JP5135011B2 - Thermoelectric conversion temperature sensor and manufacturing method thereof - Google Patents

Thermoelectric conversion temperature sensor and manufacturing method thereof Download PDF

Info

Publication number
JP5135011B2
JP5135011B2 JP2008068764A JP2008068764A JP5135011B2 JP 5135011 B2 JP5135011 B2 JP 5135011B2 JP 2008068764 A JP2008068764 A JP 2008068764A JP 2008068764 A JP2008068764 A JP 2008068764A JP 5135011 B2 JP5135011 B2 JP 5135011B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
area
temperature sensor
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008068764A
Other languages
Japanese (ja)
Other versions
JP2009224634A (en
Inventor
辰男 片倉
俊一 奥崎
之弘 東
拓也 安野
勝之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Denki Bohsai Co Ltd
Original Assignee
Oki Denki Bohsai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Denki Bohsai Co Ltd filed Critical Oki Denki Bohsai Co Ltd
Priority to JP2008068764A priority Critical patent/JP5135011B2/en
Publication of JP2009224634A publication Critical patent/JP2009224634A/en
Application granted granted Critical
Publication of JP5135011B2 publication Critical patent/JP5135011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、熱電変換温度センサおよび熱電変換温度センサの製造方法に関し、詳細には温度変化を電気信号に変換して温度を検出する熱電変換温度センサおよび熱電変換温度センサの製造方法に関する。   The present invention relates to a thermoelectric conversion temperature sensor and a method for manufacturing a thermoelectric conversion temperature sensor, and more particularly to a thermoelectric conversion temperature sensor that detects a temperature by converting a temperature change into an electric signal and a method for manufacturing the thermoelectric conversion temperature sensor.

温度変化を検出する方法としては、サーミスタによる抵抗値の変化、バイメタルによる物理的な形状変化、空気を使用した圧力の変化を捉える温度センサなどが知られている。また、異種金属を接触させた熱電対のゼーベック効果による起電力により温度を検出する方法も知られている。   As a method for detecting a temperature change, a temperature sensor that detects a change in resistance value by a thermistor, a physical shape change by bimetal, and a pressure change using air is known. Also known is a method for detecting temperature by electromotive force due to the Seebeck effect of a thermocouple in contact with a different metal.

より具体的には、熱電対を使用したものとしては、図10に示すような棒状に形成された形態の熱電対温度センサが商品化されている。   More specifically, a thermocouple temperature sensor in the form of a rod as shown in FIG. 10 has been commercialized as a thermocouple.

また、図11に示すように、コンスタンタン41、純鉄42の異種金属を密着した接合部46、空洞の接合部47、密着した接合部48と連続して接合した温度センサが商品化されている。このような温度センサは、形状が長く(大きく)、発生する起電力が少ない。   Further, as shown in FIG. 11, a temperature sensor in which a constant metal 41 and a pure metal 42 are bonded to each other in a continuous manner with a bonded portion 46, a hollow bonded portion 47, and a bonded bonded portion 48 are commercially available. . Such a temperature sensor has a long (large) shape and generates less electromotive force.

そこで、より小型で、起電力が大きな材料として熱電変換半導体を使用した温度センサが開発されている。熱電変換半導体は、P型熱電変換半導体とN型熱電変換半導体にそれぞれ大別される。具体的には、例えば、図3に示すようにP型熱電変換半導体51と、N型熱電変換半導体52が対になった温度センサがある。この熱電変換半導体を使用した温度センサは、熱電対を使用した温度センサに比べ熱源との熱交換により大きな起電圧が発生することが知られている(特許文献1、非特許文献1など)。
特開2007−324500号公報 「FeSi2系熱電変換モジュールのゼーベック係数の測定」、田中勝之他、The 28th Japan Symposium on Thermophysical Properties,Oct.24−26,2007,Sapporo.
Therefore, a temperature sensor using a thermoelectric conversion semiconductor as a material that is smaller and has a large electromotive force has been developed. Thermoelectric conversion semiconductors are roughly classified into P-type thermoelectric conversion semiconductors and N-type thermoelectric conversion semiconductors. Specifically, for example, as shown in FIG. 3, there is a temperature sensor in which a P-type thermoelectric conversion semiconductor 51 and an N-type thermoelectric conversion semiconductor 52 are paired. It is known that a temperature sensor using a thermoelectric conversion semiconductor generates a larger electromotive voltage due to heat exchange with a heat source than a temperature sensor using a thermocouple (Patent Document 1, Non-Patent Document 1, etc.).
JP 2007-324500 A “Measurement of Seebeck coefficient of FeSi 2 -based thermoelectric conversion module”, Katsuyuki Tanaka et al., The 28th Japan Symposium on Thermophysical Properties, Oct. 24-26, 2007, Sapporo.

しかしながら、熱電変換半導体を用いた温度センサは、熱電変換半導体配置、接続方法、接続する導線の接続により大きく影響し、熱電変換半導体に発生する起電力が大きく変わることがわかってきた。そこで、起電力を大きくするための効率的な構造を解明することが技術的な課題となっている。   However, it has been found that a temperature sensor using a thermoelectric conversion semiconductor is greatly affected by the arrangement of the thermoelectric conversion semiconductor, the connection method, and the connection of the conductive wires to be connected, and the electromotive force generated in the thermoelectric conversion semiconductor is greatly changed. Therefore, elucidating an efficient structure for increasing the electromotive force has become a technical problem.

本発明の目的は、温度の検出に適した起電力が得られるようにした熱電変換半導体を用いた熱電変換温度センサおよびその製造方法を提供することである。   An object of the present invention is to provide a thermoelectric conversion temperature sensor using a thermoelectric conversion semiconductor that can obtain an electromotive force suitable for temperature detection, and a manufacturing method thereof.

上記目的を達成するため、請求項1に係わる発明は、第1面積の第1面および第2面を有する第1導電型の第1熱電変換半導体と、前記第2面と接する前記第1面積の第3面および前記第1面積より小さな第2面積の第4面を有する第2導電型の第2熱電変換半導体と、前記第4面と接する前記第2面積の第5面および前記第1面積の第6面を有する第1導電型の第3熱電変換半導体と、前記第6面と接する前記第1面積の第7面および前記第1面積の第8面を有する第2導電型の第4熱電変換半導体とを備え、上記各半導体が異なる導電型の順に連続して接合されていることを特徴とする熱電変換温度センサである。   To achieve the above object, the invention according to claim 1 is directed to a first conductivity type first thermoelectric conversion semiconductor having a first surface and a second surface, and the first area in contact with the second surface. A second thermoelectric conversion semiconductor of the second conductivity type having a third surface and a fourth surface having a second area smaller than the first area, a fifth surface having the second area in contact with the fourth surface, and the first surface A first conductivity type third thermoelectric conversion semiconductor having a sixth surface of area, a second surface of a second conductivity type having a seventh surface of the first area in contact with the sixth surface and an eighth surface of the first area. 4 thermoelectric conversion semiconductors, wherein each of the semiconductors is continuously joined in the order of different conductivity types.

請求項2に係わる発明は、請求項1において、前記第1面積を有する面である前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面が円形状であり、前記第2面積を有する面である前記第4面、前記第5面が前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面の円形状より直径が小さな円形状であることを特徴とする。 The invention according to claim 2 is the invention according to claim 1, wherein the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface, which are surfaces having the first area . surface is circular, the fourth surface is a surface having a second area, said fifth surface is the first surface, the second surface, the third surface, the sixth surface, the seventh surface A circular shape having a smaller diameter than the circular shape of the eighth surface .

請求項3に係わる発明は、請求項1または請求項2において、前記第1面積を有する面である前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面が円形状であり、前記第2面積を有する面である前記第4面、前記第5面が前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面の円形状の一部を切り欠いた形状であることを特徴とする。 According invention in claim 3, in claim 1 or claim 2, wherein the first surface is a surface having a first area, the second surface, the third surface, the sixth surface, the seventh surface , The eighth surface is circular and the fourth surface is the surface having the second area , the fifth surface is the first surface , the second surface, the third surface, the sixth surface, The seventh surface and the eighth surface are formed by cutting out a part of the circular shape .

請求項4に係わる発明は、請求項1〜請求項のいずれか1項において、前記各熱電変換半導体同士の接合が放電プラズマ接合法により接合されたものであることを特徴とする。 Invention according to claim 4, in any one of claims 1 to 3, wherein the one in which the junction of the thermoelectric conversion semiconductor each other are joined by a discharge plasma bonding method.

請求項5に係わる発明は、請求項1において、前記各熱電変換半導体が一体的に接合された状態となるように焼結されたものであることを特徴とする。   The invention according to claim 5 is characterized in that, in claim 1, the thermoelectric conversion semiconductors are sintered so as to be integrally joined.

また、上記目的を達成するため、請求項6に係わる発明は、第1面積の第1面および第2面が対向する位置となるように粉体状の第1導電型の第1熱電変換半導体を成形して焼結するステップと、前記第1面積の第3面および前記第1面積より小さな第2面積の第4面が対向する位置となるように粉体状の第2導電型の第2熱電変換半導体を成形して焼結するステップと、前記第2面積の第5面および前記第1面積の第6面が対向する位置となるように粉体状の第1導電型の第3熱電変換半導体を成形して焼結するステップと、前記第1面積の第7面および第8面が対向する位置となるように粉体状の第2導電型の第4熱電変換半導体を成形して焼結するステップと、焼結後の前記第1〜第4熱電変換半導体それぞれを、前記第2面と前記第3面、前記第4面と前記第5面、前記第6面と前記第7面が接するように接合するステップとを含むことを特徴とする熱電変換温度センサである。   In order to achieve the above object, the invention according to claim 6 is the first thermoelectric conversion semiconductor of the first conductive type in the form of powder so that the first surface and the second surface of the first area face each other. Forming and sintering the second surface of the powdery second conductivity type so that the third surface of the first area and the fourth surface of the second area smaller than the first area are opposed to each other. (2) forming and sintering the thermoelectric conversion semiconductor; and a third first-conductivity-type third in powder form so that the fifth surface of the second area and the sixth surface of the first area are opposed to each other. Molding and sintering the thermoelectric conversion semiconductor, and molding the powdery second conductivity type fourth thermoelectric conversion semiconductor so that the seventh surface and the eighth surface of the first area face each other. And sintering the first to fourth thermoelectric conversion semiconductors after sintering, the second surface and the first Surface, the fifth surface and the fourth surface is a thermoelectric conversion temperature sensor, which comprises the steps of bonding to the seventh surface and the sixth surface are in contact.

請求項7に係わる発明は、請求項6において、前記接合するステップにおいて、放電プラズマ接合法により接合することを特徴とする。   The invention according to a seventh aspect is characterized in that, in the sixth aspect, the bonding is performed by a discharge plasma bonding method.

さらに、上記目的を達成するため、請求項8に係わる発明は、第1面積の第1面および第2面が対向する位置となるように粉体状の第1導電型の第1熱電変換半導体を成形するステップと、前記第1面積の第3面および前記第1面積より小さな第2面積の第4面が対向する位置となるように粉体状の第2導電型の第2熱電変換半導体を成形するステップと、前記第2面積の第5面および前記第1面積の第6面が対向する位置となるように粉体状の第1導電型の第3熱電変換半導体を成形するステップと、前記第1面積の第7面および第8面が対向する位置となるように粉体状の第2導電型の第4熱電変換半導体を成形するステップと、形成後の前記第1〜第4熱電変換半導体それぞれを、前記第2面と前記第3面、前記第4面と前記第5面、前記第6面と前記第7面が接するように焼結するステップとを含むことを特徴とする熱電変換温度センサの製造方法である。   In order to achieve the above object, the invention according to claim 8 is the first thermoelectric conversion semiconductor of the first conductivity type in the form of powder so that the first surface and the second surface of the first area are opposed to each other. A second thermoelectric conversion semiconductor of the second conductive type in powder form so that the third surface of the first area and the fourth surface of the second area smaller than the first area are opposed to each other. And forming a powdery first-conductivity-type third thermoelectric conversion semiconductor so that the fifth surface of the second area and the sixth surface of the first area are opposed to each other. , Forming a powdery second conductivity type fourth thermoelectric conversion semiconductor so that the seventh surface and the eighth surface of the first area face each other, and the first to fourth after formation The thermoelectric conversion semiconductors are respectively connected to the second surface and the third surface, the fourth surface and the fifth surface, Serial is a method for producing a thermoelectric conversion temperature sensor which comprises a step of sintering so that the seventh surface and the sixth surface are in contact.

本発明に係わる熱電変換温度センサによれば、異種熱電変換半導体の接合部分の面積を変えて複数対の異種熱電変換半導体を接合したので、外側にある第1熱電変換半導体と内部にある第3熱電変換半導体との熱容量の差を大きくすることができる。したがって温度変化に対して、従来の熱電対を使用した温度センサよりも大きな起電力を得ることができる。   According to the thermoelectric conversion temperature sensor according to the present invention, the plurality of pairs of different thermoelectric conversion semiconductors are joined by changing the area of the junction portion of the different thermoelectric conversion semiconductors, so that the first thermoelectric conversion semiconductor on the outside and the third thermoelectric conversion semiconductor inside. The difference in heat capacity with the thermoelectric conversion semiconductor can be increased. Therefore, an electromotive force larger than that of a temperature sensor using a conventional thermocouple can be obtained with respect to a temperature change.

また、本発明に係わる熱電変換温度センサの製造方法によれば、各熱電変換半導体をそれぞれ粉末原料から成形、焼結するだけであるので、温度変化に対して大きな起電力が得られる温度センサを容易に製造することができる。   In addition, according to the method for manufacturing a thermoelectric conversion temperature sensor according to the present invention, each thermoelectric conversion semiconductor is simply formed and sintered from a powder raw material, so a temperature sensor capable of obtaining a large electromotive force against a temperature change is provided. It can be manufactured easily.

以下、本発明を適用した実施形態について添付した図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments to which the present invention is applied will be described with reference to the accompanying drawings.

(実施形態1)
図1は本実施形態1による熱電変換温度センサの構成を示す側面図であり、図2はこの熱電変換温度センサを示す斜視図である。
(Embodiment 1)
FIG. 1 is a side view showing a configuration of a thermoelectric conversion temperature sensor according to the first embodiment, and FIG. 2 is a perspective view showing the thermoelectric conversion temperature sensor.

熱電変換温度センサ20は、P導電型(以下P型という)とN導電型(以下N型という)の熱電変換半導体特性を持つ熱電変換半導体を接合したものである。ここで言う熱電変換半導体特性とは、温度差により起電力が発生する特性を言い、P型とN型では発生する起電力極性が逆の特性を表す。   The thermoelectric conversion temperature sensor 20 is formed by joining thermoelectric conversion semiconductors having P-conductivity type (hereinafter referred to as P-type) and N-conductivity type (hereinafter referred to as N-type) thermoelectric conversion semiconductor characteristics. The thermoelectric conversion semiconductor characteristic mentioned here refers to a characteristic in which an electromotive force is generated due to a temperature difference. In the P-type and the N-type, the generated electromotive force polarity is reversed.

本実施形態の熱電変換温度センサ20は、第1熱電変換半導体(P型)1、第2熱電変換半導体(N型)2を備えた第1型の異種熱電半導体、第3熱電変換半導体(P型)3、第4熱電変換半導体(N型)4を有する。第1熱電変換半導体(P型)1は対向する面がともに第1面積である第1面(上端面7という)および第2面8aを有する。第2熱電変換半導体(N型)2は第1面積の第3面8bと第1面積より小さな第2面積の第4面9aを有する。第3熱電変換半導体(P型)3は第2面積の第5面9bと第1面積の第6面10aを有する。第4熱電変換半導体(N型)4は第1面積の第7面10bおよび第8面(下端面11という)を有する。   The thermoelectric conversion temperature sensor 20 of the present embodiment includes a first thermoelectric conversion semiconductor (P-type) 1, a first thermoelectric conversion semiconductor (P-type) 1, a second thermoelectric conversion semiconductor (N-type) 2, and a third thermoelectric conversion semiconductor (P Type) 3 and a fourth thermoelectric conversion semiconductor (N type) 4. The first thermoelectric conversion semiconductor (P-type) 1 has a first surface (referred to as an upper end surface 7) and a second surface 8a, both of which are opposed to each other. The second thermoelectric conversion semiconductor (N-type) 2 has a third surface 8b having a first area and a fourth surface 9a having a second area smaller than the first area. The third thermoelectric conversion semiconductor (P-type) 3 has a fifth surface 9b having a second area and a sixth surface 10a having a first area. The fourth thermoelectric conversion semiconductor (N-type) 4 has a seventh surface 10b and an eighth surface (referred to as a lower end surface 11) having a first area.

そして、これらがP型、N型、P型、N型の順に連続して密着して接合している。すなわち、第1熱電変換半導体(P型)1の第2面8aと第2熱電変換半導体(N型)2の第3面8bとが接合し、第2熱電変換半導体(N型)2の第4面9aと第3熱電変換半導体(P型)3の第5面9bとが接合し、第3熱電変換半導体(P型)3の第6面10aと第4熱電変換半導体(N型)4の第7面10bとが接合している。   These are in close contact with each other in the order of P-type, N-type, P-type, and N-type. That is, the second surface 8a of the first thermoelectric conversion semiconductor (P type) 1 and the third surface 8b of the second thermoelectric conversion semiconductor (N type) 2 are joined, and the second surface of the second thermoelectric conversion semiconductor (N type) 2 is joined. The fourth surface 9a and the fifth surface 9b of the third thermoelectric conversion semiconductor (P type) 3 are joined, and the sixth surface 10a of the third thermoelectric conversion semiconductor (P type) 3 and the fourth thermoelectric conversion semiconductor (N type) 4 The seventh surface 10b is joined.

したがって、第1熱電変換半導体(P型)1と第2熱電変換半導体(N型)2との接合面(第1面積)8、および第3熱電変換半導体(P型)3と第4熱電変換半導体(N型)4との接合面(第1面積)10の面積に対して、第2熱電変換半導体(N型)2と第3熱電変換半導体(P型)3との接合面(第2面積)9の面積が小さくなっている。   Therefore, the junction surface (first area) 8 between the first thermoelectric conversion semiconductor (P type) 1 and the second thermoelectric conversion semiconductor (N type) 2, and the third thermoelectric conversion semiconductor (P type) 3 and the fourth thermoelectric conversion. With respect to the area of the bonding surface (first area) 10 with the semiconductor (N type) 4, the bonding surface (second surface) between the second thermoelectric conversion semiconductor (N type) 2 and the third thermoelectric conversion semiconductor (P type) 3. The area of (area) 9 is small.

そして、熱電変換温度センサ20としては、終端面である第1熱電変換半導体(P型)1の上端面7に導線5をはんだ付けし、第4熱電変換半導体(N型)4の下端面11に導線6をはんだ付けしている。   And as the thermoelectric conversion temperature sensor 20, the conducting wire 5 is soldered to the upper end surface 7 of the 1st thermoelectric conversion semiconductor (P type) 1 which is a termination surface, and the lower end surface 11 of the 4th thermoelectric conversion semiconductor (N type) 4 is used. The lead wire 6 is soldered to.

この熱電変換温度センサ20に熱(温度変化)を加えると導線5、導線6間に起電力が発生する。この起電力を例えば別回路で増幅することで、温度検出に用いることができる。   When heat (temperature change) is applied to the thermoelectric conversion temperature sensor 20, an electromotive force is generated between the conductors 5 and 6. By amplifying this electromotive force with a separate circuit, for example, it can be used for temperature detection.

第1面積と第2面積の大きさの比は、出来るだけ大きくすることが好ましい。これは、面積比を大きくすることで、その熱容量に差が生じて温度差が発生しやすくなり、最大起電力が面積比に対数関数的に増加するからである。図12は、面積比を変えた場合における起電力E(mV)の時間経過t(s)に伴う変化を示す特性図である。図12に示すように、面積比に応じて発生する起電力が変化することが確認されている。また図13は、面積比と最大起電力E(mV)との関係を示す特性図である。図13に示すように、最大起電力は面積比に対数関数的に増加することが確認されている。   The ratio of the size of the first area and the second area is preferably as large as possible. This is because by increasing the area ratio, a difference occurs in the heat capacities to easily cause a temperature difference, and the maximum electromotive force increases logarithmically with the area ratio. FIG. 12 is a characteristic diagram showing a change with time lapse t (s) of the electromotive force E (mV) when the area ratio is changed. As shown in FIG. 12, it has been confirmed that the electromotive force generated varies depending on the area ratio. FIG. 13 is a characteristic diagram showing the relationship between the area ratio and the maximum electromotive force E (mV). As shown in FIG. 13, it has been confirmed that the maximum electromotive force increases logarithmically with the area ratio.

一方、各熱電変換半導体の厚さL1〜L4は、特に限定されない。例えば、すべて同じ厚さとしてもよい。また、第2面積となる部分の厚さL5は、接合面9が確実に第2面積で接合できればよい。   On the other hand, thickness L1-L4 of each thermoelectric conversion semiconductor is not specifically limited. For example, all may have the same thickness. Further, the thickness L5 of the portion that becomes the second area may be such that the bonding surface 9 can be reliably bonded with the second area.

この熱電変換温度センサ20の製造方法は、例えば、それぞれの熱電変換半導体を形成後、接合してもよいし、すべてを一体的に形成してもよい。   In the method for manufacturing the thermoelectric conversion temperature sensor 20, for example, the respective thermoelectric conversion semiconductors may be formed and then joined, or all may be integrally formed.

より具体的には、まず、一つ一つの熱電変換半導体を形成する場合は、上述した第1〜第4の熱電変換半導体となるように、熱電変換半導体の粉末原料を成形する。成形には、上述の各熱電変換半導体の形状をした型内に粉末原料を投入して、ある程度圧縮する。その後、所定の加圧加熱を行って焼結させる。これにより第1〜第4の熱電変換半導体が形成される。   More specifically, when forming each thermoelectric conversion semiconductor, the powder raw material of a thermoelectric conversion semiconductor is shape | molded so that it may become the 1st-4th thermoelectric conversion semiconductor mentioned above. In the molding, the powder raw material is put into a mold having the shape of each of the thermoelectric conversion semiconductors described above and compressed to some extent. Thereafter, predetermined pressure heating is performed to sinter. Thereby, the 1st-4th thermoelectric conversion semiconductor is formed.

そして形成された第1〜第4の熱電変換半導体を上述のように、それぞれの面が接合されるように、はんだ付けや、銀ペーストなどの導電性接着材を使用して接合する。その後、終端面に導線5および6をハンダ付けすることで、熱電変換温度センサ20が完成する。   And the formed 1st-4th thermoelectric conversion semiconductor is joined using conductive adhesives, such as soldering and a silver paste, so that each surface may be joined as mentioned above. Then, the thermoelectric conversion temperature sensor 20 is completed by soldering the conducting wires 5 and 6 to the terminal surface.

一体的に製造する方法としては、例えば第1〜第4の熱電変換半導体となる粉末原料を図1および2に示した各熱電変換半導体形状となるように成形し、第1〜第4の熱電変換半導体がそれぞれ接合されるように重ねてそのまま焼結して形成する。このようにすれば、熱電変換半導体の形成と、P−N接合を一度に行うことができ、製造コスト、製造時間の短縮となる。   As an integrated manufacturing method, for example, powder raw materials to be first to fourth thermoelectric conversion semiconductors are formed to have the respective thermoelectric conversion semiconductor shapes shown in FIGS. 1 and 2, and first to fourth thermoelectric conversions are performed. The conversion semiconductors are stacked and sintered as they are so as to be joined. If it does in this way, formation of a thermoelectric conversion semiconductor and PN junction can be performed at a time, and it will become short of manufacturing cost and manufacturing time.

なお、これら鉄シリサイド系熱電変換素子の成形および焼結は、一定の圧力、温度、時間の焼結条件下、放電プラズマ焼結法により製造することにより半導体特性を有する素子となる。なお、通常の電気炉を用いた焼結では金属相ができてしまうため、半導体特性を有する素子は得られない。また、通常の電気炉において成型で粉体加工することも可能であるが、この場合も有効な半導体特性を有する素子は得られない。   The iron silicide thermoelectric conversion elements are molded and sintered by a discharge plasma sintering method under constant pressure, temperature, and time sintering conditions to obtain elements having semiconductor characteristics. In addition, since the metal phase is formed by sintering using a normal electric furnace, an element having semiconductor characteristics cannot be obtained. Although it is possible to process powder by molding in a normal electric furnace, an element having effective semiconductor characteristics cannot be obtained in this case as well.

原料粉末としては、例えばP型FeSi2:FeSi2−4.1質量%Cr、N型FeSi2:FeSi2−2.4質量%Coを使用してそれぞれP型熱電変換半導体とN型熱電変換半導体を製造し得る。   As the raw material powder, for example, P-type FeSi2: FeSi2-4.1 mass% Cr and N-type FeSi2: FeSi2-2-2.4 mass% Co are used to manufacture a P-type thermoelectric conversion semiconductor and an N-type thermoelectric conversion semiconductor, respectively. obtain.

なお、P型とN型を接続したものを1対とすれば、図示した形態では、異種熱電変換半導体を2対接続した形態となる。また、さらに3対、4対と連続して接合してもよい。例えば、3対の場合は、図1の第4熱電変換半導体4の下端面11に、第1面積よりも小さな第2面積の面(第2熱電変換半導体2の第4面9aに相当)を形成し、この面に第3熱電変換半導体3、第4熱電変換半導体4と同一構造の一対の半導体を接合した構造となる。または、図1の第1熱電変換半導体1の上端面7に、第1面積よりも小さな第2面積の面(第3熱電変換半導体3の第5面9bに相当)を形成し、この面に第1熱電変換半導体1、第2熱電変換半導体2と同一構造の一対の半導体を接合した構造となる。   In addition, if a pair of P-type and N-type is connected as one pair, the illustrated form is a form in which two pairs of different thermoelectric conversion semiconductors are connected. Moreover, you may join continuously 3 pairs and 4 pairs. For example, in the case of three pairs, a surface having a second area smaller than the first area (corresponding to the fourth surface 9a of the second thermoelectric conversion semiconductor 2) is provided on the lower end surface 11 of the fourth thermoelectric conversion semiconductor 4 in FIG. The surface is formed and a pair of semiconductors having the same structure as the third thermoelectric conversion semiconductor 3 and the fourth thermoelectric conversion semiconductor 4 are joined to this surface. Alternatively, a surface having a second area smaller than the first area (corresponding to the fifth surface 9b of the third thermoelectric conversion semiconductor 3) is formed on the upper end surface 7 of the first thermoelectric conversion semiconductor 1 in FIG. The first thermoelectric conversion semiconductor 1 and the second thermoelectric conversion semiconductor 2 have a structure in which a pair of semiconductors having the same structure is joined.

このようにさらに多くの熱電変換半導体を接続することで、発生する起電力は対数にほぼ比例して大きな起電力が発生させることができる。したがって、熱電変換温度センサ20として必要な起電力に合わせ、熱電変換半導体接続の対数を選択するとよい。また、各熱電変換半導体の導電型は、N型、P型、N型、P型の順となるように接合してもよい。   By connecting more thermoelectric conversion semiconductors in this way, the generated electromotive force can generate a large electromotive force substantially in proportion to the logarithm. Therefore, the logarithm of the thermoelectric conversion semiconductor connection may be selected in accordance with the electromotive force necessary for the thermoelectric conversion temperature sensor 20. Moreover, you may join so that the conductivity type of each thermoelectric conversion semiconductor may become order of N type, P type, N type, and P type.

次に、本実施形態による熱電変換温度センサ20の動作原理を説明する。   Next, the operation principle of the thermoelectric conversion temperature sensor 20 according to the present embodiment will be described.

図3は、熱電変換温度センサの動作原理を説明する説明図である。異種熱電変換半導体を接合した温度センサの基本動作原理は、図3に示すように、導電体53を加熱、電極54、電極55を冷却すると、P型熱電変換半導体51、N型熱電変換半導体52に温度差が発生し、熱電変換半導体のゼーベック効果により起電力が発生して電流56が流れるというものである。 FIG. 3 is an explanatory diagram for explaining the operating principle of the thermoelectric conversion temperature sensor. As shown in FIG. 3, the basic operation principle of the temperature sensor in which different types of thermoelectric conversion semiconductors are bonded is that when the conductor 53 is heated and the electrodes 54 and 55 are cooled, the P-type thermoelectric conversion semiconductor 51 and the N-type thermoelectric conversion semiconductor 52 are used. A temperature difference occurs, an electromotive force is generated by the Seebeck effect of the thermoelectric conversion semiconductor, and a current 56 flows.

この原理と同じく、本実施形態1による熱電変換温度センサ20全体に熱を加えると上端面7は温度上昇する。このとき接合面8は上端面に比べ熱容量が大きく上端面7の方が接合面8に比べ温度が高くなる。このため上端面7と接合面8では温、冷と温度差が生じ熱起電力が発生する。また、接合面9は接合面8に比べ接合面積を小さく加工してあるため、接合面9に比べ接合面8の熱容量は大きい。つまり接合面9の方が、接合面8に比べ熱の伝導は早く内部に到達し、接合面8は冷、接合面9は温となる。また接合面9に比べ接合面10の接合面積が大きく、接合面9は温、接合面10は冷となる。同様に接合面10と下端面11は冷、温となる。   Similar to this principle, when heat is applied to the entire thermoelectric conversion temperature sensor 20 according to the first embodiment, the temperature of the upper end surface 7 rises. At this time, the bonding surface 8 has a larger heat capacity than the upper end surface, and the upper end surface 7 has a higher temperature than the bonding surface 8. For this reason, a temperature difference occurs between the upper end surface 7 and the joint surface 8, causing a thermoelectromotive force. Further, since the bonding surface 9 is processed to have a smaller bonding area than the bonding surface 8, the heat capacity of the bonding surface 8 is larger than that of the bonding surface 9. That is, the joining surface 9 reaches the inside faster than the joining surface 8, and the joining surface 8 is cool and the joining surface 9 is warm. Further, the bonding area of the bonding surface 10 is larger than that of the bonding surface 9, the bonding surface 9 is warm, and the bonding surface 10 is cold. Similarly, the joint surface 10 and the lower end surface 11 are cold and warm.

P型熱電変換半導体とN型熱電変換半導体の温、冷のゼーベック効果の電流の向きは逆であることから、導線5からP型、N型、P型、N型、導線6と2対の熱電変換モジュールが直列に接続されたものとなっているので、ゼーベック効果により電流が流れ、導線5、導線6間には起電圧が発生する。この起電力はP型−N型−P型−N型の対数により比例して増加することが、後述の図8の特性図により確認されている。   Since the directions of the currents of the temperature and cold Seebeck effect of the P-type thermoelectric semiconductor and the N-type thermoelectric semiconductor are opposite, the conductor 5 to the P-type, N-type, P-type, N-type, and the conductor 6 have two pairs. Since the thermoelectric conversion modules are connected in series, a current flows due to the Seebeck effect, and an electromotive voltage is generated between the conductors 5 and 6. It is confirmed from the characteristic diagram of FIG. 8 described later that this electromotive force increases in proportion to the logarithm of P-type-N-type-P-type-N type.

本実施形態の熱電変換温度センサ20は、熱の絶対温度を測定するものではなく、熱の温度上昇率を測定するものであり、この熱電変換温度センサ20全体に温度を加えると熱電変換半導体の接合面の温度差により起電力を発生し、その経過時間、起電圧の上昇率により温度差を判定する温度検出機器として使用することができる。   The thermoelectric conversion temperature sensor 20 of this embodiment does not measure the absolute temperature of heat, but measures the rate of temperature rise of heat. When the temperature is applied to the entire thermoelectric conversion temperature sensor 20, the thermoelectric conversion semiconductor It can be used as a temperature detection device that generates an electromotive force due to the temperature difference of the joint surfaces and determines the temperature difference based on the elapsed time and the rate of increase of the electromotive voltage.

(実施形態2)
図4および5は、熱電変換温度センサ40の変形形状を示す図面である。前述した図1および2に示した熱電変換温度センサ20は、熱電変換半導体同士の接合面8、9、および10のいずれも円形状とした。
(Embodiment 2)
4 and 5 are diagrams showing a deformed shape of the thermoelectric conversion temperature sensor 40. FIG. In the thermoelectric conversion temperature sensor 20 shown in FIGS. 1 and 2 described above, all of the joint surfaces 8, 9, and 10 of the thermoelectric conversion semiconductors have a circular shape.

本実施形態2の熱電変換温度センサ40は、図4および5に示すように、円形の一部を切り欠いた切欠形状32としてもよい。その他の構成は実施形態1と同じである。   As shown in FIGS. 4 and 5, the thermoelectric conversion temperature sensor 40 according to the second embodiment may have a notch shape 32 in which a part of a circle is notched. Other configurations are the same as those of the first embodiment.

このような形態にした場合でも、実施形態1と全く同じように起電力を発生させることができる。したがって、これらの形状の違いは、焼結または加工の際に様々に選択すればよい。   Even in such a form, an electromotive force can be generated exactly as in the first embodiment. Therefore, the difference in these shapes may be selected variously during sintering or processing.

本発明を適用した実施形態1の熱電変換温度センサ20を製作して実験した。また、従来の温度センサも比較例として実験した。   The thermoelectric conversion temperature sensor 20 according to the first embodiment to which the present invention is applied was manufactured and tested. A conventional temperature sensor was also tested as a comparative example.

(実施例1)
実施例1は、図1および2に示したように、W1=φ20mm、W2=φ10mm、L1〜L4=7mm、L5=4.5mmの熱電変換半導体よりなる円筒状切欠熱電変換温度センサを製作した。
Example 1
In Example 1, as shown in FIGS. 1 and 2, a cylindrical notch thermoelectric conversion temperature sensor made of a thermoelectric conversion semiconductor with W1 = φ20 mm, W2 = φ10 mm, L1 to L4 = 7 mm, and L5 = 4.5 mm was manufactured. .

製作は、熱電変換半導体として、原料粉末P型FeSi2:FeSi2−4.1質量%Cr、N型FeSi2:FeSi2−2.4質量%Coを使用し、加圧力35MPa、温度1023K、保持時間600sの焼結条件下、放電プラズマ焼結法によりP型熱電変換半導体とN型熱電変換半導体を形成した。各寸法は上記の通りである。これを、P型、N型、P型、N型の順に連続して密着接合した。この接合には銀ペースト等の導電性接着材を用いた。   The production uses raw material powder P-type FeSi2: FeSi2-4.1 mass% Cr, N-type FeSi2: FeSi2-2-2.4 mass% Co as a thermoelectric conversion semiconductor, with a pressure of 35 MPa, a temperature of 1023 K, and a holding time of 600 s. Under the sintering conditions, a P-type thermoelectric conversion semiconductor and an N-type thermoelectric conversion semiconductor were formed by a discharge plasma sintering method. Each dimension is as described above. This was closely bonded in the order of P-type, N-type, P-type, and N-type. A conductive adhesive such as silver paste was used for this joining.

図6は実施例1の熱電変換温度センサ20の起電力の変化を示す特性図である。   FIG. 6 is a characteristic diagram showing changes in electromotive force of the thermoelectric conversion temperature sensor 20 according to the first embodiment.

起電力の測定は、この熱電変換温度センサ20を室温より30度高く、風速85センチメートル毎秒の垂直気流に投入して、時間と起電力を測定した。   The electromotive force was measured by placing the thermoelectric conversion temperature sensor 20 30 degrees higher than room temperature and putting it in a vertical air current at a wind speed of 85 centimeters per second, and measuring the time and electromotive force.

図6に示すように、約50秒後に約3.1mVに飽和し、その後起電力が減少した。これは、後述する比較例4の熱電対温度センサと同様の応答特性を示しており、かつ、比較例の熱電対温度センサよりも約3.2倍の起電力が発生することを示している。   As shown in FIG. 6, after about 50 seconds, it was saturated to about 3.1 mV, and then the electromotive force decreased. This shows response characteristics similar to those of a thermocouple temperature sensor of Comparative Example 4 to be described later, and indicates that an electromotive force approximately 3.2 times that of the thermocouple temperature sensor of Comparative Example is generated. .

また、この図から、熱電変換温度センサ20は、熱が全体に伝達された状態となった後は、起電力が低下していることがわかる。したがって、熱電変換温度センサ20と指定使用するときは、図6に示したデータのうち、起電力が上昇している間の上昇率により温度差を判定することができる。   In addition, it can be seen from the figure that the thermoelectric conversion temperature sensor 20 has a lower electromotive force after the heat is transferred to the whole. Therefore, when designated and used with the thermoelectric conversion temperature sensor 20, the temperature difference can be determined based on the rate of increase while the electromotive force is increasing in the data shown in FIG.

(比較例1〜3)
比較例1の熱電変換温度センサ20は、実施例1と同様にして、直径20mm、厚さ7mmのP型熱電変換半導体とN型熱電変換半導体をそれぞれ焼結製作して接合し、1対の熱電変換温度センサ20としたものである。同様に比較例2は、直径をその1/2としたもの、比較例3は直径を比較例1の1/4としたものである。そしてこれら熱電変換温度センサ20の温度差における起電力の変化を測定した。
(Comparative Examples 1-3)
The thermoelectric conversion temperature sensor 20 of Comparative Example 1 was manufactured by sintering and joining a P-type thermoelectric conversion semiconductor and an N-type thermoelectric conversion semiconductor each having a diameter of 20 mm and a thickness of 7 mm in the same manner as in Example 1. The thermoelectric conversion temperature sensor 20 is used. Similarly, Comparative Example 2 has a diameter of 1/2, and Comparative Example 3 has a diameter of 1/4 of Comparative Example 1. And the change of the electromotive force in the temperature difference of these thermoelectric conversion temperature sensors 20 was measured.

測定は、一方(高温側)にヒーター、他方(低温側)にペルチェクーラーを取り付け、温度制御し、導線5および6間の電圧を測定した。   Measurement was performed by attaching a heater on one side (high temperature side) and a Peltier cooler on the other side (low temperature side), controlling the temperature, and measuring the voltage between the conductors 5 and 6.

図7は比較例1〜3の温度差に対する起電力を示す特性図である。   FIG. 7 is a characteristic diagram showing an electromotive force with respect to a temperature difference in Comparative Examples 1 to 3.

図7から、1/1サイズ、1/2サイズ、1/4サイズの1対で構成された熱電変換温度センサ20はゼーベック係数α(α=V/ΔT、α:ゼーベック係数、V:起電力、温度差:ΔT)=0.302近似データとなることが、この特性図により確認できる。この結果から、本発明を適用した実施例1の形態において、いっそう小型化した場合でも大きな起電力を得られることが期待できる。   From FIG. 7, the thermoelectric conversion temperature sensor 20 configured with a pair of 1/1 size, 1/2 size, and 1/4 size has a Seebeck coefficient α (α = V / ΔT, α: Seebeck coefficient, V: electromotive force). The temperature difference: ΔT) = 0.302 can be confirmed from this characteristic diagram. From this result, it can be expected that in the embodiment of the first embodiment to which the present invention is applied, a large electromotive force can be obtained even when the size is further reduced.

(実施例2)
実施例1と同じ形状の2対の熱電変換半導体よりなる熱電変換温度センサ20をさらに接合して、合計4対の熱電変換半導体よりなる熱電変換温度センサ20を製作した。
(Example 2)
Thermoelectric conversion temperature sensors 20 made of two pairs of thermoelectric conversion semiconductors having the same shape as in Example 1 were further joined to manufacture thermoelectric conversion temperature sensors 20 made of a total of four pairs of thermoelectric conversion semiconductors.

図8は、熱電変換半導体の対数の違いによる起電力の変化を示す特性図である。   FIG. 8 is a characteristic diagram showing changes in electromotive force due to differences in the logarithm of thermoelectric conversion semiconductors.

図8においては、比較例1の1対の熱電変換温度センサ20、実施例1の2対の熱電変換温度センサ20、実施例2の4対の熱電変換温度センサ20それぞれにおける温度差に対する起電力の違いを示す特性図である。起電力の測定は、前述した比較例1〜3と同様である。   In FIG. 8, the electromotive force with respect to the temperature difference in each of the pair of thermoelectric conversion temperature sensors 20 of Comparative Example 1, the two pairs of thermoelectric conversion temperature sensors 20 of Example 1, and the four pairs of thermoelectric conversion temperature sensors 20 of Example 2. It is a characteristic view which shows the difference. The measurement of the electromotive force is the same as in Comparative Examples 1 to 3 described above.

図8から、1対の熱電変換温度センサ20(比較例1)の場合のゼーベック係数αは0.302、2対の熱電変換温度センサ20(実施例1)の場合のゼーベック係数αは0.617、4対の熱電変換温度センサ20(実施例2)の場合のゼーベック係数αは1.31となり、対数に比例して起電圧が発生することがわかる。   From FIG. 8, the Seebeck coefficient α in the case of one pair of thermoelectric conversion temperature sensors 20 (Comparative Example 1) is 0.302, and the Seebeck coefficient α in the case of two pairs of thermoelectric conversion temperature sensors 20 (Example 1) is 0. 617, the Seebeck coefficient α in the case of four pairs of thermoelectric conversion temperature sensors 20 (Example 2) is 1.31, and it can be seen that an electromotive voltage is generated in proportion to the logarithm.

(比較例4)
比較例4は、図10および11に示したものと同様に、コンスタンタン、純鉄を10対使用した熱電対温度センサを製作した。この熱電対温度センサはφ2.2mm×全長445mm1本の熱電対温度センサである。
(Comparative Example 4)
In Comparative Example 4, a thermocouple temperature sensor using 10 pairs of constantan and pure iron was manufactured as shown in FIGS. This thermocouple temperature sensor is a thermocouple temperature sensor of φ2.2 mm × total length 445 mm.

図9はこの比較例4の熱電対温度センサにおける起電力を測定した特性図である。   FIG. 9 is a characteristic diagram obtained by measuring the electromotive force in the thermocouple temperature sensor of Comparative Example 4.

測定は実施例1と同様に、この比較例4の熱電対温度センサ1本を室温より30度高く、風速85センチメートル毎秒の垂直気流に投入して時間の経過ともに起電力を測定した。   In the same manner as in Example 1, one thermocouple temperature sensor of Comparative Example 4 was placed at 30 degrees higher than room temperature, and the electromotive force was measured as time passed by putting it in a vertical air current at a wind speed of 85 centimeters per second.

図9に示すように、この比較例4の熱電対温度センサでは、約7秒後に約0.98mVに飽和し、その後起電圧は減少した。   As shown in FIG. 9, in the thermocouple temperature sensor of this comparative example 4, it was saturated to about 0.98 mV after about 7 seconds, and then the electromotive voltage decreased.

以上の実施例および比較例の結果から、本発明を適用した熱電変換温度センサ20は、熱電対を使用した温度センサと同様な応答性能を有し、かつ、熱電対温度センサよりも大きな起電力が得られることが明らかとなった。また、必要な起電力は熱電変換温度センサ20の対数、寸法、熱容量をかえることで、容易に調整可能である。また、温度特性を変化させることもできる。また、熱電対温度センサに比較して小型化することができ、特に長手方向において大幅な小型化が可能となる。また、熱電対はコンスタンタン、純鉄を中空の特殊構造に加工する必要があるのに対し熱電変換温度センサ20は、半導体はCr、Coは微少で、主材となるFe、Si粉は安価であるとともに、接合箇所が熱電対に比べ少なくできるというメリットがある。   From the results of the above examples and comparative examples, the thermoelectric conversion temperature sensor 20 to which the present invention is applied has the same response performance as a temperature sensor using a thermocouple, and has a larger electromotive force than the thermocouple temperature sensor. It became clear that The required electromotive force can be easily adjusted by changing the logarithm, size, and heat capacity of the thermoelectric conversion temperature sensor 20. In addition, the temperature characteristics can be changed. Further, it can be reduced in size as compared with the thermocouple temperature sensor, and can be significantly reduced particularly in the longitudinal direction. The thermocouple needs constantan and pure iron to be processed into a hollow special structure, whereas the thermoelectric conversion temperature sensor 20 has a small amount of Cr and Co for semiconductors, and inexpensive Fe and Si powders as main materials. In addition, there is an advantage that the number of joints can be reduced as compared with the thermocouple.

また、粉末原料を焼結させて形成することができるため、製造が容易となる。特に、N型熱電変換半導体とP型熱電変換半導体を放電プラズマ焼結法と同じ製造機械で接合することもできる。さらに複数のP型熱電変換半導体、N型熱電変換半導体を焼結と同時に一体的に形成することもでき、製造行程を短縮することができる。   Further, since the powder raw material can be formed by sintering, manufacturing is facilitated. In particular, the N-type thermoelectric conversion semiconductor and the P-type thermoelectric conversion semiconductor can be joined by the same manufacturing machine as the discharge plasma sintering method. Further, a plurality of P-type thermoelectric conversion semiconductors and N-type thermoelectric conversion semiconductors can be integrally formed simultaneously with sintering, and the manufacturing process can be shortened.

このような特徴を有する本発明に係わる熱電変換温度センサ20は、例えば空調装置、プラントなどの温度センサとして、また、火災報知設備差動式感知器として防災システムにも利用することが可能である。   The thermoelectric conversion temperature sensor 20 according to the present invention having such characteristics can be used in a disaster prevention system as a temperature sensor for an air conditioner, a plant, etc., or as a fire alarm equipment differential sensor, for example. .

実施形態1による熱電変換温度センサの構成を示す側面図である。It is a side view which shows the structure of the thermoelectric conversion temperature sensor by Embodiment 1. 実施形態1による熱電変換温度センサを示す斜視図である。It is a perspective view which shows the thermoelectric conversion temperature sensor by Embodiment 1. FIG. 熱電変換温度センサの動作原理を説明する説明図である。It is explanatory drawing explaining the operating principle of a thermoelectric conversion temperature sensor. 本実施形態2による熱電変換温度センサの構成を示す側面図である。It is a side view which shows the structure of the thermoelectric conversion temperature sensor by this Embodiment 2. FIG. 実施形態2による熱電変換温度センサを示す斜視図である。It is a perspective view which shows the thermoelectric conversion temperature sensor by Embodiment 2. 実施例1の熱電変換温度センサの起電力の変化を示す特性図である。It is a characteristic view which shows the change of the electromotive force of the thermoelectric conversion temperature sensor of Example 1. FIG. 比較例1〜3の温度差に対する起電力を示す特性図である。It is a characteristic view which shows the electromotive force with respect to the temperature difference of Comparative Examples 1-3. 比較例1の1対の熱電変換温度センサ、実施例1の2対の熱電変換温度センサ、実施例2の4対の熱電変換温度センサそれぞれにおける温度差に対する起電力の違いを示す特性図である。It is a characteristic view which shows the difference of the electromotive force with respect to the temperature difference in 1 pair of thermoelectric conversion temperature sensors of the comparative example 1, 2 pairs of thermoelectric conversion temperature sensors of Example 1, and 4 pairs of thermoelectric conversion temperature sensors of Example 2. . 比較例4の熱電対温度センサにおける起電力を測定した特性図である。It is the characteristic view which measured the electromotive force in the thermocouple temperature sensor of the comparative example 4. 比較例4の熱電対温度センサを示す図面である。6 is a view showing a thermocouple temperature sensor of Comparative Example 4. 比較例4の熱電対温度センサを示す図面である。6 is a view showing a thermocouple temperature sensor of Comparative Example 4. 面積比を変えた場合における起電力の時間経過に伴う変化を示す特性図である。It is a characteristic view which shows the change with time progress of the electromotive force in the case of changing an area ratio. 面積比と最大起電力との関係を示す特性図である。It is a characteristic view which shows the relationship between an area ratio and the maximum electromotive force.

符号の説明Explanation of symbols

1 第1熱電変換半導体(P型)
2 第2熱電変換半導体(N型)
3 第3熱電変換半導体(P型)
4 第4熱電変換半導体(N型)
7 第1面(上端面)
8 接合面(第1面積)
8a 第2面
8b 第3面
9 接合面(第2面積)
9a 第4面
9b 第5面
10 接合面(第1面積)
10a 第6面
10b 第7面
11 第8面(下端面)
20 熱電変換温度センサ
1 First thermoelectric conversion semiconductor (P type)
2 Second thermoelectric conversion semiconductor (N-type)
3 Third thermoelectric conversion semiconductor (P type)
4 Fourth thermoelectric conversion semiconductor (N-type)
7 1st surface (upper surface)
8 joint surface (first area)
8a 2nd surface 8b 3rd surface 9 Joining surface (2nd area)
9a 4th surface 9b 5th surface 10 Joint surface (1st area)
10a 6th surface 10b 7th surface 11 8th surface (lower end surface)
20 Thermoelectric conversion temperature sensor

Claims (8)

第1面積の第1面および第2面を有する第1導電型の第1熱電変換半導体と、
前記第2面と接する前記第1面積の第3面および前記第1面積より小さな第2面積の第4面を有する第2導電型の第2熱電変換半導体と、
前記第4面と接する前記第2面積の第5面および前記第1面積の第6面を有する第1導電型の第3熱電変換半導体と、
前記第6面と接する前記第1面積の第7面および前記第1面積の第8面を有する第2導電型の第4熱電変換半導体と、
を備え、上記各半導体が異なる導電型の順に連続して接合されていることを特徴とする熱電変換温度センサ。
A first thermoelectric conversion semiconductor of a first conductivity type having a first surface and a second surface of a first area;
A second thermoelectric conversion semiconductor of a second conductivity type having a third surface of the first area in contact with the second surface and a fourth surface of a second area smaller than the first area;
A third thermoelectric conversion semiconductor of the first conductivity type having a fifth surface of the second area in contact with the fourth surface and a sixth surface of the first area;
A second conductivity type fourth thermoelectric conversion semiconductor having a seventh surface of the first area in contact with the sixth surface and an eighth surface of the first area;
A thermoelectric conversion temperature sensor characterized in that the semiconductors are continuously joined in the order of different conductivity types.
請求項1に記載の熱電変換温度センサにおいて、
前記第1面積を有する面である前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面は円形状であり、前記第2面積を有する面である前記第4面、前記第5面は前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面の円形状より直径が小さな円形状であることを特徴とする熱電変換温度センサ。
The thermoelectric conversion temperature sensor according to claim 1,
The first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface, which are surfaces having the first area, are circular and have the second area . The fourth surface and the fifth surface which are surfaces are circles having a diameter smaller than the circular shape of the first surface , the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface. thermoelectric temperature sensor you being a shape.
請求項1または請求項2に記載の熱電変換温度センサにおいて、
前記第1面積を有する面である前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面は円形状であり、前記第2面積を有する面である前記第4面、前記第5面は前記第1面、前記第2面、前記第3面、前記第6面、前記第7面、前記第8面の円形状の一部を切り欠いた形状であることを特徴とする熱電変換温度センサ。
The thermoelectric conversion temperature sensor according to claim 1 or 2,
The first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface, which are surfaces having the first area, are circular and have the second area . The fourth surface and the fifth surface, which are surfaces , cut a part of the circular shape of the first surface , the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface. thermoelectric temperature sensor you being a shape lacking.
請求項1〜請求項3のいずれか1項に記載の熱電変換温度センサにおいて、
前記各熱電変換半導体同士の接合が放電プラズマ接合法により接合されたものであることを特徴とする熱電変換温度センサ。
In the thermoelectric conversion temperature sensor of any one of Claims 1-3,
Thermoelectric temperature sensor you wherein in which the junction of the thermoelectric conversion semiconductor each other are joined by a discharge plasma bonding method.
請求項1に記載の熱電変換温度センサにおいて、
前記各熱電変換半導体が一体的に接合された状態となるように焼結されたものであることを特徴とする熱電変換温度センサ。
The thermoelectric conversion temperature sensor according to claim 1,
The thermoelectric conversion temperature sensor you wherein each thermoelectric conversion semiconductor is one that was sintered as in a state of being integrally joined.
第1面積の第1面および第2面が対向する位置となるように粉体状の第1導電型の第1熱電変換半導体を成形して焼結するステップと、
前記第1面積の第3面および前記第1面積より小さな第2面積の第4面が対向する位置となるように粉体状の第2導電型の第2熱電変換半導体を成形して焼結するステップと、
前記第2面積の第5面および前記第1面積の第6面が対向する位置となるように粉体状の第1導電型の第3熱電変換半導体を成形して焼結するステップと、
前記第1面積の第7面および第8面が対向する位置となるように粉体状の第2導電型の第4熱電変換半導体を成形して焼結するステップと、
焼結後の前記第1〜第4熱電変換半導体それぞれを、前記第2面と前記第3面、前記第4面と前記第5面、前記第6面と前記第7面が接するように接合するステップと、
を含むことを特徴とする熱電変換温度センサの製造方法。
Molding and sintering the first thermoelectric conversion semiconductor of the powdery first conductivity type so that the first surface and the second surface of the first area are opposed to each other;
The second thermoelectric conversion semiconductor of the powdery second conductivity type is molded and sintered so that the third surface of the first area and the fourth surface of the second area smaller than the first area are opposed to each other. And steps to
Molding and sintering the powdery first conductivity type third thermoelectric conversion semiconductor so that the fifth surface of the second area and the sixth surface of the first area are opposed to each other;
Molding and sintering the powdery second conductivity type fourth thermoelectric conversion semiconductor so that the seventh surface and the eighth surface of the first area are opposed to each other;
The first to fourth thermoelectric conversion semiconductors after sintering are joined such that the second surface and the third surface, the fourth surface and the fifth surface, and the sixth surface and the seventh surface are in contact with each other. And steps to
The manufacturing method of the thermoelectric conversion temperature sensor characterized by the above-mentioned.
請求項6に記載の熱電変換温度センサの製造方法において、
前記接合するステップ、放電プラズマ接合法により接合することを特徴とする熱電変換温度センサの製造方法。
In the manufacturing method of the thermoelectric conversion temperature sensor according to claim 6,
Step method for producing a thermoelectric conversion temperature sensor you characterized in that joining by discharge plasma bonding method of the joint.
第1面積の第1面および第2面が対向する位置となるように粉体状の第1導電型の第1熱電変換半導体を成形するステップと、
前記第1面積の第3面および前記第1面積より小さな第2面積の第4面が対向する位置となるように粉体状の第2導電型の第2熱電変換半導体を成形するステップと、
前記第2面積の第5面および前記第1面積の第6面が対向する位置となるように粉体状の第1導電型の第3熱電変換半導体を成形するステップと、
前記第1面積の第7面および第8面が対向する位置となるように粉体状の第2導電型の第4熱電変換半導体を成形するステップと、
形成後の前記第1〜第4熱電変換半導体それぞれを、前記第2面と前記第3面、前記第4面と前記第5面、前記第6面と前記第7面が接するように焼結するステップと、
を含むことを特徴とする熱電変換温度センサの製造方法。
Forming a powdery first conductivity type first thermoelectric conversion semiconductor so that the first surface and the second surface of the first area face each other;
Forming a second thermoelectric conversion semiconductor of powdery second conductivity type such that the third surface of the first area and the fourth surface of the second area smaller than the first area are opposed to each other;
Molding the powdery first conductivity type third thermoelectric conversion semiconductor so that the fifth surface of the second area and the sixth surface of the first area are opposed to each other;
Forming a powdery second conductivity type fourth thermoelectric conversion semiconductor so that the seventh surface and the eighth surface of the first area are opposed to each other;
The first to fourth thermoelectric conversion semiconductors after forming are sintered so that the second surface and the third surface, the fourth surface and the fifth surface, and the sixth surface and the seventh surface are in contact with each other. And steps to
The manufacturing method of the thermoelectric conversion temperature sensor characterized by the above-mentioned.
JP2008068764A 2008-03-18 2008-03-18 Thermoelectric conversion temperature sensor and manufacturing method thereof Expired - Fee Related JP5135011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068764A JP5135011B2 (en) 2008-03-18 2008-03-18 Thermoelectric conversion temperature sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068764A JP5135011B2 (en) 2008-03-18 2008-03-18 Thermoelectric conversion temperature sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009224634A JP2009224634A (en) 2009-10-01
JP5135011B2 true JP5135011B2 (en) 2013-01-30

Family

ID=41241089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068764A Expired - Fee Related JP5135011B2 (en) 2008-03-18 2008-03-18 Thermoelectric conversion temperature sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5135011B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870142A (en) * 1994-08-30 1996-03-12 Seiko Epson Corp Thermoelectric element
LU88704A1 (en) * 1996-01-26 1997-07-26 Euratom Thermal radiation detection device and presence detection device based on such a device
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module

Also Published As

Publication number Publication date
JP2009224634A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP1780807B1 (en) Thermoelectric conversion module
El Oualid et al. Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power
Hung et al. Segmented thermoelectric oxide‐based module for high‐temperature waste heat harvesting
JP2006196727A (en) Thermoelectric conversion device and manufacturing method thereof
CN103033291A (en) Circular-foil thermopile heat-flow sensor
JP5135011B2 (en) Thermoelectric conversion temperature sensor and manufacturing method thereof
JP2009239039A (en) Electrothermal conversion temperature sensor and method for manufacturing the same
Saucke et al. Compatibility approach for the improvement of oxide thermoelectric converters for industrial heat recovery applications
CN206223310U (en) A kind of structure of New-type thermocouple
CN102891248A (en) Flexible thermoelectric conversion system and manufacturing method thereof
Lee Thermoelectric Generators
CN103811652A (en) Novel thermoelectric semiconductor device manufacturing method capable of separating cold end and hot end
JP7441847B2 (en) Manufacturing method of thermoelectric conversion material
US12035629B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor
CN101189740A (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic apparatus and cooling device comprising the element
JP2009246254A (en) Thermoelectric conversion temperature sensor
CN201945391U (en) Armored thermocouple pile
JP2017204501A (en) Thermoelectric conversion element, distributed temperature sensor and manufacturing method of thermoelectric conversion element
TWI570972B (en) Thermoelectric conversion device and thermoelectric converter
WO2024203843A1 (en) Thermoelectric device
WO2024203848A1 (en) Thermoelectric element and method for manufacturing same
JP2002232023A (en) Thermoelectric element and thermoelectric generating module
KR20190009469A (en) P-type thermoelectric element composition, N-type thermoelectric element composition and thermoelectric element
KR20220077024A (en) Leakage detection sensor and leakage detection sensing device using thermoelectric elements
JP7014885B2 (en) Manufacturing method of thermoelectric conversion element, distributed temperature sensor and thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees