JP5137629B2 - Electromagnetic interference countermeasure sheet - Google Patents
Electromagnetic interference countermeasure sheet Download PDFInfo
- Publication number
- JP5137629B2 JP5137629B2 JP2008061847A JP2008061847A JP5137629B2 JP 5137629 B2 JP5137629 B2 JP 5137629B2 JP 2008061847 A JP2008061847 A JP 2008061847A JP 2008061847 A JP2008061847 A JP 2008061847A JP 5137629 B2 JP5137629 B2 JP 5137629B2
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- soft magnetic
- magnetic alloy
- alloy powder
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
本発明は、電子電気機器において発生する不要電磁波の外部への漏洩や内部回路間での干渉による他の電子電気機器及びその機器自体の誤動作の誘発等の影響を防止するために装着する高分子化合物中に軟磁性体粉末を分散させた電磁波障害対策シートに関する。 The present invention relates to a polymer to be mounted in order to prevent influences such as leakage of unnecessary electromagnetic waves generated in electronic and electrical equipment to the outside and interference of other electronic and electrical equipment and malfunction of the equipment itself due to interference between internal circuits. The present invention relates to an electromagnetic interference prevention sheet in which soft magnetic powder is dispersed in a compound.
近年、高周波を利用する電子電気機器類の高機能化に伴い各種電子部品が不要な放射電磁波を発生する状況にある。それにより、外部及び内部への干渉による他の電子電気機器及びその機器自体の誤動作を誘発する等といった問題が発生している。
そこで、高周波電磁波障害の対策手段としては、鉄を主成分とした軟磁性合金粉末をゴムや熱可塑性エラストマーといった高分子化合物と軟磁性合金粉末とを複合させた電磁波障害対策シ−トが開発されている。
In recent years, with the enhancement of functionality of electronic and electrical equipment using high frequency, various electronic components are generating unnecessary radiated electromagnetic waves. As a result, problems such as inducing malfunctions of other electronic and electrical devices and the devices themselves due to external and internal interference have occurred.
Therefore, as a countermeasure against high-frequency electromagnetic interference, an electromagnetic interference countermeasure sheet has been developed in which a soft magnetic alloy powder composed mainly of iron and a polymer compound such as rubber or thermoplastic elastomer and a soft magnetic alloy powder are combined. ing.
この電磁波障害対策シ−トは、放射される不要な電磁波を熱へ変換するといった吸収機能を有するもので、不要な放射電磁波を発生する電子部品に直接またはその近傍に配置されて使用される。
そして、電磁波障害対策シートの透磁率が高いほど電磁波を熱へ変換し不要な電磁波の抑制効果は大きくなる。このようなことから、電磁波障害対策シートに関しては、その高透磁率化の検討が行われている。
透磁率を高めるには、高分子化合物中に分散された軟磁性合金粉末同士がつながることが必要である。そうすると、シート内で磁化のつながりが生じ、結果透磁率が向上する。その為に、例えば軟磁性合金粉末としての形状は扁平形状のものを用い、それを高配合させたり圧縮をかけてシートの面方向に配向させるとともにシートの密度を高めて扁平形状の軟磁性合金粉末をつなげることで透磁率を高めるといった電磁波障害対策シートが提案されている(例えば、特許文献1参照)。
This electromagnetic wave interference countermeasure sheet has an absorption function of converting radiated unnecessary electromagnetic waves into heat, and is used directly or in the vicinity of an electronic component that generates unnecessary radiated electromagnetic waves.
And the higher the magnetic permeability of the electromagnetic wave interference countermeasure sheet, the higher the effect of suppressing unnecessary electromagnetic waves by converting electromagnetic waves into heat. For this reason, studies on increasing the magnetic permeability of the electromagnetic wave interference countermeasure sheet have been conducted.
In order to increase the magnetic permeability, it is necessary that the soft magnetic alloy powders dispersed in the polymer compound are connected to each other. If it does so, the connection of magnetization will arise in a sheet | seat and the magnetic permeability will improve as a result. For this purpose, for example, a soft magnetic alloy powder having a flat shape is used, and it is highly compounded or compressed to be oriented in the surface direction of the sheet, and the density of the sheet is increased to increase the density of the flat shape. An electromagnetic interference countermeasure sheet has been proposed in which the permeability is increased by connecting powders (see, for example, Patent Document 1).
このような電磁波障害対策シートの製造に関しては、大別して扁平形状軟磁性合金粉末と結合剤とその結合剤を溶解する溶媒とを、混合、攪拌して得られる分散溶液を塗工して製膜する湿式法や、扁平形状軟磁性合金粉末と結合剤をニーダーやバンバリーミキサーなどを用いて混練した混和物をオープンロールやカレンダーロールなどにより成形する乾式法がある。 Regarding the production of such an electromagnetic interference prevention sheet, it is broadly divided into a flat soft magnetic alloy powder, a binder, and a solvent that dissolves the binder, and a dispersion solution obtained by mixing and stirring is applied to form a film. And a dry method in which an admixture obtained by kneading a flat soft magnetic alloy powder and a binder using a kneader or a Banbury mixer is formed using an open roll or a calender roll.
前者の湿式法は、ゴムや熱可塑性エラストマーのような高分子結合剤を所定の溶剤に溶解し、得られた高分子結合剤溶解溶液に所定量の扁平形状軟磁性合金粉末を混合して流動性に富む分散溶液を調製し、その分散溶液を例えば各種コーターなどで所定厚みに塗工、乾燥してシート化する方法である。この場合、扁平形状軟磁性合金粉末に歪みが加わらないので粉末それ自体の磁気特性は維持され、劣化させないという点では好適である。
しかしながら、分散溶液の調製に際して溶剤が使用されているので、シート内にはその乾燥時にこの溶剤が揮散した跡の気孔が残存しているので扁平形状軟磁性合金粉末が密な状態で存在していない為にそれらのつながりが低く、まだこの状態では得られたシートの透磁率は低い。そこで、乾燥後のシートに熱プレスや熱圧延ロールで圧縮し残存気孔を押しつぶし、シートの密度を高めることも行われる。
In the former wet method, a polymer binder such as rubber or thermoplastic elastomer is dissolved in a predetermined solvent, and a predetermined amount of a flat soft magnetic alloy powder is mixed with the obtained polymer binder solution to flow. In this method, a dispersion solution rich in properties is prepared, and the dispersion solution is coated to a predetermined thickness with various coaters, for example, and dried to form a sheet. In this case, since the flat soft magnetic alloy powder is not distorted, the magnetic properties of the powder itself are maintained, which is preferable in that it does not deteriorate.
However, since a solvent is used in the preparation of the dispersion solution, the flat soft magnetic alloy powder exists in a dense state because the pores are traces of evaporation of this solvent during drying of the sheet. Since there is no connection between them, the magnetic permeability of the obtained sheet is still low in this state. Therefore, the dried sheet is compressed with a hot press or a hot rolling roll to crush the remaining pores, thereby increasing the density of the sheet.
一方、乾式法は、ニ−ダ−やバンバリーミキサーなどで結合剤に熱を加えて結合剤を軟化させて扁平形状軟磁性合金粉末とゴムやプラスチックスのような結合材を所定の割合で混練し、得られた混練物を例えば押出した後圧延ロールで所定厚みのシートに成形したり、もしくは混練物をカレンダーロールで所定厚みに圧延してシート化する方法である。
しかしこの場合、ニーダー混練時や混練物の圧延時に、軟磁性合金粉末に歪みが加わりそれが残ってしまうために、得られたシートの透磁率は高くならないという問題がある。
以上から、近年では扁平形状軟磁性合金粉末と結合剤とその結合剤を溶解する溶媒とを、混合、攪拌して得られる分散溶液を塗工して製膜する湿式法で製造されることが主流になってきている。
On the other hand, in the dry method, heat is applied to the binder with a kneader or Banbury mixer to soften the binder, and the flat soft magnetic alloy powder and the binder such as rubber or plastics are kneaded at a predetermined ratio. Then, the obtained kneaded product is extruded, for example, and then formed into a sheet having a predetermined thickness with a rolling roll, or the kneaded product is rolled to a predetermined thickness with a calendar roll to form a sheet.
However, in this case, when the kneader is kneaded or the kneaded product is rolled, the soft magnetic alloy powder is distorted and remains, so that the magnetic permeability of the obtained sheet does not increase.
From the above, in recent years, it is manufactured by a wet method in which a flat soft magnetic alloy powder, a binder, and a solvent that dissolves the binder are mixed and stirred to apply a dispersion solution to form a film. It is becoming mainstream.
また、このような電子電気機器内に組み込まれる部品には難燃性が要求される。これまでは塩素化ポリエチレンなどといったハロゲン系のポリマーや臭素系や塩素系といったハロゲン系の難燃剤が用いられ、少ない配合量で高い難燃性を付与させることができた。しかし、近年の環境問題などからそのようなハロゲン系化合物の使用を抑制する動きが顕著で、ハロゲンフリー系難燃剤が使用されている。そのハロゲンフリー系難燃剤は大別すると、赤リン系やリン酸エステル系といったリン化合物系難燃剤や水酸化アルミニウムや水酸化マグネシウムといった金属水酸化物難燃剤などがある。ただし、更にリン化合物系難燃剤の使用も避けられるような状況にあり、金属水酸化物系難燃剤を用いて難燃性を付与させている電磁波障害対策シートが提案されている(例えば、特許文献2参照)。
しかしながら、その電子電気機器内に組み込まれる部品にはUL94「機器の部品用プラスチック材料の燃焼性試験」にある20mm垂直燃焼試験94V−2以上もしくは水平燃焼試験94HB以上の難燃性が要求されるが、いずれにおいてもその金属水酸化物は少量では難燃効果が高くないために非常に高配合させる必要がある。
Moreover, flame retardance is requested | required of the components integrated in such an electronic electrical apparatus. In the past, halogen-based polymers such as chlorinated polyethylene and halogen-based flame retardants such as bromine and chlorine have been used, and high flame retardancy can be imparted with a small amount. However, there has been a remarkable movement to suppress the use of such halogen compounds due to environmental problems in recent years, and halogen-free flame retardants are used. The halogen-free flame retardants are roughly classified into phosphorus compound flame retardants such as red phosphorus and phosphate esters, and metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide. However, it is in a situation where the use of a phosphorus compound flame retardant is also avoided, and an electromagnetic wave countermeasure sheet that imparts flame retardancy using a metal hydroxide flame retardant has been proposed (for example, patents) Reference 2).
However, the components incorporated in the electronic and electrical equipment are required to have a flame resistance of 20 mm vertical combustion test 94V-2 or higher or horizontal combustion test 94HB or higher in UL94 “Plastic material flammability test for equipment parts”. However, in any case, the metal hydroxide does not have a high flame retardant effect in a small amount, so it is necessary to add a very high amount.
このように、透磁率を高めるためには扁平形状軟磁性合金粉末を高配合しかつ圧縮により高密度とし、ハロゲンフリー難燃性を高めるには金属水酸化物を高配合させる必要があるが、そのようにして得られたシートは硬いものとなる。
それに対し、近年の電子電気機器は上記高機能化に加えより小型化され、内部が非常に高い実装密度でスペースがほとんどない状態になっており、シートが硬いと不要な放射電磁波を発生する電子部品に直接または近傍に、小さい巻き付け径(曲率)で曲げたり巻き付けたりして配置することができなくなる。
そこで、シートの厚みは0.1mm〜0.5mmというように薄く、かつバインダーとなる高分子化合物に柔軟なゴムや熱可塑性エラストマーを使用した電磁波障害対策シートが提案されているが柔軟性に乏しいといった問題がある。
As described above, in order to increase the magnetic permeability, it is necessary to add a high amount of flat soft magnetic alloy powder and increase the density by compression, and to increase halogen-free flame retardancy, it is necessary to add a high amount of metal hydroxide. The sheet thus obtained is hard.
On the other hand, in recent years, electronic and electrical equipment has been further downsized in addition to the above-mentioned high functionality, and the inside is in a state of very high mounting density and almost no space. It becomes impossible to bend or wind with a small winding diameter (curvature) directly or in the vicinity of the part.
Therefore, an electromagnetic wave interference countermeasure sheet using a thin rubber such as 0.1 mm to 0.5 mm and using a flexible rubber or a thermoplastic elastomer as a polymer compound as a binder has been proposed, but the flexibility is poor. There is a problem.
以上のように電磁波障害対策シートは、放射される不要な電磁波を熱へ変換するといった吸収機能を有することでの不要な電磁波の抑制効果を持つために必要な透磁率を付与させる為、かつハロゲンフリーでの難燃性を付与させる為には、扁平形状軟磁性合金粉末と金属水酸化物粉末を高配合させ、かつ扁平形状軟磁性合金粉末を高密度につなげるべくシートを圧縮させることとなる。しかし、そのようにして得られた電磁波障害対策シートは柔軟性に非常に乏しいものとなり、比較的小さい巻き付け径(曲率)で曲げたり巻付けたりすることができないといった問題が生じている。
本発明は、上述のような問題点に着目してなされたものであり、その目的は、電磁波を熱へ変換し不要な電磁波を抑制するのに必要な透磁率を有し、かつハロゲンフリーでも難燃性に優れ、軟磁性合金粉末と金属水酸化物粉末を高配合させ高密度に圧縮させても、小さい巻き付け径(曲率)で曲げたり巻付けたりすることができる優れた柔軟性をも有する電磁波障害対策シートを得ることである。 The present invention has been made paying attention to the above-mentioned problems, and its purpose is to have a magnetic permeability necessary to convert electromagnetic waves into heat and suppress unnecessary electromagnetic waves, and even halogen-free. Excellent flame retardancy and excellent flexibility that can be bent and wound with a small winding diameter (curvature) even if it is highly blended with high blending of soft magnetic alloy powder and metal hydroxide powder. It is to obtain an electromagnetic wave interference countermeasure sheet having.
上記の課題に鑑みて本発明者らは、特定のガラス転移温度と分子量をもつアクリル樹脂と、Niの含有量が80質量%以上のFe−Ni系合金で、特定粒径範囲の扁平形状の軟磁性合金粉末及び微粒径の水酸化アルミニウムを含み、前記アクリル樹脂が溶解する溶剤に前記扁平形状軟磁性合金粉末と金属水酸化物含む分散溶液を塗工方法で製膜し、溶剤を除去した後、厚み方向に圧縮した電磁波障害対策シートを見出し、本発明を完成させた。 In view of the above problems, the inventors of the present invention have a flat shape having a specific particle size range with an acrylic resin having a specific glass transition temperature and a molecular weight, and an Fe-Ni alloy having a Ni content of 80 mass% or more. Form a dispersion solution containing the soft magnetic alloy powder and metal hydroxide in a solvent containing soft magnetic alloy powder and fine particle size aluminum hydroxide and dissolving the acrylic resin, and remove the solvent. After that, an electromagnetic wave interference countermeasure sheet compressed in the thickness direction was found and the present invention was completed.
すなわち本発明は、
(1)ガラス転移温度が−25℃〜−65℃でかつ重量平均分子量が500,000〜900,000であるアクリル樹脂に、Niの含有量が80質量%以上のFe−Ni系で200μm以上の粒径物が除去された平均粒径が110〜140μmで、かつ扁平度30〜50である扁平形状軟磁性合金粉末及び平均粒径4μm以下の金属水酸化物が配合分散され、シートの厚み方向で50〜70%圧縮されたシートの厚みが0.1mm〜0.5mmであり、前記扁平形状軟磁性合金粉末同士がシート面方向につながっていて、そのつながっている前記扁平形状軟磁性合金粉末が厚み方向に前記アクリル樹脂を挟んで複数層あることを特徴とする電磁波障害対策シート、
(2)アクリル樹脂100質量部に対し、扁平形状軟磁性合金粉末が700〜1000質量部及び金属水酸化物が100〜300質量部配合されたことを特徴とする(1)記載の電磁波障害対策シート、および、
(3)ガラス転移温度が−25℃〜−65℃でかつ重量平均分子量が500,000〜900,000であるアクリル樹脂が溶解している溶剤、Niの含有量が80質量%以上のFe−Ni系で200μm以上の粒径物が除去された平均粒径が110〜140μmで、かつ扁平度30〜50である扁平形状軟磁性合金粉末及び平均粒径4μm以下の金属水酸化物を含む分散溶液を塗工方法で製膜し、前記溶剤を除去した後、厚み方向で50%から70%圧縮して、シートの厚みを0.1mm〜0.5mmにし、前記扁平形状軟磁性合金粉末同士をシート面方向につなげて、そのつなげた前記扁平形状軟磁性合金粉末が厚み方向に前記アクリル樹脂を挟んで複数層にすることを特徴とする電磁波障害対策シートの製造方法、
を提供するものである。
なお、この粉末の「平均粒径」は粒度分布測定装置であるレーザ回折/散乱式粒子径分布測定装置などでの測定で得ることができ、「扁平度」はその「平均粒径」をSEM写真観察などから得られた平均厚みで除した値である。
That is, the present invention
(1) An acrylic resin having a glass transition temperature of −25 ° C. to −65 ° C. and a weight average molecular weight of 500,000 to 900,000, and a Fe—Ni system having a Ni content of 80% by mass or more is 200 μm or more. A flat soft magnetic alloy powder having an average particle size of 110 to 140 μm and a flatness of 30 to 50 and a metal hydroxide having an average particle size of 4 μm or less are blended and dispersed , and the thickness of the sheet The thickness of the sheet compressed by 50 to 70% in the direction is 0.1 mm to 0.5 mm, and the flat soft magnetic alloy powders are connected to each other in the sheet surface direction. An electromagnetic interference prevention sheet, wherein the powder has a plurality of layers sandwiching the acrylic resin in the thickness direction ,
(2) The electromagnetic wave interference countermeasure according to (1), wherein 700 to 1000 parts by mass of a flat soft magnetic alloy powder and 100 to 300 parts by mass of a metal hydroxide are blended with 100 parts by mass of an acrylic resin. Sheet, and
(3) A solvent in which an acrylic resin having a glass transition temperature of −25 ° C. to −65 ° C. and a weight average molecular weight of 500,000 to 900,000 is dissolved; Fe— with an Ni content of 80% by mass or more Dispersion containing Ni-based flat soft magnetic alloy powder having an average particle size of 110 to 140 μm with a particle size of 200 μm or more removed and a flatness of 30 to 50 and a metal hydroxide having an average particle size of 4 μm or less the solution was film at the coating method, after removing the solvent, by compressing 50% to 70% in the thickness direction, the thickness of the sheet to 0.1 mm to 0.5 mm, the flat shape soft magnetic alloy powder particles the by connecting the seat surface direction, a method of manufacturing a protection against electromagnetic interference sheets that connect the flat shape soft magnetic alloy powder is characterized to Rukoto multiple layers across the acrylic resin in a thickness direction,
Is to provide.
The “average particle size” of the powder can be obtained by measurement with a laser diffraction / scattering particle size distribution measuring device, which is a particle size distribution measuring device, and the “flatness” is obtained by measuring the “average particle size” with the SEM. It is the value divided by the average thickness obtained from photographic observation.
本発明の電磁波障害対策シートは、透磁率が50以上と高く、電磁波を熱へ変換し不要な電磁波を抑制する機能に優れ、電子電気機器において発生する不要電波の外部への漏洩や内部回路間での干渉による他の電子電気機器及びその機器自体の誤動作の誘発等の影響を防止することができる。そして、環境に優しいハロゲンフリーでありながら優れた難燃性をも有し、更に小さい巻き付け径(曲率)で曲げたり巻付けたりすることができる柔軟性にも優れる。 The electromagnetic wave interference countermeasure sheet of the present invention has a high magnetic permeability of 50 or more, is excellent in the function of suppressing electromagnetic waves by converting electromagnetic waves into heat, and leaks unnecessary radio waves generated in electronic and electrical equipment or between internal circuits. It is possible to prevent the influence of other electronic and electrical equipment and malfunction of the equipment itself due to interference in the apparatus. And while it is environmentally friendly and halogen-free, it also has excellent flame retardancy, and is excellent in flexibility that can be bent and wound with a smaller winding diameter (curvature).
以下、本発明の電磁波障害対策シートについて、添付図面に基づいて説明する。
図1は、本発明の電磁波障害対策シートの一部を拡大した、厚み方向の断面の概略を示す一例である。図1に示すように電磁波障害対策シート1は、連続相からなるアクリル樹脂2内に、圧縮され更に扁平になった扁平形状軟磁性合金粉末3同士がつながり、そして、金属水酸化物4の微粒子が分散したものである。
Hereinafter, the electromagnetic wave interference countermeasure sheet of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an example showing an outline of a cross section in the thickness direction in which a part of the electromagnetic wave interference countermeasure sheet of the present invention is enlarged. As shown in FIG. 1, the electromagnetic wave interference countermeasure sheet 1 includes a flat soft magnetic alloy powder 3 compressed and flattened in an
まず、本発明の電磁波障害対策シートの連続相をなす結合剤となる高分子化合物はアクリル樹脂であり、そのアクリル樹脂が溶解している溶剤からなる溶液を用いるものである。
従来、このような溶剤に溶解されて使用される樹脂には、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂などがあるが、本発明では次のような理由でアクリル樹脂を使用する。
シリコーン樹脂は非常に柔軟であることが特徴であるが、それゆえに扁平状軟磁性粉末及び金属水酸化物粉末が高配合で分散された上に、シートが0.1mm〜0.5mmといった薄い場合には強度不足で千切れてしまうなどの問題が生じる。また、エポキシ樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂は逆に非常に硬質な樹脂のために、0.1mm〜0.5mmといった薄さでも小さい巻き付け径(曲率)で曲げたり巻付けたりすることができないシートとなってしまうために好ましくない。
First, the polymer compound serving as the binder forming the continuous phase of the electromagnetic wave interference countermeasure sheet of the present invention is an acrylic resin, and a solution made of a solvent in which the acrylic resin is dissolved is used.
Conventionally, there are acrylic resins, silicone resins, epoxy resins, urea resins, phenol resins, melamine resins, and the like that are used by being dissolved in such a solvent. In the present invention, acrylic resins are used for the following reasons. Is used.
Silicone resin is characterized by being very flexible. Therefore, when flat soft magnetic powder and metal hydroxide powder are dispersed with high blending and the sheet is as thin as 0.1 mm to 0.5 mm. Causes problems such as tearing due to insufficient strength. On the other hand, epoxy resin, urea resin, phenol resin, and melamine resin are extremely hard resins, so they should be bent or wound with a small winding diameter (curvature) even at a thickness of 0.1mm to 0.5mm. This is not preferable because the sheet cannot be formed.
このアクリル樹脂は主モノマーと官能基モノマーと架橋剤からなるものである。主モノマーはアクリル酸エステルからなりメチルアクリレート、ブチルアクリレートおよび2エチルヘキシルアクリレートなどがあるが、得られたアクリル樹脂のガラス転移温度が−25℃〜−65℃、好ましくは−25℃〜−40℃、さらに好ましくは−30℃〜−40℃で、かつ重量平均分子量が500,000〜900,000、好ましくは600,000〜800,000であることを満たすものであれば、それらの中の1種類でも良いし、複数の混合からなるものでも良いし、どれかに限定されるものではない。
また、官能基モノマーには水酸基含有化合物、カルボキシル基含有化合物、エポキシ基含有化合物などがあり、得られたアクリル樹脂のガラス転移温度および重量平均分子量が上記の要件を満たすものであれば、それらの中の1種類でも良いし、複数の混合からなるものでも良いし、どれかに限定されるものではない。
更に、架橋剤には、イソシアネート化合物やエポキシ化合物などがあり、得られたアクリル樹脂のガラス転移温度および重量平均分子量が上記の要件を満たすものであれば、それらの中の1種類でも良いし、複数の混合からなるものでも良いし、どれかに限定されるものではない。
This acrylic resin is composed of a main monomer, a functional group monomer, and a crosslinking agent. The main monomer is composed of an acrylate ester, and includes methyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. The glass transition temperature of the obtained acrylic resin is −25 ° C. to −65 ° C., preferably −25 ° C. to −40 ° C. More preferably, it is -30 ° C to -40 ° C and the weight average molecular weight satisfies 500,000 to 900,000, preferably 600,000 to 800,000. However, it may be composed of a plurality of mixtures, and is not limited to any one.
In addition, the functional group monomer includes a hydroxyl group-containing compound, a carboxyl group-containing compound, an epoxy group-containing compound, etc. If the glass transition temperature and weight average molecular weight of the obtained acrylic resin satisfy the above requirements, those One of them may be used, or a mixture of a plurality of them may be used, and it is not limited to any one.
Furthermore, the crosslinking agent includes an isocyanate compound, an epoxy compound, and the like. If the glass transition temperature and the weight average molecular weight of the obtained acrylic resin satisfy the above requirements, one kind of them may be used. It may be composed of a plurality of mixtures, and is not limited to any one.
ガラス転移温度が−25℃〜−65℃であるアクリル樹脂を用いた場合、得られた電磁波障害対策シートが電子電気機器内に組み込まれる際に、小さい巻き付け径(曲率)で曲げたり巻き付けられたりしても、適度にそのアクリル樹脂の分子鎖が運動性を持つゴム状態で柔軟性を有するために、千切れたりすることなく小さい巻き付け径(曲率)で曲げたり巻付けたりすることができるために好ましい。
一方、ガラス転移温度が−25℃を超える高いアクリル樹脂を用いた場合、得られた電磁波障害対策シートを電子電気機器内に組み込む際に、そのアクリル樹脂の分子鎖の運動性が乏しいために硬く、小さい巻き付け径(曲率)で曲げたり巻き付けることができないために好ましくない。また、ガラス転移温度が−65℃未満の場合、アクリル樹脂の分子鎖の運動性が増大し柔軟性が大きすぎて、小さい巻き付け径(曲率)で曲げたり巻き付ける際に、シートが千切れたりしてしまうために好ましくない。
When an acrylic resin having a glass transition temperature of −25 ° C. to −65 ° C. is used, the obtained electromagnetic interference prevention sheet is bent or wound with a small winding diameter (curvature) when incorporated in an electronic / electric device. Even so, since the molecular chain of the acrylic resin is reasonably flexible in a rubbery state with mobility, it can be bent or wound with a small winding diameter (curvature) without breaking. Is preferable.
On the other hand, when an acrylic resin having a glass transition temperature higher than −25 ° C. is used, when the obtained electromagnetic interference prevention sheet is incorporated in an electronic / electric device, it is hard because the molecular chain mobility of the acrylic resin is poor. This is not preferable because it cannot be bent or wound with a small winding diameter (curvature). In addition, when the glass transition temperature is less than -65 ° C, the mobility of the molecular chain of the acrylic resin increases and the flexibility is too large, and the sheet may be broken when bent or wound with a small winding diameter (curvature). This is not preferable.
また、アクリル樹脂の重量平均分子量が500,000〜900,000であると小さい巻き付け径(曲率)で曲げたり巻き付けられたりした際に、千切れたりすることなく小さい巻き付け径(曲率)で曲げたり巻付けたりすることができるために好ましい。
重量平均分子量が500,000未満の場合、分子量が小さいために樹脂強度が低く、小さい巻き付け径(曲率)で曲げたり巻き付けられたりした際に千切れてしまうために好ましくなく、また900,000を超える場合、分子量が大きいために樹脂強度が高く、小さい巻き付け径(曲率)で曲げたり巻き付けることができないために好ましくない。
When the acrylic resin has a weight average molecular weight of 500,000 to 900,000, it can be bent with a small winding diameter (curvature) without being broken when it is bent or wound with a small winding diameter (curvature). It is preferable because it can be wound.
When the weight average molecular weight is less than 500,000, the resin strength is low because the molecular weight is small, and it is not preferable because it is broken when it is bent or wound with a small winding diameter (curvature). When exceeding, since the molecular weight is large, the resin strength is high, and it is not preferable because it cannot be bent or wound with a small winding diameter (curvature).
本発明の電磁波障害対策シートに配合分散される軟磁性合金粉末は、Niの含有量が全合金成分量に対し80質量%以上、好ましくは82質量%以上、より好ましくは84質量%以上であり、90質量%程度までのFe−Ni系合金であり、200μm以上の粒径物が除去された平均粒径が110〜140μmで、かつ扁平度30〜50である扁平形状のものである。
軟磁性合金粉末は鉄を主成分とする合金であり、それらにはFe―Ni系のパーマロイ、Fe―Si―Al系のセンダスト、Fe―Si系のケイ素鋼、Fe―Cr系のステンレス、Fe―Co系のパーメンジュールなどがある。
しかし、それらの中でも、本発明の電磁波障害対策シートには、柔らかいNi含有量が80質量%以上(全合金成分量に対し)であるFe―Ni系のパーマロイを用いる。それは、この合金は微小に変形できることから、分散溶液を塗工方法で製膜し溶剤を除去した後のシ−トを厚み方向での50〜70%の圧縮が可能となる。その結果、得られるシートは扁平形状軟磁性合金粉末のつながりに優れ、電磁波を熱へ変換するといった吸収機能を有することで、不要な電磁波の抑制効果を持つために必要な透磁率を有することができる。
The soft magnetic alloy powder blended and dispersed in the electromagnetic wave interference preventing sheet of the present invention has a Ni content of 80% by mass or more, preferably 82% by mass or more, more preferably 84% by mass or more with respect to the total alloy component amount. , An Fe—Ni alloy up to about 90% by mass, having a flat shape with an average particle size of 110 to 140 μm with a particle size of 200 μm or more removed, and a flatness of 30 to 50.
Soft magnetic alloy powders are iron-based alloys, which include Fe-Ni permalloy, Fe-Si-Al sendust, Fe-Si silicon steel, Fe-Cr stainless steel, Fe -Co-based permendules.
However, among them, for the electromagnetic wave interference countermeasure sheet of the present invention, Fe—Ni-based permalloy having a soft Ni content of 80% by mass or more (relative to the total alloy component amount) is used. Since this alloy can be deformed minutely, the sheet after the dispersion solution is formed by a coating method and the solvent is removed can be compressed by 50 to 70% in the thickness direction. As a result, the obtained sheet is excellent in the connection of flat-shaped soft magnetic alloy powder, and has an absorption function of converting electromagnetic waves into heat, and thus has a magnetic permeability necessary to have an unnecessary electromagnetic wave suppressing effect. it can.
それに対し、Ni含有量が80質量%未満のFe―Ni系のパーマロイ及びFe―Si―Al系のセンダスト、Fe―Si系のケイ素鋼、Fe―Cr系のステンレス、Fe―Co系のパーメンジュールといった扁平形状軟磁性合金粉末は硬いために微小な変形ができず、分散溶液を塗工方法で製膜し溶剤を除去した後のシ−トを厚み方向で50〜70%といった圧縮が困難になるためである。その結果、扁平形状軟磁性合金粉末のつながりが乏しくなり、電磁波を熱へ変換するといった吸収機能を有することでの不要な電磁波の抑制効果を持つために必要な透磁率を有することができなくなる。
尚、Ni含有量が80質量%以上であるFe―Niを基本に構成されている軟磁性合金粉末であれば、そこへ更にSiやMoやCuなどの金属が少量添加されたものを使用することに問題はない。
On the other hand, Fe-Ni-based permalloy and Fe-Si-Al-based sendust, Fe-Si-based silicon steel, Fe-Cr-based stainless steel, Fe-Co-based perm Since the flat soft magnetic alloy powder such as Joule is hard, it cannot be deformed minutely, and it is difficult to compress the sheet after the dispersion solution is formed by the coating method and the solvent is removed to 50 to 70% in the thickness direction. Because it becomes. As a result, the connection of the flat soft magnetic alloy powder becomes poor, and it becomes impossible to have the magnetic permeability necessary to have the effect of suppressing unnecessary electromagnetic waves by having an absorption function of converting electromagnetic waves into heat.
In addition, if the soft magnetic alloy powder is basically composed of Fe—Ni with Ni content of 80% by mass or more, a powder obtained by further adding a small amount of metal such as Si, Mo, or Cu is used. There is no problem.
本発明の電磁波障害対策シートでは、軟磁性合金粉末は上述しているように扁平形状である。電磁波を熱へ変換するといった吸収機能を有することで不要な電磁波の抑制効果を持つために、必要な透磁率を有する電磁波障害対策シートを得るには、配合分散された軟磁性合金粉末同士がそのシート内でつながっていることが必要となる。それが不定形状や球形の場合は接触点数が非常に少なくそれら同士がつながりにくいが、扁平形状の場合紙が重なるように軟磁性合金粉末同士のつながりに優れ、高い透磁率を有する電磁波障害対策シートを得ることができるようになるためである。
また、本発明では、このFe―Ni系の扁平形状軟磁性合金粉末は200μm以上の粒径物が除去されている必要がある。そのような200μm以上の粒径の粉末が存在した場合、大きな粒径粉末が存在するために電磁波を熱へ変換するといった吸収機能に必要な透磁率を付与させるために必要な高い率での圧縮が難しくなるためである。
In the electromagnetic wave interference countermeasure sheet of the present invention, the soft magnetic alloy powder has a flat shape as described above. In order to obtain an electromagnetic interference prevention sheet having the necessary permeability in order to have the effect of suppressing unnecessary electromagnetic waves by having an absorption function of converting electromagnetic waves into heat, the blended and dispersed soft magnetic alloy powders are It is necessary to be connected in the seat. If it is an indefinite shape or a sphere, the number of contact points is very small and it is difficult to connect them, but in the case of a flat shape, the soft magnetic alloy powder is excellently connected so that the paper overlaps, and the electromagnetic interference prevention sheet has high permeability It is because it will be possible to obtain.
In the present invention, the Fe—Ni-based flat soft magnetic alloy powder needs to have a particle size of 200 μm or more removed. When such a powder having a particle size of 200 μm or more is present, the compression at a high rate necessary for imparting the magnetic permeability necessary for the absorption function of converting electromagnetic waves into heat due to the presence of a large particle size powder. Because it becomes difficult.
更に、200μm以上の粒径物が除去されたFe―Ni系の扁平形状軟磁性合金粉末の平均粒径は110μm〜140μm、好ましくは115μm〜135μmである必要がある。
平均粒径が110μm未満の場合、高い圧縮率で高密度になっていても扁平形状軟磁性合金粉末同士のつながりが乏しくなり、得られた電磁波障害対策シートの透磁率も低くなってしまうために好ましくない。一方、平均粒径が140μmを越えた場合、分散溶液を塗工した際に毛羽立ったような製膜となってしまい好ましくない。
Furthermore, the average particle diameter of the Fe—Ni-based flat soft magnetic alloy powder from which particles having a particle diameter of 200 μm or more have been removed needs to be 110 μm to 140 μm, preferably 115 μm to 135 μm.
When the average particle size is less than 110 μm, the flat soft magnetic alloy powders are poorly connected to each other even when the density is high at a high compression rate, and the magnetic permeability of the obtained electromagnetic interference prevention sheet is also low. It is not preferable. On the other hand, when the average particle size exceeds 140 μm, it becomes undesirable to form a fluffy film when the dispersion solution is applied.
また、本発明の電磁波障害対策シートでは、Fe―Ni系の扁平形状軟磁性合金粉末の扁平度は30〜50、好ましくは35〜45である。
扁平度が30未満の場合、その形状が厚みのある扁平形状いわゆる不定形状に近いものとなり、軟磁性合金粉末同士の接触点数が減少しそれら同士のつながりに乏しく、得られたシートの透磁率が低くなってしまうし、一方、扁平度が50を越えると厚みが非常に薄い扁平形状の粉末となるために、分散溶液を塗工して得られた製膜において、その扁平形状軟磁性合金粉末の分散が非常に悪いものとなってしまうためである。
In the electromagnetic wave interference countermeasure sheet of the present invention, the flatness of the Fe—Ni-based flat soft magnetic alloy powder is 30 to 50, preferably 35 to 45.
When the flatness is less than 30, the shape is close to a thick flat shape, so-called indeterminate shape, the number of contact points between the soft magnetic alloy powders is reduced and the connection between them is poor, and the magnetic permeability of the obtained sheet is low. On the other hand, when the flatness exceeds 50, the thickness becomes a very thin flat powder. Therefore, in the film formation obtained by applying the dispersion solution, the flat soft magnetic alloy powder This is because the dispersion of is very bad.
そして、本発明の電磁波障害対策シートには難燃性が必要である。難燃性付与として、平均粒径4μm以下の金属水酸化物が配合分散される。平均粒径が4μmを超えた場合、電磁波を熱へ変換するといった吸収機能に必要な透磁率を付与させるために必要な高い率で圧縮させることが難しくなるためである。
尚、金属水酸化物には水酸化アルミニウムや水酸化マグネシウムなどを含め、平均粒径4μm以下を満たしている金属水酸化物であれば限定されるものではないが、特に水酸化アルミニウムが好ましい。
And the flame retardant sheet | seat is required for the electromagnetic wave interference countermeasure sheet | seat of this invention. For imparting flame retardancy, a metal hydroxide having an average particle size of 4 μm or less is blended and dispersed. This is because when the average particle size exceeds 4 μm, it becomes difficult to compress at a high rate necessary for providing the magnetic permeability necessary for the absorption function of converting electromagnetic waves into heat.
The metal hydroxide includes aluminum hydroxide and magnesium hydroxide, and is not limited as long as it is a metal hydroxide satisfying an average particle size of 4 μm or less, but aluminum hydroxide is particularly preferable.
更に、本発明の電磁波障害対策シートでは、それらの扁平形状軟磁性合金粉末及び金属水酸化物はアクリル樹脂100質量部に対し、扁平形状軟磁性合金粉末が700〜1000質量部、好ましくは750〜850質量部、及び金属水酸化物が100〜300質量部、好ましくは100〜200質量部配合されることが好ましい。
扁平形状軟磁性合金粉末が700質量部未満の場合、配合量が少ないために高い圧縮で高密度になっていてもそれら同士のつながりに乏しく、得られた電磁波障害対策シートの透磁率も低くなってしまうために好ましくない。一方、扁平形状軟磁性合金粉末が1000質量部を越えた場合、分散溶液の流動性が低下し塗工が非常に難しくなるために好ましくない。
また、アクリル樹脂100質量部に対する金属水酸化物の配合量が100質量部未満の場合は、その配合量が少ないために、得られたシートの難燃性がUL94「機器の部品用プラスチック材料の燃焼性試験」の水平燃焼試験94HBも満足しないものとなってしまうために好ましくない。一方、金属水酸化物が300質量部を超えた場合、分散溶液の流動性が低下し塗工が非常に難しくなるために好ましくない。
Furthermore, in the electromagnetic wave interference countermeasure sheet of the present invention, the flat soft magnetic alloy powder and the metal hydroxide are 700 to 1000 parts by mass, preferably 750 to 1000 parts by mass with respect to 100 parts by mass of the acrylic resin. It is preferable that 850 parts by mass and 100 to 300 parts by mass, and preferably 100 to 200 parts by mass of the metal hydroxide are blended.
When the amount of the flat soft magnetic alloy powder is less than 700 parts by mass, since the blending amount is small, even if the density is high due to high compression, the connection between them is poor, and the magnetic permeability of the obtained electromagnetic interference prevention sheet is also low. This is not preferable. On the other hand, when the amount of the flat-shaped soft magnetic alloy powder exceeds 1000 parts by mass, the fluidity of the dispersion solution decreases and coating becomes very difficult.
Moreover, when the compounding quantity of the metal hydroxide is less than 100 parts by mass with respect to 100 parts by mass of the acrylic resin, since the compounding quantity is small, the flame retardancy of the obtained sheet is UL94 “plastic material for equipment parts. Since the horizontal combustion test 94HB in the “flammability test” is not satisfied, it is not preferable. On the other hand, when the amount of the metal hydroxide exceeds 300 parts by mass, the fluidity of the dispersion solution decreases and coating becomes very difficult.
そして、本発明の電磁波障害対策シートは、このような扁平形状軟磁性合金粉末と金属水酸化物をアクリル樹脂が溶解された溶剤と混合し、分散させ、その分散溶液を塗工方法で製膜し、溶剤を除去した後のシートを、厚み方向で50%〜70%圧縮し、厚みが0.1mm〜0.5mm、好ましくは0.1mm〜0.2mmとしたものが好ましい。
厚み方向の圧縮が50%未満の場合、圧縮が不足で配合分散された扁平形状軟磁性合金粉末同士のつながりが乏しいものとなり得られたシートの透磁率は低く好ましくなく、一方、厚み方向で70%を超える圧縮を行うのは本発明においても非常に困難である。
シートの厚みについては、塗工により得られた製膜の溶剤を除去した後に0.1mm未満に圧縮させると、ところどころ千切れたり均一なシートを得ることができなく、0.5mmを超えて厚く圧縮させると、小さい巻き付け径(曲率)で曲げたり巻き付けることができなくなるために好ましくない。
And the electromagnetic wave interference countermeasure sheet of the present invention mixes and disperses such a flat soft magnetic alloy powder and a metal hydroxide with a solvent in which an acrylic resin is dissolved, and forms the dispersion solution by a coating method. Then, the sheet after removing the solvent is preferably compressed by 50% to 70% in the thickness direction so that the thickness is 0.1 mm to 0.5 mm, preferably 0.1 mm to 0.2 mm.
When the compression in the thickness direction is less than 50%, the magnetic permeability of the obtained sheet is low and unfavorable because the connection between the flat soft magnetic alloy powders blended and dispersed due to insufficient compression is low. It is very difficult to perform compression exceeding % in the present invention.
Regarding the thickness of the sheet, if the film-forming solvent obtained by coating is removed and then compressed to less than 0.1 mm, the sheet cannot be cut off and a uniform sheet cannot be obtained in some places, and the thickness exceeds 0.5 mm. When compressed, it is not preferable because it cannot be bent or wound with a small winding diameter (curvature).
本発明の電磁波障害対策シートは、電子電気機器の小型化に伴いその内部が非常に高い実装密度でスペースがほとんどなく、曲げたり、巻きつけたりして不要な放射電磁波を発生する電子部品に直接またはその近傍に配置して使用される。 The electromagnetic interference prevention sheet according to the present invention is directly or directly on an electronic component that generates unnecessary radiated electromagnetic waves by bending or wrapping, with a very high mounting density and almost no space inside, as electronic and electrical equipment is downsized. Used in the vicinity of it.
次に、本発明を実施例に基づいてさらに詳細に説明し、比較例と共に性能試験例を示し、本発明の優れた効果を明示するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, a performance test example is shown with a comparative example, and the outstanding effect of this invention is clarified, this invention is not limited to these.
(実施例1及び実施例6〜実施例14)
アクリル樹脂溶液としてガラス転移温度が−32℃で重量平均分子量が700,000の[「SKダインSK−1811L」:商品名、綜研化学(株)製]を用い、扁平形状軟磁性合金粉末としてNi含有量が80質量%で微量のSiが含有されたFe−Ni系で、かつ200μm以上の粒径物が除去され平均粒径が129μmで扁平度41である[「T4」:商品名、三菱マテリアル(株)製]を用い、金属水酸化物として平均粒径が2μmの水酸化アルミニウムである[「B703」:商品名、日本軽金属(株)製]を用いた。それらを表1、表2−1、表2−2に示す各例での配合量(数値は質量部を示す)とし、上記アクリル樹脂溶液にFe−Ni系扁平形状軟磁性合金粉末と金属水酸化物を混合させた分散溶液を塗工方法で製膜し、温度をかけて溶剤を除去した。その後、厚み方向で表1、表2−1、表2−2の各例に示す圧縮率50%から70%の範囲で、熱圧延ロールで圧縮させて、厚み0.1mm〜0.5mmのシートを得た。
(Example 1 and Examples 6 to 14)
As the acrylic resin solution, a glass transition temperature of −32 ° C. and a weight average molecular weight of 700,000 [“SK Dyne SK-1811L”: trade name, manufactured by Soken Chemical Co., Ltd.] was used. Fe-Ni system with a content of 80% by mass and containing a small amount of Si, with a particle size of 200 μm or more removed, an average particle size of 129 μm and a flatness of 41 [“T4”: trade name, Mitsubishi Material Co., Ltd.], and aluminum hydroxide having an average particle size of 2 μm [“B703”: trade name, manufactured by Nippon Light Metal Co., Ltd.] was used as the metal hydroxide. They are blended amounts in the respective examples shown in Table 1, Table 2-1, and Table 2-2 (numerical values indicate parts by mass), and Fe-Ni-based flat soft magnetic alloy powder and metallic water are added to the acrylic resin solution. The dispersion solution mixed with the oxide was formed into a film by a coating method, and the solvent was removed by applying temperature. Then, in the thickness direction, it is compressed with a hot rolling roll in the range of the compression rate of 50% to 70% shown in each example of Table 1, Table 2-1, and Table 2-2, and the thickness is 0.1 mm to 0.5 mm. A sheet was obtained.
(実施例2)
Ni含有量が80質量%のFe−Ni系で、かつ200μm以上の粒径物が除去され平均粒径が110μmで扁平度40である扁平形状の軟磁性合金粉末を使用し、水酸化アルミニウムの配合量を200部とすること以外は実施例1で使用した材料を用いた。圧縮率を50%とし、実施例1と同様の方法で0.1mm厚みのシートを得た。
(実施例3)
Ni含有量が80質量%のFe−Ni系で、かつ200μm以上の粒径物が除去され平均粒径が140μmで扁平度40である扁平形状の軟磁性合金粉末を使用し、水酸化アルミニウムの配合量を300とすること以外は実施例1で使用した材料を用いた。圧縮率を50%とし、実施例1と同様の方法で0.3mm厚みのシートを得た。
(Example 2)
A soft magnetic alloy powder having a flat shape with an Ni content of 80% by mass, a particle size of 200 μm or more removed, an average particle size of 110 μm and a flatness of 40 is used. The material used in Example 1 was used except that the blending amount was 200 parts. A sheet having a thickness of 0.1 mm was obtained in the same manner as in Example 1 with a compression rate of 50%.
(Example 3)
Using a soft magnetic alloy powder having a flat shape with an Ni content of 80% by mass and having a particle size of 200 μm or more removed, an average particle size of 140 μm and a flatness of 40, The material used in Example 1 was used except that the blending amount was 300. A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 with a compression rate of 50%.
(実施例4)
Ni含有量が80質量%のFe−Ni系で、かつ200μm以上の粒径物が除去され平均粒径が120μmで扁平度30である扁平形状の軟磁性合金粉末を使用し、水酸化アルミニウムの配合量を300とすること以外は実施例1で使用した材料を用いた。圧縮率を70%とし、実施例1と同様の方法で0.1mm厚みのシートを得た。
(実施例5)
Ni含有量が80質量%のFe−Ni系で、かつ200μm以上の粒径物が除去され平均粒径が120μmで扁平度50である扁平形状の軟磁性合金粉末を使用し、水酸化アルミニウムの配合量を200とすること以外は実施例1で使用した材料を用いた。圧縮率を60%とし、実施例1と同様の方法で0.5mm厚みのシートを得た。
Example 4
A soft magnetic alloy powder having a flat shape with an Ni content of 80% by mass, an average particle diameter of 120 μm, and a flatness of 30 is removed from particles having a particle size of 200 μm or more. The material used in Example 1 was used except that the blending amount was 300. A sheet having a thickness of 0.1 mm was obtained in the same manner as in Example 1 with a compression rate of 70%.
(Example 5)
Using a soft magnetic alloy powder having a flat shape with an Ni content of 80% by mass and having a particle size of 200 μm or more removed, an average particle size of 120 μm and a flatness of 50, The material used in Example 1 was used except that the blending amount was 200. A sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 with a compression rate of 60%.
(比較例1)
アクリル樹脂溶液としてガラス転移温度が−20℃で重量平均分子量600,000の[「SKダインSK−HHB28」:商品名、綜研化学(株)製]を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、実施例1と同様の方法で0.3mm厚みのシートを得た。
(比較例2)
アクリル樹脂溶液としてガラス転移温度が−68℃で重量平均分子量900,000の[「SKダインSK−1495」:商品名、綜研化学(株)製]を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を50%とした以外は実施例1と同様の方法で0.5mm厚みのシートを得た。
(Comparative Example 1)
A material used in Example 1 except that [“SK Dyne SK-HHB28”: trade name, manufactured by Soken Chemical Co., Ltd.] having a glass transition temperature of −20 ° C. and a weight average molecular weight of 600,000 is used as the acrylic resin solution. Was used. A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 with the same blending amount as in Example 1.
(Comparative Example 2)
The material used in Example 1 except that [“SK Dyne SK-1495”: trade name, manufactured by Soken Chemical Co., Ltd.] having a glass transition temperature of −68 ° C. and a weight average molecular weight of 900,000 is used as the acrylic resin solution. Was used. A sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression rate was 50%.
(比較例3)
アクリル樹脂溶液としてガラス転移温度が−39℃で重量平均分子量が420,000の[「SG−811」:商品名、ナガセケムテックス(株)製]を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を50%とした以外は実施例1と同様の方法で0.5mm厚みのシートを得た。
(比較例4)
アクリル樹脂溶液としてガラス転移温度が−61℃で重量平均分子量が1,000,000の[「SKダインSK−1570」:商品名、綜研化学(株)製]を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を70%とした以外は実施例1と同様の方法で0.1mm厚みのシートを得た。
(Comparative Example 3)
The material used in Example 1, except that [acrylic resin solution] having a glass transition temperature of −39 ° C. and a weight average molecular weight of 420,000 [“SG-811”: trade name, manufactured by Nagase ChemteX Corp.] Was used. A sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression rate was 50%.
(Comparative Example 4)
Example 1 except that the glass transition temperature is −61 ° C. and the weight average molecular weight is 1,000,000 [“SK Dyne SK-1570”: trade name, manufactured by Soken Chemical Co., Ltd.] as the acrylic resin solution. The material used was used. A sheet having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression ratio was set to 70%.
(比較例5)
Ni含有量が80質量%のFe−Ni系で200μm以上の粒径物を除去し平均粒径が115μmの不定形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を70%とした以外は実施例1と同様の方法で0.3mm厚みのシートを得た。
(比較例6)
Fe−Si―Al系で200μm以上の粒径物を除去し平均粒径が110μmで扁平度が42の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を40%とした以外は実施例1と同様の方法で0.3mm厚みのシートを得た。
(Comparative Example 5)
The material used in Example 1 was used except that an Fe-Ni system with an Ni content of 80% by mass and a particle having a particle size of 200 μm or more were removed and an amorphous soft magnetic alloy powder having an average particle size of 115 μm was used. . A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression rate was set to 70%.
(Comparative Example 6)
The material used in Example 1 was used except that the Fe-Si-Al-based particles having a particle size of 200 μm or more were removed and a flat soft magnetic alloy powder having an average particle size of 110 μm and a flatness of 42 was used. A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression rate was 40%.
(比較例7)
Ni含有量が74質量%のFe−Ni系で、200μm以上の粒径物が除去され、平均粒径が110μmで扁平度が42の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を45%とした以外は実施例1と同様の方法で0.3mm厚みのシートを得た。
(比較例8)
Ni含有量が80%であるFe−Ni系で、200μm以上の粒径物を除去していない平均粒径が120μmで扁平度が40の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を45%とした以外は実施例1と同様の方法で0.3mm厚みのシートを得た。
(Comparative Example 7)
Example 1 except that a Fe-Ni system with a Ni content of 74% by mass, particles having a particle size of 200 μm or more are removed, a soft magnetic alloy powder having an average particle size of 110 μm and a flatness of 42 is used. The material used in 1 was used. A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression ratio was 45%.
(Comparative Example 8)
Example except for using a soft magnetic alloy powder having a flat shape with an average particle size of 120 μm and a flatness of 40, which is an Fe—Ni system with an Ni content of 80% and does not remove particles having a particle size of 200 μm or more. The material used in 1 was used. A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression ratio was 45%.
(比較例9)
Ni含有量が80%であるFe−Ni系で、200μm以上の粒径物を除去され、平均粒径が85μmで扁平度が40の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を70%とした以外は実施例1と同様の方法で0.1mm厚みのシートを得た。
(比較例10)
Ni含有量が80%であるFe−Ni系で、200μm以上の粒径物を除去され、平均粒径が145μmで扁平度が40の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、実施例1と同様の方法で分散溶液を塗工したが、その際に大きな粒径粉末が存在することで毛羽立ったような製膜となってしまい、成形が不可能でシートが得られなかった。
(Comparative Example 9)
Example 1 with the exception of using a soft magnetic alloy powder having a flat shape with an average particle diameter of 85 μm and a flatness of 40, with a particle size of 200 μm or more removed from an Fe—Ni system with an Ni content of 80%. The material used in 1 was used. A sheet having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression ratio was set to 70%.
(Comparative Example 10)
Example 1 with the exception of using a soft magnetic alloy powder having a flat shape with an average particle diameter of 145 μm and a flatness of 40, with a particle size of 200 μm or more removed from an Fe—Ni system having an Ni content of 80%. The material used in 1 was used. The same blending amount as in Example 1 was applied and the dispersion solution was applied in the same manner as in Example 1. However, the presence of a large particle size powder resulted in the formation of a fluffy film, and the molding was Impossible to get a sheet.
(比較例11)
Ni含有量が80%であるFe−Ni系で、200μm以上の粒径物を除去され、平均粒径が110μmで扁平度が25の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、圧縮率を70%とした以外は実施例1と同様の方法で0.1mm厚みのシートを得た。
(比較例12)
Ni含有量が80%であるFe−Ni系で、200μm以上の粒径物を除去され、平均粒径が130μmで扁平度が55の扁平形状の軟磁性合金粉末を使用する以外は実施例1で使用した材料を用いた。実施例1と同じ配合量とし、実施例1と同様の方法で分散溶液を塗工したが、厚みが非常に薄い扁平形状の粉末が存在するために、分散溶液を塗工して得られた製膜が虫食いになるような非常に分散が悪いものとなってしまい、成形が不可能でシートが得られなかった。
(比較例13)
平均粒径が8μmである水酸化アルミニウム[「B103」:商品名、日本軽金属(株)製]を使用する以外は実施例1で使用した材料を用いた。溶剤を除去した後圧縮成形したが、圧縮率45%が限界で、0.5mm厚みのシートを得た。
(Comparative Example 11)
Example 1 with the exception of using a soft magnetic alloy powder having a flat shape with an average particle size of 110 μm and a flatness of 25 in a Fe—Ni system with an Ni content of 80%, with a particle size of 200 μm or more removed. The material used in 1 was used. A sheet having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the blending amount was the same as in Example 1 and the compression ratio was set to 70%.
(Comparative Example 12)
Example 1 except that a Fe-Ni system having a Ni content of 80%, particles having a particle size of 200 μm or more are removed, and a flat soft magnetic alloy powder having an average particle size of 130 μm and a flatness of 55 is used. The material used in 1 was used. The same blending amount as in Example 1 was applied and the dispersion solution was applied in the same manner as in Example 1. However, since a flat powder having a very thin thickness was present, the dispersion solution was applied. Dispersion was very poor so that the film was worm-eaten, and molding was impossible and a sheet was not obtained.
(Comparative Example 13)
The material used in Example 1 was used except that aluminum hydroxide [“B103”: trade name, manufactured by Nippon Light Metal Co., Ltd.] having an average particle diameter of 8 μm was used. After removing the solvent, compression molding was performed, but a compression rate of 45% was the limit, and a 0.5 mm thick sheet was obtained.
(比較例14〜比較例17)
アクリル樹脂、軟磁性合金粉末および金属水酸化物の配合割合が、表5−1に示すものであること以外は実施例1と同じ材料を用いた。比較例14、16は実施例1と同様の方法で、圧縮率をそれぞれ70%、50%として成形し、それぞれ0.1mmおよび0.5mm厚みのシートを得た。また、比較例15、17は実施例1と同様の方法で製膜・溶剤除去を行ったが、分散溶液の流動性が非常に低く、まだら状態の塗工となり成形が困難であり、シートは得られなかった
(比較例18〜比較例21)
実施例1と同じ材料を用い、同じ配合量で混合した分散溶液を、実施例1と同様に製膜・溶剤除去を行った。比較例18は圧縮率40%で、比較例21は圧縮率70%で圧縮成形し、それぞれ0.5mmおよび0.6mm厚みのシートを得た。
また、比較例19は圧縮率80%へ圧縮を試みたが圧縮することができず成形不可であり、シートを得られなかった。また、比較例20は厚み0.05mmのシートの成形を試みたが、ところどころ千切れたりと均一なシートを得ることができなかった。
(Comparative Example 14 to Comparative Example 17)
The same materials as in Example 1 were used except that the blending ratio of the acrylic resin, the soft magnetic alloy powder, and the metal hydroxide was as shown in Table 5-1. Comparative Examples 14 and 16 were molded in the same manner as in Example 1, with compression ratios of 70% and 50%, respectively, to obtain sheets of 0.1 mm and 0.5 mm thickness, respectively. In Comparative Examples 15 and 17, film formation and solvent removal were performed in the same manner as in Example 1. However, the fluidity of the dispersion solution was very low, and the coating was mottled and difficult to form. Not obtained (Comparative Example 18 to Comparative Example 21)
Using the same material as in Example 1, the dispersion solution mixed in the same amount was subjected to film formation and solvent removal in the same manner as in Example 1. Comparative Example 18 was compression molded at a compression rate of 40%, and Comparative Example 21 was compression molded at a compression rate of 70% to obtain sheets of 0.5 mm and 0.6 mm thickness, respectively.
In Comparative Example 19, compression was attempted to a compression rate of 80%, but compression was impossible and molding was impossible, and no sheet was obtained. In Comparative Example 20, an attempt was made to form a sheet having a thickness of 0.05 mm, but a uniform sheet could not be obtained.
各実施例および比較例で得られた電波波障害対策シート(シートの得られなかった比較例10、12、15、17、19、20は除く)について、各特性の評価測定及び試験として次の方法にて、「透磁率の測定」、「UL94垂直燃焼試験及び水平燃焼試験」並びに「シート巻き付け試験」を実施した。各実施例及び比較例の測定及び試験の結果を表1〜表5−2に示した。
透磁率は10MHzでの値が50以上、難燃性はUL94の水平難燃性のHB以上及びシート巻き付け試験は巻き付けが可能か、曲げ部分で割れを生じないかどうかを合否の判断基準とした。
Regarding the radio wave interference countermeasure sheet obtained in each Example and Comparative Example (excluding Comparative Examples 10, 12, 15, 17, 19, and 20 in which a sheet was not obtained) By the method, “measurement of magnetic permeability”, “UL94 vertical combustion test and horizontal combustion test” and “sheet winding test” were carried out. The results of measurement and test of each example and comparative example are shown in Tables 1 to 5-2.
The permeability is a value of 50 or more at 10 MHz, the flame retardancy is more than the horizontal flame retardant HB of UL94, and the sheet winding test can be wound, and whether or not cracking occurs at the bent portion is a criterion for pass / fail. .
(1)[透磁率測定]
インピーダンス・マテリアルアナライザーを用い周波数1MHz〜1GHzでの透磁率を測定し、最高値を示す1MHz〜10MHzでの値を用いた。その際、不要な電磁波を熱へ変換するといった電磁波の抑制効果を有する値として50以上が必要であることとした。
(1) [Permeability measurement]
The permeability at a frequency of 1 MHz to 1 GHz was measured using an impedance material analyzer, and the value at 1 MHz to 10 MHz indicating the maximum value was used. At that time, it was determined that 50 or more was required as a value having an electromagnetic wave suppressing effect of converting unnecessary electromagnetic waves into heat.
(2)[UL94 薄手材料垂直燃焼試験 垂直Vと水平HB]
材料・装置・部品・道具類などから製品に至るまでの、機能や安全性に関する標準化を目的とした製品安全規格を満たしたものに対し認可を与える機関であるUnderwriters Laboratoriesで実施評価されるUL94「機器の部品用プラスチック材料の燃焼性試験」にある20mm垂直燃焼試験(94V−0、94V−1または94V−2)及び水平燃焼試験(94HB)に準拠した。
(2) [UL94 Thin Material Vertical Combustion Test Vertical V and Horizontal HB]
UL94 "Evaluated by Underwriters Laboratories, an organization that grants approvals for products that meet product safety standards for the purpose of standardization of functions and safety, from materials, equipment, parts and tools to products. The 20 mm vertical combustion test (94V-0, 94V-1 or 94V-2) and the horizontal combustion test (94HB) in "Combustion test of plastic materials for equipment parts" were used.
(3)[シート巻き付け試験]
JIS C 3005「ゴム・プラスチック絶縁電線試験方法の巻付加熱試験」を参考にした。それは電線試料を規定の径をもつ円筒に緊密に規定回数巻き付け、または屈曲し、そのままの状態で、規定温度の恒温槽で1時間加熱した後に取り出して、試料の表面にひび及び割れが生じているかどうかを目視で調べるものである。本試験では、径1.0mmの円筒の棒に規定のシートを巻き付けることができるか否か、もしくはその際に千切れたりしないかどうかで行った。
(3) [Sheet winding test]
JIS C 3005 “Rolling heat test of rubber / plastic insulated wire test method” was referred to. That is, a wire sample is tightly wound around a cylinder with a specified diameter, bent or bent, and is heated as it is in a constant temperature bath for 1 hour, and then taken out, causing cracks and cracks on the surface of the sample. It is to check whether it is visually. In this test, whether or not the specified sheet can be wound around a cylindrical rod having a diameter of 1.0 mm, or whether or not the sheet is torn off at that time.
表1及び表2−1、表2−2にみられるように、実施例1〜実施例14で得られた電磁波障害対策シートは、不要な電磁波を熱へ変換するといった電磁波の抑制効果をもつ透磁率50以上を有する。そして、UL94「薄手材料垂直燃焼試験及び水平燃焼試験」においては、平均粒径2〜4μmの水酸化アルミニウムが100部配合の実施例10は94水平HBで、200部配合の実施例11は94垂直V−1で、300部配合の実施例12は94垂直V−0を有する。更に、シート巻き付け試験では径1.0mmの円筒の棒への巻き付けでも千切れたりすることなく巻く付けることができる柔軟性を有する。
以上のように、本発明の電磁波障害対策シートは、電磁波を熱へ変換し不要な電磁波を抑制する効果をもつ透磁率を有し、かつハロゲンフリーでの難燃性をも有し、更に小さい巻き付け径(曲率)で曲げたり巻付けたりすることができる柔軟性に優れることが確認された。
As can be seen from Table 1, Table 2-1, and Table 2-2, the electromagnetic wave interference countermeasure sheets obtained in Examples 1 to 14 have the effect of suppressing electromagnetic waves such as converting unnecessary electromagnetic waves to heat. It has a magnetic permeability of 50 or more. In UL94 “thin material vertical combustion test and horizontal combustion test”, Example 10 containing 100 parts of aluminum hydroxide having an average particle diameter of 2 to 4 μm is 94 horizontal HB, and Example 11 containing 200 parts is 94. Example 12 with 300 parts formulation at vertical V-1 has 94 vertical V-0. Furthermore, in the sheet winding test, even if it is wound around a cylindrical rod having a diameter of 1.0 mm, the sheet can be wound without being broken.
As described above, the electromagnetic wave interference countermeasure sheet according to the present invention has a magnetic permeability that has an effect of suppressing unnecessary electromagnetic waves by converting electromagnetic waves into heat, has halogen-free flame retardancy, and is smaller. It was confirmed that it was excellent in flexibility that can be bent or wound with a winding diameter (curvature).
これに対し、表3のガラス転移温度が−20℃のアクリル樹脂を使用した比較例1の0.3mm厚シートはアクリル樹脂の分子鎖の運動性が乏しいために非常に硬く、径1.0mmの円筒の棒に巻き付けることができないことがわかる。
また、表3のガラス転移温度が−68℃のアクリル樹脂を使用した比較例2の0.5mm厚シートは、アクリル樹脂の分子鎖の運動性が増大し柔軟性が大きすぎて非常に柔らかく、円筒の棒に巻き付ける際に千切れてしまうことがわかる。
また、表3の重量平均分子量が420,000のアクリル樹脂を使用した比較例3の0.5mm厚シートは、その樹脂の分子量が小さいために強度が低くて柔らかく、円筒の棒に巻き付ける際に千切れてしまうことがわかる。
また、表3の重量平均分子量が1,000,000のアクリル樹脂を使用した比較例4の0.1mm厚シート4は、その樹脂の分子量が大きいために強度が高くて硬く、円筒の棒に巻き付けることができないことがわかる。
In contrast, the 0.3 mm thick sheet of Comparative Example 1 using an acrylic resin having a glass transition temperature of −20 ° C. in Table 3 is very hard because the molecular chain mobility of the acrylic resin is poor, and the diameter is 1.0 mm. It turns out that it cannot wind around the cylindrical rod.
In addition, the 0.5 mm thick sheet of Comparative Example 2 using an acrylic resin having a glass transition temperature of −68 ° C. in Table 3 is very soft because the mobility of the molecular chain of the acrylic resin is increased and the flexibility is too large. It can be seen that when it is wound around a cylindrical rod, it is broken into pieces.
In addition, the 0.5 mm thick sheet of Comparative Example 3 using an acrylic resin having a weight average molecular weight of 420,000 in Table 3 is low in strength and soft because of the low molecular weight of the resin, and is wound around a cylindrical rod. It turns out that it is torn.
Further, the 0.1 mm thick sheet 4 of Comparative Example 4 using an acrylic resin having a weight average molecular weight of 1,000,000 shown in Table 3 is high in strength and hard due to the large molecular weight of the resin, and is formed into a cylindrical rod. It turns out that it cannot be wound.
表4−1の不定形状の軟磁性合金粉末を使用した比較例5の0.3mm厚シートは、軟磁性合金粉末同士の接触点数が非常に少ないために、それら同士のつながりが乏しく透磁率が10と非常に低く、電磁波を熱へ変換し不要な電磁波を抑制する効果に劣ることがわかる。
また、表4−1のFe−Si―Al系の扁平形状軟磁性合金粉末を使用した比較例6の0.3mm厚シートは、Fe−Si−Al系軟磁性合金粉末が硬く、分散溶液を塗工方法で製膜し、溶剤を除去した後の圧縮40%あたりが限界である。扁平形状軟磁性合金粉末のつながりに乏しいために透磁率が30と低く、不要な電磁波を抑制する効果に劣ることがわかる。
また、表4−1のNi含有量が74%のFe−Ni系を使用した比較例7の0.3mm厚シートは、柔らかいNiの含有量が低くて硬い軟磁性合金粉末となり、分散溶液を塗工方法で製膜し、溶剤を除去した後の圧縮45%あたりが限界である。扁平形状軟磁性合金粉末のつながりに乏しいために透磁率が40と低く、不要な電磁波を抑制する効果に劣ることがわかる。
The 0.3 mm thick sheet of Comparative Example 5 using the irregular-shaped soft magnetic alloy powder of Table 4-1 has a very small number of contact points between the soft magnetic alloy powders. It can be seen that it is very low as 10 and inferior in the effect of converting electromagnetic waves into heat and suppressing unnecessary electromagnetic waves.
Further, the 0.3 mm thick sheet of Comparative Example 6 using the Fe—Si—Al-based flat soft magnetic alloy powder of Table 4-1 is hard in Fe—Si—Al-based soft magnetic alloy powder, and the dispersion solution is The limit is around 40% compression after the film is formed by the coating method and the solvent is removed. Since the flat soft magnetic alloy powder is poorly connected, the magnetic permeability is as low as 30, indicating that the effect of suppressing unnecessary electromagnetic waves is poor.
In addition, the 0.3 mm thick sheet of Comparative Example 7 using the Fe—Ni system having a Ni content of 74% in Table 4-1 becomes a soft soft magnetic alloy powder having a low soft Ni content and a dispersion solution. The limit is around 45% compression after the film is formed by the coating method and the solvent is removed. Since the flat soft magnetic alloy powder is poorly connected, the magnetic permeability is as low as 40, indicating that the effect of suppressing unnecessary electromagnetic waves is poor.
表4−1の200μm以上の粒径物を除去していない扁平形状軟磁性合金粉末を使用した比較例8の0.3mm厚シートは、大きな粒径粉末が存在するために分散溶液を塗工方法で製膜し、溶剤を除去した後の圧縮45%あたりが限界である。扁平形状軟磁性合金粉末のつながりに乏しいために透磁率が45と低く、電磁波を熱へ変換し不要な電磁波を抑制する効果に劣ることがわかる。
また、表4−1の平均粒径が85μmである扁平形状軟磁性合金粉末を使用した比較例9の0.1mm厚シートは、70%の高圧縮にもかかわらずその粒径が小さいことから扁平形状軟磁性合金粉末同士のつながりが乏しく、得られた電磁波障害対策シートの透磁率も45と低く、不要な電磁波を抑制する効果に劣ることがわかる。
The 0.3 mm thick sheet of Comparative Example 8 using the flat-shaped soft magnetic alloy powder from which particles having a particle size of 200 μm or more in Table 4-1 have not been removed is coated with a dispersion solution because a large particle size powder exists. The limit is around 45% compression after film formation by the method and removal of the solvent. Since the flat soft magnetic alloy powder is poorly connected, the magnetic permeability is as low as 45, indicating that the effect of converting electromagnetic waves into heat and suppressing unnecessary electromagnetic waves is inferior.
In addition, the 0.1 mm thick sheet of Comparative Example 9 using the flat soft magnetic alloy powder having an average particle diameter of 85 μm in Table 4-1 has a small particle diameter despite high compression of 70%. The connection between the flat soft magnetic alloy powders is poor, and the obtained electromagnetic interference prevention sheet has a low magnetic permeability of 45, indicating that the effect of suppressing unnecessary electromagnetic waves is inferior.
表4−2の扁平度が25の扁平形状軟磁性合金粉末を使用した比較例11の0.1mm厚シートは、その形状が厚みのある扁平形状いわゆる不定形状に近いものとなり、軟磁性合金粉末同士の接触点数が減少することでそれら同士のつながりも乏しくなり、70%の高圧縮にもかかわらず得られたシートの透磁率が40と低く、電磁波を熱へ変換し不要な電磁波を抑制する効果に劣ることがわかる。
また、表4−2の平均粒径が8μmの金属水酸化物を使用した比較例13の0.5mm厚シートは、大きな粒径の水酸化アルミニウム粉末が存在するために成形時の圧縮が45%あたりが限界で、扁平形状軟磁性合金粉末のつながりが乏しいために透磁率が45と低く、不要な電磁波を抑制する効果に劣ることがわかる。
The 0.1 mm thick sheet of Comparative Example 11 using a flat soft magnetic alloy powder having a flatness of 25 in Table 4-2 has a shape that is close to a thick flat so-called indeterminate shape, and the soft magnetic alloy powder By reducing the number of contact points between them, the connection between them becomes poor, the magnetic permeability of the sheet obtained despite high compression of 70% is as low as 40, and electromagnetic waves are converted into heat to suppress unnecessary electromagnetic waves. It turns out that the effect is inferior.
In addition, the 0.5 mm thick sheet of Comparative Example 13 using a metal hydroxide having an average particle diameter of 8 μm in Table 4-2 has a large particle diameter of aluminum hydroxide powder, so that the compression during molding is 45. % Is the limit, and the flat soft magnetic alloy powder is poorly connected, so the magnetic permeability is as low as 45, indicating that the effect of suppressing unnecessary electromagnetic waves is inferior.
表5−1の扁平形状軟磁性合金粉末の配合量が600質量部である比較例14の0.1mm厚シートは、その配合量不足で70%の高圧縮にもかかわらずそれら同士のつながりに乏しく、得られたシートの透磁率は30と低く、電磁波を熱へ変換し不要な電磁波を抑制する効果に劣ることがわかる。
また、表5−1の金属水酸化物の配合量が50質量部である比較例16の0.5mm厚シートは、その配合量不足で、0.5mm厚にもかかわらずUL94の水平HB難燃性も不合格であるといった難燃性に劣ることがわかる。
The 0.1 mm thick sheet of Comparative Example 14 in which the blending amount of the flat-shaped soft magnetic alloy powder in Table 5-1 is 600 parts by mass is linked to each other despite the high compression of 70% due to insufficient blending amount. It is poor, and the magnetic permeability of the obtained sheet is as low as 30, indicating that the effect of converting electromagnetic waves into heat and suppressing unnecessary electromagnetic waves is inferior.
In addition, the 0.5 mm thick sheet of Comparative Example 16 in which the blending amount of the metal hydroxide in Table 5-1 is 50 parts by mass is insufficient in the blending amount, and the horizontal HB difficulty of UL94 despite the 0.5 mm thickness. It turns out that it is inferior to the flame retardance that the flammability is also rejected.
実施例1の配合組成と同じ分散溶液を実施例1と同様の塗工方法で製膜し、溶剤を除去した後の圧縮率を40%とした表5−2の比較例18の0.5mm厚シートは、透磁率が30と低く、電磁波を熱へ変換し不要な電磁波を抑制する効果に劣ることがわかる。
また、表5−2の比較例21のシートは、実施例1の配合組成と同じ分散溶液を実施例1と同様の塗工方法で製膜し、厚み0.6mm厚のシートを得たが、その厚みのために径1.0mmの円筒の棒に巻き付けることができないことがわかる。
The same dispersion solution as the composition of Example 1 was formed into a film by the same coating method as in Example 1, and the compression ratio after removing the solvent was set to 40%. It can be seen that the thick sheet has a low permeability of 30 and is inferior in the effect of converting electromagnetic waves into heat and suppressing unnecessary electromagnetic waves.
In addition, the sheet of Comparative Example 21 in Table 5-2 was formed using the same dispersion solution as that of Example 1 by the same coating method as in Example 1 to obtain a sheet having a thickness of 0.6 mm. It can be seen that it cannot be wound around a cylindrical rod having a diameter of 1.0 mm because of its thickness.
1 電磁波障害対策シート
2 アクリル樹脂
3 扁平形状軟磁性合金粉末
4 金属水酸化物
1 Electromagnetic wave
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008061847A JP5137629B2 (en) | 2008-03-11 | 2008-03-11 | Electromagnetic interference countermeasure sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008061847A JP5137629B2 (en) | 2008-03-11 | 2008-03-11 | Electromagnetic interference countermeasure sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009218450A JP2009218450A (en) | 2009-09-24 |
JP5137629B2 true JP5137629B2 (en) | 2013-02-06 |
Family
ID=41190020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008061847A Expired - Fee Related JP5137629B2 (en) | 2008-03-11 | 2008-03-11 | Electromagnetic interference countermeasure sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5137629B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5879026B2 (en) * | 2010-07-23 | 2016-03-08 | Necトーキン株式会社 | Flame retardant noise suppression sheet |
JP6297260B2 (en) * | 2013-02-26 | 2018-03-20 | 日東電工株式会社 | Soft magnetic thermosetting adhesive film, soft magnetic film laminated circuit board, and position detection device |
JP2015005711A (en) * | 2013-05-22 | 2015-01-08 | 日東電工株式会社 | Soft magnetic resin composition, and soft magnetic film |
JP6297281B2 (en) * | 2013-05-27 | 2018-03-20 | 日東電工株式会社 | Soft magnetic resin composition, soft magnetic adhesive film, soft magnetic film laminated circuit board, and position detection device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003229694A (en) * | 2002-02-05 | 2003-08-15 | Sony Corp | Electromagnetic wave absorbent and its manufacturing method |
JP2006073949A (en) * | 2004-09-06 | 2006-03-16 | Showa Denko Kk | Electromagnetic wave absorber |
JP5048974B2 (en) * | 2005-06-20 | 2012-10-17 | アキレス株式会社 | Acrylic resin composition and resin sheet having electromagnetic wave absorption and thermal conductivity |
-
2008
- 2008-03-11 JP JP2008061847A patent/JP5137629B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009218450A (en) | 2009-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4849220B2 (en) | Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board | |
JP4962220B2 (en) | Flame retardant noise suppression sheet | |
TWI278278B (en) | Electromagnetic waves absorber | |
US20090114440A1 (en) | Conductive Magnetic Filler, Resin Composition Containing the Filler, Electromagnetic Interference Suppressing Sheet Using the Resin Composition and Applications Thereof, and Process for Producing the Electromagnetic Interference Suppressing Sheet | |
JP2009059753A (en) | Flame-retardant noise suppressing sheet | |
JP2008021990A (en) | Electromagnetic interference suppressor and method of suppressing electromagnetic fault | |
JP2006310812A (en) | Thermally conductive sheet | |
WO2008069059A1 (en) | Resin composition | |
JP2006307209A (en) | Sheet product, laminated product, product equipped with sheet and method for manufacturing sheet | |
US20090087608A1 (en) | Roll-type composite sheet having improved heat-releasing electromagnetic wave-absorbing, and impact-absorbing properties, and method of manufacturing the same | |
KR101560570B1 (en) | Composition for complex sheet with EMI shielding and absorbing, thermal dissipation and electric insulation, and complex sheet comprising the same | |
KR101385823B1 (en) | Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference | |
EP2938175A1 (en) | Electromagnetic interference suppression body | |
JP5137629B2 (en) | Electromagnetic interference countermeasure sheet | |
JP2009278137A (en) | Electromagnetic wave absorbing material | |
JP2007281074A (en) | Noise suppression sheet | |
JP2009155554A (en) | Resin composition | |
JP4859028B2 (en) | Electromagnetic wave prevention sheet, electromagnetic wave prevention sheet manufacturing method, and electromagnetic wave prevention structure of electronic component | |
JP2011134755A (en) | Anti-electromagnetic noise member | |
KR102155542B1 (en) | Noise suppression sheet for near field | |
KR102167063B1 (en) | Composition for preparing electromagnetic wave shielding gasket and electromagnetic wave shielding gasket prepared therefrom | |
JP5361055B2 (en) | Composite sheet | |
JP5879026B2 (en) | Flame retardant noise suppression sheet | |
JP2011003583A (en) | Composite sheet | |
JP4311655B2 (en) | Electromagnetic wave absorber with broadband frequency characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090707 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |