JP5135286B2 - Exhaust purification system - Google Patents

Exhaust purification system Download PDF

Info

Publication number
JP5135286B2
JP5135286B2 JP2009123128A JP2009123128A JP5135286B2 JP 5135286 B2 JP5135286 B2 JP 5135286B2 JP 2009123128 A JP2009123128 A JP 2009123128A JP 2009123128 A JP2009123128 A JP 2009123128A JP 5135286 B2 JP5135286 B2 JP 5135286B2
Authority
JP
Japan
Prior art keywords
threshold value
regeneration
engine
accumulation amount
reproduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009123128A
Other languages
Japanese (ja)
Other versions
JP2010270672A (en
Inventor
勇樹 後藤
一浩 柴森
英信 束田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2009123128A priority Critical patent/JP5135286B2/en
Publication of JP2010270672A publication Critical patent/JP2010270672A/en
Application granted granted Critical
Publication of JP5135286B2 publication Critical patent/JP5135286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、ディーゼルエンジンの排気浄化システムに係わり、特に、建設機械に搭載され、フィルタに蓄積した粒子状物質を焼却除去する再生処理をおこなう排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for a diesel engine, and more particularly to an exhaust gas purification system that is mounted on a construction machine and performs a regeneration process for removing particulate matter accumulated in a filter by incineration.

ディーゼルエンジン等の内燃機関から排出される排気ガスに関する規制は年々強化されてきており、このような規制の強化に対応して、排気ガスフィルタや、そのフィルタに用いる触媒の技術も急速に進歩している。例えば、ディーゼルエンジンから排出される排気ガス中に含まれる粒子状物質(Particulate Matter:以下、適宜PMと記載する)を低減する技術として、粒子状物質除去フィルタ(Diesel Particulate Filter:以下、適宜DPFと記載する)が開発されている。建設機械もディーゼルエンジンを搭載しており、規制に適応するためDPFを有する排気浄化システムを搭載している。   Regulations related to exhaust gas emitted from internal combustion engines such as diesel engines have been strengthened year by year, and in response to these regulations, exhaust gas filters and catalyst technology used in such filters have also advanced rapidly. ing. For example, as a technology for reducing particulate matter (Particulate Matter: hereinafter referred to as PM as appropriate) contained in exhaust gas discharged from a diesel engine, a particulate matter removal filter (Diesel Particulate Filter: hereinafter referred to as DPF as appropriate) Have been developed). Construction machinery is also equipped with a diesel engine and an exhaust purification system with a DPF to comply with regulations.

DPFは、ディーゼルエンジンから排出される排気ガス中に含まれるPMを捕集することにより、大気中に排出されるPMの量を低減するものである。DPFは、捕集し、蓄積したPMを燃焼除去することで捕集能力を回復する(DPFの再生)。通常、DPFに蓄積したPMは、ある一定以上の高温の排気ガスにさらされる事により燃焼除去される(自然再生)が、ディーゼルエンジンに対する負荷が軽い場合は、排気ガスの温度はPMの燃焼に必要な高温に達しないのでDPFは自然再生されず、この状態を放置するとPMが過度に蓄積してDPFの目詰まりが発生する。   The DPF collects PM contained in exhaust gas discharged from a diesel engine, thereby reducing the amount of PM discharged into the atmosphere. The DPF collects and recovers the collection ability by burning and removing the accumulated PM (regeneration of the DPF). Normally, PM accumulated in the DPF is burned and removed by exposure to high-temperature exhaust gas that exceeds a certain level (natural regeneration), but when the load on the diesel engine is light, the temperature of the exhaust gas is responsible for burning PM. Since the necessary high temperature is not reached, the DPF is not naturally regenerated, and if this state is left as it is, PM accumulates excessively and clogging of the DPF occurs.

このような事態を防ぐために、再生燃料噴射装置を設けて排気管内に未燃燃料を噴射し、この燃料をDPF内の酸化触媒より燃焼させ、この燃焼熱によりフィルタに蓄積したPMを燃焼除去することが必要である。一般的には、PM蓄積量などの状態量が所定の閾値を超えると再生処理を行うような制御がされている。   In order to prevent such a situation, a regenerative fuel injection device is provided to inject unburned fuel into the exhaust pipe, this fuel is burned from the oxidation catalyst in the DPF, and the PM accumulated in the filter is burned and removed by this combustion heat. It is necessary. Generally, control is performed such that regeneration processing is performed when a state quantity such as a PM accumulation quantity exceeds a predetermined threshold.

しかし、作業開始時における建設機械の暖機運転が不十分であったり、外気温度が低い場合など、酸化触媒の活性温度領域以下であると、PMを良好に燃焼除去できず、更に失火して再生処理が失敗する可能性もある。DPFの目詰まりを放置しておくと、DPFの捕集能力が低下するとともに、排気圧力を過度に上昇させDPFの破損や燃費の悪化などの問題を引き起こす。例えば、再生処理に失敗すると、PMは良好に燃焼除去されずに蓄積され、再生処理失敗を繰り返すうちに、PMの蓄積量が限界値を超えてDPFが破損する可能性がある。   However, if the temperature is below the activation temperature range of the oxidation catalyst, such as when the warm-up operation of the construction machine at the start of the work is insufficient or the outside air temperature is low, PM cannot be burned and removed satisfactorily, and a misfire will occur. There is also a possibility that the reproduction process will fail. If the clogging of the DPF is left unattended, the collecting ability of the DPF is lowered, and the exhaust pressure is excessively increased to cause problems such as damage to the DPF and deterioration of fuel consumption. For example, if the regeneration process fails, PM is accumulated without being burned and removed well, and while the regeneration process fails repeatedly, there is a possibility that the accumulated amount of PM exceeds a limit value and the DPF is damaged.

外気温度が低い場合の問題を解決する技術として、例えば、特許文献1には、外気温度を取得し、外気温度が低くなるにしたがって再生処理を禁止する技術が記載されている。これにより、効率よく確実に再生処理できる外気温度が高いときに優先的に再生処理をおこなうことで、燃費悪化を抑制できる。   As a technique for solving the problem when the outside air temperature is low, for example, Patent Document 1 describes a technique for acquiring the outside air temperature and prohibiting the regeneration process as the outside air temperature decreases. As a result, when the outside air temperature at which the regeneration process can be performed efficiently and reliably is high, the regeneration process is preferentially performed, thereby suppressing deterioration in fuel consumption.

特開2007−255289号公報JP 2007-255289 A

しかし、特許文献1記載の技術は、外気温度が高くなることを前提とした技術であり、寒冷地のような外気温度が高くなることのない場合は、再生処理をおこなえず、DPFにPMが蓄積し続けPMの蓄積量が限界値を超えてDPFが破損する可能性がある。特に、建設機械は建設工事ごとに回送するものであり、温暖地から寒冷地へ回送され使用されることも想定される。建設工事は交通の不便な場所で行われることも多く、DPFの破損等の故障をすると、メンテナンス員が現場まで赴いて修理をするなど、非常に手間がかかる。   However, the technique described in Patent Document 1 is based on the premise that the outside air temperature becomes high. When the outside air temperature does not become high, such as in a cold district, regeneration processing cannot be performed, and PM is contained in the DPF. There is a possibility that the accumulated amount of PM continues to accumulate and exceeds the limit value and the DPF is damaged. In particular, the construction machine is forwarded for each construction work, and it is assumed that the construction machine is forwarded from a warm region to a cold region. Construction work is often performed in inconvenient places, and if a failure such as a DPF breakage occurs, it will take a lot of work, such as a maintenance person visiting the site and repairing.

本発明の目的は、外気温度が低い場合でもPMの燃焼除去を確実に行い、捕集能力低下及びDPFの破損を防止できる排気浄化システムを提供することである。   An object of the present invention is to provide an exhaust purification system capable of reliably removing PM by combustion even when the outside air temperature is low, and preventing the collection ability from being lowered and the DPF from being damaged.

記目的を達成するために、第1の発明は、エンジンの排気系に配置され、排気ガス中に含まれる粒子状物質を捕集するフィルタと、エンジンからの燃料噴射によりこのフィルタに蓄積した粒子状物質を焼却除去する再生処理をおこなう再生手段と、所定の状態量を取得する状態量取得手段と、取得した前記状態量とその状態量に係る閾値との比較結果に基づいて再生処理をおこなうか否かを判断する再生制御手段とを備えた排気浄化システムにおいて、外気温度を取得する外気温度取得手段を備え、前記状態量取得手段は、前記所定の状態量として、前記フィルタに蓄積した粒子状物質の蓄積量を取得する蓄積量取得部と、前記エンジンの稼動時間を取得するエンジン稼動時間取得部とを備え、前記再生制御手段は、前記閾値として前記フィルタに蓄積した粒子状物質の蓄積量に係る閾値を演算する蓄積量閾値演算部と、前記エンジンの稼動時間に係る閾値を演算するエンジン稼動時間閾値演算部とを備え、前記蓄積量閾値演算部および前記エンジン稼動時間閾値演算部によって演算される前記閾値は、前記外気温度が低くなるに従って低くなるように設定され、前記蓄積量取得部によって取得される前記フィルタの粒子状物質の蓄積量および前記エンジンの稼動時間取得部によって取得されるエンジン稼動時間のいずれかが前記閾値を超えたときに再生処理をおこなうと判断することを特徴とする。 To achieve the above Symbol object, the first invention is arranged in an exhaust system of the engine, a filter for trapping particulate matter contained in exhaust gas was accumulated in the filter by the fuel injection from the engine Based on the result of comparison between the regeneration means for performing the regeneration process for removing the particulate matter by incineration, the state quantity obtaining means for obtaining the predetermined state quantity, and the obtained state quantity and the threshold value related to the state quantity. An exhaust purification system comprising a regeneration control means for determining whether to perform or not, comprising an outside air temperature obtaining means for obtaining an outside air temperature, wherein the state quantity obtaining means accumulates the predetermined state quantity in the filter. comprising a storage amount acquiring unit that acquires an accumulation amount of particulate matter, the engine operating time acquisition unit for acquiring the operation time of the engine, the regeneration control means, the full as the threshold An accumulation amount threshold value calculation unit that calculates a threshold value related to the accumulation amount of the particulate matter accumulated in the filter, and an engine operation time threshold value calculation unit that calculates a threshold value related to the operation time of the engine, the accumulation amount threshold value calculation unit The threshold value calculated by the engine operating time threshold value calculation unit is set to be lower as the outside air temperature becomes lower, and the accumulated amount of particulate matter in the filter acquired by the accumulated amount acquisition unit and the When any of the engine operating times acquired by the engine operating time acquiring unit exceeds the threshold, it is determined that the regeneration process is performed .

外気温度が低く、酸化触媒の活性温度領域以下であると、PMを良好に燃焼除去できず、更に失火して再生処理に失敗する可能性もある。標準温度時の閾値に基づいて再生処理をおこなう場合、再生処理に失敗すると、PMは良好に燃焼除去されずに蓄積され、再生処理失敗を繰り返すうちに、DPFの捕集能力が低下するとともに、PMの蓄積量が限界値を超えてDPFが破損する可能性がある。   If the outside air temperature is low and below the activation temperature range of the oxidation catalyst, PM cannot be burned and removed well, and there is a possibility that the regeneration process may fail due to misfire. When the regeneration process is performed based on the threshold value at the standard temperature, if the regeneration process fails, PM is accumulated without being burned and removed well, and while the regeneration process failure is repeated, the collection ability of the DPF decreases, There is a possibility that the accumulated amount of PM exceeds the limit value and the DPF is damaged.

本発明では上記のように、外気温度が所定温度より低いとき、外気温度が低くなるにしたがって再生処理の頻度を増やすように、閾値を可変に設定することにより、外気温度が低くなるにしたがって再生処理の頻度は増える。これにより頻繁に蓄積したPMを燃焼除去することで捕集能力を回復するので、外気温度が低い場合でもPMの燃焼除去を確実に行い、捕集能力低下を防止でき、DPFの破損を防止できる。   In the present invention, as described above, when the outside air temperature is lower than the predetermined temperature, the threshold value is variably set so that the frequency of the regeneration process is increased as the outside air temperature is lowered. The frequency of processing increases. As a result, the trapping ability is recovered by burning and removing the accumulated PM frequently, so even when the outside air temperature is low, the PM can be reliably removed by burning, the trapping ability can be prevented from being lowered, and the DPF can be prevented from being damaged. .

また、仮に再生処理に失敗した場合でも、頻繁に(短いインターバルで何回も)次の再生処理を試みることにより、確実に再生処理を完了させ、捕集能力低下及びDPFの破損を防止できる。   Moreover, even if the regeneration process fails, the regeneration process can be reliably completed by frequently (several times in a short interval) to complete the regeneration process, and the collection capacity can be reduced and the DPF can be prevented from being damaged.

さらに、再生処理に失敗したときに蓄積されるPMの蓄積量は、標準温度時の閾値に基づいて再生処理をおこなう場合に比べて少ない。したがって、捕集能力低下の進まないうちに次の再生処理を試みることができる。また、PMの蓄積量が限界値を超える可能性がないうちに次の再生処理を試みることができる。これにより、外気温度が低い場合でもPMの燃焼除去を確実に行い、捕集能力低下を防止でき、DPFの破損を防止できる。   Furthermore, the amount of PM accumulated when the regeneration process fails is smaller than when the regeneration process is performed based on the threshold value at the standard temperature. Therefore, the next regeneration process can be attempted before the collection ability is reduced. Further, the next regeneration process can be attempted before the accumulated amount of PM exceeds the limit value. As a result, even when the outside air temperature is low, PM can be reliably removed by combustion, a reduction in the collection ability can be prevented, and damage to the DPF can be prevented.

また、第2の発明は、第1の発明において、前記再生制御手段は、再生処理をおこなうと判断すると、前記再生手段に再生処理するものとする。 In a second aspect based on the first aspect, when the reproduction control unit determines to perform a reproduction process, the reproduction unit performs the reproduction process.

これにより、自動再生処理をおこなうことができる。   Thereby, automatic reproduction processing can be performed.

また、第3の発明は、第1の発明において、再生処理の開始を促す警告表示を行う表示手段と、再生操作手段とを更に備え、前記再生制御手段は、再生処理をおこなうと判断すると、前記表示手段に警告表示信号を出力し、前記再生操作手段から操作信号を入力すると、前記再生手段に再生処理をおこなう制御信号を出力するものとする。 According to a third aspect of the present invention, in the first aspect of the present invention, the information processing apparatus further includes a display unit that displays a warning for prompting the start of the reproduction process, and a reproduction operation unit, and the reproduction control unit determines that the reproduction process is to be performed. When a warning display signal is output to the display means and an operation signal is input from the reproduction operation means, a control signal for performing a reproduction process is output to the reproduction means.

これにより、手動再生処理をおこなうことができる。   Thereby, manual regeneration processing can be performed.

本発明によれば、再生処理の頻度を増やすことにより外気温度が低い場合でもPMの燃焼除去を確実に行い、捕集能力低下及びDPFの破損を防止できる。   According to the present invention, by increasing the frequency of the regeneration process, PM can be reliably removed by combustion even when the outside air temperature is low, and the collection capacity can be reduced and the DPF can be prevented from being damaged.

<第1の実施の形態>
〜構成〜
以下、本発明の実施の形態の構成を図面を用いて説明する。
<First Embodiment>
~Constitution~
The configuration of the embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施の形態に係わる排気浄化システム1をエンジン制御システム2と共に示す図である。排気浄化システム1とエンジン制御システム2とは、共通の制御手段であるコントロールユニット3により制御される。   FIG. 1 is a view showing an exhaust purification system 1 according to an embodiment of the present invention together with an engine control system 2. The exhaust purification system 1 and the engine control system 2 are controlled by a control unit 3 which is a common control means.

図1において、ディーゼルエンジン(以下、単にエンジンと記載する)21は、エンジン21の回転数を制御する電子ガバナ21aと、エンジン21からの排気ガスを外部に排出する排気管22とを備えている。   In FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 21 includes an electronic governor 21 a that controls the rotational speed of the engine 21 and an exhaust pipe 22 that exhausts exhaust gas from the engine 21 to the outside. .

エンジン制御システム2は、エンジン21の目標回転数を指示するエンジンコントロールダイヤル23と、エンジン21の回転数を検出するエンジン回転センサ24と、コントロールユニット3の処理機能の一部であるエンジン制御部25とを備えている。エンジン制御部25は、エンジンコントロールダイヤル23及びエンジン回転センサ24からの信号を入力し、所定の演算処理を行い、電子ガバナ21aに制御信号を出力してこれにより、エンジン21の回転数とトルクを制御する。   The engine control system 2 includes an engine control dial 23 that instructs a target rotational speed of the engine 21, an engine rotational sensor 24 that detects the rotational speed of the engine 21, and an engine control unit 25 that is a part of the processing function of the control unit 3. And. The engine control unit 25 inputs signals from the engine control dial 23 and the engine rotation sensor 24, performs a predetermined calculation process, and outputs a control signal to the electronic governor 21a, whereby the rotation speed and torque of the engine 21 are obtained. Control.

排気浄化システム1は、排気管22の途中に設けられ、エンジン21からの排気ガスに含まれるPM(Particulate Matter:以下、適宜PMと記載する)を捕集するフィルタ4bとその上流側に位置する酸化触媒4aとを有するDPF(Diesel Particulate Filter:以下、適宜DPFと記載する)4と、DPF4の上流側及び下流側の排気管22の内部の圧力を検出する第1及び第2圧力センサ41,42と、コントロールユニット3の処理機能の一部で再生処理などの制御処理をおこなう排気浄化システム制御部10と、排気浄化システム制御部10の処理結果に基づいた各種情報を表示する表示部5と、排気浄化システム制御部10の処理結果に基づいてDPF4の上流側に未然燃料を一定時間噴射する再生燃料噴射装置6と、外気温度を検出する外気温度センサ7を備えている。   The exhaust purification system 1 is provided in the middle of the exhaust pipe 22 and is located upstream of a filter 4b that collects PM (Particulate Matter: hereinafter referred to as PM as appropriate) contained in the exhaust gas from the engine 21. A DPF (Diesel Particulate Filter: hereinafter referred to as DPF as appropriate) 4 having an oxidation catalyst 4a, and first and second pressure sensors 41 for detecting the pressure inside the exhaust pipe 22 upstream and downstream of the DPF 4. 42, an exhaust purification system control unit 10 that performs control processing such as regeneration processing as part of the processing function of the control unit 3, and a display unit 5 that displays various information based on the processing results of the exhaust purification system control unit 10. The regenerative fuel injection device 6 for injecting fuel into the upstream side of the DPF 4 for a predetermined time based on the processing result of the exhaust purification system control unit 10 and the outside for detecting the outside air temperature And a temperature sensor 7.

排気浄化システム制御部10は、外気温度取得部11、蓄積量閾値演算部12、エンジン稼働時間閾値演算部13、蓄積量取得部14、エンジン稼働時間取得部15、再生制御部16の処理機能を有している。   The exhaust purification system control unit 10 includes processing functions of an outside air temperature acquisition unit 11, an accumulation amount threshold calculation unit 12, an engine operation time threshold calculation unit 13, an accumulation amount acquisition unit 14, an engine operation time acquisition unit 15, and a regeneration control unit 16. Have.

外気温度取得部11は、外気温度センサ7からのパルス信号を入力し、外気温度Tを演算し、その演算結果を蓄積量閾値演算部12、エンジン稼働時間閾値演算部13に出力する。   The outside air temperature acquisition unit 11 inputs a pulse signal from the outside air temperature sensor 7, calculates the outside air temperature T, and outputs the calculation result to the accumulation amount threshold value calculation unit 12 and the engine operating time threshold value calculation unit 13.

蓄積量閾値演算部12は、外気温度取得部11からの信号を入力し、第1特性マップ(後述する図3A参照)等に基づいて蓄積量に係る閾値Waを演算し、その演算結果を再生制御部16に出力する。   The accumulation amount threshold value calculation unit 12 receives a signal from the outside air temperature acquisition unit 11, calculates a threshold value Wa relating to the accumulation amount based on a first characteristic map (see FIG. 3A described later), and reproduces the calculation result. Output to the control unit 16.

エンジン稼働時間閾値演算部13は、外気温度取得部11からの信号を入力し、第2特性マップ(後述する図3B参照)等に基づいてエンジン稼働時間に係る閾値taを演算し、その演算結果を再生制御部16に出力する。   The engine operating time threshold value calculation unit 13 receives a signal from the outside air temperature acquisition unit 11, calculates a threshold value ta related to the engine operating time based on a second characteristic map (see FIG. 3B described later), and the calculation result. Is output to the reproduction control unit 16.

蓄積量取得部14は、第1圧力センサ41及び第2圧力センサ42からの各パルス信号を入力し、第3特性マップに基づきPMの蓄積量Wを演算し、その演算結果を再生制御部16に出力する。第3特性マップは第1圧力センサ41及び第2圧力センサ42の検出圧力に基づくDPF4の前後差圧と、PMの蓄積量Wとの関係を実験より定めるものであり、前後差圧が上昇するにしたがってDPF4のフィルタ4bにPMが蓄積しその蓄積量Wが増加するものとする。   The accumulation amount acquisition unit 14 inputs each pulse signal from the first pressure sensor 41 and the second pressure sensor 42, calculates the PM accumulation amount W based on the third characteristic map, and calculates the calculation result as the regeneration control unit 16. Output to. In the third characteristic map, the relationship between the differential pressure across the DPF 4 based on the detected pressures of the first pressure sensor 41 and the second pressure sensor 42 and the accumulated amount W of PM is determined through experiments, and the differential pressure across the front increases. Accordingly, it is assumed that PM accumulates in the filter 4b of the DPF 4 and the accumulation amount W increases.

エンジン稼働時間取得部15は、エンジン制御部25からの信号を入力し、エンジン稼働時間tを演算し、その演算結果を再生制御部16に出力する。なお、エンジン制御部25は、例えばエンジン回転センサ25からのON・OFF信号に基づきエンジン稼働時間tを演算する。また、エンジン稼働時間とは、前回再生処理をおこなってから計測したエンジン稼働時間をいう。   The engine operating time acquisition unit 15 receives a signal from the engine control unit 25, calculates the engine operating time t, and outputs the calculation result to the regeneration control unit 16. The engine control unit 25 calculates the engine operating time t based on, for example, an ON / OFF signal from the engine rotation sensor 25. The engine operating time refers to the engine operating time measured after the previous regeneration process.

再生制御部16は、蓄積量に係る閾値Wa、エンジン稼働時間に係る閾値ta、PMの蓄積量W、エンジン稼働時間tに係る取得信号を入力し、図2に示すフローチャートの演算処理に基づいて、再生処理をおこなうか否かを判断し、再生処理をおこなうと判断すると、再生燃料噴射装置6に再生処理をおこなう制御信号を出力する。   The regeneration control unit 16 inputs the threshold value Wa relating to the accumulation amount, the threshold value ta relating to the engine operation time, the acquisition amount W relating to the PM accumulation amount W, and the engine operation time t, and based on the arithmetic processing of the flowchart shown in FIG. Then, it is determined whether or not the regeneration process is to be performed. When it is determined that the regeneration process is to be performed, a control signal for performing the regeneration process is output to the regeneration fuel injection device 6.

図2は、再生制御部16の演算処理を示すフローチャートである。再生制御部16は、蓄積量に係る閾値Wa及びエンジン稼働時間に係る閾値taを取得し(ステップS11)、PMの蓄積量W及びエンジン稼働時間tを取得する(ステップS12)と、PMの蓄積量Wが蓄積量に係る閾値Waを超えたかどうか、すなわちW>Waであるかどうかを判定する(ステップS13)。W>Waでなければ、エンジン稼働時間tがエンジン稼働時間に係る閾値taを超えたかどうか、すなわちt>taであるかどうかを判定する(ステップS14)。ステップS13においてW>Waであるか又はステップS14においてt>taであれば、再生処理をおこなうと判断し、再生燃料噴射装置6に再生処理をおこなう制御信号を出力する(ステップS15)。ステップS14においてt>taでなければ、ステップS11に戻り、ステップS11〜14の処理を繰り返す。再生燃料噴射装置6に再生処理をおこなう制御信号を出力した後は、自動再生処理中である旨を表示する状況表示信号を表示部5に出力する(ステップS16)。   FIG. 2 is a flowchart showing the calculation process of the reproduction control unit 16. The regeneration control unit 16 acquires the threshold value Wa relating to the accumulation amount and the threshold value ta relating to the engine operating time (step S11), and acquires the PM accumulation amount W and the engine operating time t (step S12). It is determined whether or not the amount W exceeds a threshold value Wa relating to the accumulated amount, that is, whether or not W> Wa (step S13). If W> Wa is not satisfied, it is determined whether or not the engine operating time t has exceeded a threshold ta related to the engine operating time, that is, t> ta (step S14). If W> Wa in step S13 or t> ta in step S14, it is determined that the regeneration process is to be performed, and a control signal for performing the regeneration process is output to the regeneration fuel injection device 6 (step S15). If t> ta is not satisfied in step S14, the process returns to step S11, and the processes in steps S11 to S14 are repeated. After outputting the control signal for performing the regeneration process to the regenerative fuel injection device 6, a status display signal indicating that the automatic regeneration process is being performed is output to the display unit 5 (step S16).

以上において、再生燃料噴射装置6は、エンジン21からの燃料噴射によりこのフィルタ4bに蓄積した粒子状物質を焼却除去する再生処理をおこなう再生手段を構成し、外気温度センサ7と排気浄化システム制御部10の処理機能のうち外気温度取得部11は、外気温度を取得する外気温度取得手段を構成し、第1圧力センサ41及び第2圧力センサ42と排気浄化システム制御部10の処理機能のうち蓄積量取得部14とエンジン稼働時間取得部15は、所定の状態量を取得する状態量取得手段を構成し、排気浄化システム制御部10の処理機能のうち蓄積量閾値演算部12とエンジン稼働時間閾値演算部13と再生制御部16は、前記外気温度が低くなるにしたがって前記再生処理の頻度を増やすように、前記閾値を可変に設定し、取得した状態量と状態量に係る閾値との比較結果に基づいて再生処理をおこなうか否かを判断する再生制御手段を構成する。   In the above, the regenerated fuel injection device 6 constitutes a regenerating means for performing a regenerating process for incinerating and removing the particulate matter accumulated in the filter 4b by fuel injection from the engine 21, and the outside air temperature sensor 7 and the exhaust purification system control unit. Out of the 10 processing functions, the outside air temperature acquisition unit 11 constitutes outside air temperature acquisition means for acquiring the outside air temperature, and is stored among the processing functions of the first pressure sensor 41 and the second pressure sensor 42 and the exhaust purification system control unit 10. The quantity acquisition unit 14 and the engine operating time acquisition unit 15 constitute state quantity acquisition means for acquiring a predetermined state quantity, and among the processing functions of the exhaust purification system control unit 10, the accumulation amount threshold value calculation unit 12 and the engine operating time threshold value. The calculation unit 13 and the regeneration control unit 16 set the threshold value variably so that the frequency of the regeneration process increases as the outside air temperature decreases. Constitutes a reproduction control means for determining whether performing the reproducing process on the basis of the comparison between the state quantity and the threshold value according to the state quantity results.

〜動作〜
<標準温度時>
本実施の形態の再生処理の動作を説明する。
~ Operation ~
<At standard temperature>
The operation of the reproduction process of this embodiment will be described.

エンジン21からの排気ガスは排気管22を介してDPF4に導かれ、排気ガスに含まれるPMはDPF4のフィルタ4bにより捕集される。DPF4内のPMの蓄積が進むと、フィルタ4bの目詰まりが生じ、DPF4の捕集能力が低下する。   Exhaust gas from the engine 21 is guided to the DPF 4 via the exhaust pipe 22, and PM contained in the exhaust gas is collected by the filter 4b of the DPF 4. As the accumulation of PM in the DPF 4 progresses, the filter 4b is clogged, and the collection capability of the DPF 4 decreases.

ここで、外気温度が標準温度の範囲内にある場合は、蓄積量閾値演算部12は、所定の蓄積量に係る閾値Wa(固定値)を演算し、エンジン稼働時間閾値演算部13は、所定のエンジン稼働時間に係る閾値ta(固定値)を演算する。   Here, when the outside air temperature is within the range of the standard temperature, the accumulation amount threshold value calculation unit 12 calculates a threshold value Wa (fixed value) related to a predetermined accumulation amount, and the engine operating time threshold value calculation unit 13 sets a predetermined value. Threshold value ta (fixed value) related to the engine operating time is calculated.

排気浄化システム制御部10の再生制御部16は、蓄積量に係る閾値Wa、エンジン稼働時間に係る閾値ta、PMの蓄積量W、エンジン稼働時間tに係る取得信号を入力し、W>Waであるか又はt>taであると、再生処理をおこなうと判断し、再生燃料噴射装置6に制御信号を出力する(S11→S12→S13→S15又はS11→S12→S13→S14→S15)。   The regeneration control unit 16 of the exhaust purification system control unit 10 inputs the threshold value Wa relating to the accumulation amount, the threshold value ta relating to the engine operation time, the accumulation amount W of PM, and the acquisition signal relating to the engine operation time t, and W> Wa If it is present or t> ta, it is determined that the regeneration process is to be performed, and a control signal is output to the regeneration fuel injection device 6 (S11 → S12 → S13 → S15 or S11 → S12 → S13 → S14 → S15).

再生燃料噴射装置6は通常の燃焼より遅いタイミングで排気管22内に一定時間ポスト噴射をおこない、このポスト噴射により排気ガスの温度を上昇させるとともに、未燃燃料が酸化触媒4aに供給されて酸化され、その反応熱により排気ガス温度を更に上昇させ、その高温の排気ガスによりフィルタ4bに蓄積したPMを燃焼除去する。これによりDPF4は捕集能力を回復する。   The regenerated fuel injection device 6 performs post-injection in the exhaust pipe 22 for a certain period of time at a timing later than normal combustion. The post-injection raises the temperature of the exhaust gas, and unburned fuel is supplied to the oxidation catalyst 4a for oxidation. Then, the exhaust gas temperature is further raised by the reaction heat, and the PM accumulated in the filter 4b is burned and removed by the high temperature exhaust gas. As a result, the DPF 4 recovers the collection ability.

排気浄化システム1が自動再生処理をおこなっている間、表示部5は自動再生処理中である旨を状況表示する(S16)。   While the exhaust purification system 1 is performing the automatic regeneration process, the display unit 5 displays a status indicating that the automatic regeneration process is being performed (S16).

<低温度時>
外気温度Tが標準温度の範囲の下限値(例えば摂氏0度)より低い場合は、PMを良好に燃焼除去できず更に失火して再生処理が失敗する可能性もある。DPF4の目詰まりを放置しておくと、DPF4の捕集能力が低下するとともに、これに伴う諸問題を引き起こす。例えば、再生処理に失敗すると、PMは良好に燃焼除去されずに蓄積され、再生処理失敗を繰り返すうちに、DPF4の捕集能力が低下するとともに、PMの蓄積量が限界値を超えてDPF4が破損する可能性がある。
<Low temperature>
When the outside air temperature T is lower than the lower limit value (for example, 0 degrees Celsius) of the standard temperature range, PM cannot be burned and removed well, and there is a possibility that the regeneration process may fail due to misfire. If the clogging of the DPF 4 is left unattended, the collecting ability of the DPF 4 is lowered and various problems associated therewith are caused. For example, if the regeneration process fails, PM is accumulated without being burned and removed well, and the regeneration capacity of the DPF 4 decreases as the regeneration process fails, and the accumulated amount of PM exceeds a limit value and the DPF 4 There is a possibility of damage.

ここで蓄積量閾値演算部12は、第1特性マップに基づいて蓄積量に係る閾値Wa(可変値)を演算し、エンジン稼働時間閾値演算部13は、第2特性マップに基づいてエンジン稼働時間に係る閾値ta(可変値)を演算する。   Here, the accumulation amount threshold value calculation unit 12 calculates a threshold value Wa (variable value) related to the accumulation amount based on the first characteristic map, and the engine operation time threshold value calculation unit 13 calculates the engine operation time based on the second characteristic map. A threshold ta (variable value) is calculated.

図3Aは、外気温度Tと蓄積量に係る閾値Waとの関係を示す第1特性マップである。外気温度Tが低くなるにしたがって蓄積量に係る閾値Waを低く設定するように、実験データに基いて事前に決めておく。   FIG. 3A is a first characteristic map showing the relationship between the outside air temperature T and the threshold value Wa relating to the accumulation amount. It is determined in advance based on experimental data so that the threshold value Wa relating to the accumulation amount is set lower as the outside air temperature T becomes lower.

図3Bは、外気温度Tとエンジン稼働時間に係る閾値taとの関係を示す第2特性マップである。外気温度Tが低くなるにしたがってエンジン稼働時間に係る閾値taを低く設定するように、実験データに基いて事前に決めておく。   FIG. 3B is a second characteristic map showing the relationship between the outside air temperature T and the threshold value ta related to the engine operating time. It is determined in advance based on experimental data so that the threshold value ta related to the engine operating time is set lower as the outside air temperature T becomes lower.

すなわち、排気浄化システム制御部10の再生制御部16は、外気温度Tが低くなるにしたがって、より低い蓄積量に係る閾値Wa及びより低いエンジン稼働時間に係る閾値taを入力する(S11)。そして、PMの蓄積量W、エンジン稼働時間tに係る取得信号を入力し、W>Waであるか又はt>taであると、再生処理をおこなうと判断し、再生燃料噴射装置7に制御信号を出力し(S12→S13→S15又はS12→S13→S14→S15)、再生処理をおこない、自動再生処理中である旨を状況表示する(S16)。   That is, the regeneration control unit 16 of the exhaust purification system control unit 10 inputs the threshold value Wa related to a lower accumulation amount and the threshold value ta related to a lower engine operating time as the outside air temperature T becomes lower (S11). Then, an acquisition signal related to the PM accumulation amount W and the engine operating time t is input. If W> Wa or t> ta, it is determined that the regeneration process is to be performed, and a control signal is sent to the regeneration fuel injection device 7. Is output (S12-> S13-> S15 or S12-> S13-> S14-> S15), the reproduction process is performed, and the status display indicating that the automatic reproduction process is in progress (S16).

このように、外気温度Tが低くなるにしたがって、蓄積量に係る閾値Waを低く設定するので、標準温度時に比べて少量のPM蓄積量でも再生処理をおこない、再生処理の頻度を増やすことができる。また、外気温度Tが低くなるにしたがって、エンジン稼働時間に係る閾値taを低く設定するので、標準温度時に比べて短いインターバルで再生処理をおこない、再生処理の頻度を増やすことができる。   As described above, the threshold value Wa relating to the accumulation amount is set lower as the outside air temperature T becomes lower. Therefore, the regeneration process can be performed even with a small amount of PM accumulation compared with the standard temperature, and the frequency of the regeneration process can be increased. . Further, since the threshold value ta related to the engine operating time is set lower as the outside air temperature T becomes lower, the regeneration process can be performed at a shorter interval than the standard temperature, and the frequency of the regeneration process can be increased.

これにより外気温度Tが低い場合でもDPF4は頻繁に蓄積したPMを燃焼除去することで捕集能力を回復する。すなわち外気温度が低い場合でもPMの燃焼除去を確実に行い、捕集能力低下及びDPFの破損を防止できる。   As a result, even when the outside air temperature T is low, the DPF 4 recovers the collection capability by burning and removing frequently accumulated PM. That is, even when the outside air temperature is low, the PM can be reliably removed by combustion, and the collection capacity can be reduced and the DPF can be prevented from being damaged.

また、仮に再生処理に失敗した場合でも、頻繁に(短いインターバルで何回も)次の再生処理を試みることにより、確実に再生処理を完了させ、捕集能力低下及びDPF4の破損を防止できる。   Moreover, even if the regeneration process fails, the regeneration process can be completed reliably by frequently trying the next regeneration process (several times in a short interval), and the collection capacity can be reduced and the DPF 4 can be prevented from being damaged.

さらに、再生処理に失敗したときに蓄積されるPMの蓄積量は、標準温度時の閾値に基づいて再生処理をおこなう場合に比べて少ない。したがって、捕集能力低下の進まないうちに次の再生処理を試みることができる。また、PMの蓄積量が限界値を超える可能性がないうちに次の再生処理を試みることができる。これにより、外気温度が低い場合の捕集能力低下を防止でき、DPFの破損を防止できる。   Furthermore, the amount of PM accumulated when the regeneration process fails is smaller than when the regeneration process is performed based on the threshold value at the standard temperature. Therefore, the next regeneration process can be attempted before the collection ability is reduced. Further, the next regeneration process can be attempted before the accumulated amount of PM exceeds the limit value. Thereby, the collection capability fall when external temperature is low can be prevented, and damage to DPF can be prevented.

〜効果〜
以上のように本実施の形態においては、外気温度Tが低くなるにしたがって、蓄積量に係る閾値Wa及びエンジン稼働時間に係る閾値taを低く設定することにより再生処理の頻度を増やし、これにより外気温度が低い場合でもPMの燃焼除去を確実に行い、捕集能力低下及びDPFの破損を防止できる。
~effect~
As described above, in the present embodiment, as the outside air temperature T becomes lower, the frequency Wa of the regeneration process is increased by setting the threshold value Wa relating to the accumulation amount and the threshold value ta relating to the engine operating time to a lower value. Even when the temperature is low, the PM can be reliably removed by combustion, and the collection capacity can be reduced and the DPF can be prevented from being damaged.

また、仮に再生処理に失敗した場合でも、外気温度が低い場合の捕集能力低下及びDPFの破損を防止できる。   Moreover, even if the regeneration process fails, it is possible to prevent the collection ability from being lowered and the DPF from being damaged when the outside air temperature is low.

<第2の実施の形態>
図4は、本発明の第2の実施の形態に係わる排気浄化システム1Aをエンジン制御システム2と共に示す図である。図中、図1に示したものと同等なものは同じ符号を付している。図4において、本実施の形態に係わる排気浄化システム1Aは更に再生スイッチ8を備えている。また、第1の実施の形態の排気浄化システム制御部10の再生制御部16が、自動再生処理の制御をおこなうのに対し、第2の実施の形態の排気浄化システム制御部10Aの再生制御部16Aは、手動再生処理の制御をおこなう。
<Second Embodiment>
FIG. 4 is a view showing an exhaust purification system 1 </ b> A according to the second embodiment of the present invention together with the engine control system 2. In the figure, components equivalent to those shown in FIG. In FIG. 4, the exhaust purification system 1 </ b> A according to the present embodiment further includes a regeneration switch 8. The regeneration control unit 16 of the exhaust purification system control unit 10 of the first embodiment controls the automatic regeneration process, whereas the regeneration control unit of the exhaust purification system control unit 10A of the second embodiment. 16A controls manual regeneration processing.

図5は、再生制御部16Aの演算処理を示すフローチャートであり、図中、図2に示したものと同等なものは同じ符号を付している。再生制御部16Aは、ステップS13又はステップS14の判定を肯定すると、再生処理をおこなうと判断し、再生処理の開始を促す警告を表示する警告表示信号を表示部5に出力する(ステップS17)。そして、再生スイッチ8がONされたかどうかを判定し(ステップS18)、ONでなければその処理を繰り返し、ONであれば、再生燃料噴射装置6に再生処理をおこなう制御信号を出力する(ステップS15A)。   FIG. 5 is a flowchart showing the calculation processing of the reproduction control unit 16A. In FIG. 5, the same components as those shown in FIG. When the determination in step S13 or step S14 is affirmed, the reproduction control unit 16A determines that the reproduction process is to be performed, and outputs a warning display signal that displays a warning for prompting the start of the reproduction process to the display unit 5 (step S17). Then, it is determined whether or not the regeneration switch 8 is turned on (step S18). If not, the process is repeated. If it is on, a control signal for performing the regeneration process is output to the regeneration fuel injection device 6 (step S15A). ).

ここで、外気温度が標準温度の範囲内にある場合は、蓄積量閾値演算部12は、所定の蓄積量に係る閾値Wa(固定値)を演算し、エンジン稼働時間閾値演算部13は、所定のエンジン稼働時間に係る閾値ta(固定値)を演算する。再生制御部16Aは、蓄積量に係る閾値Wa、エンジン稼働時間に係る閾値ta、PMの蓄積量W、エンジン稼働時間tに係る取得信号を入力し、W>Waであるか又はt>taであると、再生処理をおこなうと判断し、警告表示信号を表示部5に出力する(S11→S12→S13→S17又はS11→S12→S13→S14→S17)。警告表示を認識したオペレータが再生スイッチ8を操作すると、再生制御部16Aは、再生スイッチ8から操作信号を入力し、再生燃料噴射装置6に制御信号を出力する(S18→S15A)。   Here, when the outside air temperature is within the range of the standard temperature, the accumulation amount threshold value calculation unit 12 calculates a threshold value Wa (fixed value) related to a predetermined accumulation amount, and the engine operating time threshold value calculation unit 13 sets a predetermined value. Threshold value ta (fixed value) related to the engine operating time is calculated. The regeneration control unit 16A inputs the threshold value Wa relating to the accumulation amount, the threshold value ta relating to the engine operation time, the accumulation amount W of PM, and the acquisition signal relating to the engine operation time t, and W> Wa or t> ta. If there is, it is determined that the reproduction process is to be performed, and a warning display signal is output to the display unit 5 (S11 → S12 → S13 → S17 or S11 → S12 → S13 → S14 → S17). When the operator who has recognized the warning display operates the regeneration switch 8, the regeneration control unit 16A inputs an operation signal from the regeneration switch 8 and outputs a control signal to the regeneration fuel injection device 6 (S18 → S15A).

再生燃料噴射装置6は通常の燃焼より遅いタイミングで排気管22内に一定時間ポスト噴射をおこない、このポスト噴射により排気ガスの温度を上昇させるとともに、未燃燃料が酸化触媒4aに供給されて酸化され、その反応熱により排気ガス温度を更に上昇させ、その高温の排気ガスによりフィルタ4bに蓄積したPMを燃焼除去する。これによりDPF4は捕集能力を回復する。   The regenerated fuel injection device 6 performs post-injection in the exhaust pipe 22 for a certain period of time at a timing later than normal combustion. The post-injection raises the temperature of the exhaust gas, and unburned fuel is supplied to the oxidation catalyst 4a for oxidation. Then, the exhaust gas temperature is further raised by the reaction heat, and the PM accumulated in the filter 4b is burned and removed by the high temperature exhaust gas. As a result, the DPF 4 recovers the collection ability.

外気温度Tが標準温度の範囲の下限値(例えば摂氏0度)より低い場合は、蓄積量閾値演算部12は、第1特性マップに基づいて蓄積量に係る閾値Wa(可変値)を演算し、エンジン稼働時間閾値演算部13は、第2特性マップに基づいてエンジン稼働時間に係る閾値ta(可変値)を演算する。   When the outside air temperature T is lower than the lower limit value (for example, 0 degrees Celsius) of the standard temperature range, the accumulation amount threshold value calculation unit 12 calculates a threshold value Wa (variable value) related to the accumulation amount based on the first characteristic map. The engine operating time threshold calculation unit 13 calculates a threshold ta (variable value) related to the engine operating time based on the second characteristic map.

再生制御部16Aは、外気温度Tが低くなるにしたがって、より低い蓄積量に係る閾値Wa及びより低いエンジン稼働時間に係る閾値taを入力する(S11)。そして、PMの蓄積量W、エンジン稼働時間tに係る取得信号を入力し、W>Waであるか又はt>taであると、再生処理をおこなうと判断し、警告表示信号を表示部5に出力し(S12→S13→S17又はS12→S13→S14→S17)、再生スイッチ8から操作信号を入力すると、再生燃料噴射装置6に制御信号を出力し(S18→S15A)、手動再生処理をおこなう。   The regeneration control unit 16A inputs a threshold value Wa related to a lower accumulation amount and a threshold value ta related to a lower engine operating time as the outside air temperature T becomes lower (S11). Then, an acquisition signal related to the PM accumulation amount W and the engine operating time t is input, and if W> Wa or t> ta, it is determined that the regeneration process is performed, and a warning display signal is displayed on the display unit 5. When an operation signal is input from the regeneration switch 8 (S12 → S13 → S17 or S12 → S13 → S14 → S17), a control signal is output to the regeneration fuel injection device 6 (S18 → S15A), and a manual regeneration process is performed. .

このように、外気温度Tが低くなるにしたがって、蓄積量に係る閾値Waを低く設定するので、標準温度時に比べて少量のPM蓄積量でも再生処理をおこない、再生処理の頻度を増やすことができる。また、外気温度Tが低くなるにしたがって、エンジン稼働時間に係る閾値taを低く設定するので、標準温度時に比べて短いインターバルで再生処理をおこない、再生処理の頻度を増やすことができる。   As described above, the threshold value Wa relating to the accumulation amount is set lower as the outside air temperature T becomes lower. Therefore, the regeneration process can be performed even with a small amount of PM accumulation compared with the standard temperature, and the frequency of the regeneration process can be increased. . Further, since the threshold value ta related to the engine operating time is set lower as the outside air temperature T becomes lower, the regeneration process can be performed at a shorter interval than the standard temperature, and the frequency of the regeneration process can be increased.

以上のように本実施の形態においても、外気温度Tが低くなるにしたがって、再生処理の頻度を増やすことができるので、第1の実施の形態と同様の効果が得られる。   As described above, also in the present embodiment, since the frequency of the regeneration process can be increased as the outside air temperature T becomes lower, the same effect as that of the first embodiment can be obtained.

<第3の実施の形態>
第1の実施の形態の排気浄化システム制御部10の再生制御部16は自動再生処理の制御をおこない、第2の実施の形態の排気浄化システム制御部10Aの再生制御部16Aは手動再生処理の制御をおこなうものであるが、自動再生処理と手動再生処理を組み合わせてもよい。
<Third Embodiment>
The regeneration control unit 16 of the exhaust purification system control unit 10 of the first embodiment controls automatic regeneration processing, and the regeneration control unit 16A of the exhaust purification system control unit 10A of the second embodiment performs manual regeneration processing. Although control is performed, automatic regeneration processing and manual regeneration processing may be combined.

本実施例においては、自動再生処理を手動再生処理より優先しておこなう。すなわち、自動再生処理をおこなっても良好に燃焼除去できずPMが蓄積する場合に手動再生処理をおこなう。   In this embodiment, the automatic regeneration process is performed with priority over the manual regeneration process. In other words, the manual regeneration process is performed when PM cannot be successfully burned and removed even if the automatic regeneration process is performed.

このとき、自動再生処理における蓄積量に係る閾値は手動再生処理における蓄積量に係る閾値より低く設定し、自動再生処理におけるエンジン稼働時間に係る閾値は手動再生処理におけるエンジン稼働時間に係る閾値より低く設定する。また、自動再生処理における第1特性マップは手動再生処理における第1特性マップより閾値が低くなるように設定し、自動再生処理における第2特性マップは手動再生処理における第2特性マップより閾値が低くなるように設定する。これにより、自動再生処理を手動再生処理より優先しておこなうことができる。   At this time, the threshold relating to the accumulation amount in the automatic regeneration process is set lower than the threshold relating to the accumulation amount in the manual regeneration process, and the threshold relating to the engine operating time in the automatic regeneration process is lower than the threshold relating to the engine operating time in the manual regeneration process. Set. The first characteristic map in the automatic regeneration process is set to have a lower threshold than the first characteristic map in the manual regeneration process, and the second characteristic map in the automatic regeneration process has a lower threshold than the second characteristic map in the manual regeneration process. Set as follows. Thus, the automatic regeneration process can be performed with priority over the manual regeneration process.

以上のように本実施の形態においても、第1の実施の形態及び第2の実施の形態と同様の構成を備え、同様な効果が得られる。   As described above, this embodiment also has the same configuration as the first embodiment and the second embodiment, and the same effect can be obtained.

本発明の第1の実施の形態に係わる排気浄化システムをエンジン制御システムと共に示す図である。1 is a diagram showing an exhaust purification system according to a first embodiment of the present invention together with an engine control system. 再生制御部の演算処理を示すフローチャートである。It is a flowchart which shows the arithmetic processing of a reproduction | regeneration control part. (A)は、外気温度と蓄積量に係る閾値との関係を示す第1特性マップである。(B)は外気温度とエンジン稼働時間に係る閾値との関係を示す第2特性マップである。(A) is a 1st characteristic map which shows the relationship between the outside temperature and the threshold value which concerns on the accumulation amount. (B) is the 2nd characteristic map which shows the relationship between the outside temperature and the threshold value which concerns on engine operating time. 本発明の第2の実施の形態に係わる排気浄化システムをエンジン制御システムと共に示す図である。It is a figure which shows the exhaust gas purification system concerning the 2nd Embodiment of this invention with an engine control system. 再生制御部の演算処理を示すフローチャートである。It is a flowchart which shows the arithmetic processing of a reproduction | regeneration control part.

1 排気浄化システム
2 エンジン制御システム
3,3A コントロールユニット
4 DPF
4a 酸化触媒
4b フィルタ
5 表示装置
6 再生燃料噴射装置
7 外気温度センサ
8 再生スイッチ8
10,10A 排気浄化システム制御部
11 外気温度取得部
12 蓄積量閾値演算部
13 エンジン稼働時間閾値演算部
14蓄積量取得部
15 エンジン稼働時間取得部
16,16A 再生制御部
21 エンジン
21a 電子ガバナ
22 排気管
23 エンジン回転センサ
24 エンジンコントロールダイヤル
25 エンジン制御部
41 第1圧力センサ
42 第2圧力センサ
1 Exhaust Purification System 2 Engine Control System 3, 3A Control Unit 4 DPF
4a Oxidation catalyst 4b Filter 5 Display device 6 Regenerated fuel injection device 7 Outside air temperature sensor 8 Regeneration switch 8
DESCRIPTION OF SYMBOLS 10,10A Exhaust gas purification system control part 11 Outside temperature acquisition part 12 Accumulation amount threshold value calculation part 13 Engine operating time threshold value calculation part 14 Accumulation amount acquisition part
15 Engine operating time acquisition unit 16, 16A Reproduction control unit 21 Engine 21a Electronic governor 22 Exhaust pipe 23 Engine rotation sensor 24 Engine control dial 25 Engine control unit 41 First pressure sensor 42 Second pressure sensor

Claims (3)

エンジンの排気系に配置され、排気ガス中に含まれる粒子状物質を捕集するフィルタと、エンジンからの燃料噴射によりこのフィルタに蓄積した粒子状物質を焼却除去する再生処理をおこなう再生手段と、所定の状態量を取得する状態量取得手段と、取得した前記状態量とその状態量に係る閾値との比較結果に基づいて再生処理をおこなうか否かを判断する再生制御手段とを備えた排気浄化システムにおいて、
外気温度を取得する外気温度取得手段を備え、
前記状態量取得手段は、前記所定の状態量として、前記フィルタに蓄積した粒子状物質の蓄積量を取得する蓄積量取得部と、前記エンジンの稼動時間を取得するエンジン稼動時間取得部とを備え、
前記再生制御手段は、前記閾値として前記フィルタに蓄積した粒子状物質の蓄積量に係る閾値を演算する蓄積量閾値演算部と、前記エンジンの稼動時間に係る閾値を演算するエンジン稼動時間閾値演算部とを備え、前記蓄積量閾値演算部および前記エンジン稼動時間閾値演算部によって演算される前記閾値は、前記外気温度が低くなるに従って低くなるように設定され、前記蓄積量取得部によって取得される前記フィルタの粒子状物質の蓄積量および前記エンジンの稼動時間取得部によって取得されるエンジン稼動時間のいずれかが前記閾値を超えたときに再生処理をおこなうと判断する
ことを特徴とする排気浄化システム。
A filter that is disposed in the exhaust system of the engine and collects particulate matter contained in the exhaust gas; and a regeneration means that performs a regeneration process to incinerate and remove particulate matter accumulated in the filter by fuel injection from the engine; Exhaust gas comprising state quantity acquisition means for acquiring a predetermined state quantity, and regeneration control means for determining whether or not to perform regeneration processing based on a comparison result between the acquired state quantity and a threshold value related to the state quantity In the purification system,
An outside temperature acquisition means for acquiring outside temperature is provided,
The state quantity acquisition means includes an accumulation amount acquisition unit that acquires an accumulation amount of particulate matter accumulated in the filter as the predetermined state quantity, and an engine operation time acquisition unit that acquires an operation time of the engine. ,
The regeneration control means includes an accumulation amount threshold value calculation unit that calculates a threshold value related to the accumulation amount of particulate matter accumulated in the filter as the threshold value, and an engine operation time threshold value calculation unit that calculates a threshold value related to the engine operation time. The threshold value calculated by the accumulation amount threshold value calculation unit and the engine operating time threshold value calculation unit is set to be lower as the outside air temperature is lower, and is acquired by the accumulation amount acquisition unit. An exhaust purification system, characterized in that it determines that regeneration processing is to be performed when either the accumulated amount of particulate matter in the filter or the engine operating time acquired by the engine operating time acquiring unit exceeds the threshold value .
請求項1記載の排気浄化システムにおいて、
前記再生制御手段は、再生処理をおこなうと判断すると、前記再生手段に再生処理をおこなう制御信号を出力する
ことを特徴とする排気浄化システム。
The exhaust purification system according to claim 1,
When the regeneration control unit determines to perform the regeneration process, it outputs a control signal for performing the regeneration process to the regeneration unit.
請求項1記載の排気浄化システムにおいて、
再生処理の開始を促す警告表示を行う表示手段と、再生操作手段とを更に備え、
前記再生制御手段は、再生処理をおこなうと判断すると、前記表示手段に警告表示信号を出力し、前記再生操作手段から操作信号を入力すると、前記再生手段に再生処理をおこなう制御信号を出力する
ことを特徴とする排気浄化システム。
The exhaust purification system according to claim 1,
It further comprises display means for displaying a warning prompting the start of the reproduction process, and reproduction operation means,
The reproduction control means outputs a warning display signal to the display means when judging that the reproduction processing is performed, and outputs a control signal for performing reproduction processing to the reproduction means when an operation signal is inputted from the reproduction operation means. An exhaust purification system characterized by
JP2009123128A 2009-05-21 2009-05-21 Exhaust purification system Expired - Fee Related JP5135286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123128A JP5135286B2 (en) 2009-05-21 2009-05-21 Exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123128A JP5135286B2 (en) 2009-05-21 2009-05-21 Exhaust purification system

Publications (2)

Publication Number Publication Date
JP2010270672A JP2010270672A (en) 2010-12-02
JP5135286B2 true JP5135286B2 (en) 2013-02-06

Family

ID=43418897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123128A Expired - Fee Related JP5135286B2 (en) 2009-05-21 2009-05-21 Exhaust purification system

Country Status (1)

Country Link
JP (1) JP5135286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531450A (en) * 2013-09-13 2016-04-27 洋马株式会社 Work vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055238A (en) * 2013-09-13 2015-03-23 ヤンマー株式会社 Working vehicle
KR102529510B1 (en) * 2018-05-24 2023-05-04 현대자동차주식회사 Method and system for calculating Soot burning rate of Gasoline Particulate Filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746313B2 (en) * 2004-12-16 2011-08-10 日産自動車株式会社 Control device for internal combustion engine
JP5001778B2 (en) * 2007-10-04 2012-08-15 日立建機株式会社 Diesel engine exhaust gas purification system
JP2009275616A (en) * 2008-05-15 2009-11-26 Toyota Motor Corp Vehicles and control method for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531450A (en) * 2013-09-13 2016-04-27 洋马株式会社 Work vehicle
CN105531450B (en) * 2013-09-13 2018-06-22 洋马株式会社 Working truck

Also Published As

Publication number Publication date
JP2010270672A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
EP3396129B1 (en) Regeneration control device for exhaust gas treatment device
EP1584807B1 (en) Control method for an exhaust gas purification system and an exhaust gas purification system
US9719440B2 (en) DPF regeneration control device
JP5404457B2 (en) Engine exhaust gas purification device
JP4852127B2 (en) Work machine
JP2017133488A5 (en)
JP2008180189A (en) Exhaust emission control method and exhaust emission control system
JP2007023883A (en) Control method of exhaust gas cleaning system and exhaust gas cleaning system
JP5724223B2 (en) DPF system
JP2009257264A (en) Exhaust emission control device
JP5135286B2 (en) Exhaust purification system
JP2005282477A (en) Method for controlling exhaust emission control system and exhaust emission control system
JP4466158B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2007154729A (en) Exhaust emission control device for internal combustion engine
US10871095B2 (en) Regeneration control device for exhaust gas treatment device
JP4750062B2 (en) Diesel engine control method
JP3933114B2 (en) Engine exhaust purification system
JP4292861B2 (en) Exhaust gas purification method and system
JP4235509B2 (en) Exhaust purification equipment
JP2005256628A (en) Exhaust emission control system
JP6786970B2 (en) Control device and control method
KR101198783B1 (en) Exhaust gas post processing method and system performing this
JP2010216311A (en) Exhaust emission control system of diesel engine
KR101619540B1 (en) Cleaning method of emergency filter for low pressure exhaust gas recirculation
JP2017160820A (en) Control device and program for exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5135286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees