンズと同数枚の構成であり、特許文献1記載のものと同様にコンパクトに実現でき、またレンズ系内に貼り合わせレンズを含まないのでより安価に製造可能である。 The optical performance can be enhanced by “comprising six lenses of three front groups and three rear groups with a diaphragm” as in the super wide-angle lens described in claim 1 . Further, the 6-group 6-lens configuration is the same number as the super wide-angle lens described in Patent Document 1, and can be realized in a compact manner similar to that described in Patent Document 1, and does not include a bonded lens in the lens system. Therefore, it can be manufactured at a lower cost.

前群の役割は、主に軸外の光を「できるだけ光学収差の発生を抑えながら絞り以降の後群へ導く」ことにある。したがって、前群においては、各レンズ面で「緩やかに光を屈折させる」必要があり、この点を鑑みて請求項1記載の超広角レンズでは、前群として3枚のレンズを配し、さらに少なくとも物体側に位置する2枚を負のパワーを持つレンズとしている。 The role of the front group is mainly to “guide the off-axis light to the rear group after the stop while suppressing the occurrence of optical aberration as much as possible”. Therefore, in the front group, it is necessary to “refractively refract light” at each lens surface. In view of this point, in the super wide-angle lens according to claim 1 , three lenses are arranged as the front group, At least two lenses located on the object side are lenses having negative power.

一方、後群は、非点収差、コマ収差、色収差などの光学収差を補正する役割を担うので、光学収差を効果的に補正するように、後群として3枚のレンズを配し、さらに像面への光の結像効果を高めるため、少なくとも像面側に位置する2枚を正のパワーを持つレンズとしている。 On the other hand, the rear group plays a role of correcting optical aberrations such as astigmatism, coma aberration, and chromatic aberration. Therefore, in order to effectively correct the optical aberration, three lenses are arranged as a rear group , and further, In order to enhance the imaging effect of light on the surface, at least two lenses positioned on the image surface side are lenses having positive power.

請求項2記載の超広角レンズのように「回折光学面を後群中のレンズのレンズ面」として設けることにより、後群の有するべき収差補正機能を、回折光学面の効果を有効に利用してより高めることができる。 By providing the diffractive optical surface as the lens surface of the lens in the rear group as in the super-wide-angle lens according to claim 2, the aberration correction function that the rear group should have can be effectively used. Can be increased.

条件(1)のパラメータ:f1/fが下限値を超えて小さくなると、前群における「物体側の2枚の負レンズ」の負の合成パワーが小さくなるため、超広角を確保するために、前群の最も物体側にあるレンズ(物体側から数えて1枚目のレンズ)の有効径を大きくせざるを得ず、コンパクト性、低コスト性の実現が困難となる。   When the parameter of condition (1): f1 / f becomes smaller than the lower limit value, the negative composite power of the “two negative lenses on the object side” in the front group becomes smaller. In order to ensure a super wide angle, The effective diameter of the lens closest to the object side in the front group (the first lens counted from the object side) must be increased, making it difficult to achieve compactness and low cost.

パラメータ:f1/fが条件(1)の上限を超えて大きくなると、前群における「物体側の2枚の負レンズ」の負の合成パワーが大きくなり、超広角化には有利であるが、前群の各レンズ面で「緩やかに光を屈折させる」ことが困難となり、非点収差、コマ収差などの光学収差の劣化を後群により補正することが困難になる。   When the parameter: f1 / f increases beyond the upper limit of the condition (1), the negative composite power of the “two negative lenses on the object side” in the front group increases, which is advantageous for super-wide angle. It becomes difficult to “reflect light gently” on each lens surface of the front group, and it becomes difficult to correct deterioration of optical aberrations such as astigmatism and coma aberration by the rear group.

条件(2)のパラメータ:f2/fが条件(2)の下限を超えて小さくなると、後群における「像面側の2枚の正レンズ」の正の合成パワーが小さくなり、非点収差、コマ収差などの光学収差が劣化しやすくなる。また、パラメータ;f2/fが条件(2)の上限を超えて大きくなると、後群における「像面側の2枚のレンズ」の正の合成パワーが大きくなり、超広角レンズの全長が長くなってコンパクト性に欠けるものとなってしまう。   When the parameter of condition (2): f2 / f becomes smaller than the lower limit of condition (2), the positive combined power of the “two positive lenses on the image plane side” in the rear group becomes smaller, and astigmatism, Optical aberrations such as coma tend to deteriorate. When the parameter f2 / f exceeds the upper limit of the condition (2), the positive combined power of the “two lenses on the image plane side” in the rear group increases, and the total length of the super wide-angle lens increases. And lacks compactness.

なお、この発明の超広角レンズは、画角:140度以上のものとして有効に実施可能であるが、特に170度を超えるような大きな画角のものとして有効に実施可能である。後述する実施例では画角190度で良好な性能を持つ超広角レンズが実現されている。   The super wide-angle lens of the present invention can be effectively implemented with a field angle of 140 degrees or more, but can be effectively implemented particularly with a large field angle exceeding 170 degrees. In an example described later, an ultra-wide-angle lens having an angle of view of 190 degrees and good performance is realized.

上に説明したように、この発明によれば、回折光学面をレンズ面として用い、収差補正、特に色収差の補正に寄与させることにより、コンパクトで性能良好な超広角レンズを実現できる。この発明の超広角レンズは、貼り合わせレンズを用いないので、製造工程中に面倒な貼り合わせ工程が不要であるため製造が容易であり、低コストで実現できる。   As described above, according to the present invention, a compact and excellent performance ultra-wide-angle lens can be realized by using a diffractive optical surface as a lens surface and contributing to aberration correction, particularly correction of chromatic aberration. Since the super wide-angle lens of the present invention does not use a bonded lens, a troublesome bonding process is not required during the manufacturing process, so that the manufacturing is easy and can be realized at low cost.

図1は、超広角レンズの実施の1形態を示している。
図1に示す超広角レンズは、物体側(図の左方)から順に、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5、第6レンズL6を配し、絞りIを、第3レンズL3と第4レンズL4の間に有する。
FIG. 1 shows an embodiment of an ultra-wide-angle lens.
The super wide-angle lens shown in FIG. 1 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in order from the object side (left side in the figure). The diaphragm I is provided between the third lens L3 and the fourth lens L4.

第1レンズL1〜第3レンズL3は「前群」を構成し、第1レンズL1と第2レンズL2は共に「負レンズ」である。第3レンズL3は「負レンズ」にも「正レンズ」にもなりうる。第4レンズL4〜第6レンズL6は「後群」を構成し、第5レンズL5と第6レンズL6は共に「正レンズ」である。第4レンズは「正レンズ」にも「負レンズ」にもなりうる。   The first lens L1 to the third lens L3 constitute a “front group”, and the first lens L1 and the second lens L2 are both “negative lenses”. The third lens L3 can be a “negative lens” or a “positive lens”. The fourth lens L4 to the sixth lens L6 constitute a “rear group”, and the fifth lens L5 and the sixth lens L6 are both “positive lenses”. The fourth lens can be a “positive lens” or a “negative lens”.

以下、この発明の超広角レンズの実施例1〜4を挙げる。また、比較例として「回折光学面を用いない例」を1例挙げる。これら実施例1〜4、比較例は何れも車載カメラや防犯カメラに用いられるものであり、物体像は撮像素子(CCDエリアセンサ等)の受光面上に結像する。図1における「カバーガラス」は、受光素子の受光面を保護するカバーガラスやフィルタを代表して表しており、「像面」は受光面と合致している。   Examples 1 to 4 of the super wide-angle lens of the present invention will be described below. In addition, as an example for comparison, an example “an example that does not use a diffractive optical surface” is given. These Examples 1 to 4 and Comparative Example are all used for in-vehicle cameras and security cameras, and an object image is formed on a light receiving surface of an image sensor (CCD area sensor or the like). The “cover glass” in FIG. 1 represents a cover glass and a filter that protect the light receiving surface of the light receiving element, and the “image surface” matches the light receiving surface.

物体距離は無限大、設計Fナンバは3.2、設計波長は450nm、530nm、630nmである。また、実施例1〜4、比較例とも最大画角は190度(半画角:95度)である。
図18〜図21に順次、実施例1〜4の超広角レンズのレンズ構成図を、図1に倣って示す。また、図22には、比較例レンズのレンズ構成図を図1に倣って示す。
The object distance is infinite, the design F number is 3.2, and the design wavelengths are 450 nm, 530 nm, and 630 nm. In each of Examples 1 to 4 and the comparative example, the maximum field angle is 190 degrees (half field angle: 95 degrees).
FIG. 18 to FIG. 21 sequentially illustrate the lens configuration diagrams of the super wide-angle lenses of Examples 1 to 4, following FIG. In addition, FIG. 22 shows a lens configuration diagram of the comparative example lens, following FIG.

実施例および比較例中の非球面は、周知の以下の式で表す。   The aspheric surfaces in Examples and Comparative Examples are represented by the following well-known expressions.

Z=(1/R)h/[1+{1−(1+K)(h/R)}1/2]+Ah+Bh+Ch
ここに、Zは非球面量、hは光軸からの距離、Rは近軸曲率半径、Kは円錐定数、A、B、Cは非球面係数である。
また、回折光学面(DOE面)で生じる位相差:Φは以下の式により表す。
Z = (1 / R) h 2 / [1+ {1- (1 + K) (h / R) 2 } 1/2 ] + Ah 2 + Bh 4 + Ch 6
Here, Z is an aspherical amount, h is a distance from the optical axis, R is a paraxial radius of curvature, K is a conic constant, and A, B, and C are aspherical coefficients.
Further, the phase difference Φ generated on the diffractive optical surface (DOE surface) is expressed by the following equation.

φ=M{E(r/Rn)+F(r/Rn)+G(r/Rn)
ここに、Mは回折次数、rは面上の半径方向の座標、E、F、Gは係数である。これらM、E、F、Gを以下「位相係数」と呼ぶ。
図2に「回折光学面をレンズ面に形成した概念図」を示す。図中、連続した滑らかな線で示す「基準面」は、非球面データや曲率半径によって定まるレンズ面の形状であり、この基準面に沿う「鋸歯状の部分(形状)」は、上記位相差:Φにより特定される回折光学面の形状である。
φ = M {E (r / Rn) 2 + F (r / Rn) 4 + G (r / Rn) 6 }
Here, M is the diffraction order, r is the radial coordinate on the surface, and E, F, and G are coefficients. These M, E, F, and G are hereinafter referred to as “phase coefficients”.
FIG. 2 shows a “conceptual diagram in which a diffractive optical surface is formed on a lens surface”. In the figure, the “reference surface” indicated by a continuous smooth line is the shape of the lens surface determined by the aspheric data and the radius of curvature, and the “sawtooth portion (shape)” along the reference surface is the above phase difference. : The shape of the diffractive optical surface specified by Φ.

f=0.8mm、f1/f=−2.83、f2/f=3.11
実施例1の諸元を表1に示す。
f = 0.8 mm, f1 / f = −2.83, f2 / f = 3.11
The specifications of Example 1 are shown in Table 1.

Figure 0005138884
Figure 0005138884

面:1〜15は、図1において物体側から数えた面番号であり、絞りIの面を含む。曲率半径は図1にR1〜R13で示すものであり、面間隔は図1中にD1〜D15で示すものである。以下においても同様である。   Surfaces: 1 to 15 are surface numbers counted from the object side in FIG. The radius of curvature is indicated by R1 to R13 in FIG. 1, and the surface spacing is indicated by D1 to D15 in FIG. The same applies to the following.

非球面(表1において*印を付した面)における円錐定数、非球面係数を表2に示す。   Table 2 shows the conic constant and the aspheric coefficient on the aspheric surface (the surface marked with * in Table 1).

Figure 0005138884
Figure 0005138884

上の表記において、例えば「5.7081E-3」は「5.7081×10-3」を意味する。以下においても同様である。 In the above notation, for example, “5.7081E-3” means “5.7081 × 10 −3 ”. The same applies to the following.

回折光学面(表1において*印を付した面)の位相係数を表3に示す。   Table 3 shows the phase coefficient of the diffractive optical surface (the surface marked with * in Table 1).

Figure 0005138884
Figure 0005138884

第1〜第6レンズのパワーの正負を表4に示す。   Table 4 shows the positive and negative powers of the first to sixth lenses.

Figure 0005138884
Figure 0005138884

f=0.8mm、f1/f=−2.96、f2/f=3.14
実施例2の諸元を表5に示す。
f = 0.8 mm, f1 / f = −2.96, f2 / f = 3.14
The specifications of Example 2 are shown in Table 5.

Figure 0005138884
Figure 0005138884

非球面(表5において*印を付した面)における円錐定数、非球面係数を表6に示す。   Table 6 shows the conic constant and aspheric coefficient of the aspheric surface (the surface marked with * in Table 5).

Figure 0005138884
Figure 0005138884

回折光学面(表5において*印を付した面)の位相係数を表7に示す。   Table 7 shows the phase coefficient of the diffractive optical surface (the surface marked with * in Table 5).

Figure 0005138884
Figure 0005138884

第1〜第6レンズのパワーの正負を表8に示す。   Table 8 shows the positive and negative powers of the first to sixth lenses.

Figure 0005138884
Figure 0005138884

f=0.8mm、f1/f=−3.34、f2/f=4.11
実施例3の諸元を表9に示す。
f = 0.8 mm, f1 / f = −3.34, f2 / f = 4.11
Table 9 shows the data of Example 3.

Figure 0005138884
Figure 0005138884

非球面(表9において*印を付した面)における円錐定数、非球面係数を表10に示す。   Table 10 shows the conic constant and the aspheric coefficient on the aspheric surface (the surface marked with * in Table 9).

Figure 0005138884
Figure 0005138884

回折光学面(表9において*印を付した面)の位相係数を表11に示す。   Table 11 shows the phase coefficient of the diffractive optical surface (the surface marked with * in Table 9).

Figure 0005138884
Figure 0005138884

第1〜第6レンズのパワーの正負を表12に示す。   Table 12 shows the positive and negative powers of the first to sixth lenses.

Figure 0005138884
Figure 0005138884

f=0.8mm、f1/f=−2.48、f2/f=4.13
実施例4の諸元を表13に示す。
f = 0.8 mm, f1 / f = −2.48, f2 / f = 4.13
Table 13 shows the data of Example 4.

Figure 0005138884
Figure 0005138884

非球面(表13において*印を付した面)における円錐定数、非球面係数を表14に示す。   Table 14 shows the conic constant and the aspheric coefficient on the aspheric surface (the surface marked with * in Table 13).

Figure 0005138884
Figure 0005138884

回折光学面(表13において*印を付した面)の位相係数を表15に示す。   Table 15 shows the phase coefficient of the diffractive optical surface (the surface marked with * in Table 13).

Figure 0005138884
Figure 0005138884

第1〜第6レンズのパワーの正負を表16に示す。   Table 16 shows the positive and negative powers of the first to sixth lenses.

Figure 0005138884
Figure 0005138884

「比較例(光学回折面なし)」
f=0.8mm
比較例の諸元を表17に示す。
"Comparative example (no optical diffractive surface)"
f = 0.8mm
Table 17 shows the specifications of the comparative example.

Figure 0005138884
Figure 0005138884

非球面(表17において*印を付した面)における円錐定数、非球面係数を表18に示す。   Table 18 shows the conic constant and the aspheric coefficient on the aspheric surface (the surface marked with * in Table 17).

Figure 0005138884
Figure 0005138884

第1〜第6レンズのパワーの正負を表19に示す。   Table 19 shows the positive and negative powers of the first to sixth lenses.

Figure 0005138884
Figure 0005138884

実施例1の収差図を図3〜図5に示す。図3は、非点収差およびディストーション(歪曲収差)の図、図4はコマ収差と倍率色収差の図(各画角における左図がタンジェンシアル方向、右図がサジタル方向である。)、図5はMTF図である。これら収差図において、Tはタンジェンシアル、Sはサジタルを意味する。他の収差図においても同様である。   Aberration diagrams of Example 1 are shown in FIGS. 3 is a diagram of astigmatism and distortion (distortion aberration), FIG. 4 is a diagram of coma aberration and lateral chromatic aberration (the left diagram at each angle of view is the tangential direction, and the right diagram is the sagittal direction), FIG. 5 is an MTF diagram. In these aberration diagrams, T means tangential and S means sagittal. The same applies to other aberration diagrams.

実施例2の収差図を図6〜図8に示す。図6は、非点収差およびディストーション(歪曲収差)の図、図7はコマ収差の図、図8はMTF図である。
実施例3の収差図を図9〜図11に示す。図9は、非点収差およびディストーション(歪曲収差)の図、図10はコマ収差と倍率色収差の図、図11はMTF図である。
実施例4の収差図を図12〜図14に示す。図12は、非点収差およびディストーション(歪曲収差)の図、図13はコマ収差と倍率色収差の図、図14はMTF図である。
比較例の収差図を図15〜図17に示す。図15は、非点収差およびディストーション(歪曲収差)の図、図16はコマ収差と倍率色収差の図、図17はMTF図である。
比較例は、実施例1と同じレンズ構成(「前群」負・負・正、「後群」負・正・正)で、条件(1)、(2)を満足しつつ、回折光学面を用いずに各収差を最適化した例であるが、比較例の各収差を実施例1のものと比較すると明らかなように、像面湾曲、コマ収差、倍率色収差、MTFの何れを見ても実施例1の性能に及ばない。このことから、回折光学面を用いることの効果が明らかである。
Aberration diagrams of Example 2 are shown in FIGS. 6 is a diagram of astigmatism and distortion (distortion aberration), FIG. 7 is a diagram of coma aberration, and FIG. 8 is an MTF diagram.
Aberration diagrams of Example 3 are shown in FIGS. 9 is a diagram of astigmatism and distortion (distortion aberration), FIG. 10 is a diagram of coma aberration and lateral chromatic aberration, and FIG. 11 is an MTF diagram.
Aberration diagrams of Example 4 are shown in FIGS. 12 is a diagram of astigmatism and distortion (distortion aberration), FIG. 13 is a diagram of coma aberration and lateral chromatic aberration, and FIG. 14 is an MTF diagram.
Aberration diagrams of the comparative examples are shown in FIGS. 15 is a diagram of astigmatism and distortion (distortion aberration), FIG. 16 is a diagram of coma aberration and lateral chromatic aberration, and FIG. 17 is an MTF diagram.
The comparative example has the same lens configuration as in Example 1 (“front group” negative / negative / positive, “back group” negative / positive / positive), and satisfies the conditions (1) and (2), while satisfying the diffractive optical surface. In this example, each aberration is optimized without using the lens. As is clear when each aberration in the comparative example is compared with that in Example 1, any one of curvature of field, coma aberration, lateral chromatic aberration, and MTF is observed. Also, it does not reach the performance of the first embodiment. From this, the effect of using the diffractive optical surface is clear.

この発明の超広角レンズの実施の1形態を示す図である。It is a figure which shows one Embodiment of the super-wide-angle lens of this invention. 回折光学面の概念図である。It is a conceptual diagram of a diffractive optical surface. 実施例1の非点収差図、ディストーション図である。FIG. 4 is an astigmatism diagram and a distortion diagram of Example 1. 実施例1のコマ収差図、倍率色収差図である。FIG. 6 is a coma aberration diagram and a chromatic aberration diagram of magnification in Example 1. 実施例1のMTF図である。1 is an MTF diagram of Example 1. FIG. 実施例2の非点収差図、ディストーション図である。FIG. 4 is an astigmatism diagram and a distortion diagram of Example 2. 実施例2のコマ収差図、倍率色収差図である。FIG. 4 is a coma aberration diagram and a lateral chromatic aberration diagram of Example 2. 実施例2のMTF図である。6 is an MTF diagram of Example 2. FIG. 実施例3の非点収差図、ディストーション図である。FIG. 6 is an astigmatism diagram and a distortion diagram of Example 3. 実施例3のコマ収差図、倍率色収差図である。FIG. 6 is a coma aberration diagram and a lateral chromatic aberration diagram of Example 3. 実施例3のMTF図である。6 is an MTF diagram of Example 3. FIG. 実施例4の非点収差図、ディストーション図である。FIG. 6 is an astigmatism diagram and a distortion diagram of Example 4. 実施例4のコマ収差図、倍率色収差図である。FIG. 6 is a coma aberration diagram and a lateral chromatic aberration diagram of Example 4. 実施例4のMTF図である。FIG. 6 is an MTF diagram of Example 4. 比較例の非点収差図、ディストーション図である。It is an astigmatism figure of a comparative example, and a distortion figure. 比較例のコマ収差図、倍率色収差図である。It is a coma aberration figure of a comparative example, and a magnification chromatic aberration figure. 比較例のMTF図である。It is a MTF figure of a comparative example. 実施例1の超広角レンズのレンズ構成を示す図である。FIG. 3 is a diagram illustrating a lens configuration of an ultra wide-angle lens according to Example 1. 実施例2の超広角レンズのレンズ構成を示す図である。6 is a diagram illustrating a lens configuration of an ultra-wide-angle lens according to Example 2. FIG. 実施例3の超広角レンズのレンズ構成を示す図である。6 is a diagram illustrating a lens configuration of an ultra-wide-angle lens according to Example 3. FIG. 実施例4の超広角レンズのレンズ構成を示す図である。6 is a diagram illustrating a lens configuration of an ultra-wide-angle lens according to Example 4. FIG. 比較例レンズのレンズ構成を示す図である。It is a figure which shows the lens structure of a comparative example lens.

符号の説明Explanation of symbols

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
I 絞り
L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens L6 6th lens I Aperture

Claims (2)

複数枚の正レンズと複数枚の負レンズとを有し、レンズ面のうちの少なくとも1面が回折光学面であり、
絞りを挟んで前群3枚と後群3枚の6枚のレンズから構成され、
前群において物体側の2枚のレンズがそれぞれ負の焦点距離を持ち、後群において像面側の2枚のレンズがそれぞれ正の焦点距離を持ち、
前群において物体側から数えて1枚目と2枚目の負レンズの合成焦点距離:f1、後群において像面側から数えて1枚目と2枚目の正レンズの合成焦点距離:f2、レンズ全体の焦点距離:fが、条件:
(1) −4≦f1/f≦−2
(2) 2.5≦f2/f≦4.5
を満足することを特徴とする超広角レンズ。
And a plurality of positive lenses and a plurality of negative lenses, Ri least one surface diffractive optical surface der of the lens surface,
It consists of 6 lenses, 3 in the front group and 3 in the rear group, across the aperture.
Two lenses on the object side in the front group each have a negative focal length, and two lenses on the image plane side in the rear group each have a positive focal length,
The combined focal length of the first and second negative lenses counted from the object side in the front group: f1, and the combined focal length of the first and second positive lenses counted from the image plane side in the rear group: f2. The focal length of the entire lens: f is the condition:
(1) -4 ≦ f1 / f ≦ -2
(2) 2.5 ≦ f2 / f ≦ 4.5
An ultra-wide-angle lens characterized by satisfying
請求項1記載の超広角レンズにおいて、
回折光学面を後群に設けたことを特徴とする超広角レンズ
The super wide-angle lens according to claim 1,
An ultra-wide-angle lens having a diffractive optical surface in the rear group .
JP2005331930A 2005-11-16 2005-11-16 Super wide angle lens Expired - Fee Related JP5138884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331930A JP5138884B2 (en) 2005-11-16 2005-11-16 Super wide angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331930A JP5138884B2 (en) 2005-11-16 2005-11-16 Super wide angle lens

Publications (2)

Publication Number Publication Date
JP2007139985A JP2007139985A (en) 2007-06-07
JP5138884B2 true JP5138884B2 (en) 2013-02-06

Family

ID=38202940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331930A Expired - Fee Related JP5138884B2 (en) 2005-11-16 2005-11-16 Super wide angle lens

Country Status (1)

Country Link
JP (1) JP5138884B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160479A (en) 2008-12-10 2010-07-22 Fujinon Corp Imaging lens and imaging apparatus using imaging lens
KR101136939B1 (en) 2010-07-15 2012-04-20 엘지이노텍 주식회사 Super wide angle optic lens system
TWI533018B (en) 2013-08-28 2016-05-11 揚明光學股份有限公司 Fixed-focus lens
TWI582457B (en) 2016-04-20 2017-05-11 大立光電股份有限公司 Imaging optical lens assembly, image capturing unit and electronic device
TWI594010B (en) 2016-07-05 2017-08-01 大立光電股份有限公司 Optical imaging lens assembly, image capturing apparatus and electronic device
TWI628458B (en) * 2016-12-14 2018-07-01 揚明光學股份有限公司 Optics lens
TWI600940B (en) 2017-03-01 2017-10-01 大立光電股份有限公司 Optical imaging lens system, image capturing unit and electronic device
CN107450161A (en) * 2017-09-15 2017-12-08 江西联创电子有限公司 New fish eye lens
JP6985647B2 (en) * 2018-03-22 2021-12-22 コニカミノルタ株式会社 Optical system, lens unit, and image pickup device
CN109116522B (en) * 2018-11-12 2024-04-23 浙江舜宇光学有限公司 Image pickup lens
CN111796403B (en) * 2019-04-08 2022-03-11 宁波舜宇车载光学技术有限公司 Optical lens and imaging apparatus
CN113281876B (en) * 2021-04-28 2024-01-09 江西欧菲光学有限公司 Optical system, camera module, electronic equipment and car
CN113985581B (en) * 2021-11-12 2023-09-05 江西晶超光学有限公司 Optical system, camera module, electronic equipment and vehicle-mounted system
CN114859527A (en) * 2022-06-08 2022-08-05 湖南博明英光学科技有限公司 Ultra-wide angle optical system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367581B2 (en) * 1999-03-08 2009-11-18 株式会社ニコン High-resolution photographic lens system
JP3467018B2 (en) * 2000-03-08 2003-11-17 キヤノン株式会社 Optical system and optical equipment
JP3938143B2 (en) * 2004-02-09 2007-06-27 コニカミノルタオプト株式会社 Super wide-angle optical system

Also Published As

Publication number Publication date
JP2007139985A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP5138884B2 (en) Super wide angle lens
JP5736924B2 (en) Imaging lens and imaging apparatus
JP6882838B2 (en) Imaging lens
US9690080B2 (en) Wide angle lens
JP4879600B2 (en) Imaging lens
JP4776948B2 (en) Variable magnification optical system
US7751128B2 (en) Wide-angle lens
JP2007206516A (en) Imaging lens
JPH11142730A (en) Image pickup lens
JPH04267212A (en) Ultra wide angle lens
JP7319049B2 (en) imaging lens
JPWO2013024692A1 (en) Imaging lens
JP6814519B2 (en) Imaging lens
JP4890943B2 (en) Imaging lens
JP7149095B2 (en) imaging lens
JP4917922B2 (en) Zoom lens system, imaging device and camera
JP2018155833A (en) Imaging lens and imaging apparatus
JP7051940B2 (en) Imaging lens of catadioptric system
JP6219183B2 (en) Imaging lens and imaging apparatus
JP2007212636A (en) Zoom lens system, imaging apparatus and camera
JP2003307674A (en) Superwide angle lens
JP7011986B2 (en) Imaging lens
JP2021001993A (en) Wide-angle lens
JP6584142B2 (en) Imaging optical system and imaging apparatus having the same
JP2019207291A (en) Zoom lens and image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees