JP5134460B2 - Inspection method for welded portion of can body - Google Patents

Inspection method for welded portion of can body Download PDF

Info

Publication number
JP5134460B2
JP5134460B2 JP2008181589A JP2008181589A JP5134460B2 JP 5134460 B2 JP5134460 B2 JP 5134460B2 JP 2008181589 A JP2008181589 A JP 2008181589A JP 2008181589 A JP2008181589 A JP 2008181589A JP 5134460 B2 JP5134460 B2 JP 5134460B2
Authority
JP
Japan
Prior art keywords
temperature
welded portion
welded
longitudinal direction
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008181589A
Other languages
Japanese (ja)
Other versions
JP2010019738A (en
Inventor
智樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAICAN CO.,LTD.
Original Assignee
HOKKAICAN CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAICAN CO.,LTD. filed Critical HOKKAICAN CO.,LTD.
Priority to JP2008181589A priority Critical patent/JP5134460B2/en
Publication of JP2010019738A publication Critical patent/JP2010019738A/en
Application granted granted Critical
Publication of JP5134460B2 publication Critical patent/JP5134460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、缶胴の溶接部の良否を検査する缶胴溶接部の検査方法に関する。   The present invention relates to a method for inspecting a can body welded portion that inspects the quality of a welded portion of a can body.

一般に、3ピース缶と言われる飲料等を内容物とする缶体は、円筒状の缶胴の両端開口に缶蓋を巻き締めることにより製造される。この缶体に用いられる缶胴は、矩形状の缶胴ブランクを円筒状としてその両端を重合させ、この重合部分を溶接することによって形成される。   In general, a can body containing a beverage or the like called a three-piece can is manufactured by winding a can lid around both ends of a cylindrical can body. The can body used for the can body is formed by forming a rectangular can body blank into a cylindrical shape, polymerizing both ends thereof, and welding the overlapped portions.

缶胴の溶接に際しては、前記重合部分を一対の電極ロールで挟み込み、両電極ロールによる電気抵抗溶接を行いつつ両電極ロールの回転により缶胴をその軸線方向に送り出す。そして缶胴には、その全長にわたって前記重合部分の重合幅に相当する幅寸法の溶接部が形成される。なお、飲料等を内容物とする缶体に採用される缶胴の多くは溶接幅が0.5mmとされている。   When welding the can body, the overlapped portion is sandwiched between a pair of electrode rolls, and the can body is fed in the axial direction by rotating both electrode rolls while performing electric resistance welding with both electrode rolls. And the welding part of the width dimension corresponded to the superposition | polymerization width | variety of the said superposition | polymerization part is formed in the can body over the full length. Note that many of the can bodies employed in cans containing beverages or the like have a welding width of 0.5 mm.

また、両電極ロール間に複数の缶胴を連続して投入することにより複数の缶胴の溶接が連続して行われる。このとき、隣接する缶胴の間には、缶胴同士が接触しないように間隔が設けられる。この間隔は、両電極ロール同士の接触を避け、両電極ロール間に過大な短絡電流が流れることのないように、適度に小さく設定されている。そして、両電極ロールの回転速度を増加させることにより溶接作業を高速化することができ、短時間で多くの缶胴を製造することができるようになっている。   Moreover, welding a plurality of can bodies is continuously performed by continuously putting a plurality of can bodies between both electrode rolls. At this time, an interval is provided between adjacent can bodies so that the can bodies do not contact each other. This interval is set to be appropriately small so as to avoid contact between both electrode rolls and prevent an excessive short-circuit current from flowing between both electrode rolls. And by increasing the rotational speed of both electrode rolls, welding work can be speeded up and many can bodies can be manufactured in a short time.

ところで、缶胴の溶接部は、缶胴ブランクの角折れ、重合部分への塵埃(塗料かす、金属小片等)の噛み込み、重合部分の食い違い、或いは、重合部分に切欠き等が生じていると溶接不良となり、缶蓋の巻締不良や内容物の漏洩を招くおそれがある。そこで、缶胴の溶接部の良否を検査し、溶接部が不良とされた缶胴を排除することが必要となる。   By the way, in the welded portion of the can body, the can body blank is bent, dust (paint debris, metal pieces, etc.) is bitten into the overlapped portion, the overlapped portion of the overlapped portion, or the cutout is generated in the overlapped portion. There is a risk of poor welding, leading to poor winding of the can lid and leakage of contents. Therefore, it is necessary to inspect the quality of the welded portion of the can body and to eliminate the can body in which the welded portion is defective.

従来、缶胴の溶接部の良否を検査する方法として、電極ロールによる缶胴の送出側近傍に設けた赤外線温度センサ等の放射温度センサにより、溶接部の温度変化を測定し、この測定値が基準となる温度変化に基づく上下限値(許容範囲)内にあるか否かにより溶接部の良否を判定するものが知られている(例えば、特許文献1参照)。   Conventionally, as a method for inspecting the quality of the welded portion of the can body, the temperature change of the welded portion is measured by a radiation temperature sensor such as an infrared temperature sensor provided in the vicinity of the delivery side of the can body by the electrode roll. There is known a technique for determining the quality of a welded part based on whether it is within upper and lower limit values (allowable range) based on a reference temperature change (for example, see Patent Document 1).

溶接部が不良であるときには、溶接直後の溶接部の温度に極度な温度変化が生じる。従って、予め正常な温度変化を基準として上下限値を定め、測定された温度が上下限値内にあるとき良とし、それ以外を不良とすることで、溶接部の良否を判定することができる。   When the weld is defective, an extreme temperature change occurs in the temperature of the weld immediately after welding. Therefore, it is possible to determine the quality of the welded portion by predetermining the upper and lower limit values based on normal temperature changes, and setting the measured temperature within the upper and lower limit values as good and setting the others as defective. .

しかし、溶接直後の溶接部の温度変化は、缶胴の長手方向中央部において比較的安定(温度の高低差が少ない)しているが、溶接部の長手方向の端部(缶胴の開口端縁に位置する部分)は、缶胴の中央部に比べて温度が大きく変化する。即ち、溶接部の端部においては缶胴の中央部に比べて熱の拡散が円滑に行われないために、溶接部の端部では温度の急激な上昇が生じる。このため、溶接部の中央部(端部を除く部分)においては、基準とする温度変化に基づく上限値と下限値とを、溶接部の中央部の比較的長い距離にわたって略一定温度で連続するように設定することができて、溶接不良に伴う温度変化を容易に検出することができるが、溶接部の端部においては、急激に上下する温度変化を基準として設定なければならないために上限値及び下限値の変化が極めて大きく、変化の大きな上下限値から溶接不良を判定することは困難である。   However, the temperature change of the welded part immediately after welding is relatively stable (the difference in temperature is small) at the longitudinal center of the can body, but the longitudinal end of the welded part (open end of the can body) The temperature of the portion located at the edge changes greatly compared to the central portion of the can body. That is, since heat is not diffused smoothly at the end of the welded portion as compared with the central portion of the can body, a rapid rise in temperature occurs at the end of the welded portion. For this reason, in the center part (part except an edge part) of a welding part, the upper limit and lower limit based on the temperature change made into a reference are continued at substantially constant temperature over the comparatively long distance of the center part of a welding part. The temperature change due to poor welding can be easily detected, but at the end of the welded part, it must be set with reference to the temperature change that suddenly goes up and down. And the change of a lower limit is very large, and it is difficult to determine a welding defect from the upper and lower limits of a big change.

そこで、溶接部の端部における急激な温度変化に対応させるため、測定した温度変化のピーク値を溶接部の端縁とみなして、ピーク値を基準となる温度変化を示す波形の始端(検査開始点)に合致させるように補正することが提案されている(特許文献2参照)。或いは、溶接部の端部から測定した温度変化を示す波形が、基準となる温度変化を示す波形の上下限値から外れたとき、両波形を相対的に移動させて再度判定を行うことが提案されている(特許文献3参照)。   Therefore, in order to cope with a sudden temperature change at the end of the weld, the peak value of the measured temperature change is regarded as the edge of the weld, and the peak of the waveform indicating the temperature change as a reference (start of inspection) It has been proposed to make correction so as to match (point) (see Patent Document 2). Alternatively, when the waveform indicating the temperature change measured from the end of the welded part deviates from the upper and lower limits of the waveform indicating the reference temperature change, it is proposed that the two waveforms are moved relatively and the determination is performed again. (See Patent Document 3).

しかし、これらの方法は、何れも、溶接部から測定した温度変化や基準となる温度変化に対して測定後に補正処理を行うものであり、この処理時間が遅れとなって高速化が望めない。しかも、溶接部の端部において基準とする温度変化を示す波形が急激に上下する傾斜により構成されており、ピーク値の前後の上昇傾斜と下降傾斜との間隔も極めて狭い。このため、溶接部の端部に設定される上下限値は、缶胴の中央部に位置する溶接部に設定された上下限値と同等の精度を有する値に設定することが困難であり、依然として溶接部の端部の良否を高精度に判定するまでには至っていないために、溶接部の端部に対する良否の誤判定が生じていた。
特許第2568432号公報 特許第3978990号公報 特開2007−118034号公報
However, all of these methods perform correction processing after measurement with respect to the temperature change measured from the welded portion or the reference temperature change, and this processing time is delayed, and high speed cannot be expected. Moreover, the waveform indicating the reference temperature change at the end of the welded portion is composed of a steeply rising and falling slope, and the interval between the rising and falling slopes before and after the peak value is extremely narrow. For this reason, it is difficult to set the upper and lower limit values set at the end of the welded portion to values having the same accuracy as the upper and lower limit values set at the welded portion located in the center portion of the can body, Since the quality of the end of the welded portion has not yet been determined with high accuracy, an erroneous determination of the quality of the end of the welded portion has occurred.
Japanese Patent No. 2568432 Japanese Patent No. 3978990 Japanese Patent Laid-Open No. 2007-118034

本発明は、上記の点に鑑み、溶接部の長手方向端部の良否を精度良く且つ高速に検査することができる缶胴溶接部の検査方法を提供することを課題とする。   This invention makes it a subject to provide the inspection method of the can body welding part which can test | inspect the quality of the longitudinal direction edge part of a welding part accurately and at high speed in view of said point.

上記課題を解決するために、本発明は、筒状の缶胴の軸線方向に沿って形成された所定幅の溶接部を、溶接直後の温度に基づいて検査する缶胴溶接部の検査方法において、溶接部の長手方向に沿った温度変化に対応する基準波形を生成する波形生成工程と、該波形生成工程によって生成された基準波形に基づいて、溶接部の長手方向に沿って複数の判定領域を設定する判定領域設定工程と、該判定領域設定工程により設定された判定領域において上限値と下限値とからなる許容範囲を設定する許容範囲設定工程と、溶接部の温度を該溶接部の長手方向に沿って測定する温度測定工程と、該温度測定工程により測定された温度が前記判定領域において許容範囲内にあるとき良と判定し、許容範囲外にあるとき不良と判定する良否判定工程とを備え、前記波形生成工程は、溶接部の長手方向の端縁から所定寸法内の基準波形として、該溶接部の長手方向の端縁を起点として上昇する温度変化を示す上昇変化部と、該上昇変化部に連続し該上昇変化部より小さい温度変化を示す温度安定部と、該温度安定部に連続し該温度安定部から大きく下降する温度変化を示す下降変化部とを含む波形を生成し、前記判定領域設定工程は、溶接部の長手方向の端縁から前記所定寸法内における判定領域を前記温度安定部に対応する位置に設定し、前記温度測定工程は、溶接部の幅寸法よりも長い長辺が溶接部の長手方向に直行する長方形状の計測視野を有するレンズ部を具備して溶接部の一部の放射温度を計測する放射温度センサを用い、該放射温度センサのレンズ部に対する溶接部の長手方向への移動により該溶接部の全長にわたる温度を測定することを特徴とする。 In order to solve the above-described problems, the present invention provides a method for inspecting a can body welded portion in which a weld portion having a predetermined width formed along the axial direction of a cylindrical can body is inspected based on a temperature immediately after welding. A waveform generating step for generating a reference waveform corresponding to a temperature change along the longitudinal direction of the welded portion, and a plurality of determination regions along the longitudinal direction of the welded portion based on the reference waveform generated by the waveform generating step A determination region setting step for setting a tolerance, a tolerance range setting step for setting an allowable range consisting of an upper limit value and a lower limit value in the determination region set by the determination region setting step, and the temperature of the welded portion in the longitudinal direction of the welded portion. A temperature measurement step for measuring along the direction, and a pass / fail determination step for determining that the temperature measured by the temperature measurement step is acceptable when the temperature is within the allowable range in the determination region, and determining that the temperature is defective when the temperature is outside the allowable range; Be equipped The waveform generating step includes, as a reference waveform within a predetermined dimension from a longitudinal edge of the welded portion, an ascending change portion that indicates a temperature change that rises from the longitudinal edge of the welded portion, and the ascending change Generating a waveform including a temperature stabilizing portion that is continuous with the temperature change portion and exhibits a temperature change smaller than the rising change portion, and a falling change portion that is continuous with the temperature stabilization portion and indicates a temperature change that greatly decreases from the temperature stabilization portion, The determination region setting step sets a determination region within the predetermined dimension from the edge in the longitudinal direction of the welded portion at a position corresponding to the temperature stabilizing portion, and the temperature measurement step is longer than the width dimension of the welded portion. A radiation part having a rectangular measurement field whose side is perpendicular to the longitudinal direction of the welded part and measuring a radiation temperature of a part of the welded part, and a welded part to the lens part of the radiation temperature sensor In the longitudinal direction By and measuring the temperature over the entire length of the weld.

本発明者は、正常に溶接された多数の缶胴及び溶接不良となった多数の缶胴に対して、溶接直後の溶接部の温度を長手方向(缶胴の軸線方向)に沿って所定間隔毎に測定すると共に各種試験により溶接部の長手方向に沿った温度変化についての詳細なデータを採取した。この結果、前記溶接部の長手方向の端部(溶接部の長手方向の端縁から所定寸法内の部分)における溶接直後の温度は、正常に溶接されている場合に、その他の溶接部の温度に比べて高くなるだけでなく、その高温部分においては、最高温度(ピーク値)を含む前後の略一定の領域(溶接部の長手方向端部の一部領域)に温度変化が小さくなって安定する部分が存在することを知見した。更に発明者は、前記溶接部の長手方向の端部に溶接不良が生じている場合に、高温で安定する部分に対応する領域に影響を与えることを知見した。この知見に基づけば、溶接部の長手方向に沿って溶接直後の温度を測定したとき、正常に溶接された溶接部の端部における溶接直後の温度変化は、缶胴の開口端縁から急激に上昇して高温状態で安定し、その後溶接部の中央部に向かって下降する。そして更に、上昇部分と下降部分とを含む溶接部端部の変化領域に溶接不良が生じていると、高温状態での安定が得られないものとなる。   The present inventor determines the temperature of the welded part immediately after welding with respect to a large number of can bodies that are normally welded and a large number of can bodies that are poorly welded along the longitudinal direction (axial direction of the can body) at predetermined intervals. Detailed data on the temperature change along the longitudinal direction of the weld was collected by various tests and various tests. As a result, the temperature immediately after welding at the end portion in the longitudinal direction of the welded portion (the portion within the predetermined dimension from the end edge in the longitudinal direction of the welded portion) In addition to becoming higher, the temperature change is small and stable at the high-temperature part in a substantially constant region before and after the maximum temperature (peak value) (partial region at the longitudinal end of the weld). I found out that there is a part to do. Furthermore, the inventor has found that when a welding failure occurs at the end portion in the longitudinal direction of the welded portion, the region corresponding to the portion that is stable at high temperature is affected. Based on this knowledge, when the temperature immediately after welding is measured along the longitudinal direction of the welded portion, the temperature change immediately after welding at the end of the welded portion that has been normally welded suddenly starts from the opening edge of the can body. It rises and stabilizes at a high temperature, and then descends toward the center of the weld. Furthermore, if a welding failure occurs in the change region of the weld end including the rising portion and the falling portion, stability at a high temperature state cannot be obtained.

そこで、本発明においては、波形生成工程により基準波形を生成するとき、先ず、溶接部の長手方向の端縁から所定寸法内の基準波形を、前述した発明者の知見による温度変化に基づいて生成する。即ち、当該基準波形を、前記上昇変化部と、前記温度安定部と、前記下降変化部とを含むように生成する。   Therefore, in the present invention, when the reference waveform is generated by the waveform generation step, first, the reference waveform within a predetermined dimension is generated from the longitudinal edge of the welded portion based on the temperature change based on the knowledge of the inventor described above. To do. That is, the reference waveform is generated so as to include the rising change portion, the temperature stabilizing portion, and the falling change portion.

次いで、判定領域設定工程により溶接部の長手方向に沿って複数の判定領域を設定するとき、溶接部の長手方向の端縁から所定寸法内における判定領域については、前記基準波形における温度安定部に対応する位置に設定する。温度安定部は溶接部の端部において高温で安定する部分であり、この位置(溶接部の長手方向端部の一部の寸法範囲)に判定領域の一つを設定することにより、許容範囲設定工程により設定する許容範囲の上限値と下限値とは、当該判定領域の全長にわたり傾斜が無いか或いは傾斜の極めて少ない直線として設定することができる。   Next, when a plurality of determination regions are set along the longitudinal direction of the welded portion by the determination region setting step, the determination region within the predetermined dimension from the edge in the longitudinal direction of the welded portion is set to the temperature stable portion in the reference waveform. Set to the corresponding position. The temperature stabilization part is the part that stabilizes at the high temperature at the end of the welded part, and by setting one of the judgment areas at this position (partial dimension range at the end of the welded part in the longitudinal direction), the allowable range is set The upper limit value and the lower limit value of the allowable range set by the process can be set as a straight line with no inclination or very little inclination over the entire length of the determination region.

そして、温度測定工程により検査対象となる缶胴の溶接部の温度を該溶接部の長手方向に沿って測定し、測定された温度から、良否判定工程により良否の判定を行う。このとき、溶接部の長手方向の端縁から所定寸法内における判定領域においては、前記基準波形の温度安定部に基づく許容範囲が、略一定の上限値と下限値とにより設定されている。これにより、検査対象となる缶胴の溶接部の端部(長手方向の端縁から所定寸法内)に溶接不良による温度変化が生じれていれば、本来高温で安定する部分に乱れが生じて許容範囲から外れ、確実に溶接不良と判定できる。   Then, the temperature of the welded portion of the can body to be inspected in the temperature measurement step is measured along the longitudinal direction of the welded portion, and the quality is determined from the measured temperature in the quality determination step. At this time, in a determination region within a predetermined dimension from the edge in the longitudinal direction of the welded portion, an allowable range based on the temperature stable portion of the reference waveform is set by a substantially constant upper limit value and lower limit value. As a result, if a temperature change due to poor welding occurs at the end of the welded portion of the can body to be inspected (within a predetermined dimension from the edge in the longitudinal direction), the originally stable portion is disturbed. It is out of the allowable range and can be reliably determined as a welding defect.

このように、本発明によれば、溶接部の長手方向端部の良否を精度良く検査することができるだけでなく、検査対象となる缶胴の溶接部の温度を測定した後に測定温度や基準波形を補正することも不要なので、溶接部の長手方向端部の良否を高速に検査することができる。   Thus, according to the present invention, it is possible not only to accurately inspect the longitudinal end of the welded portion, but also to measure the temperature and reference waveform after measuring the temperature of the welded portion of the can body to be inspected. Therefore, it is possible to inspect the quality of the end of the welded portion in the longitudinal direction at high speed.

また、前記波形生成工程においては、予め正常に溶接された多数の缶胴から測定された溶接部の長手方向に沿った温度変化に基づいて前記基準波形を生成することで、当該基準波形に対する上下限値の精度を向上させることができる。   Further, in the waveform generation step, the reference waveform is generated based on a temperature change along the longitudinal direction of the welded portion measured from a number of can bodies that have been normally welded in advance. The accuracy of the lower limit value can be improved.

また、本発明の前記温度測定工程においては、缶胴に非接触状態で溶接部の温度を測定するために、放射温度センサを用いる。そして、放射温度センサを用いることにより、移動する缶胴の溶接部に対して溶接部の長手方向に沿ってその全長にわたる温度を測定できる。
Further, in the above temperature measuring step of the present invention, in order to measure the temperature of the weld in a non-contact state can body, are use a radiation temperature sensor. By using the radiation temperature sensor, Ru can measure temperature over its entire length in the longitudinal direction of the welded portion with respect to the welded portion of the moving can bodies.

ところで、放射温度センサは赤外線放射等を捕らえるレンズ部を缶胴の溶接部に向けることで溶接部の温度を計測するが、レンズ部の計測視野は円形とされているのが一般的である。そして、レンズ部の計測視野が円形の場合、移動する缶胴の溶接部を視野内に確実に収めるために、溶接部の幅寸法より大きな直径の計測視野を有している。即ち、缶胴が周方向(缶胴の軸線回り)に位置ずれしたときであっても、溶接部を視野内に確実に収めるために、溶接部の幅寸法より大きな計測視野が必要となる。   By the way, the radiation temperature sensor measures the temperature of the welded portion by directing the lens portion that captures infrared radiation or the like toward the welded portion of the can body, but the measurement field of the lens portion is generally circular. And when the measurement visual field of a lens part is circular, it has a measurement visual field of a diameter larger than the width dimension of a welding part, in order to settle the welding part of the can body which moves in the visual field reliably. That is, even when the can body is displaced in the circumferential direction (around the axis of the can body), a measurement visual field larger than the width dimension of the welded portion is required in order to securely fit the welded portion within the visual field.

しかし、レンズ部の計測視野が円形の場合、その直径を大きくすると、溶接部の長手方向に対しても視野が広くなり、小さな部位の温度異常を捕らえることが困難になる。また、缶胴が周方向に位置ずれすると、レンズ部の計測視野内を占める溶接部の面積が変動するため温度計測精度が低下する。   However, when the measurement visual field of the lens part is circular, if the diameter is increased, the visual field is widened in the longitudinal direction of the welded part, and it becomes difficult to capture temperature abnormality in a small part. Further, when the can body is displaced in the circumferential direction, the temperature measurement accuracy is lowered because the area of the welded portion that occupies the measurement field of the lens portion varies.

特に、溶接部の長手方向の始端(端縁)がレンズ部の計測視野に侵入するときには、缶胴の移動により溶接部が計測視野の直径を覆うことで溶接部の端部に対する温度計測が可能になるが、計測視野の直径を覆うまでに時間がかかり、溶接部の端部からの正確な温度計測が困難となる。   In particular, when the starting end (edge) in the longitudinal direction of the welded part enters the measurement field of the lens part, the temperature of the end of the welded part can be measured by covering the diameter of the measurement field by moving the can body However, it takes time to cover the diameter of the measurement visual field, and accurate temperature measurement from the end of the weld becomes difficult.

そこで、本発明の前記温度測定工程においては、溶接部の幅寸法よりも長い長辺が溶接部の長手方向に直行する長方形状の計測視野を有するレンズ部を具備して溶接部の一部の放射温度を計測する放射温度センサを用い、該放射温度センサのレンズ部に対する溶接部の長手方向への移動により該溶接部の全長にわたる温度を測定する。 Therefore, in the above temperature measurement step, a portion of the rectangular weld comprises a lens unit having a measuring field of view long long side perpendicular to the longitudinal direction of the welded portion than the width of the welded portion of the present invention The temperature over the entire length of the welded portion is measured by moving the welded portion in the longitudinal direction of the welded portion with respect to the lens portion of the radiation temperature sensor .

こうすることにより、溶接部の長手方向に対してのみ計測視野が狭くなり、小さな部位の温度異常を捕らえることが可能となる。また、溶接部の幅方向に対する計測視野が広いので、移動中の缶胴が周方向に位置ずれしても溶接部が計測視野から外れ難い。更に、計測視野が長方形状であることにより、移動中の缶胴が周方向に位置ずれしても計測視野内に占める溶接部の面積の変動も抑えることができる。   By doing so, the measurement field of view is narrowed only in the longitudinal direction of the welded portion, and it becomes possible to capture temperature abnormalities in small parts. Moreover, since the measurement visual field with respect to the width direction of the welded portion is wide, even if the moving can body is displaced in the circumferential direction, it is difficult for the welded portion to come off the measurement visual field. Furthermore, since the measurement visual field is rectangular, even if the moving can body is displaced in the circumferential direction, fluctuations in the area of the welded portion in the measurement visual field can be suppressed.

本発明の一実施形態を図面に基づいて説明する。図1は本実施形態の検査方法に用いる装置の概要構成を示す説明図、図2は本実施形態において採用する放射温度センサの要部を示す説明的斜視図、図3は放射温度センサの計測視野を示す説明図、図4は本実施形態における計測視野と従来の計測視野とを対比するための説明図、図5は検査制御装置の機能的構成を示すブロック図、図6は溶接部に対する検査領域を示す説明図、図7は溶接部の全長にわたる良否判定時の基準波形と判定領域を示す図、図8は溶接部の端部の基準波形及び判定領域を示す図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of an apparatus used in the inspection method of the present embodiment, FIG. 2 is an explanatory perspective view showing a main part of a radiation temperature sensor employed in the present embodiment, and FIG. 3 is a measurement of the radiation temperature sensor. FIG. 4 is an explanatory diagram for comparing the measurement visual field in the present embodiment with the conventional measurement visual field, FIG. 5 is a block diagram showing the functional configuration of the inspection control device, and FIG. 6 is for the welded portion. FIG. 7 is a diagram illustrating a reference waveform and a determination region at the time of quality determination over the entire length of the welded portion, and FIG. 8 is a diagram illustrating a reference waveform and a determination region at the end of the welded portion.

図1において、1は缶胴、2は赤外線温度センサ等の放射温度センサ、3は検査制御装置を示している。缶胴1は、一対の電極ロール(外部電極ロール4、内部電極ロール5)を備える溶接機Yにより溶接が行われる。溶接機Yは、両電極ロール4,5により缶胴1をその軸線方向に送りながら溶接を行う。即ち、缶胴1は、電極ロール4,5の上流側において、矩形状の缶胴ブランクから円筒状にプレ加工されることにより端部同士が未溶接状態で重合されており、図示しないコンベアにより搬送されて、重合部分が両電極ロール4,5間に投入される。両電極ロール4,5間に挟まれた缶胴1の重合部は、両電極ロール4,5により電気抵抗溶接が施されると共に、両電極ロール4,5の回転によって缶胴1が下流に送り出される。そして、缶胴1には、両電極ロール4,5により溶接された溶接部6が缶胴1の軸線方向全長にわたって所定幅(約0.5mm幅)に形成される。また、缶胴1は、図示するように複数連続して両電極ロール4,5に投入されるが、各缶胴1の間で両電極ロール4,5が接触して過大な短絡電流が発生しないように、軸線方向に所定間隔(0.7mm〜1.0mm)を存して両電極ロール4,5間に投入される。   In FIG. 1, 1 is a can body, 2 is a radiation temperature sensor such as an infrared temperature sensor, and 3 is an inspection control device. The can body 1 is welded by a welding machine Y including a pair of electrode rolls (an external electrode roll 4 and an internal electrode roll 5). The welding machine Y performs welding while feeding the can body 1 in the axial direction by both electrode rolls 4 and 5. That is, the can body 1 is pre-processed into a cylindrical shape from a rectangular can body blank on the upstream side of the electrode rolls 4 and 5, and ends thereof are polymerized in an unwelded state by a conveyor (not shown). It is conveyed and a superposition | polymerization part is thrown in between both electrode rolls 4 and 5. FIG. The overlapping portion of the can body 1 sandwiched between both electrode rolls 4 and 5 is subjected to electric resistance welding by the both electrode rolls 4 and 5, and the can body 1 is moved downstream by the rotation of the both electrode rolls 4 and 5. Sent out. And the welding part 6 welded by the both electrode rolls 4 and 5 is formed in the can body 1 by predetermined width (about 0.5 mm width) over the axial direction full length of the can body 1. Further, as shown in the figure, a plurality of can bodies 1 are continuously inserted into both electrode rolls 4 and 5, but both electrode rolls 4 and 5 are brought into contact with each other to generate an excessive short circuit current. In order to prevent this, it is inserted between the electrode rolls 4 and 5 at a predetermined interval (0.7 mm to 1.0 mm) in the axial direction.

前記放射温度センサ2は、レンズ部7を備え、該レンズ部7は外部電極ロール4の下流近傍に位置決めされている。これにより、放射温度センサ2は両電極ロール4,5により形成された溶接部6の温度を、その溶接直後に計測する。レンズ部7は、内蔵された対物レンズの前面に、図2に示すように、長方形状の受光窓8aが形成されたマスク8が取り付けられている。これにより、レンズ部7は、図3に示すように、溶接部6の幅方向に長い長方形状の計測視野9を有して、該計測視野9の温度を計測する。該計測視野9は、その長辺が溶接部6の幅寸法より長く設定されている。そして、両電極ロール4,5により缶胴1が下流に送り出されている際に、放射温度センサ2がレンズ部7の前記計測視野9による温度計測を行うことにより、缶胴1の軸線方向に沿った溶接部6の長手方向の全長に沿って温度測定が行われる。   The radiation temperature sensor 2 includes a lens unit 7, and the lens unit 7 is positioned near the downstream of the external electrode roll 4. Thereby, the radiation temperature sensor 2 measures the temperature of the welding part 6 formed by both the electrode rolls 4 and 5 immediately after the welding. As shown in FIG. 2, a mask 8 having a rectangular light receiving window 8a is attached to the lens unit 7 on the front surface of a built-in objective lens. Thereby, as shown in FIG. 3, the lens unit 7 has a rectangular measurement visual field 9 that is long in the width direction of the welded part 6, and measures the temperature of the measurement visual field 9. The measurement visual field 9 is set so that its long side is longer than the width dimension of the welded portion 6. Then, when the can body 1 is being sent out downstream by the two electrode rolls 4, 5, the radiation temperature sensor 2 performs temperature measurement in the measurement field of view 9 of the lens unit 7, so that the axial direction of the can body 1 is increased. A temperature measurement is performed along the entire length of the welded portion 6 along the longitudinal direction.

ここで、本実施形態のレンズ部7の計測視野9が有利である点を、比較例として挙げる従来のレンズ部の計測視野9´と対比して説明する。図4に示すように、比較例として挙げた計測視野9´は円形とされており、その直径は、本実施形態の長方形状の計測視野9の長辺と同じとされている。図4において、第1段階では、夫々の測定視野9,9´に溶接部6の始端が到達し、第2段階で溶接部6が測定視野9,9´内に侵入する。そして、第3段階で、溶接部6の始端が夫々の測定視野9,9´の終端に到達する。第1段階〜第3段階の夫々の測定視野9,9´内に占める溶接部6を比較して明らかなように、溶接部6の送り速度(缶胴1の送り速度)が同一であるとき、溶接部6が測定視野9,9´を覆う時間は、本実施形態の長方形状の計測視野9が従来の計測視野9´のように円形である場合よりも短い。   Here, the point that the measurement visual field 9 of the lens unit 7 of the present embodiment is advantageous will be described in comparison with the measurement visual field 9 'of the conventional lens unit given as a comparative example. As shown in FIG. 4, the measurement visual field 9 ′ mentioned as a comparative example is circular, and the diameter thereof is the same as the long side of the rectangular measurement visual field 9 of the present embodiment. In FIG. 4, at the first stage, the starting ends of the welds 6 reach the respective measurement visual fields 9, 9 ′, and at the second stage, the welds 6 penetrate into the measurement visual fields 9, 9 ′. Then, in the third stage, the starting end of the welded portion 6 reaches the end of each of the measurement visual fields 9, 9 '. When the welding speed 6 (feed speed of the can body 1) is the same, as is apparent from the comparison of the welds 6 that occupy the respective measurement visual fields 9, 9 'in the first to third stages. The time during which the welded portion 6 covers the measurement visual fields 9, 9 'is shorter than the case where the rectangular measurement visual field 9 of the present embodiment is circular like the conventional measurement visual field 9'.

このように、レンズ部7の計測視野9を長方形状としたことにより、溶接部6の長手方向に対してのみ計測視野9が狭くなり、小さな部位の温度異常を捕らえることが可能となる。なお、以上は溶接部6の始端について述べたが、溶接部6の終端においても同様であることは言うまでもない。   Thus, by making the measurement visual field 9 of the lens unit 7 rectangular, the measurement visual field 9 is narrowed only in the longitudinal direction of the welded part 6, and it becomes possible to catch a temperature abnormality in a small part. The start end of the welded portion 6 has been described above, but it goes without saying that the same applies to the end of the welded portion 6.

更に、図4に示すように、溶接部6に対して測定視野9,9´に位置ズレが生じた場合には、円形の測定視野9´では溶接部の面積が変動するため温度計測精度が低下するが、計測視野9を長方形状とすることにより、溶接部の幅方向に対する計測視野が広く、溶接部の面積の変動も抑えることができて計測精度が向上する。   Furthermore, as shown in FIG. 4, when the measurement visual field 9, 9 ′ is misaligned with respect to the welded portion 6, the area of the welded portion varies in the circular measurement visual field 9 ′. However, by making the measurement visual field 9 rectangular, the measurement visual field in the width direction of the welded portion is wide, and fluctuations in the area of the welded portion can be suppressed, thereby improving measurement accuracy.

また、図1に示すように、放射温度センサ2は、前述のレンズ部7と、ファイバー10と、該ファイバー10を介してレンズ部7に接続された温度電圧変換器11とを備えている。温度電圧変換器11はレンズ部7から入射した赤外線エネルギーを電圧に変換して検査制御装置3に出力する。   As shown in FIG. 1, the radiation temperature sensor 2 includes the lens unit 7 described above, a fiber 10, and a temperature-voltage converter 11 connected to the lens unit 7 via the fiber 10. The temperature-voltage converter 11 converts the infrared energy incident from the lens unit 7 into a voltage and outputs the voltage to the inspection control device 3.

該検査制御装置3には、溶接機Y本体に設けられた基準パルス発生器12が接続されている。基準パルス発生器12は、溶接時の缶胴1の送りタイミングに応じて1個の缶胴1に対して1つの基準パルスを発生する。溶接時には缶胴1が連続して等間隔で送られることにより、各缶胴1毎に等時間間隔の基準パルスが得られる。更に、検査制御装置3には、後述する基準波形等を表示すると共に各種の設定操作を行う操作パネルとして機能するディスプレイ装置13や、溶接不良の缶胴1を正常な缶胴1から振り分け排出する排出手段14が接続されている。   A reference pulse generator 12 provided in the welding machine Y main body is connected to the inspection control device 3. The reference pulse generator 12 generates one reference pulse for one can body 1 in accordance with the feed timing of the can body 1 during welding. At the time of welding, the can body 1 is continuously sent at equal intervals, so that reference pulses at equal time intervals can be obtained for each can body 1. Further, the inspection control device 3 displays a reference waveform and the like which will be described later and functions as an operation panel for performing various setting operations, and sorts and discharges the poorly welded can body 1 from the normal can body 1. The discharge means 14 is connected.

検査制御装置3は、マイクロコンピュータにより構成されており、本発明の検査方法を実現するための機能を備えている。即ち、検査制御装置3は、本発明の検査方法に係る機能的構成として、図5に示すように、基準波形生成部15、判定領域設定部16、許容範囲設定部17、良否判定部18、及び記憶部19を備えている。該記憶部19には、後述の基準波形及び設定値が記憶される。   The inspection control device 3 is constituted by a microcomputer and has a function for realizing the inspection method of the present invention. That is, as shown in FIG. 5, the inspection control device 3 includes a reference waveform generation unit 15, a determination region setting unit 16, an allowable range setting unit 17, a pass / fail determination unit 18 as a functional configuration related to the inspection method of the present invention. And a storage unit 19. The storage unit 19 stores a reference waveform and a set value, which will be described later.

以上の構成による本実施装置を用い缶胴1を検査するときには、予め、正常に溶接された多数の缶胴1の溶接部6の温度を採取しておくと共に、溶接不良である多数の缶胴1の溶接部6の温度を採取しておく。正常に溶接された溶接部6から採取した温度は後述の基準波形を形成する際に用い、溶接不良の溶接部6から採取した温度は後述の許容範囲の上下限値に用いる。更に、基準パルス発生器12から基準パルスが発生した時点から、溶接部6の長手方向の始端が放射温度センサ2のレンズ部7の計測視野9に到達するまでの時間(後述の遅れ時間t)を、正常に溶接された多数の缶胴1から採取しておく。   When the can body 1 is inspected using the present embodiment having the above-described configuration, the temperatures of the welded portions 6 of a number of can bodies 1 that have been normally welded are collected in advance and a number of can bodies that are poorly welded are collected. The temperature of 1 welded part 6 is sampled. The temperature sampled from the welded part 6 that has been normally welded is used to form a reference waveform described later, and the temperature sampled from the welded part 6 with poor welding is used as the upper and lower limit values of the allowable range described later. Further, the time from when the reference pulse is generated from the reference pulse generator 12 until the start edge in the longitudinal direction of the welded portion 6 reaches the measurement visual field 9 of the lens portion 7 of the radiation temperature sensor 2 (delay time t described later). Are collected from a number of can bodies 1 that are normally welded.

そして、図6に示すように、溶接部6を3つの区域L,M,Nに分け、正常な溶接部6の温度変化を採取する。なお、以下の説明においては、溶接部6のうち図1示の缶胴1の送り出し方向先端側を溶接部6の先端部区域Lとし、その反対側を溶接部6の後端部区域Nとし、更に、先端部区域Lと後端部区域Nとの間を中央部区域Mとする。溶接部6の長手方向の端縁は、先端部区域Lと後端部区域Nとに存在する。ここで、正常な溶接部6から採取した温度変化によれば、溶接部6の両端5mmの範囲に高温となる部分が存在することにより、先端部区域Lと後端部区域Nとを夫々5mmに設定する。   And as shown in FIG. 6, the welding part 6 is divided into three areas L, M, and N, and the temperature change of the normal welding part 6 is extract | collected. In the following description, the front end side of the welding body 6 in the feed direction of the can body 1 shown in FIG. 1 is defined as the front end area L of the weld 6 and the opposite side is defined as the rear end area N of the weld 6. Further, a center section M is defined between the front end section L and the rear end section N. The longitudinal edge of the welded portion 6 exists in the front end section L and the rear end section N. Here, according to the temperature change taken from the normal welded portion 6, the tip portion L and the rear end region N are each 5 mm because there are high temperature portions in the range of 5 mm at both ends of the welded portion 6. Set to.

また、溶接部6の長手方向の始端は、次のようにして検出する。前述の通り、基準パルス発生器12は、溶接時の缶胴1の送りタイミングに応じて1個の缶胴1に対して1つの基準パルスを発生する。基準パルスは、溶接機Yの両電極ロール4,5間から送り出された溶接部6の始端が放射温度センサ2のレンズ部7による温度計測位置に到達するより早い時期に発生する。そこで、基準パルス発生時から溶接部6の始端が温度計測位置に到達するまでの時間を、図7に示すように、一定の遅れ時間tとして設定する。これにより、基準パルス発生時から遅れ時間tが経過した時にレンズ部7が計測した温度が溶接部6の長手方向の始端の温度となる。   Further, the starting end in the longitudinal direction of the welded portion 6 is detected as follows. As described above, the reference pulse generator 12 generates one reference pulse for one can body 1 in accordance with the feed timing of the can body 1 during welding. The reference pulse is generated at an earlier time when the starting end of the welded portion 6 sent out between the electrode rolls 4 and 5 of the welding machine Y reaches the temperature measurement position by the lens portion 7 of the radiation temperature sensor 2. Therefore, the time from when the reference pulse is generated until the start of the weld 6 reaches the temperature measurement position is set as a constant delay time t as shown in FIG. As a result, the temperature measured by the lens unit 7 when the delay time t has elapsed since the generation of the reference pulse becomes the temperature of the starting end in the longitudinal direction of the welded part 6.

なお、遅れ時間tにおける計測間隔を極めて小さくすることにより計測開始点の位置のバラツキを抑えて設定できる。具体的には、例えば、製缶速度が毎分600缶であるときに遅れ時間tが約10msの場合、遅れ時間tにおける計測間隔を0.1msにして計測する。こうすることで、従来のような溶接部6の基準となる温度変化に対して測定後に補正処理を行うことが不要となる。   Note that by setting the measurement interval at the delay time t to be extremely small, the measurement start point can be set with less variation. Specifically, for example, when the can-making speed is 600 cans per minute and the delay time t is about 10 ms, the measurement interval at the delay time t is 0.1 ms. By doing so, it is not necessary to perform a correction process after the measurement with respect to a temperature change which is a reference of the welded portion 6 as in the related art.

そして、基準波形生成部15が、図7に示すように、溶接部6の全長(3つの区域L,M,N)にわたって測定された温度変化に基づいて、温度変化に対応する基準波形Aを生成し(波形生成工程)、記憶部19に記録する。このとき、先端部区域Lと後端部区域Nとにおいて、約0.1mm毎に温度を測定し、先端部区域Lは前記遅れ時間設定工程における基準パルス発生時からの遅れ時間tに基づいてその始端(溶接部6の長手方向の始端縁に対応している)を設定する。また、中央部区域Mでは、約1.0mm毎に温度を測定する。これにより、先端部区域Lと後端部区域Nとは、溶接部6の両端5mmの範囲で各々約50箇所の測定点毎に温度が測定され、比較的小さな間隔で温度が測定される。   Then, as shown in FIG. 7, the reference waveform generation unit 15 generates a reference waveform A corresponding to the temperature change based on the temperature change measured over the entire length (three sections L, M, and N) of the welded part 6. Generate (recording step) and record in the storage unit 19. At this time, the temperature is measured about every 0.1 mm in the front end section L and the rear end section N, and the front end section L is based on the delay time t from the generation of the reference pulse in the delay time setting step. The starting end (corresponding to the starting end edge in the longitudinal direction of the welded portion 6) is set. In the central area M, the temperature is measured every about 1.0 mm. As a result, in the front end section L and the rear end section N, the temperature is measured for each of approximately 50 measurement points in the range of 5 mm on both ends of the welded portion 6, and the temperature is measured at a relatively small interval.

次いで、判定領域設定部16が、各区域L,M,Nに対して、この基準波形Aに基づく判定領域(第1の判定領域B、第2の判定領域C、第3の判定領域D)を設定し(判定領域設定工程)、許容範囲設定部17がこれらの判定領域B,C,Dにおいて上限値と下限値とからなる許容範囲を設定する(許容範囲設定工程)。その後、良否判定部18が、検査対象となる缶胴1の溶接部6から温度を測定し、測定された温度が各判定領域B,C,Dの許容範囲内にあるとき良と判定し、許容範囲外にあるとき不良と判定する(良否判定工程)。このとき、不良と判定された缶胴1は、前記排出手段14により排出される。具体的には、図7に示すように、先端部区域Lに溶接不良があるときには、破線eで示すように検査対象となる缶胴1の溶接部6の測定温度が第1の判定領域Bにおいて許容範囲から外れるので、容易に不良の判定が行える。また、中央部区域Mに溶接不良があるときには、破線fで示すように検査対象となる缶胴1の溶接部6の測定温度が第2の判定領域Cにおいて許容範囲から外れるので、容易に不良の判定が行える。   Next, the determination area setting unit 16 determines the determination areas based on the reference waveform A (first determination area B, second determination area C, and third determination area D) for each of the sections L, M, and N. Is set (determination area setting step), and the allowable range setting unit 17 sets an allowable range including an upper limit value and a lower limit value in these determination areas B, C, and D (allowable range setting process). Thereafter, the quality determination unit 18 measures the temperature from the welded portion 6 of the can body 1 to be inspected, and determines that the measured temperature is within the allowable range of each determination region B, C, D, When it is outside the allowable range, it is determined as defective (good / bad determination step). At this time, the can body 1 determined to be defective is discharged by the discharge means 14. Specifically, as shown in FIG. 7, when there is poor welding in the tip section L, the measured temperature of the welded portion 6 of the can body 1 to be inspected is the first determination region B as shown by the broken line e. Therefore, it is possible to easily determine a defect. Further, when there is a welding failure in the central section M, the measured temperature of the welded portion 6 of the can body 1 to be inspected deviates from the allowable range in the second determination region C as shown by the broken line f, so that it is easily defective. Can be determined.

ここで、各判定領域B,C,Dと許容範囲の設定手順を説明する。先端部区域Lと後端部区域Nとにおいては、溶接時の熱の拡散が溶接部6の端縁で阻止されるために中央部区域Mに比べて高温となる。そこで、第1の判定領域B及び第3の判定領域Dとその許容範囲は、詳しくは後述するように、中央部区域Mの第2の判定領域Cとその許容範囲とは異なる方法で設定する。第2の判定領域Cは、図7に示すように、温度の高低差の少ない比較的安定した基準波形Aを得ることができるので、中央部区域Mの全長にわたって、約1.0mm毎の温度を基準として+30℃〜+50℃を上限値hとし、−30℃〜−50℃を下限値iとする許容範囲が設定される。   Here, the procedure for setting each determination area B, C, D and the allowable range will be described. In the front end section L and the rear end section N, heat diffusion during welding is blocked by the edge of the welded portion 6, so that the temperature is higher than that in the central section M. Accordingly, the first determination region B and the third determination region D and their allowable ranges are set by a method different from the second determination region C of the central section M and its allowable range, as will be described in detail later. . As shown in FIG. 7, the second determination region C can obtain a relatively stable reference waveform A with a small temperature difference, so that the temperature of about 1.0 mm is obtained over the entire length of the central section M. Is set to an allowable range in which + 30 ° C. to + 50 ° C. is set as the upper limit value h and −30 ° C. to −50 ° C. is set as the lower limit value i.

一方、先端部区域Lにおいては、次のようにして第1の判定領域B及びその許容範囲が設定される。即ち、検査制御装置3は、先端部区域Lにおいて、約0.1mm毎に、前記放射温度センサ2により温度を測定する。このとき、先端部区域Lにおいては、溶接時の熱の拡散が溶接部6の端縁において阻止されるために高温となるので、先端部区域Lの温度変化を示す波形(溶接部6の長手方向の端縁から所定寸法内の基準波形A)は、図8に示すように、上昇する温度変化を示す上昇変化部A−1と、該上昇変化部より小さい温度変化を示す温度安定部A−2と、該温度安定部から大きく下降する温度変化を示す下降変化部A−3を含んだものとなる。前記基準波形生成部15は、この波形を先端部区域Lにおける基準波形Aとして記憶部19に記録すると共にディスプレイ装置13に表示させる。   On the other hand, in the front end section L, the first determination region B and its allowable range are set as follows. That is, the inspection control device 3 measures the temperature by the radiation temperature sensor 2 at about 0.1 mm in the tip end section L. At this time, in the tip end section L, since the diffusion of heat at the time of welding is blocked at the edge of the welded portion 6, the temperature becomes high. As shown in FIG. 8, the reference waveform A) within a predetermined dimension from the edge of the direction is a rising change portion A-1 showing a rising temperature change, and a temperature stabilizing portion A showing a temperature change smaller than the rising change portion. -2 and a descending change portion A-3 indicating a temperature change greatly descending from the temperature stabilizing portion. The reference waveform generation unit 15 records this waveform in the storage unit 19 as the reference waveform A in the tip end section L and displays it on the display device 13.

次いで、前記判定領域設定部16により、先端部区域Lにおける基準波形Aのうち温度安定部A−2にのみ第1の判定領域Bを設定する。判定領域設定部16は、缶胴1の端縁から第1の判定領域Bの開始点までの時間を設定し、該時間に基づいて温度安定部A−2の区間内に第1の判定領域Bの開始点と終了点とを設定する。なお、缶胴1の端縁は前述の遅れ時間tに基づいて設定されたものである。   Next, the determination region setting unit 16 sets the first determination region B only in the temperature stabilizing portion A-2 in the reference waveform A in the tip end section L. The determination area setting unit 16 sets the time from the edge of the can body 1 to the start point of the first determination area B, and based on the time, the first determination area is within the interval of the temperature stabilizing section A-2. Set the start and end points of B. The edge of the can body 1 is set based on the delay time t described above.

続いて、前記許容範囲設定部17により、第1の判定領域Bにおいて上限値hと下限値iとからなる許容範囲を設定する。上限値hと下限値iとは、溶接不良の溶接部6から採取した温度に基づいて設定され、温度安定部A−2における最高温度に対して30℃〜50℃の差を有するように設定される。即ち、第1の判定領域Bの温度安定部A−2において、約0.1mm毎の温度を基準として+30℃〜+50℃を上限値hとし、−30℃〜−50℃を下限値iとする許容範囲が設定される。また、温度安定部A−2においては、概ね平坦な波形であることにより、許容範囲の上限値hと下限値iとは夫々直線状に設定することができる。   Subsequently, the allowable range setting unit 17 sets an allowable range including an upper limit value h and a lower limit value i in the first determination region B. The upper limit value h and the lower limit value i are set based on the temperature collected from the welded part 6 with poor welding, and set so as to have a difference of 30 ° C. to 50 ° C. with respect to the maximum temperature in the temperature stabilizing part A-2. Is done. That is, in the temperature stabilization part A-2 of the first determination region B, + 30 ° C. to + 50 ° C. is set as the upper limit value h, and −30 ° C. to −50 ° C. is set as the lower limit value i with reference to the temperature of about 0.1 mm. The allowable range is set. Moreover, in the temperature stabilization part A-2, since it is a substantially flat waveform, the upper limit value h and the lower limit value i of the allowable range can be set linearly.

そして、以上のようにして先端部区域Lに設定された第1の判定領域Bの許容範囲を用いて缶胴1の先端部区域Lの良否判定を行えば、温度安定部A−2に対応する位置に不良が生じている場合には勿論、上昇変化部A−1や下降変化部A−3に対応する位置に不良が生じていても、例えば、図7の破線eで示すように温度安定部A−2に対応する位置の測定温度に影響して、第1の判定領域Bの許容範囲から外れ、確実に良否判定を行うことができる。なお、後端部区域Nにおいても、図7に示すように、先端部区域Lと同様にして温度安定部A−2に対応する第3の判定領域Dの許容範囲を設定することができるのでその説明を省略する。   And if the quality determination of the front-end | tip part area L of the can body 1 is performed using the tolerance | permissible_range of the 1st determination area | region B set to the front-end | tip part area L as mentioned above, it will respond | correspond to temperature stabilization part A-2. Of course, even if a defect occurs at a position corresponding to the rising change part A-1 or the descending change part A-3, the temperature as shown by a broken line e in FIG. The measurement temperature at the position corresponding to the stable portion A-2 is affected, so that it is out of the allowable range of the first determination region B, and the quality determination can be performed reliably. In the rear end section N, as shown in FIG. 7, the allowable range of the third determination region D corresponding to the temperature stabilizing section A-2 can be set in the same manner as the front end section L. The description is omitted.

以上のように、本実施形態においては、溶接部6を3つの区域L,M,Nに分け、先端部区域L及び後端部区域Nにおいては、基準波形Aのうちの温度安定部A−2に対応する位置でのみ判定領域B,Dとその許容範囲を設定する。これにより、従来のような基準波形Aに沿って溶接部6の全長にわたる上限値と下限値とを許容範囲として設定する場合に比べ、特に溶接部6の端部(先端部区域L及び後端部区域N)の良否判定精度が高い。しかも、溶接部6の測定温度や基準波形の補正が不要であるので、高速に検査することができる。   As described above, in the present embodiment, the welded portion 6 is divided into three sections L, M, and N, and in the front end section L and the rear end section N, the temperature stabilizing section A− of the reference waveform A. The determination areas B and D and their allowable ranges are set only at the position corresponding to 2. Thereby, compared with the case where the upper limit value and the lower limit value over the entire length of the welded portion 6 are set as allowable ranges along the reference waveform A as in the prior art, in particular, the end portions of the welded portion 6 (the leading end region L and the trailing end). The pass / fail judgment accuracy of the section N) is high. In addition, since it is not necessary to correct the measurement temperature and the reference waveform of the welded portion 6, the inspection can be performed at high speed.

なお、本実施形態において説明に用いた溶接部6の寸法や計測間隔、各判定領域B,C,Dにおける許容範囲の上下限温度等は、これに限るものではなく、缶胴1の大きさや、製缶速度等に応じて適宜設定されるものであることは言うまでもない。   Note that the dimensions and measurement intervals of the welded portion 6 used in the description in the present embodiment, the upper and lower limit temperatures of the allowable ranges in the determination regions B, C, and D are not limited to this, and the size of the can body 1 Needless to say, it is appropriately set according to the can-making speed and the like.

本発明の検査方法に用いる一実施形態の装置の概要構成を示す説明図。Explanatory drawing which shows schematic structure of the apparatus of one Embodiment used for the test | inspection method of this invention. 放射温度センサのレンズ部を示す説明的斜視図。An explanatory perspective view showing a lens part of a radiation temperature sensor. 放射温度センサの計測視野を示す説明図。Explanatory drawing which shows the measurement visual field of a radiation temperature sensor. 本発明における計測視野と従来の計測視野とを対比するための説明図。Explanatory drawing for contrasting the measurement visual field in this invention with the conventional measurement visual field. 検査制御装置の機能的構成を示すブロック図。The block diagram which shows the functional structure of a test | inspection control apparatus. 溶接部に対する検査対象の区域を示す説明図。Explanatory drawing which shows the area | region of the test object with respect to a welding part. 溶接部の全長にわたる良否判定時の基準波形と判定領域を示す図。The figure which shows the reference | standard waveform at the time of quality determination over the full length of a welding part, and a determination area | region. 溶接部の端部の基準波形及び判定領域を示す図。The figure which shows the reference | standard waveform and determination area | region of the edge part of a welding part.

符号の説明Explanation of symbols

1…缶胴、2…放射温度センサ、6…溶接部、7…レンズ部、9…計測視野、A…基準波形、A−1…上昇変化部、A−2…温度安定部、A−3…下降変化部、B,C,D…判定領域。
DESCRIPTION OF SYMBOLS 1 ... Can body, 2 ... Radiation temperature sensor, 6 ... Welding part, 7 ... Lens part, 9 ... Measurement visual field, A ... Reference waveform, A-1 ... Ascending change part, A-2 ... Temperature stabilization part, A-3 ... descending change part, B, C, D ... determination area.

Claims (2)

筒状の缶胴の軸線方向に沿って形成された所定幅の溶接部を、溶接直後の温度に基づいて検査する缶胴溶接部の検査方法において、
溶接部の長手方向に沿った温度変化に対応する基準波形を生成する波形生成工程と、
該波形生成工程によって生成された基準波形に基づいて、溶接部の長手方向に沿って複数の判定領域を設定する判定領域設定工程と、
該判定領域設定工程により設定された判定領域において上限値と下限値とからなる許容範囲を設定する許容範囲設定工程と、
溶接部の温度を該溶接部の長手方向に沿って測定する温度測定工程と、
該温度測定工程により測定された温度が前記判定領域において許容範囲内にあるとき良と判定し、許容範囲外にあるとき不良と判定する良否判定工程とを備え、
前記波形生成工程は、溶接部の長手方向の端縁から所定寸法内の基準波形として、該溶接部の長手方向の端縁を起点として上昇する温度変化を示す上昇変化部と、該上昇変化部に連続し該上昇変化部より小さい温度変化を示す温度安定部と、該温度安定部に連続し該温度安定部から大きく下降する温度変化を示す下降変化部とを含む波形を生成し、
前記判定領域設定工程は、溶接部の長手方向の端縁から前記所定寸法内における判定領域を前記温度安定部に対応する位置に設定し、
前記温度測定工程は、溶接部の幅寸法よりも長い長辺が溶接部の長手方向に直行する長方形状の計測視野を有するレンズ部を具備して溶接部の一部の放射温度を計測する放射温度センサを用い、該放射温度センサのレンズ部に対する溶接部の長手方向への移動により該溶接部の全長にわたる温度を測定することを特徴とする缶胴溶接部の検査方法。
In the inspection method of the can body welded portion, which inspects the weld portion of a predetermined width formed along the axial direction of the cylindrical can body, based on the temperature immediately after welding,
A waveform generating step for generating a reference waveform corresponding to a temperature change along the longitudinal direction of the weld;
A determination region setting step for setting a plurality of determination regions along the longitudinal direction of the weld, based on the reference waveform generated by the waveform generation step;
An allowable range setting step for setting an allowable range consisting of an upper limit value and a lower limit value in the determination region set by the determination region setting step;
A temperature measurement step of measuring the temperature of the weld along the longitudinal direction of the weld; and
A pass / fail judgment step in which the temperature measured by the temperature measurement step is determined to be good when the temperature is within the allowable range in the determination region and is determined to be defective when the temperature is outside the allowable range;
The waveform generating step includes, as a reference waveform within a predetermined dimension from the longitudinal edge of the welded portion, an ascending change portion that indicates a temperature change that rises from the longitudinal edge of the welded portion, and the ascending change portion Generating a waveform including a temperature stabilizing portion that is continuous to the temperature changing portion and showing a temperature change smaller than the rising changing portion, and a falling changing portion that is continuous to the temperature stabilizing portion and shows a temperature change greatly decreasing from the temperature stabilizing portion,
In the determination region setting step, a determination region within the predetermined dimension is set at a position corresponding to the temperature stabilizing portion from an edge in a longitudinal direction of the welded portion ,
The temperature measuring step includes a lens unit having a rectangular measurement field whose long side longer than the width of the welded part is perpendicular to the longitudinal direction of the welded part, and measures the radiation temperature of a part of the welded part. A method for inspecting a can body welded portion, comprising using a temperature sensor, and measuring the temperature over the entire length of the welded portion by moving the welded portion in the longitudinal direction with respect to the lens portion of the radiation temperature sensor .
前記波形生成工程は、予め良好な溶接部を備える複数の缶胴から測定された溶接部の長手方向に沿った温度変化に基づいて前記基準波形を生成することを特徴とする請求項1記載の缶胴溶接部の検査方法。   The said waveform production | generation process produces | generates the said reference | standard waveform based on the temperature change along the longitudinal direction of the welding part measured from the several can barrel provided with a favorable welding part previously. Inspection method for can body welds.
JP2008181589A 2008-07-11 2008-07-11 Inspection method for welded portion of can body Active JP5134460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181589A JP5134460B2 (en) 2008-07-11 2008-07-11 Inspection method for welded portion of can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181589A JP5134460B2 (en) 2008-07-11 2008-07-11 Inspection method for welded portion of can body

Publications (2)

Publication Number Publication Date
JP2010019738A JP2010019738A (en) 2010-01-28
JP5134460B2 true JP5134460B2 (en) 2013-01-30

Family

ID=41704792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181589A Active JP5134460B2 (en) 2008-07-11 2008-07-11 Inspection method for welded portion of can body

Country Status (1)

Country Link
JP (1) JP5134460B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612000B2 (en) * 2012-02-21 2014-10-22 株式会社オーハシテクニカ Bonding quality control method for press-fit bonding
CH707161A1 (en) * 2012-11-06 2014-05-15 Soudronic Ag Method and Apparatus for the seam welding of container bodies.
US20210398447A1 (en) * 2018-11-16 2021-12-23 Panasonic Intellectual Property Management Co., Ltd. Brazing work assistance method, recording medium, and brazing work assistance system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568432B2 (en) * 1988-12-15 1997-01-08 大和製罐株式会社 Method and apparatus for judging welding suitability of superposed part of can body
CH677891A5 (en) * 1988-12-16 1991-07-15 Elpatronic Ag
JP2898351B2 (en) * 1990-05-21 1999-05-31 日鐵ドラム株式会社 Inspection method of drum can body weld
JP3978990B2 (en) * 2000-09-05 2007-09-19 東洋製罐株式会社 Inspection apparatus and inspection method for can body welds
JP5030412B2 (en) * 2005-10-27 2012-09-19 大和製罐株式会社 Method and apparatus for determining whether or not welded portion of welded body is weldable

Also Published As

Publication number Publication date
JP2010019738A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
KR100192114B1 (en) Apparatus for monitoring quality of electrical welding processes
ES2795473T3 (en) Welding procedure and device for the evaluation of the welding current intensity in the welding of container frames
US4434351A (en) Method and system for determining weld quality in resistance welding
KR102242248B1 (en) Welding inspection device and inspection method for secondary battery
JP5134460B2 (en) Inspection method for welded portion of can body
JP5030412B2 (en) Method and apparatus for determining whether or not welded portion of welded body is weldable
JP2013184225A (en) Monitoring device for resistance welding, and method and system therefor
US20080237197A1 (en) System and method for welding and real time monitoring of seam welded parts
JP4657880B2 (en) Crimping defect determination data creation method and crimping defect determination data inspection method of terminal crimping defect detection device
JP5812684B2 (en) Welding quality judgment method and judging device for capacitor discharge type stud welding machine
JPH06294706A (en) Diagnostic system for lap seam welder and pass/fail decision system for welding
JP4432282B2 (en) Laser welding quality judgment method
JP3898811B2 (en) Method and apparatus for determining welding stability of arc welding steady state part
KR101859626B1 (en) Counting apparatus for tap-hole screw thread and defect
JPH11285824A (en) Welding defect detection method of stainless steel thin sheet fillet tig welding and automatic welding equipment with welding diagnosis function
KR100758028B1 (en) A method for correcting hight of electrode welder for CCFL and device thereof
JP2006021214A (en) Method for controlling welding quality of segment conductor
US7253632B2 (en) Method for qualifying joints and contacts of electric circuits
JP5358235B2 (en) Welding quality judgment method and judging device for capacitor discharge type stud welding machine
JPS6149793A (en) Quality discriminating device of electric welding
CN212058695U (en) Magnetic ring height detection equipment
CN110361666A (en) A kind of battery pack reliability production method
KR101274231B1 (en) System and method for weld quality assessment system of arc welding
JP3978990B2 (en) Inspection apparatus and inspection method for can body welds
EP1691207A1 (en) Method for qualifying joints and contacts of electric circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5134460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250