JP5138352B2 - Processing method and processing apparatus - Google Patents

Processing method and processing apparatus Download PDF

Info

Publication number
JP5138352B2
JP5138352B2 JP2007325042A JP2007325042A JP5138352B2 JP 5138352 B2 JP5138352 B2 JP 5138352B2 JP 2007325042 A JP2007325042 A JP 2007325042A JP 2007325042 A JP2007325042 A JP 2007325042A JP 5138352 B2 JP5138352 B2 JP 5138352B2
Authority
JP
Japan
Prior art keywords
tool
pressing
pressure
workpiece
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007325042A
Other languages
Japanese (ja)
Other versions
JP2009142962A (en
Inventor
将彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2007325042A priority Critical patent/JP5138352B2/en
Publication of JP2009142962A publication Critical patent/JP2009142962A/en
Application granted granted Critical
Publication of JP5138352B2 publication Critical patent/JP5138352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、工具を用いて、ワークの加工面を高精度に加工する加工方法および加工装置に関する。   The present invention relates to a machining method and a machining apparatus for machining a machining surface of a workpiece with high accuracy using a tool.

光ディスク装置や光通信機器等の装置の小型化や大容量化が進む中で、高精度かつ微細な加工を必要とする光学部品(例えば、小径で曲率の大きいガラスレンズ、微細な溝形状を有するガラス部品)が急増している。
ガラス、単結晶シリコン、セラミックス等の硬脆性材料から形成される光学部品は、従来、研削加工または研磨加工によって仕上げられている。しかし、加工面と接触する砥粒の弾性変形が加工面の精度に影響を与えたり、砥粒の目詰まりが加工能率に影響を与えたりするため、高精度化および高能率化の観点から切削加工による加工方法が試みられている。
Optical devices that require high precision and fine processing (for example, glass lenses with a small diameter and a large curvature, and fine groove shapes) as devices such as optical disk devices and optical communication devices become smaller and larger in capacity. Glass parts) are increasing rapidly.
Conventionally, optical parts formed from hard and brittle materials such as glass, single crystal silicon, and ceramics are finished by grinding or polishing. However, since the elastic deformation of the abrasive grains in contact with the machined surface affects the accuracy of the machined surface and clogging of the abrasive grains affects the machining efficiency, cutting is performed from the viewpoint of higher accuracy and higher efficiency. A processing method by processing has been attempted.

硬脆性材料を高精度に切削加工するには、加工部分に脆性破壊ではなく延性破壊が生じるようにする必要がある。このような加工(延性モード加工)では、切込量を常に「最大臨界切込み深さD」以下に維持しなければならない。最大臨界切込み深さDとは、破壊過程が脆性から延性に遷移する点の切込量を示す。代表的な硬脆性材料におけるD値を以下に示す。
硬脆性材料 最大臨界切込み深さ(D)
BK7(ホウ珪酸ガラス) 25nm
Silicon 31nm〜100nm
GE(Germanium) 50nm〜60nm
Vitreous silica(石英ガラス) 180nm
SiC(炭化珪素) 490nm
このように硬脆性材料の延性モード加工では、硬度が高いほどD値が小さくなり、例えば、加工機の運動精度によるD値の変動により、延性モード加工が安定しなくなり、切削工具が損傷してしまう可能性がある。従来の加工機では実用性が伴わないという問題がある。
In order to cut hard brittle materials with high accuracy, it is necessary to cause ductile fracture instead of brittle fracture in the processed portion. In such machining (ductility mode machining), the depth of cut must always be kept below the “maximum critical depth of cut D”. The maximum critical depth of cut D indicates the depth of cut at the point where the fracture process transitions from brittle to ductile. The D value in a typical hard and brittle material is shown below.
Hard brittle material Maximum critical depth of cut (D)
BK7 (borosilicate glass) 25nm
Silicon 31nm-100nm
GE (Germanium) 50nm-60nm
Vitreous silica (quartz glass) 180nm
SiC (silicon carbide) 490nm
Thus, in ductile mode machining of hard and brittle materials, the higher the hardness, the smaller the D value. For example, due to fluctuations in the D value due to the motion accuracy of the processing machine, the ductile mode machining becomes unstable and the cutting tool is damaged. There is a possibility. There is a problem that conventional processing machines are not practical.

このような問題点に対し、ワークの加工面を高精度に加工する方法や装置として、特許文献1に開示された切削方法および切削装置が知られている。
特許文献1の切削装置は、工具を保持するとともに加工面に対向する対向面を有した工具保持具を備える。また、切削装置は、工具保持具の対向面を加工面に対して接近または離隔する方向に揺動させる揺動支持手段と、加工面および対向面の間に静圧力を発生させる静圧力発生手段とを備える。
静圧力発生手段は、具体的には、加工面と対向面との間に切削液を供給する供給装置と、切削液を吸引する吸引装置とを有し、切削液を吸引することで加工面と対向面の間に静圧力を発生させる。このようにして静圧力を発生させることで、加工面と対向面との間隔は、静圧力に応じた間隔となる。切削加工する際には、静圧力を所定以上の大きさにして、切削工具をワークの加工面に接触させ、加工面を一定の切込量で切削加工することができるようになっている。
In order to solve such problems, a cutting method and a cutting apparatus disclosed in Patent Document 1 are known as a method and apparatus for processing a work surface of a workpiece with high accuracy.
The cutting device of Patent Document 1 includes a tool holder that holds a tool and has a facing surface that faces the processing surface. Further, the cutting device includes a swing support unit that swings the opposing surface of the tool holder in a direction approaching or separating from the processing surface, and a static pressure generation unit that generates a static pressure between the processing surface and the opposing surface. With.
Specifically, the static pressure generating means includes a supply device that supplies a cutting fluid between the machining surface and the facing surface, and a suction device that sucks the cutting fluid. And a static pressure is generated between the opposite surfaces. By generating the static pressure in this way, the interval between the processed surface and the facing surface becomes an interval according to the static pressure. At the time of cutting, the static pressure is set to a predetermined level or more, the cutting tool is brought into contact with the work surface of the workpiece, and the work surface can be cut with a constant cutting amount.

特開平成9−262737号公報(図1,2)JP-A-9-262737 (FIGS. 1 and 2)

上述した特許文献1に開示された切削方法および切削装置では、切削液を吸引することによって、加工面と対向面の間に静圧力を発生させているので、安定した静圧力を維持するには、加工面に対向する対向面が所定面積以上必要となる。しかしながら、ワークの加工面が非球面レンズ等のように平面でない場合には、所定面積以上の対向面を確保することが困難である。このような場合、安定した静圧力が得られず、切込量を常に一定に維持することが困難となる。また、切削された切屑を切削液と一緒に吸引した場合に、切削液の吸引流量が変動することで、静圧力を一定に保てず、硬脆性材料を高精度に切削加工できない可能性がある。   In the cutting method and the cutting apparatus disclosed in Patent Document 1 described above, since a static pressure is generated between the machining surface and the opposing surface by sucking the cutting fluid, in order to maintain a stable static pressure The opposing surface that faces the processing surface is required to have a predetermined area or more. However, when the work surface of the workpiece is not a flat surface such as an aspheric lens, it is difficult to secure a facing surface having a predetermined area or more. In such a case, a stable static pressure cannot be obtained, and it becomes difficult to keep the cutting depth constant. In addition, when the cut chips are sucked together with the cutting fluid, the suction flow rate of the cutting fluid may fluctuate, so that the static pressure cannot be kept constant, and hard brittle materials may not be cut with high accuracy. is there.

本発明の目的は、このような課題を解消し、工具をワークに対して安定した一定の押付圧で押し付けることができ、微小な臨界切込み深さが必要とされる硬脆性材料に対し、安定した延性モード加工を行なうことができる加工方法および加工装置を提供することにある。   The object of the present invention is to solve such problems and to press the tool against the workpiece with a stable and constant pressing pressure, and is stable against hard and brittle materials that require a minute critical depth of cut. Another object of the present invention is to provide a processing method and a processing apparatus capable of performing the ductile mode processing.

本発明の加工方法は、工具およびワークを相対移動させながら前記工具によって前記ワークを加工する加工方法であって、前記工具を保持するとともに前記工具を前記ワークに対して押付けおよび引離す方向に移動可能な可動部材と、この可動部材を移動可能に支持する支持部材と、前記可動部材を押付け方向に押し付ける押付圧を発生する押付圧発生部と、前記可動部材を引離す方向に引く引圧を発生する引圧発生部と、を有する定圧機構を用いて、前記押付圧発生部および前記引圧発生部にそれぞれ供給される加圧空気の圧力差を一定にして、前記可動部材を前記ワークに一定の押付圧で押し付けながら加工するとともに、この加工中において、前記可動部材の移動方向における変位量を変位計で検出し、この変位計で検出した前記可動部材の変位量を評価して前記工具のびびりの予見または検出を行い、その予見または検出結果に応じて、前記押付圧発生部および前記引圧発生部にそれぞれ供給する加圧空気の圧力を調整して前記ワークに対する押付力を変化させることを特徴とする。 The machining method of the present invention is a machining method for machining the workpiece by the tool while relatively moving the tool and the workpiece, and holding the tool and moving the tool in a direction of pressing and separating the workpiece. A movable member that can be moved, a support member that movably supports the movable member, a pressing pressure generating unit that generates a pressing pressure that presses the movable member in the pressing direction, and a pulling pressure that pulls the movable member in a direction that separates the movable member. A constant pressure mechanism having a generated pressure generation unit, and a constant pressure difference between the pressurized air supplied to the pressing pressure generation unit and the suction pressure generation unit, respectively, and the movable member to the workpiece with processed while pressing at a certain contact pressure, during this processing, the movable said displacement amount in the moving direction of the movable member detected by the displacement sensor, detected by the displacement sensor Evaluate the amount of displacement of the material to predict or detect the chatter of the tool, and adjust the pressure of the pressurized air supplied to the pressing pressure generation unit and the pulling pressure generation unit according to the prediction or detection result The pressing force against the workpiece is changed .

この構成によれば、可動部材が押付けおよび引離す方向に移動可能に設けられ、この可動部材を一定の押付圧でワークに押付けながら加工するので、ワークの加工面の凹凸に応じて、工具がワークに対して接近または離間する方向へ移動される。これによってワークの加工面の形状や加工装置の動的、静的な精度に関らず、工具の切込量を一定量に維持することができる。
特に、最大臨界切込み深さの微小な硬脆性材料に対しても、押付圧発生部および引圧発生部にそれぞれ供給される加圧空気の圧力差を、その最大臨界切込み深さに相当する圧力差以下に設定することによって、切込量を常に許容範囲内とすることができる。
従って、工具をワークに対して安定した一定の押付圧で押し付けることができ、微小な臨界切込み深さが必要とされる硬脆性材料に対し、安定した延性モード加工を行なうことができる。
また、工具の支持剛性が低くなる場合であっても、工具を保持する可動部材の変位量をレーザ変位計や静電容量型変位計等の変位計によって監視することによって、びびり等の予見または検出ができる。さらに、検出された変位量に応じて定圧機構に供給する加圧空気の条件を変化させることにより、びびり等の発生を抑制できる。
According to this configuration, the movable member is provided so as to be movable in the pressing and separating directions, and the movable member is processed while being pressed against the workpiece with a constant pressing pressure. It is moved in a direction approaching or separating from the workpiece. As a result, the cutting depth of the tool can be maintained at a constant amount regardless of the shape of the workpiece surface and the dynamic and static accuracy of the machining apparatus.
In particular, even for a hard and brittle material with a maximum critical cutting depth, the pressure difference between the pressurized air supplied to the pressing pressure generating section and the pulling pressure generating section is the pressure corresponding to the maximum critical cutting depth. By setting it below the difference, the cutting depth can always be within the allowable range.
Therefore, the tool can be pressed against the workpiece with a stable and constant pressing pressure, and stable ductile mode processing can be performed on a hard and brittle material that requires a minute critical depth of cut.
Even when the support rigidity of the tool is low, by monitoring the displacement amount of the movable member holding the tool with a displacement meter such as a laser displacement meter or a capacitance type displacement meter, Can be detected. Furthermore, chattering and the like can be prevented from occurring by changing the condition of the pressurized air supplied to the constant pressure mechanism according to the detected displacement amount.

本発明の加工方法において、前記押付圧発生部および前記引圧発生部にそれぞれ供給される加圧空気の圧力差を、前記工具の前記ワークに対する切込量に応じて設定することが好ましい。
この構成によれば、押付圧発生部および引圧発生部にそれぞれ供給される加圧空気の圧力を変更するだけで、工具の切込量に相当する圧力差に容易に設定することができ、加工作業の効率化を図ることができる。
In the processing method of the present invention, it is preferable to set a pressure difference between the pressurized air supplied to the pressing pressure generation unit and the pulling pressure generation unit according to a cutting amount of the tool with respect to the workpiece.
According to this configuration, it is possible to easily set the pressure difference corresponding to the cutting depth of the tool by simply changing the pressure of the pressurized air supplied to the pressing pressure generating unit and the pulling pressure generating unit, It is possible to improve the efficiency of the processing work.

本発明の加工装置は、ベースと、このベースに設けられワークを把持するワーク支持手段と、前記ワークを加工する工具と、前記ベースに設けられ前記工具を前記ワークに一定の押付圧で押し付ける定圧機構と、を備え、前記工具および前記ワークを相対移動させながら前記工具によって前記ワークを加工する加工装置であって、前記定圧機構は、前記工具を保持するとともに前記工具を前記ワークに対して押付けおよび引離す方向に移動可能な可動部材と、この可動部材を移動可能に支持する支持部材と、前記可動部材を押付け方向に押し付ける押付圧を発生する押付圧発生部と、前記可動部材を引離す方向に引く引圧を発生する引圧発生部と、を有し、前記押付圧発生部および前記引圧発生部にそれぞれ加圧空気を供給する圧空供給手段を有するとともに、更に、前記可動部材の移動方向における変位量を検出する変位計と、この変位計で検出された前記可動部材の変位量を評価して前記工具のびびりの予見または検出を行い、その予見または検出結果に応じて、前記押付圧発生部および前記引圧発生部にそれぞれ供給する加圧空気の圧力を調整して前記ワークに対する前記工具の押付力を変化させる制御装置とを備える、ことを特徴とする。 The processing apparatus of the present invention includes a base, a work supporting means provided on the base for gripping the work, a tool for processing the work, and a constant pressure provided on the base to press the tool against the work with a constant pressing pressure. A machining device for machining the workpiece by the tool while relatively moving the tool and the workpiece, wherein the constant pressure mechanism holds the tool and presses the tool against the workpiece. And a movable member movable in the separating direction, a supporting member that movably supports the movable member, a pressing pressure generating portion that generates a pressing pressure that presses the movable member in the pressing direction, and the movable member is separated. A pressure generating unit that generates a pulling force that pulls in a direction, and supplies compressed air to each of the pressing pressure generating unit and the pulling pressure generating unit. And having, further, a displacement meter for detecting a displacement amount in the moving direction of the movable member performs foreseen or detection of chatter of the tool to evaluate the amount of displacement of the movable member detected by the displacement sensor, the A control device that adjusts the pressure of the pressurized air supplied to the pressing pressure generation unit and the pulling pressure generation unit according to the prediction or detection result to change the pressing force of the tool against the workpiece. It is characterized by.

この構成によれば、ワーク支持手段および定圧機構がベースに設けられ、可動部材が押付けおよび引離す方向に移動可能に設けられ、この可動部材を一定の押付圧でワークに押付けながら加工するので、ワークの加工面の凹凸に応じて、工具がワークに対して接近または離間する方向へ移動される。これによってワークの加工面の形状や加工装置の動的、静的な精度に関らず、工具の切込量を一定量に維持することができる。従って、この加工装置を利用して、前記加工方法で述べた加工を実現することができる。   According to this configuration, the workpiece support means and the constant pressure mechanism are provided on the base, the movable member is provided so as to be movable in the pressing and separating direction, and the movable member is processed while being pressed against the workpiece with a constant pressing pressure. The tool is moved in a direction approaching or separating from the workpiece in accordance with the unevenness of the work surface of the workpiece. As a result, the cutting depth of the tool can be maintained at a constant amount regardless of the shape of the workpiece surface and the dynamic and static accuracy of the machining apparatus. Therefore, the processing described in the processing method can be realized by using this processing apparatus.

本発明の加工装置において、前記支持部材は、前記押付圧発生部および前記引圧発生部を挟んだ2箇所に空気軸受が設けられ、前記可動部材は、前記空気軸受により軸支され、前記押付圧発生部および前記引圧発生部は、前記空気軸受を介して外気と連通していることが好ましい。
ここで、従来の研削加工の場合には、工具とワークの接触面積(加工面積)が切削加工と比較して大きく、工具の押付圧を大きく設定できたため、工具を支持する支持剛性が高くなり、びびりが発生しない安定領域が広く存在した。これに対して、例えば、単結晶ダイヤモンドチップを接着したダイヤモンドバイトを使用する切削加工では、工具の押付圧を数十mgf以下に設定する必要がある。また、硬脆性材料に対しては、延性モード切削加工を成立させるために工具の切込量を小さく設定しなければならず、工具の押付圧も小さく設定する必要がある。以上のような理由により、工具の支持剛性が低くなり、びびりが発生しやすくなる、あるいは、断続的に生じる微小振動が再生効果によって発達しながらびびりを増大させるという問題があった。
In the processing apparatus according to the present invention, the support member is provided with an air bearing at two positions sandwiching the pressing pressure generating portion and the pulling pressure generating portion, the movable member is pivotally supported by the air bearing, and the pressing It is preferable that the pressure generating part and the attractive pressure generating part communicate with outside air through the air bearing.
Here, in the case of conventional grinding, the contact area (working area) between the tool and the workpiece is larger than that of cutting, and the pressing pressure of the tool can be set large, so the support rigidity for supporting the tool is increased. There was a wide range of stable areas where chatter did not occur. On the other hand, for example, in a cutting process using a diamond cutting tool to which a single crystal diamond chip is bonded, it is necessary to set the pressing pressure of the tool to several tens mgf or less. For hard and brittle materials, in order to establish ductile mode cutting, the cutting depth of the tool must be set small, and the pressing pressure of the tool needs to be set small. For the reasons described above, there has been a problem that the support rigidity of the tool is lowered and chatter is likely to occur, or chatter is increased while minute vibrations generated intermittently develop due to the regenerative effect.

これに対して本発明の構成によれば、工具を保持する可動部材が押込み方向に移動すると、押付圧発生部および引圧発生部の加圧空気が空気軸受の空気によりエネルギーを消費する。このエネルギーの消費により可動部材の移動が減衰される。従って、可動部材に発生するびびり等を抑制でき、安定した加工を維持することができる。   On the other hand, according to the configuration of the present invention, when the movable member holding the tool moves in the pushing direction, the pressurized air of the pressing pressure generating portion and the pulling pressure generating portion consumes energy by the air of the air bearing. This energy consumption attenuates the movement of the movable member. Accordingly, chatter and the like generated in the movable member can be suppressed, and stable machining can be maintained.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、実施形態に係る加工装置の一部を断面で示す正面図である。図1において、ベースの上面に対してその長さ方向(図中の左右方向)をX軸、幅方向(紙面に対して直交する方向)をY軸、ベースの上面に直交する方向をZ軸として、以降の説明を行なう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view showing a part of the processing apparatus according to the embodiment in cross section. In FIG. 1, the length direction (left-right direction in the figure) is the X axis, the width direction (direction orthogonal to the paper surface) is the Y axis, and the direction orthogonal to the upper surface of the base is the Z axis. The following explanation will be given.

<加工装置の全体構成>
加工装置は、ワークWを回転させて、工具TによってワークWの切削加工を行う装置であり、ベース1と、このベース1の上面にX軸方向に並設されたワーク回転機構2(ワーク支持手段)および工具移動機構3(定圧機構)と、工具移動機構3に取り付けられる工具Tとを備える。また、加工装置は、コンプレッサ4からの加圧空気を工具移動機構3へ供給する圧空経路5(圧空供給手段)と、供給される加圧空気の流量および圧力を制御する制御装置6とを備えて構成される。
<Overall configuration of processing equipment>
The processing apparatus is an apparatus for rotating the workpiece W and cutting the workpiece W with the tool T. The base 1 and the workpiece rotating mechanism 2 (work support) arranged in parallel in the X-axis direction on the upper surface of the base 1. Means) and a tool moving mechanism 3 (constant pressure mechanism), and a tool T attached to the tool moving mechanism 3. The processing apparatus also includes a compressed air path 5 (compressed air supply means) for supplying pressurized air from the compressor 4 to the tool moving mechanism 3 and a control device 6 for controlling the flow rate and pressure of the supplied pressurized air. Configured.

ワーク回転機構2は、ワークWをX軸と平行なP軸回りに回転駆動するために設けられ、略円柱形状の主軸21と、主軸21を回転自在に軸支するハウジング22とを備える。主軸21の先端部には、ワークWがP軸上に着脱自在に把持されており、主軸21とワークWとは、図示しない電動機(モータ)、エアタービン等の回転駆動手段によって、P軸を中心として一体的に回転されるようになっている。   The work rotation mechanism 2 is provided to rotate the work W around a P axis parallel to the X axis, and includes a substantially cylindrical main shaft 21 and a housing 22 that rotatably supports the main shaft 21. A workpiece W is detachably gripped on the P-axis at the tip of the main shaft 21. The main shaft 21 and the work W are rotated by means of rotation driving means such as an electric motor (motor), an air turbine, etc. (not shown). It is designed to rotate as a center.

ベース1と工具移動機構3との間には、工具移動機構3をX軸方向へ移動させるX軸駆動機構7と、工具移動機構3をY軸方向へ移動させるY軸駆動機構8とが設けられている。これによって、ベース1に対して工具移動機構3を互いに直交するX軸およびY軸方向へ相対移動させることができる。なお、これら各軸の駆動機構7,8は、ボールねじ送り機構などによって構成されているが、これに限られない。   Between the base 1 and the tool movement mechanism 3, an X-axis drive mechanism 7 that moves the tool movement mechanism 3 in the X-axis direction and a Y-axis drive mechanism 8 that moves the tool movement mechanism 3 in the Y-axis direction are provided. It has been. As a result, the tool moving mechanism 3 can be moved relative to the base 1 in the X-axis and Y-axis directions orthogonal to each other. In addition, although the drive mechanisms 7 and 8 of each axis | shaft are comprised by the ball screw feed mechanism etc., it is not restricted to this.

工具Tは、尖端や切刃を含む形状に形成されているエンドミルのようなものであってもよいし、また、加工面の仕上げ加工等に用いられる砥石のようなものであってもよい。工具Tは、互いに形状が異なる複数種類のものが予め用意されており、使用者は加工目的に合わせて最適なものを選択して加工に用いることができる。本実施形態では、工具Tとして、先端に単結晶ダイヤモンドチップを接着したダイヤモンドバイトが用いられる。   The tool T may be an end mill formed in a shape including a tip or a cutting edge, or may be a grindstone used for finishing a processed surface. A plurality of types of tools T having different shapes are prepared in advance, and the user can select an optimum tool according to the machining purpose and use it for machining. In this embodiment, a diamond tool having a single crystal diamond tip bonded to the tip is used as the tool T.

<工具移動機構の構成>
図2は、工具移動機構3を示す断面図である。
工具移動機構3は、工具TをワークWに対して押付ける方向または引離す方向、すなわちX軸方向に沿って移動させて、工具TをワークWに対して一定の押付圧で押し付けるための機構であり、先端部に工具Tが固定されたスライダ31と、スライダ31をX軸方向に沿って移動可能に支持するスライダ支持部材32とを備える。
<Configuration of tool movement mechanism>
FIG. 2 is a sectional view showing the tool moving mechanism 3.
The tool moving mechanism 3 is a mechanism for pressing the tool T against the work W with a constant pressing pressure by moving the tool T along the direction in which the tool T is pressed against or separated from the work W, that is, along the X-axis direction. And a slider 31 having a tool T fixed to the tip, and a slider support member 32 that supports the slider 31 movably along the X-axis direction.

スライダ31は、X軸方向に延びた略角柱形状で、工具Tを固定する前部スライダ33と、工具Tの反対側に設けられる後部スライダ34と、中央部にて前部スライダ33と後部スライダ34を連結する連結部35とを有し、一体形成される。前部スライダ33および後部スライダ34のX軸方向に直交する各断面の面積は同一で、連結部35の断面の面積より大きい。また、後部スライダ34は、前部スライダ33に対して、Z軸方向の上側にオフセットされている。   The slider 31 has a substantially prismatic shape extending in the X-axis direction, a front slider 33 for fixing the tool T, a rear slider 34 provided on the opposite side of the tool T, and the front slider 33 and the rear slider at the center. And a connecting portion 35 for connecting 34. The area of each cross section orthogonal to the X-axis direction of the front slider 33 and the rear slider 34 is the same, and is larger than the area of the cross section of the connecting portion 35. Further, the rear slider 34 is offset to the upper side in the Z-axis direction with respect to the front slider 33.

前部スライダ33には、加圧空気による押付け方向の圧力を受ける押圧面36が形成される。押圧面36は、連結部35との接続部分の下側に形成されたX軸に直交する面である。押圧面36のZ軸方向の高さ寸法は、前部スライダ33および後部スライダ34のオフセット量と同一である。同様に、後部スライダ34には、引き方向の圧力を受ける引圧面37が、連結部35との接続部分の上側に形成される。   The front slider 33 is formed with a pressing surface 36 that receives pressure in the pressing direction by pressurized air. The pressing surface 36 is a surface orthogonal to the X axis formed on the lower side of the connection portion with the connecting portion 35. The height dimension of the pressing surface 36 in the Z-axis direction is the same as the offset amount of the front slider 33 and the rear slider 34. Similarly, a suction surface 37 that receives pressure in the pulling direction is formed on the rear slider 34 on the upper side of the connection portion with the connecting portion 35.

スライダ支持部材32は、X軸方向に貫通して形成された内部空間321を有し、この内部空間321に挿通されたスライダ31を支持する。
内部空間321は、ワークW側からX軸に沿って順番に、前部スライダ33を軸支する空気軸受としての第1軸受部322と、加圧空気により工具TをワークWに一定の押付圧で押し付ける定圧発生部323と、後部スライダ34を軸支する空気軸受としての第2軸受部324とを有して形成される。
第1軸受部322および第2軸受部324は、スライダ31の前部スライダ33および後部スライダ34に対応して、Z軸方向に互いにオフセットしている。
The slider support member 32 has an internal space 321 formed so as to penetrate in the X-axis direction, and supports the slider 31 inserted through the internal space 321.
The internal space 321 includes a first bearing portion 322 as an air bearing that pivotally supports the front slider 33 in order along the X axis from the workpiece W side, and a constant pressing pressure of the tool T against the workpiece W by pressurized air. And a constant pressure generating portion 323 to be pressed and a second bearing portion 324 as an air bearing that pivotally supports the rear slider 34.
The first bearing portion 322 and the second bearing portion 324 are offset from each other in the Z-axis direction corresponding to the front slider 33 and the rear slider 34 of the slider 31.

第1軸受部322は多孔質絞り軸受であり、第1軸受部322には第1圧空経路51(図1)と接続する供給路327が連通されており、加圧空気が複数の孔から前部スライダ33の外周面に向かって給気される。このように第1軸受部322は、前部スライダ33の外周面と内部空間321の内周面との間に供給される加圧空気によって、非接触で前部スライダ33を軸支する。同様に、第2軸受部324も多孔質絞り軸受であり、後部スライダ34の外周面と内部空間321の内周面との間に、第2圧空経路52と接続される供給路328を通って供給される加圧空気によって、非接触で後部スライダ34を軸支する。このようにスライダ31は、内部空間321の内周面から浮上して、スライダ31とスライダ支持部材32とは非接触状態にある。   The first bearing portion 322 is a porous throttle bearing, and a supply passage 327 connected to the first compressed air passage 51 (FIG. 1) is communicated with the first bearing portion 322, so that pressurized air passes through a plurality of holes. Air is supplied toward the outer peripheral surface of the slider 33. Thus, the first bearing portion 322 supports the front slider 33 in a non-contact manner by the pressurized air supplied between the outer peripheral surface of the front slider 33 and the inner peripheral surface of the internal space 321. Similarly, the second bearing portion 324 is also a porous throttle bearing, and passes through a supply passage 328 connected to the second compressed air passage 52 between the outer peripheral surface of the rear slider 34 and the inner peripheral surface of the internal space 321. The rear slider 34 is pivotally supported by the supplied pressurized air in a non-contact manner. Thus, the slider 31 floats from the inner peripheral surface of the internal space 321 and the slider 31 and the slider support member 32 are not in contact with each other.

図2にて、定圧発生部323は、第1軸受部322および第2軸受部324に挟まれた位置で、スライダ31の連結部35に対応する位置に形成される。定圧発生部323は、スライダ31によって上下二つの空間に区画され、下側の押付圧発生部325と、上側の引圧発生部326とを有する。押付圧発生部325の内周面には、加圧空気を供給する供給路329が連通され、この供給路329は第3圧空経路53(図1)に接続される。引圧発生部326の内周面にも供給路330が連通され、この供給路330は第4圧空経路54に接続される。
押付圧発生部325および引圧発生部326は、供給された加圧空気の占めるそれぞれの容積がスライダ31の移動に伴って増減するように形成される。すなわち、スライダ31が押付け方向に移動すると、押圧面36の位置が押付け方向に移動して、押付圧発生部325の容積が増え、同時に引圧面37の位置も移動するので、引圧発生部326の容積が減る。逆に、スライダ31が引き方向に移動すると、押付圧発生部325の容積が減り、引圧発生部326の容積が増える。
In FIG. 2, the constant pressure generating portion 323 is formed at a position between the first bearing portion 322 and the second bearing portion 324 and at a position corresponding to the connecting portion 35 of the slider 31. The constant pressure generating unit 323 is divided into two upper and lower spaces by the slider 31 and includes a lower pressing pressure generating unit 325 and an upper pulling pressure generating unit 326. A supply path 329 for supplying pressurized air is communicated with the inner peripheral surface of the pressing pressure generator 325, and this supply path 329 is connected to the third compressed air path 53 (FIG. 1). The supply path 330 is also communicated with the inner peripheral surface of the suction pressure generating unit 326, and the supply path 330 is connected to the fourth compressed air path 54.
The pressing pressure generation unit 325 and the suction pressure generation unit 326 are formed so that the respective volumes occupied by the supplied pressurized air increase or decrease as the slider 31 moves. That is, when the slider 31 moves in the pressing direction, the position of the pressing surface 36 moves in the pressing direction, the volume of the pressing pressure generating unit 325 increases, and the position of the pressing surface 37 also moves at the same time. The volume of is reduced. Conversely, when the slider 31 moves in the pulling direction, the volume of the pressing pressure generating unit 325 decreases and the volume of the pulling pressure generating unit 326 increases.

図1に示すように、圧空経路5は、コンプレッサ4から三経路に分岐され、押付圧発生部325に連通される第3圧空経路53、引圧発生部326に連通される第4圧空経路54、軸受部用圧空経路55を有する。三つの経路53〜55には、それぞれコンプレッサ4からの加圧空気の流量および圧力を設定するレギュレータ56(561〜563)と、設定された圧力を検出する圧力計57(571〜573)とが設けられる。軸受部用圧空経路55は、圧力計57の下流側にて二経路に分岐され、各軸受部322,324に連通される第1圧空経路51、第2圧空経路52を有する。   As shown in FIG. 1, the compressed air path 5 is branched into three paths from the compressor 4, and a third compressed air path 53 communicated with the pressing pressure generating unit 325 and a fourth compressed air path 54 communicated with the attractive pressure generating unit 326. And a bearing part compressed air passage 55. The three paths 53 to 55 include a regulator 56 (561 to 563) for setting the flow rate and pressure of pressurized air from the compressor 4 and a pressure gauge 57 (571 to 573) for detecting the set pressure. Provided. The bearing-part compressed air path 55 is branched into two paths on the downstream side of the pressure gauge 57 and includes a first compressed-air path 51 and a second compressed-air path 52 that communicate with the bearing sections 322 and 324.

スライダ支持部材32には、工具Tの移動方向の位置を検出するための変位計38が固定されている。変位計38は、スライダ31の端面311に対向する姿勢で取付けられ、端面311の位置の変位量を検出する。変位計38として、例えば、レーザ型や静電容量型の変位計を採用できる。本実施形態では、検出分解能が0.0084μmで、応答周波数が数百kHzであるレーザ型変位計が使用される。
制御装置6には、圧力計57および変位計38の検出値が入力される。制御装置6では入力された検出値に基づきレギュレータ56の制御量が算出され、この制御量により各レギュレータ561,563を操作する。これによって、加圧空気の圧力および流量が変更されるようになっている。
A displacement meter 38 for detecting the position of the tool T in the moving direction is fixed to the slider support member 32. The displacement meter 38 is attached in a posture facing the end surface 311 of the slider 31 and detects the amount of displacement of the position of the end surface 311. As the displacement meter 38, for example, a laser type or a capacitance type displacement meter can be adopted. In the present embodiment, a laser displacement meter having a detection resolution of 0.0084 μm and a response frequency of several hundred kHz is used.
Detection values of the pressure gauge 57 and the displacement gauge 38 are input to the control device 6. In the control device 6, the control amount of the regulator 56 is calculated based on the input detection value, and the regulators 561 and 563 are operated by this control amount. Thereby, the pressure and flow rate of the pressurized air are changed.

<工具移動機構の作用>
図2にて、第1軸受部322および第2軸受部324に、加圧空気が供給されることにより、スライダ31と内部空間321の内周面との間の摩擦抵抗が著しく低減され、スライダ31および工具TはX軸方向に滑らかに摺動できる状態となっている。さらに、加圧空気の量および圧力は、各軸受部322,324用のレギュレータ561(図1)によって設定され、スライダ支持部材32の内部空間321の内周面からのスライダ31の浮上状態が厳密に決定される。これによって、スライダ31のY軸およびZ軸方向の位置決め(いわゆる、芯出し)が精密に行なわれる。
<Operation of tool movement mechanism>
In FIG. 2, by supplying pressurized air to the first bearing portion 322 and the second bearing portion 324, the frictional resistance between the slider 31 and the inner peripheral surface of the internal space 321 is remarkably reduced, and the slider 31 and the tool T are in a state in which they can slide smoothly in the X-axis direction. Further, the amount and pressure of the pressurized air are set by the regulators 561 (FIG. 1) for the respective bearing portions 322 and 324, and the floating state of the slider 31 from the inner peripheral surface of the internal space 321 of the slider support member 32 is strictly determined. To be determined. Thus, the positioning (so-called centering) of the slider 31 in the Y-axis and Z-axis directions is performed precisely.

押付圧発生部325に加圧空気が供給されると、押圧面36にスライダ31を押し付ける方向の押付圧が作用する。また、引圧発生部326に加圧空気が供給されると、引圧面37にスライダ31を引く方向の引圧が作用する。押付圧発生部325および引圧発生部326への加圧空気の圧力は、それぞれレギュレータ562,563(図1)によって設定される。
切削加工しない場合、押付圧発生部325および引圧発生部326には、同じ圧力の加圧空気が供給され、発生する押付圧と引圧とがつりあって、スライダ31はX軸方向においてバランスした状態となる。
一方、X軸駆動機構7により工具移動機構3を前進させ、ワークWを切削加工する場合、引圧発生部326よりも高い圧力の加圧空気が押付圧発生部325に供給され、スライダ31には有効押付圧(押付圧−引圧)が発生し、工具TはワークWに有効押付圧で押し付けられる。切削加工中、有効押付圧が一定となるように、供給される加圧空気の圧力がレギュレータ562,563により設定される。
When pressurized air is supplied to the pressing pressure generator 325, a pressing pressure in a direction in which the slider 31 is pressed against the pressing surface 36 acts. Further, when pressurized air is supplied to the suction generation unit 326, the suction in the direction of pulling the slider 31 acts on the suction surface 37. The pressures of the pressurized air to the pressing pressure generation unit 325 and the suction pressure generation unit 326 are set by regulators 562 and 563 (FIG. 1), respectively.
When the cutting process is not performed, the pressing pressure generating unit 325 and the pulling pressure generating unit 326 are supplied with pressurized air of the same pressure, and the generated pressing pressure and the pulling pressure are balanced so that the slider 31 is balanced in the X-axis direction. It becomes a state.
On the other hand, when the tool moving mechanism 3 is advanced by the X-axis drive mechanism 7 to cut the workpiece W, pressurized air having a pressure higher than that of the pulling pressure generating unit 326 is supplied to the pressing pressure generating unit 325, Generates an effective pressing pressure (pressing pressure-pulling pressure), and the tool T is pressed against the workpiece W with the effective pressing pressure. During the cutting process, the pressure of the supplied pressurized air is set by the regulators 562 and 563 so that the effective pressing pressure is constant.

切削状況により、スライダ31がX軸方向に後退した場合、押付圧発生部325の容積が減少し、減少分に相当する量の空気が第1および第2軸受部322,324を通して大気に開放される。この際、第1および第2軸受部322,324には軸受部用の加圧空気が供給されているので、図2に示すように、押付圧発生部325の空気が通過する際にエネルギーが消費される。消費されるエネルギーはスライダ31の移動速度に依存するため、スライダ31の後方への移動が減衰する。
同様に、スライダ31が前退した場合、引圧発生部326の容積が減少し、引圧発生部326の空気が第1および第2軸受部322,324を通過する際にエネルギーが消費され、スライダ31の前方への移動が減衰する。
When the slider 31 moves backward in the X-axis direction depending on the cutting situation, the volume of the pressing pressure generating portion 325 decreases, and an amount of air corresponding to the reduced amount is released to the atmosphere through the first and second bearing portions 322 and 324. The At this time, since the pressurized air for the bearing portion is supplied to the first and second bearing portions 322 and 324, as shown in FIG. 2, energy is generated when the air of the pressing pressure generating portion 325 passes. Is consumed. Since the consumed energy depends on the moving speed of the slider 31, the backward movement of the slider 31 is attenuated.
Similarly, when the slider 31 is retracted, the volume of the attractive pressure generating part 326 is reduced, and energy is consumed when the air of the attractive pressure generating part 326 passes through the first and second bearing parts 322 and 324, The forward movement of the slider 31 is attenuated.

切削加工中、変位計38はスライダ31を常時監視し、スライダ31の変位量信号を制御装置6に出力している。第1,第2軸受部322,324は、スライダ31のX軸方向以外の方向には、高い拘束力を有し、これによって、変位計38は、スライダ31の切込み方向の動作を高精度に監視できる。   During the cutting process, the displacement meter 38 constantly monitors the slider 31 and outputs a displacement amount signal of the slider 31 to the control device 6. The first and second bearing portions 322 and 324 have a high restraining force in directions other than the X-axis direction of the slider 31, so that the displacement meter 38 can accurately operate the slider 31 in the cutting direction. Can be monitored.

図3は、本実施形態の工具移動機構の概念図である。
図3中のKは、ばねを示し、Cは、ダンパーを示す。
すなわち、前述の定圧発生部323において有効押付圧を一定に維持することは、図中のばねKにより工具Tを一定の押圧力でワークWに押し付けることを示し、これにより、工具TがワークWの加工面の形状に追従するので、工具Tの切込量が一定となる。
また、スライダ31がX軸方向に移動した場合に、押付圧発生部325または引圧発生部の空気が第1および第2軸受部322,324を通過してエネルギーが消費されることは、図中のダンパーCにより工具TのX軸方向の移動が減衰されることを示し、これにより、工具Tの切込量が微小な場合に生じ易いびびりの発生等を抑制することができる。
FIG. 3 is a conceptual diagram of the tool moving mechanism of the present embodiment.
In FIG. 3, K indicates a spring, and C indicates a damper.
That is, maintaining the effective pressing pressure constant in the above-described constant pressure generating portion 323 indicates that the tool T is pressed against the workpiece W with the constant pressing force by the spring K in the figure, whereby the tool T is pressed against the workpiece W. Therefore, the cutting depth of the tool T is constant.
In addition, when the slider 31 moves in the X-axis direction, the air in the pressing pressure generating portion 325 or the suction pressure generating portion passes through the first and second bearing portions 322 and 324 and energy is consumed. It shows that the movement in the X-axis direction of the tool T is attenuated by the damper C in the inside, and thereby, it is possible to suppress the occurrence of chatter or the like that is likely to occur when the cutting depth of the tool T is very small.

<実施形態の効果>
本実施形態では、次に述べる効果が期待できる。
(1)スライダ31がX軸方向に移動可能に設けられ、このスライダ31を一定の押付圧でワークWに押付けながら加工するので、ワークWの加工面の凹凸に応じて、工具が移動方向に移動する。これによってワークWの加工面の形状や加工装置の動的、静的な精度に関らず、工具Tの切込量を一定量に維持することができる。従って、微小な臨界切込み深さが必要とされる硬脆性材料に対し、安定した延性モード加工を行なうことができる。
<Effect of embodiment>
In the present embodiment, the following effects can be expected.
(1) Since the slider 31 is provided so as to be movable in the X-axis direction and the slider 31 is pressed against the workpiece W with a constant pressing pressure, the tool moves in the moving direction according to the unevenness of the machining surface of the workpiece W. Moving. Accordingly, the cutting amount of the tool T can be maintained at a constant amount regardless of the shape of the processing surface of the workpiece W and the dynamic and static accuracy of the processing apparatus. Therefore, stable ductile mode processing can be performed on a hard and brittle material that requires a small critical depth of cut.

(2)また、押付圧発生部325および引圧発生部326にそれぞれ供給される加圧空気の圧力を変更するだけで、工具Tの切込量に相当する圧力差に容易に設定することができ、加工作業の効率化を図ることができる。 (2) In addition, it is possible to easily set the pressure difference corresponding to the cutting depth of the tool T only by changing the pressure of the pressurized air supplied to the pressing pressure generating unit 325 and the pulling pressure generating unit 326, respectively. It is possible to improve the efficiency of the processing work.

(3)工具Tを保持するスライダ31が押込み方向に移動すると、押付圧発生部325および引圧発生部326の加圧空気が第1軸受部322および第2軸受部324の空気によりエネルギーを消費する。このエネルギーの消費によりスライダ31の移動が減衰され、スライダ31に発生するびびり等を抑制でき、安定した加工を維持することができる。 (3) When the slider 31 holding the tool T moves in the pushing direction, the pressurized air of the pressing pressure generating unit 325 and the pulling pressure generating unit 326 consumes energy by the air of the first bearing unit 322 and the second bearing unit 324. To do. The movement of the slider 31 is attenuated by this energy consumption, chattering and the like generated on the slider 31 can be suppressed, and stable machining can be maintained.

(4)工具Tの支持剛性が低くなる場合であっても、工具Tを保持するスライダ31の変位量をレーザ変位計や静電容量型変位計等の変位計38によって検出し、制御装置6によって評価することにより、工具Tのびびり等の予見または検出ができる。さらに、びびり等の予見または検出結果に応じて、各レギュレータ56を操作することにより、切削加工中にリアルタイムで押圧力を変化させ、びびり等の生じない安定領域での加工を維持することができる。 (4) Even when the support rigidity of the tool T becomes low, the displacement amount of the slider 31 holding the tool T is detected by a displacement meter 38 such as a laser displacement meter or a capacitance displacement meter, and the control device 6 It is possible to foresee or detect chattering of the tool T and the like. Furthermore, by operating each regulator 56 according to the prediction or detection result of chatter or the like, the pressing force can be changed in real time during the cutting process, and the machining in a stable region where chatter or the like does not occur can be maintained. .

<変形例>
本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
例えば、上記実施形態の加工方法は、切削加工に限られず、研削加工にも適用できる。
また、上記実施形態の加工方法では、ワークWに対する工具Tの押付圧を一定に保持することによって、工具TをワークWの加工面の形状に倣わせることができ、切込量を一定に維持することができると説明したが、これに限られず、工具Tの押付圧を加工面の形状に対応して適宜変化させることにより切込量を制御することができるので、平面や溝部などの任意の加工に対して本加工方法を適用させてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, the processing method of the above embodiment is not limited to cutting, and can also be applied to grinding.
Further, in the machining method of the above embodiment, the tool T can be made to follow the shape of the machined surface of the workpiece W by keeping the pressing pressure of the tool T against the workpiece W constant, and the cutting depth can be kept constant. However, the present invention is not limited to this, and the cutting amount can be controlled by appropriately changing the pressing pressure of the tool T according to the shape of the machining surface. The present processing method may be applied to arbitrary processing.

上記実施形態では、スライダ31の形状が略角柱状と説明したが、円柱形状の前部スライダおよび後部スライダから形成されていてもよい。また、スライダ31は、連結部35を介して前後に前部スライダ33および後部スライダ34が配置される形状と説明したが、前部スライダ33および後部スライダ34が直接接続され、押圧面36および引圧面37がX軸上の同じ位置に形成されてもよい。また、前記実施形態では、押圧面36が引圧面37よりも前方に配置された形状となっているが、押圧面36が引圧面37よりも後方に配置された形状でもよい。   In the above-described embodiment, the shape of the slider 31 has been described as a substantially prismatic shape, but it may be formed of a cylindrical front slider and a rear slider. Further, the slider 31 has been described as having a shape in which the front slider 33 and the rear slider 34 are arranged on the front and rear sides via the connecting portion 35. However, the front slider 33 and the rear slider 34 are directly connected, and the pressing surface 36 and the pulling slider 34 are pulled. The pressure surface 37 may be formed at the same position on the X axis. In the above-described embodiment, the pressing surface 36 has a shape that is disposed in front of the suction surface 37, but the pressing surface 36 may have a shape that is disposed behind the suction surface 37.

上記実施形態では、X軸駆動機構7およびY軸駆動機構8により工具移動機構3をX軸およびY軸方向へ移動可能に構成するとしたが、これに限られず、ワーク回転機構2をX軸およびY軸方向へ移動可能に構成してもよい。   In the above-described embodiment, the tool moving mechanism 3 is configured to be movable in the X-axis and Y-axis directions by the X-axis drive mechanism 7 and the Y-axis drive mechanism 8. However, the present invention is not limited to this. You may comprise so that a movement to a Y-axis direction is possible.

本発明は、例えば、切削工具を強制的に押込んで切込み深さを制御する工作機械などの加工に利用できる。   The present invention can be used, for example, for machining a machine tool or the like that forcibly pushes a cutting tool to control a cutting depth.

本発明の加工装置の一実施形態を示す正面図。The front view which shows one Embodiment of the processing apparatus of this invention. 同上実施形態の工具移動機構を示す断面図。Sectional drawing which shows the tool movement mechanism of embodiment same as the above. 同上実施形態の工具移動機構の概念図。The conceptual diagram of the tool movement mechanism of embodiment same as the above.

符号の説明Explanation of symbols

1…ベース
2…ワーク回転機構(ワーク支持手段)
3…工具移動機構(定圧機構)
5…圧空経路(圧空供給手段)
31…スライダ(可動部材)
32…スライダ支持部材(支持部材)
38…変位計
322…第1軸受部(空気軸受)
324…第2軸受部(空気軸受)
325…押付圧発生部
326…引圧発生部
T…工具
W…ワーク。
DESCRIPTION OF SYMBOLS 1 ... Base 2 ... Work rotation mechanism (work support means)
3. Tool moving mechanism (constant pressure mechanism)
5 ... Pressure air path (pressure air supply means)
31 ... Slider (movable member)
32 ... Slider support member (support member)
38 ... Displacement meter 322 ... 1st bearing part (air bearing)
324 ... Second bearing portion (air bearing)
325 ... Pressing pressure generator 326 ... Attraction generator T ... Tool W ... Workpiece.

Claims (4)

工具およびワークを相対移動させながら前記工具によって前記ワークを加工する加工方法であって、
前記工具を保持するとともに前記工具を前記ワークに対して押付けおよび引離す方向に移動可能な可動部材と、
この可動部材を移動可能に支持する支持部材と、
前記可動部材を押付け方向に押し付ける押付圧を発生する押付圧発生部と、
前記可動部材を引離す方向に引く引圧を発生する引圧発生部と、
を有する定圧機構を用いて、
前記押付圧発生部および前記引圧発生部にそれぞれ供給される加圧空気の圧力差を一定にして、前記可動部材を前記ワークに一定の押付圧で押し付けながら加工するとともに、
この加工中において、前記可動部材の移動方向における変位量を変位計で検出し、この変位計で検出した前記可動部材の変位量を評価して前記工具のびびりの予見または検出を行い、その予見または検出結果に応じて、前記押付圧発生部および前記引圧発生部にそれぞれ供給する加圧空気の圧力を調整して前記ワークに対する押付力を変化させることを特徴とする加工方法。
A machining method of machining the workpiece with the tool while relatively moving the tool and the workpiece,
A movable member that holds the tool and is movable in the direction of pressing and pulling the tool against the workpiece;
A support member that movably supports the movable member;
A pressing pressure generating section that generates a pressing pressure for pressing the movable member in the pressing direction;
An attraction generating section for generating attraction pulling in a direction in which the movable member is separated;
Using a constant pressure mechanism having
While making the pressure difference between the pressurized air supplied to the pressing pressure generating unit and the pulling pressure generating unit constant, and processing the movable member while pressing the workpiece with a constant pressing pressure ,
During this processing, the displacement amount in the moving direction of the movable member is detected by a displacement meter, and the displacement amount of the movable member detected by the displacement meter is evaluated to predict or detect the chatter of the tool. Alternatively, according to a detection result, a processing method characterized in that the pressing force applied to the workpiece is changed by adjusting the pressure of the pressurized air supplied to the pressing pressure generation unit and the pulling pressure generation unit .
請求項1に記載の加工方法において、
前記押付圧発生部および前記引圧発生部にそれぞれ供給される加圧空気の圧力差を、前記工具の前記ワークに対する切込量に応じて設定することを特徴とする加工方法。
The processing method according to claim 1,
The processing method characterized by setting the pressure difference of the pressurized air respectively supplied to the said pressing pressure generation | occurrence | production part and the said drawing pressure generation | occurrence | production part according to the cutting amount with respect to the said workpiece | work of the said tool.
ベースと、
このベースに設けられワークを把持するワーク支持手段と、
前記ワークを加工する工具と、
前記ベースに設けられ前記工具を前記ワークに一定の押付圧で押し付ける定圧機構と、を備え、前記工具および前記ワークを相対移動させながら前記工具によって前記ワークを加工する加工装置であって、
前記定圧機構は、
前記工具を保持するとともに前記工具を前記ワークに対して押付けおよび引離す方向に移動可能な可動部材と、
この可動部材を移動可能に支持する支持部材と、
前記可動部材を押付け方向に押し付ける押付圧を発生する押付圧発生部と、
前記可動部材を引離す方向に引く引圧を発生する引圧発生部と、を有し、
前記押付圧発生部および前記引圧発生部にそれぞれ加圧空気を供給する圧空供給手段を有するとともに、
更に、前記可動部材の移動方向における変位量を検出する変位計と、
この変位計で検出された前記可動部材の変位量を評価して前記工具のびびりの予見または検出を行い、その予見または検出結果に応じて、前記押付圧発生部および前記引圧発生部にそれぞれ供給する加圧空気の圧力を調整して前記ワークに対する前記工具の押付力を変化させる制御装置とを備える、ことを特徴とする加工装置。
Base and
A workpiece support means provided on the base for gripping the workpiece;
A tool for machining the workpiece;
A constant pressure mechanism that is provided on the base and presses the tool against the workpiece with a constant pressing pressure, and a processing device that processes the workpiece with the tool while relatively moving the tool and the workpiece,
The constant pressure mechanism is
A movable member that holds the tool and is movable in the direction of pressing and pulling the tool against the workpiece;
A support member that movably supports the movable member;
A pressing pressure generating section that generates a pressing pressure for pressing the movable member in the pressing direction;
A pulling pressure generating section that generates a pulling pressure that pulls the movable member in a direction of separating,
While having a compressed air supply means for supplying pressurized air to the pressing pressure generating section and the pulling pressure generating section ,
Furthermore, a displacement meter that detects a displacement amount in the moving direction of the movable member;
The displacement amount of the movable member detected by the displacement meter is evaluated to predict or detect chatter of the tool, and depending on the prediction or detection result, the pressing pressure generating unit and the pulling pressure generating unit are respectively A processing apparatus comprising: a control device that adjusts the pressure of the supplied pressurized air to change a pressing force of the tool against the workpiece.
請求項3に記載の加工装置において、
前記支持部材は、前記押付圧発生部および前記引圧発生部を挟んだ2箇所に空気軸受が設けられ、
前記可動部材は、前記空気軸受により軸支され、
前記押付圧発生部および前記引圧発生部は、前記空気軸受を介して外気と連通していることを特徴とする加工装置。
In the processing apparatus according to claim 3,
The support member is provided with air bearings at two locations sandwiching the pressing pressure generating portion and the attractive pressure generating portion,
The movable member is pivotally supported by the air bearing,
The processing apparatus according to claim 1, wherein the pressing pressure generation unit and the attraction pressure generation unit communicate with outside air through the air bearing.
JP2007325042A 2007-12-17 2007-12-17 Processing method and processing apparatus Active JP5138352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325042A JP5138352B2 (en) 2007-12-17 2007-12-17 Processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325042A JP5138352B2 (en) 2007-12-17 2007-12-17 Processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2009142962A JP2009142962A (en) 2009-07-02
JP5138352B2 true JP5138352B2 (en) 2013-02-06

Family

ID=40914199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325042A Active JP5138352B2 (en) 2007-12-17 2007-12-17 Processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP5138352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893702B2 (en) * 2013-02-20 2014-11-25 Lam Research Corporation Ductile mode machining methods for hard and brittle components of plasma processing apparatuses
JP7372209B2 (en) 2020-06-01 2023-10-31 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061808U (en) * 1992-06-17 1994-01-14 三立精機株式会社 Low friction type cylinder
JP2002361546A (en) * 2001-06-07 2002-12-18 Ricoh Co Ltd Grinding device
JP2007075915A (en) * 2005-09-12 2007-03-29 Kobe Univ Cutting method and device

Also Published As

Publication number Publication date
JP2009142962A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP2010115741A (en) Cutting method of high hardness material and cutting machine
KR102518998B1 (en) Main spindle device and machine tool
JP6171318B2 (en) Hydrostatic fluid guide device and machine tool using hydrostatic fluid guide device
JP2008509012A (en) Raster cutting technology for ophthalmic lenses
JP5260237B2 (en) Precision grinding equipment
JP2000246605A (en) Inner surface grinding method
JP4748357B2 (en) Dicing apparatus and method
JP5930871B2 (en) Grinding apparatus and control method thereof
JP5138352B2 (en) Processing method and processing apparatus
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2009107055A (en) Polishing tool and polishing device
JP2008221440A (en) V-groove machining method and v-groove machining device
JP7001813B2 (en) Machine tool spindle device
JP7062885B2 (en) Machine tool equipped with static pressure slide guide device and static pressure slide guide device
JPH10296631A (en) Super precise trueing device for grinding wheel
JP6440872B2 (en) Grinding equipment
JP3893384B2 (en) Cylindrical workpiece end grinding machine
JP4073117B2 (en) Grinding and polishing holding device
WO2000043180A1 (en) Drill and drilling method, stage working method, and method of manufacturing exposure device
Suzuki et al. Precision machining and measurement of micro aspheric molds
JP4127247B2 (en) Grinding equipment
JP2006218597A (en) Polishing device
JP3217731B2 (en) Wafer processing method and double-sided surface grinder
KR100376716B1 (en) Machining center honing tool
JP2018015891A (en) Processing device, control method thereof, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5138352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350