JP5132057B2 - Conductive resin capable of optical patterning - Google Patents

Conductive resin capable of optical patterning Download PDF

Info

Publication number
JP5132057B2
JP5132057B2 JP2005515628A JP2005515628A JP5132057B2 JP 5132057 B2 JP5132057 B2 JP 5132057B2 JP 2005515628 A JP2005515628 A JP 2005515628A JP 2005515628 A JP2005515628 A JP 2005515628A JP 5132057 B2 JP5132057 B2 JP 5132057B2
Authority
JP
Japan
Prior art keywords
arylene
poly
cis
vinylene
arylene vinylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515628A
Other languages
Japanese (ja)
Other versions
JPWO2005049688A1 (en
Inventor
文幸 小澤
博之 片山
謙祐 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005515628A priority Critical patent/JP5132057B2/en
Publication of JPWO2005049688A1 publication Critical patent/JPWO2005049688A1/en
Application granted granted Critical
Publication of JP5132057B2 publication Critical patent/JP5132057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Description

本発明は、レジストを用いることなく、直接、パターニングを行うことが可能な導電性樹脂に関する。   The present invention relates to a conductive resin that can be directly patterned without using a resist.

導電性樹脂として、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリピロール等がよく知られている。これらは有機EL(有機エレクトロルミネッセンス)、有機FET(有機電界効果トランジスタ)、電池、コンデンサ等の材料として用いられており、その用途によっては導電性樹脂により作製された膜のパターニングが必要な場合がある(特許文献1等参照)。   As the conductive resin, polyacetylene, polyphenylene, polyphenylene vinylene, polypyrrole and the like are well known. These are used as materials for organic EL (organic electroluminescence), organic FET (organic field effect transistor), batteries, capacitors, etc. Depending on the application, patterning of films made of conductive resin may be necessary. Yes (see Patent Document 1).

例えばEL素子は、Si等の基板上に電極層、正孔輸送層、電子輸送層、電極層を順に積層した構造を有しており、EL素子を製造する場合には、これら4つの層の積層とパターニングを順に繰り返し行う必要がある。パターニングを行う際は、電極層等の上にレジストを塗布して、まずレジストをパターニングし、その後レジストをマスクとして電極層等を化学的又は物理的にエッチングすることによりパターニングが行われる。
また、FET素子は、例えば、ゲート電極、絶縁層薄膜、ソース電極、チャネル層、ドレイン電極を順に積層した構造を有しており、EL素子を製造する場合と同様の方法により、各層のパターニングが行われる。
For example, an EL element has a structure in which an electrode layer, a hole transport layer, an electron transport layer, and an electrode layer are sequentially laminated on a substrate such as Si. Lamination and patterning must be repeated in sequence. When patterning is performed, a resist is applied on the electrode layer or the like, the resist is first patterned, and then the electrode layer or the like is chemically or physically etched using the resist as a mask.
In addition, the FET element has a structure in which, for example, a gate electrode, an insulating layer thin film, a source electrode, a channel layer, and a drain electrode are stacked in order, and the patterning of each layer is performed by a method similar to that for manufacturing an EL element. Done.

特開平07-176470号公報JP 07-176470 A

導電性膜のパターニングを、レジストを用いることなく直接行うことが可能であれば、パターニングのための工程数を減らすことができる。これにより、製品の生産効率及び歩留まりを向上させることが可能になる。また、レジストを現像する必要がなくなるため、有機溶剤の使用量を減らすことができ、環境への負荷も低減することが可能になる。   If patterning of the conductive film can be directly performed without using a resist, the number of patterning steps can be reduced. Thereby, it becomes possible to improve the production efficiency and yield of a product. Further, since it is not necessary to develop the resist, the amount of the organic solvent used can be reduced, and the burden on the environment can be reduced.

本発明が解決しようとする課題は、レジストを使用せずに直接パターニングすることが可能な、ナノメートルオーダーという微細パターニングも可能な導電性樹脂を提供することにある。   The problem to be solved by the present invention is to provide a conductive resin capable of direct patterning without using a resist and capable of fine patterning of nanometer order.

上記課題を解決するために成された、本発明に係る光パターニングが可能な導電性樹脂は、cis-ポリ(アリーレンビニレン)とtrans-ポリ(アリーレンビニレン)の比率が72/28以上であって、数平均分子量が1500〜30000であるポリ(アリーレンビニレン)(ただし、アリーレンは、アリーレン基以外に複素環化合物基も含む。)から成ることを特徴とする。
In order to solve the above problems, the conductive resin capable of photo-patterning according to the present invention has a ratio of cis-poly (arylene vinylene) to trans-poly (arylene vinylene) of 72/28 or more. The poly (arylene vinylene) having a number average molecular weight of 1500 to 30000 (wherein the arylene includes a heterocyclic compound group in addition to the arylene group).

本願において、「導電性」には半導体程度の電気伝導性が含まれるものとする。   In the present application, “conductivity” includes electrical conductivity equivalent to that of a semiconductor.

本願発明者は、導電性を有するポリ(アリーレンビニレン)(ただし、アリーレンは、アリーレン基以外に複素環化合物基も含む。)のうち、cis-ポリ(アリーレンビニレン)は、ベンゼン、トルエン、クロロホルム、塩化メチレン、テトラヒドロフランといった芳香族系又はハロゲン系又はエーテル系の有機溶媒に対して容易に溶解する一方で、このcis-ポリ(アリーレンビニレン)に200〜600nmの波長の光を照射することにより得られる生成物は上記有機溶媒にほとんど溶解しないことを見出した。   The inventor of the present application describes poly (arylene vinylene) having conductivity (wherein arylene includes a heterocyclic compound group in addition to the arylene group), cis-poly (arylene vinylene) is benzene, toluene, chloroform, This cis-poly (arylene vinylene) can be obtained by irradiating light with a wavelength of 200 to 600 nm while easily dissolving in an aromatic or halogen-based or ether-based organic solvent such as methylene chloride or tetrahydrofuran. It was found that the product was hardly soluble in the organic solvent.

この生成物の詳細な構造は現在のところ明らかではない。光吸収測定により、trans-ポリ(アリーレンビニレン)に特有のスペクトルが観測されているが、trans-ポリ(アリーレンビニレン)は上記の有機溶媒に対して溶解するため、この生成物はtrans-ポリ(アリーレンビニレン)そのものではないと考えられる。cis-ポリ(アリーレンビニレン)に上記波長の光が照射されることにより、trans-ポリ(アリーレンビニレン)への異性化反応と共に更に何らかの反応が生じたものと考えられる。但し、光照射によりtrans体への異性化反応が生じたことは明らかであるので、以下では光照射部分をtrans-ポリ(アリーレンビニレン)、あるいはtrans体と呼ぶ。   The detailed structure of this product is not clear at present. A spectrum specific to trans-poly (arylene vinylene) is observed by light absorption measurement. However, since trans-poly (arylene vinylene) dissolves in the above organic solvent, this product is trans-poly ( Arylene vinylene) is not considered as such. It is considered that some reaction was caused along with the isomerization reaction to trans-poly (arylene vinylene) by irradiating light of the above wavelength to cis-poly (arylene vinylene). However, since it is clear that the isomerization reaction to the trans isomer occurred by the light irradiation, the light irradiation portion is hereinafter referred to as trans-poly (arylene vinylene) or trans isomer.

本発明では、ポリ(アリーレンビニレン)が有する上記性質を利用して、膜のパターニングを行う。即ち、cis-ポリ(アリーレンビニレン)で作製された膜等の一部領域に200〜600nmの光を照射することにより、光照射部分をtrans-ポリ(アリーレンビニレン)に変化させた後、芳香族系又はハロゲン系又はエーテル系の有機溶媒を用いて光の未照射部分を有機溶媒に溶出させて回路等のパターンを形成する。   In the present invention, the film is patterned by utilizing the above properties of poly (arylene vinylene). That is, by irradiating 200-600 nm light to a partial region of a film or the like made of cis-poly (arylene vinylene), the light irradiated portion is changed to trans-poly (arylene vinylene), and then aromatic. A pattern such as a circuit is formed by eluting the non-irradiated portion of light into an organic solvent using a system, halogen-based or ether-based organic solvent.

cis体のポリ(アリーレンビニレン)は、trans体に比べて芳香族系又はハロゲン系又はエーテル系の有機溶媒に対する溶解性が高いため、このような溶剤を用いて洗浄することにより、光が照射されていないcis体の部分のみが溶出し、光が照射されたtrans体の部分がパターンとして残ることとなる。そして、このtrans体は導電性を有するため、本発明の導電性樹脂を用いれば、直接、回路等のパターンを形成することができる。   Since cis poly (arylene vinylene) is more soluble in aromatic, halogen or ether organic solvents than trans, it is irradiated with light by washing with such a solvent. Only the part of the cis body that is not eluted elutes, and the part of the trans body irradiated with light remains as a pattern. And since this trans body has electroconductivity, if the conductive resin of this invention is used, patterns, such as a circuit, can be formed directly.

また、このtrans体は、電圧を印加することによりその物質に特有の波長で発光するという電界発光性も有する。そのため、本発明の導電性樹脂を用いてパターン形成を行うことにより、FETやEL等の発光デバイスの発光層を形成することができる。   Moreover, this trans body also has electroluminescence property of emitting light at a wavelength peculiar to the substance by applying a voltage. Therefore, by performing pattern formation using the conductive resin of the present invention, a light emitting layer of a light emitting device such as an FET or an EL can be formed.

なお、樹脂の分子量が余りに大きいと、光が未照射の領域(cis-ポリ(アリーレンビニレン))であっても上記の有機溶剤に溶出しにくくなり、また、樹脂の分子量が余りに小さいと、光を照射した領域(trans-ポリ(アリーレンビニレン))であっても有機溶剤に溶出しやすくなるため、樹脂の数平均分子量は1500〜30000とする。   If the molecular weight of the resin is too large, it will be difficult to elute into the organic solvent even in the unirradiated region (cis-poly (arylene vinylene)), and if the molecular weight of the resin is too small, The number average molecular weight of the resin is set to 1500 to 30000 because it is easily eluted into an organic solvent even in the region irradiated with (trans-poly (arylene vinylene)).

また、trans-ポリ(アリーレンビニレン)が光照射前の樹脂中に多く存在する場合には、光の未照射領域において、樹脂膜が十分には有機溶剤に溶出しないこととなるため、cis-ポリ(アリーレンビニレン)とtrans-ポリ(アリーレンビニレン)の比率は72/28以上とする。 In addition, when a large amount of trans-poly (arylene vinylene) is present in the resin before light irradiation, the resin film will not be sufficiently eluted into the organic solvent in the light unirradiated region. The ratio of (arylene vinylene) to trans-poly (arylene vinylene) should be at least 72/28 .

本発明の導電性樹脂を用いれば、レジストを用いずともパターニングを行うことが可能である。このため、本発明の導電性樹脂を用いて作製される有機EL、有機FET、電池、コンデンサ等の製品の生産効率及び歩留まりを向上させることができる。また、レジストを現像する必要がなくなるため、有機溶剤の使用量を減らすことができ、環境への負荷も低減することが可能になる。   If the conductive resin of the present invention is used, patterning can be performed without using a resist. For this reason, it is possible to improve the production efficiency and yield of products such as organic ELs, organic FETs, batteries, and capacitors produced using the conductive resin of the present invention. Further, since it is not necessary to develop the resist, the amount of the organic solvent used can be reduced, and the burden on the environment can be reduced.

cis-PPV溶液の、光照射による紫外可視吸収スペクトルの経時変化を示すグラフ。The graph which shows the time-dependent change of the ultraviolet visible absorption spectrum by light irradiation of a cis-PPV solution. cis-PPV膜の、光照射による紫外可視吸収スペクトルの経時変化を示すグラフ。The graph which shows the time-dependent change of the ultraviolet visible absorption spectrum by light irradiation of a cis-PPV film | membrane. 反応式(1)の方法で合成を行ったPPVの1H NMRスペクトル。 1 H NMR spectrum of PPV synthesized by the method of reaction formula (1). (a)ラインパターンを有するPPV膜の光学顕微鏡写真、(b)ドットパターンを有するPPV膜の光学顕微鏡写真。(a) An optical micrograph of a PPV film having a line pattern, (b) An optical micrograph of a PPV film having a dot pattern.

本発明で使用されるポリ(アリーレンビニレン)は、一般式(1)
(Ar及びAr'は同一又は異なるアリーレン基又は複素環化合物基であって、nは1以上の整数である。)で表される重合体である。
Ar及びAr'はアリーレン基又は複素環化合物基であればよく、その構造は特に問うものではないが、Ar及びAr'の構造としては、例えば化学式(1)〜化学式(17)やこれらの誘導体を挙げることができる。
ここで、化学式(1)〜化学式(17)に結合する、(一般式(1)に記載された)二つのビニル基の芳香環又は複素環上での位置関係は特に問うものではない。例えばAr又はAr'がベンゼンの場合、二つのビニル基はオルト、メタ、パラのいずれの位置関係を有していてもよい。また、化学式(1)〜化学式(17)の誘導体とは、これらの芳香環又は複素環上に、水素原子の代わりにアルキル基、アリール基、アルコキシ基、カルボニル基、アミノ基、ニトロ基等の置換基が結合したものを意味する。
The poly (arylene vinylene) used in the present invention has the general formula (1)
(Ar and Ar ′ are the same or different arylene group or heterocyclic compound group, and n is an integer of 1 or more).
Ar and Ar ′ may be an arylene group or a heterocyclic compound group, and the structure thereof is not particularly limited. Examples of the structures of Ar and Ar ′ include chemical formula (1) to chemical formula (17) and derivatives thereof. Can be mentioned.
Here, the positional relationship on the aromatic ring or heterocyclic ring of the two vinyl groups (described in the general formula (1)) bonded to the chemical formulas (1) to (17) is not particularly limited. For example, when Ar or Ar ′ is benzene, the two vinyl groups may have any positional relationship of ortho, meta, and para. In addition, the derivatives of chemical formula (1) to chemical formula (17) are, on these aromatic rings or heterocyclic rings, alkyl groups, aryl groups, alkoxy groups, carbonyl groups, amino groups, nitro groups, etc. instead of hydrogen atoms. This means that the substituent is bonded.

例えば、化学式(18)で表されるcis-ポリ(アリーレンビニレン)(数平均分子量Mn=2700、(多分散度)=(重量平均分子量)/(数平均分子量)=1.79(ポリスチレン基準)、cis/trans≧99/1)の0.015mg/mLベンゼン溶液の紫外可視吸収スペクトルは図1に示された通りであって、高圧キセノンランプ(主波長360nm)で光照射を行うことにより、時間が経過するとともにcis-ポリ(アリーレンビニレン)は異性化して、約150秒で完全にcis体からtrans体に変化している。なお、この測定は、試料と光源間の距離を20cm、照度を約0.4mW/cm2として、窒素雰囲気下、23℃で行った。
For example, cis-poly (arylene vinylene) represented by the chemical formula (18) (number average molecular weight Mn = 2700, (polydispersity) = (weight average molecular weight) / (number average molecular weight) = 1.79 (polystyrene basis), cis The UV-visible absorption spectrum of a 0.015 mg / mL benzene solution with / trans ≧ 99/1) is as shown in Fig. 1, and time elapses when light is irradiated with a high-pressure xenon lamp (main wavelength: 360 nm). At the same time, cis-poly (arylene vinylene) is isomerized and completely changes from cis to trans in about 150 seconds. This measurement was performed at 23 ° C. in a nitrogen atmosphere with a distance between the sample and the light source of 20 cm and an illuminance of about 0.4 mW / cm 2 .

図2は、化学式(18)で表されるcis-ポリ(アリーレンビニレン)(数平均分子量Mn=6900、(多分散度)=2.01(ポリスチレン基準)、cis/trans≧86/14)で作製された膜(膜厚100〜200nm)の、光照射による紫外可視吸収スペクトルの経時変化を示したグラフである。この測定は、試料と光源間の距離を5cm、照度を260mW/cm2として、窒素雰囲気下、23℃で行った。ポリ(アリーレンビニレン)の濃度が高いため、光の照射時間は溶液状態の場合に比べて長くなり、スペクトルもブロードになっているが、スペクトルの形は図1の場合と同様である。
このことから、cis-ポリ(アリーレンビニレン)は、固体(膜)状態であっても、光照射によりtrans-ポリ(アリーレンビニレン)に変化することがわかる。
FIG. 2 is made of cis-poly (arylene vinylene) represented by the chemical formula (18) (number average molecular weight Mn = 6900, (polydispersity) = 2.01 (polystyrene basis), cis / trans ≧ 86/14). 5 is a graph showing the change with time of the ultraviolet-visible absorption spectrum of the film (film thickness 100 to 200 nm) by light irradiation. This measurement was performed at 23 ° C. in a nitrogen atmosphere with a distance between the sample and the light source of 5 cm and an illuminance of 260 mW / cm 2 . Since the concentration of poly (arylene vinylene) is high, the light irradiation time is longer than that in the solution state and the spectrum is broad, but the shape of the spectrum is the same as in FIG.
This shows that cis-poly (arylene vinylene) is changed to trans-poly (arylene vinylene) by light irradiation even in a solid (film) state.

本発明ではポリ(アリーレンビニレン)が、立体構造の違いによって溶剤への溶解性が異なるという性質をパターニングに利用するため、高い立体選択性でcis-ポリ(アリーレンビニレン)を得られるようにすることが重要である。   In the present invention, poly (arylene vinylene) uses the property that the solubility in a solvent differs depending on the three-dimensional structure for patterning, so that cis-poly (arylene vinylene) can be obtained with high stereoselectivity. is important.

そこで、本発明者らは、高い立体選択性でcis-ポリ(アリーレンビニレン)が得られる方法についても鋭意検討を行った。
その結果、二のcis-ブロモエテニル基が結合した第一の芳香族化合物又は複素環化合物と、第一のアリーレン化合物又は複素環化合物に対して1当量の二のボロン酸が結合した第二のアリーレン化合物又は複素環化合物とを有機溶媒に溶解し、これに第一又は第二のアリーレン化合物又は複素環化合物に対して1〜5当量の塩基と第一又は第二のアリーレン化合物又は複素環化合物に対して0.1〜10mol%のパラジウム触媒を加えた後、遮光条件下、40〜120℃で加熱撹拌する、鈴木−宮浦クロスカップリング型重縮合法を用いた反応により、cis-ポリ(アリーレンビニレン)が99%以上という高い立体選択性で得られることを見出した。
この反応を具体的に示したものが、反応式(1)である。
なお、この反応において、塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、炭酸カリウム、炭酸ナトリウム、リン酸カリウム、酸化銀、又はこれらの水溶液等を用いることができる。また、パラジウム触媒としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロ{1,1'-ビス(ジフェニルホスフィノ)フェロセン}パラジウム等を用いることができる。
Therefore, the present inventors have also intensively studied a method for obtaining cis-poly (arylene vinylene) with high stereoselectivity.
As a result, the first aromatic compound or heterocyclic compound to which two cis-bromoethenyl groups are bonded, and the second arylene to which one equivalent of two boronic acids is bonded to the first arylene compound or heterocyclic compound A compound or a heterocyclic compound is dissolved in an organic solvent, and 1 to 5 equivalents of a base and a first or second arylene compound or heterocyclic compound are added to the first or second arylene compound or heterocyclic compound. Cis-poly (arylene vinylene) by a reaction using a Suzuki-Miyaura cross-coupling type polycondensation method after adding 0.1 to 10 mol% of palladium catalyst and then heating and stirring at 40 to 120 ° C. under light-shielding conditions Has been found to be obtained with a high stereoselectivity of 99% or more.
The reaction formula (1) specifically shows this reaction.
In this reaction, as the base, sodium hydroxide, potassium hydroxide, barium hydroxide, potassium carbonate, sodium carbonate, potassium phosphate, silver oxide, or an aqueous solution thereof can be used. As the palladium catalyst, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, dichloro {1,1′-bis (diphenylphosphino) ferrocene} palladium, or the like can be used.

この反応により合成したポリ(アリーレンビニレン)の1H NMR(300MHz,CDCl3)のスペクトルを図3に示す。(ベンゼン環に結合した)アルコキシ基の酸素に隣接する炭素に結合した水素のピークは、cis-ポリ(アリーレンビニレン)では3.5ppmに現れ、trans-ポリ(アリーレンビニレン)では4.1ppmに現れるが、図3には4.1ppmにピークは現れていない。このことから、上記の方法によれば、高い立体選択性でcis-ポリ(アリーレンビニレン)が得られることがわかる。The spectrum of 1 H NMR (300 MHz, CDCl 3 ) of poly (arylene vinylene) synthesized by this reaction is shown in FIG. The peak of hydrogen bonded to the carbon adjacent to the oxygen of the alkoxy group (bonded to the benzene ring) appears at 3.5 ppm for cis-poly (arylene vinylene) and 4.1 ppm for trans-poly (arylene vinylene), In FIG. 3, no peak appears at 4.1 ppm. This shows that cis-poly (arylene vinylene) can be obtained with high stereoselectivity according to the above method.

なお、本発明者らは、反応式(2)で表される、檜山クロスカップリング型重縮合法を用いた反応により、cis-ポリ(アリーレンビニレン)が66%以上という立体選択性で得られることを既に報告している(「ジャーナル・オブ・オルガノメタリック・ケミストリー(Journal of Organometallic Chemistry)」、(米国)、2003年、第676巻、pp.49-54)。
In addition, the present inventors can obtain cis-poly (arylene vinylene) with a stereoselectivity of 66% or more by a reaction represented by the reaction formula (2) using the Hiyama cross coupling type polycondensation method. (Journal of Organometallic Chemistry, (USA), 2003, Vol. 676, pp. 49-54).

trans体が比較的多く含まれた領域は、光を照射しない場合でも樹脂が溶剤に溶解せずにそのまま残ることとなる。特に、数ナノメートルオーダーの微細パターニングを行う場合には、隣接する配線がつながる等の欠陥につながりやすくなるため、高い選択性でcis体のポリ(アリーレンビニレン)が得られる反応式(1)の方法により樹脂の合成を行わなければならない。しかし、比較的粗いパターン作製しか行わないような場合は、反応式(2)やその他の方法で得られる樹脂を用いることも可能である。   In a region containing a relatively large amount of trans form, the resin remains as it is without being dissolved in the solvent even when light is not irradiated. In particular, when fine patterning on the order of several nanometers is performed, it tends to lead to defects such as the connection of adjacent wirings, so the reaction formula (1) of cis poly (arylene vinylene) can be obtained with high selectivity. The resin must be synthesized by the method. However, in the case where only a relatively rough pattern is produced, it is also possible to use a resin obtained by the reaction formula (2) or other methods.

本発明の導電性樹脂においては、アリーレンビニレンの芳香環や複素環上の置換基を変更することによって、有機EL、有機FET、電池、コンデンサといった用途に応じた性質を持たせることができる。また、材料の導電性を向上させる等の目的に応じて、I2,Br2等のハロゲン、Na,Ka等のアルカリ金属、p-トルエンスルホン酸等のスルホン酸類といったドーパントやその他の化合物等を樹脂に混入させることも可能である。In the conductive resin of the present invention, by changing the substituent on the aromatic ring or heterocyclic ring of arylene vinylene, it is possible to have properties according to the application such as organic EL, organic FET, battery, capacitor. Depending on the purpose of improving the conductivity of the material, dopants such as halogens such as I 2 and Br 2 , alkali metals such as Na and Ka, and sulfonic acids such as p-toluenesulfonic acid, and other compounds, etc. It is also possible to mix with resin.

なお、以上においては、ポリ(アリーレンビニレン)を膜状にして回路等のパターニングを行う場合について述べたが、ポリ(アリーレンビニレン)をキューブ状等に予め成形した上で、上記と同様に光照射及び光未照射部分の溶剤による溶出を行うことにより、オブジェのような成形体を作製することも可能である。   In the above description, the case of patterning a circuit or the like with poly (arylene vinylene) as a film has been described. However, after pre-forming poly (arylene vinylene) into a cube shape or the like, light irradiation is performed in the same manner as described above. It is also possible to produce a molded body such as an object by elution with a solvent of a non-irradiated portion.

(cis-PPVの合成(1))
1,4-ビス(cis-2-ブロモエテニル)ベンゼン(58mg,0.20mmol)、1,4-ジオクチロキシ-2,5-ベンゼンジボロン酸(86mg,0.20mmol)、臭化テトラブチルアンモニウム(65mg,0.20mmol)のトルエン溶液(2.0mL)に、3Mのリン酸カリウム水溶液 (0.2mL,0.6mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(0.23mg,0.20mmol)を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50mL)中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、cis-PPVが濃オレンジ色固体として得られた(87mg,収率94%)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-PPVとtrans-PPVの比率が99/1以上であることが確認された。また、GPCにより分析を行った結果、数平均分子量は7200、多分散度は2.89(ポリスチレン基準)であった。
(Synthesis of cis-PPV (1))
1,4-bis (cis-2-bromoethenyl) benzene (58 mg, 0.20 mmol), 1,4-dioctyloxy-2,5-benzenediboronic acid (86 mg, 0.20 mmol), tetrabutylammonium bromide (65 mg, 0.20 mmol) in toluene (2.0 mL), 3M aqueous potassium phosphate solution (0.2 mL, 0.6 mmol) and tetrakis (triphenylphosphine) palladium (0.23 mg, 0.20 mmol) were added, and the mixture was stirred at 80 ° C. for 24 hours under light-shielding conditions. Stir for hours. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. This gave cis-PPV as a dark orange solid (87 mg, 94% yield).
When this solid was dissolved in CDCl 3 and measured by 1 H NMR, it was confirmed that the ratio of cis-PPV to trans-PPV was 99/1 or more. As a result of analysis by GPC, the number average molecular weight was 7200, and the polydispersity was 2.89 (polystyrene basis).

(cis-PPVの合成(2))
1,4-ビス(cis-2-ブロモエテニル)ベンゼン(58mg,0.20mmol)、1,4-ジオクチロキシ-2,5-ベンゼンジボロン酸(86mg,0.20mmol)、臭化テトラブチルアンモニウム(65mg,0.20mmol)のトルエン溶液(2.0mL)に、3Mのリン酸カリウム水溶液(0.2mL,0.6mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(2.3mg,2.0mmol)を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50mL)中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、cis-PPVが濃オレンジ色固体として得られた(97 mg,収率99%以上)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-PPVとtrans-PPVの比率が99/1以上であることが確認された。また、GPCにより分析を行った結果、数平均分子量は3300、多分散度は1.53(ポリスチレン基準)であった。
(Synthesis of cis-PPV (2))
1,4-bis (cis-2-bromoethenyl) benzene (58 mg, 0.20 mmol), 1,4-dioctyloxy-2,5-benzenediboronic acid (86 mg, 0.20 mmol), tetrabutylammonium bromide (65 mg, 0.20 mmol) in toluene solution (2.0 mL), 3M potassium phosphate aqueous solution (0.2 mL, 0.6 mmol) and tetrakis (triphenylphosphine) palladium (2.3 mg, 2.0 mmol) were added, Stir for hours. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. As a result, cis-PPV was obtained as a dark orange solid (97 mg, yield 99% or more).
When this solid was dissolved in CDCl 3 and measured by 1 H NMR, it was confirmed that the ratio of cis-PPV to trans-PPV was 99/1 or more. As a result of analysis by GPC, the number average molecular weight was 3,300, and the polydispersity was 1.53 (polystyrene standard).

(cis-PmPVの合成)
1,3-ビス(cis-2-ブロモエテニル)ベンゼン(58mg,0.20mmol)、1,4-ジオクチロキシ-2,5-ベンゼンジボロン酸(87mg,0.21mmol)、臭化テトラブチルアンモニウム(65mg,0.20mmol)のトルエン溶液(2.0mL)に対して、3Mの水酸化カリウム水溶液(0.2mL,0.6mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(2.3mg,2.0mmol)を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50mL)中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、化学式(19)で表されるcis-PmPVが茶色粘性固体として得られた(80mg,収率86%)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-PmPVとtrans-PmPVの比率が99/1以上であることが確認された。また、GPCにより分析を行った結果、数平均分子量は5100、多分散度は2.13(ポリスチレン基準)であった。
(Synthesis of cis-PmPV)
1,3-bis (cis-2-bromoethenyl) benzene (58 mg, 0.20 mmol), 1,4-dioctyloxy-2,5-benzenediboronic acid (87 mg, 0.21 mmol), tetrabutylammonium bromide (65 mg, 0.20 mmol) in toluene solution (2.0 mL), 3M aqueous potassium hydroxide solution (0.2 mL, 0.6 mmol) and tetrakis (triphenylphosphine) palladium (2.3 mg, 2.0 mmol) were added, and 80 ° C. under light-shielding conditions. For 24 hours. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. As a result, cis-PmPV represented by the chemical formula (19) was obtained as a brown viscous solid (80 mg, yield 86%).
When this solid was dissolved in CDCl 3 and measured by 1 H NMR, it was confirmed that the ratio of cis-PmPV to trans-PmPV was 99/1 or more. As a result of analysis by GPC, the number average molecular weight was 5100, and the polydispersity was 2.13 (polystyrene standard).

(cis-PFVPV の合成)
2,7-ビス(cis-2-ブロモエテニル)-9,9-ジヘキシルフルオレン(59mg,0.11mmol)、1,4-ジオクチロキシ-2,5-ベンゼンジボロン酸(47mg,0.11mmol)、臭化テトラブチルアンモニウム(35mg,0.11mmol)のトルエン溶液(1.0mL)に、3Mのリン酸カリウム水溶液(0.1mL,0.3mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(0.13mg,0.11mmol)を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50mL)中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、化学式(20)で表されるcis-PFVPVが茶色固体として得られた(75mg,収率96%)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-PFVPVとtrans-PFVPVの比率が72/28であることが確認された。また、GPCにより分析を行った結果、数平均分子量は3700、多分散度は1.46(ポリスチレン基準)であった。
(Synthesis of cis-PFVPV)
2,7-bis (cis-2-bromoethenyl) -9,9-dihexylfluorene (59 mg, 0.11 mmol), 1,4-dioctyloxy-2,5-benzenediboronic acid (47 mg, 0.11 mmol), tetrabromide To a toluene solution (1.0 mL) of butylammonium (35 mg, 0.11 mmol), 3M aqueous potassium phosphate solution (0.1 mL, 0.3 mmol) and tetrakis (triphenylphosphine) palladium (0.13 mg, 0.11 mmol) were added, The mixture was stirred at 80 ° C. for 24 hours. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. As a result, cis-PFVPV represented by the chemical formula (20) was obtained as a brown solid (75 mg, yield 96%).
When this solid was dissolved in CDCl 3 and 1 H NMR measurement was performed, it was confirmed that the ratio of cis-PFVPV to trans-PFVPV was 72/28. As a result of analysis by GPC, the number average molecular weight was 3700, and the polydispersity was 1.46 (polystyrene basis).

(cis-PFPV の合成)
2,7-ビス(cis-2-ブロモエテニル)フルオレン(103mg, 0.273mmol)、1,4-ジオクチロキシ-2,5-ベンゼンジボロン酸(131mg, 0.273mmol)、臭化テトラブチルアンモニウム(79mg, 0.27mmol) のトルエン溶液(1.2 mL) に、3Mの水酸化カリウム水溶液(0.24mL, 0.72mmol) およびテトラキス(トリフェニルホスフィン)パラジウム(3.1mg, 2.6μmol) を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50 mL) 中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、化学式(21)で表されるcis-PFPVが濃オレンジ色固体として得られた(135mg, 収率90%)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-PFPVとtrans-PFPVの比率が90/10であることが確認された。また、GPCにより分析を行った結果、数平均分子量は7400、多分散度は2.42(ポリスチレン基準)であった。
(Synthesis of cis-PFPV)
2,7-bis (cis-2-bromoethenyl) fluorene (103 mg, 0.273 mmol), 1,4-dioctyloxy-2,5-benzenediboronic acid (131 mg, 0.273 mmol), tetrabutylammonium bromide (79 mg, 0.27 mmol) mmol) in toluene (1.2 mL), 3M aqueous potassium hydroxide solution (0.24 mL, 0.72 mmol) and tetrakis (triphenylphosphine) palladium (3.1 mg, 2.6 μmol) were added, and the mixture was stirred at 80 ° C. for 24 hours under light-shielded conditions. Stir for hours. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. As a result, cis-PFPV represented by the chemical formula (21) was obtained as a deep orange solid (135 mg, yield 90%).
When this solid was dissolved in CDCl 3 and measured by 1 H NMR, it was confirmed that the ratio of cis-PFPV to trans-PFPV was 90/10. As a result of analysis by GPC, the number average molecular weight was 7400, and the polydispersity was 2.42 (polystyrene standard).

(cis-MEH-PPVの合成)
1,4-ビス(cis-2-ブロモエテニル)ベンゼン(79mg, 0.27mmol)、1-(2-エチルヘキシロキシ)-4-メトキシ-2,5-ベンゼンジボロン酸(87mg, 0.27mmol)、臭化テトラブチルアンモニウム(79mg, 0.27mmol)のトルエン溶液(1.2mL)に、3Mの水酸化カリウム水溶液(0.24mL, 0.72mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(3.1mg, 2.6μmol)を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50mL)中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、化学式(22)で表されるcis-MEH-PPVが濃オレンジ色固体として得られた(66mg, 収率68%)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-MEH-PPVとtrans-MEH-PPVの比率が99/1以上であることが確認された。また、GPCにより分析を行った結果、数平均分子量は6400、多分散度は2.36(ポリスチレン基準)であった。
(Synthesis of cis-MEH-PPV)
1,4-bis (cis-2-bromoethenyl) benzene (79 mg, 0.27 mmol), 1- (2-ethylhexyloxy) -4-methoxy-2,5-benzenediboronic acid (87 mg, 0.27 mmol), odor To a toluene solution (1.2 mL) of tetrabutylammonium bromide (79 mg, 0.27 mmol), 3M aqueous potassium hydroxide solution (0.24 mL, 0.72 mmol) and tetrakis (triphenylphosphine) palladium (3.1 mg, 2.6 μmol) were added, The mixture was stirred at 80 ° C. for 24 hours under light-shielding conditions. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. As a result, cis-MEH-PPV represented by the chemical formula (22) was obtained as a deep orange solid (66 mg, yield 68%).
When this solid was dissolved in CDCl 3 and measured by 1 H NMR, it was confirmed that the ratio of cis-MEH-PPV to trans-MEH-PPV was 99/1 or more. As a result of analysis by GPC, the number average molecular weight was 6400, and the polydispersity was 2.36 (polystyrene basis).

(cis-[(S)-BMB]PPVの合成)
1,4-ビス(cis-2-ブロモエテニル)ベンゼン(126mg, 0.437mmol)、1,4-ビス[(S)-2-メチルブトキシ]-2,5-ベンゼンジボロン酸(149 mg, 0.437 mmol)、臭化テトラブチルアンモニウム(141mg, 0.437mmol) のトルエン溶液(4.4 mL) に、3Mのリン酸カリウム水溶液(0.44mL, 1.3mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(0.51mg, 0.44μmol)を加え、遮光条件下、80℃で24時間撹拌した。この反応溶液を室温まで冷却した後、撹拌したメタノール(50mL)中に注いだ。これにより析出した沈殿をろ過し、沈殿をメタノールで洗浄した。これにより、化学式(23)で表されるcis-[(S)-BMB]PPVが黄土色固体として得られた(159mg, 収率97%)。
この固体をCDCl3に溶解し、1H NMRの測定を行ったところ、cis-[(S)-BMB]PPVとtrans-[(S)-BMB]PPVの比率が99/1以上であることが確認された。また、GPCにより分析を行った結果、数平均分子量は2900、多分散度は1.60(ポリスチレン基準)であった。
(Synthesis of cis-[(S) -BMB] PPV)
1,4-bis (cis-2-bromoethenyl) benzene (126 mg, 0.437 mmol), 1,4-bis [(S) -2-methylbutoxy] -2,5-benzenediboronic acid (149 mg, 0.437 mmol) ), Tetrabutylammonium bromide (141 mg, 0.437 mmol) in toluene (4.4 mL), 3M aqueous potassium phosphate (0.44 mL, 1.3 mmol) and tetrakis (triphenylphosphine) palladium (0.51 mg, 0.44 μmol) And stirred at 80 ° C. for 24 hours under light-shielding conditions. The reaction solution was cooled to room temperature and then poured into stirred methanol (50 mL). The precipitate thus deposited was filtered, and the precipitate was washed with methanol. As a result, cis-[(S) -BMB] PPV represented by the chemical formula (23) was obtained as an ocherous solid (159 mg, yield 97%).
When this solid was dissolved in CDCl 3 and measured by 1 H NMR, the ratio of cis-[(S) -BMB] PPV to trans-[(S) -BMB] PPV was 99/1 or higher. Was confirmed. As a result of analysis by GPC, the number average molecular weight was 2900, and the polydispersity was 1.60 (polystyrene basis).

これらのポリ(アリーレンビニレン)は電圧を印加することにより発光させることができる。そのときの発光波長は、PPVでは510nm、PmPVでは450nm、PFVPVでは499nm、PFPVでは488nmである。   These poly (arylene vinylenes) can emit light by applying a voltage. The emission wavelengths at that time are 510 nm for PPV, 450 nm for PmPV, 499 nm for PPFPV, and 488 nm for PFPV.

(パターニング実験)
上記(cis-PPVの合成(2))で得られたcis-PPVを15wt%のクロロホルム溶液とし、石英ガラス基板(1cm×1cm×0.5mm)上に数滴垂らした後、800rpmで10秒間、続いて2000rpmで60秒間スピンキャストして、膜厚100〜200nmのcis-PPV膜を得た。これにより得られた基板を室温で30分間真空乾燥した後、膜上にフォトマスクを載置し、石英窓付きセル中に設置した。
セル内を窒素ガスでパージした後、高圧キセノンランプで紫外光(主波長365nm,照度260mW/cm2)を30分間照射した。その後基板を取り出し、直ちにクロロホルムで膜を洗浄した。
(Patterning experiment)
The cis-PPV obtained in the above (Synthesis of cis-PPV (2)) was made into a 15 wt% chloroform solution, dropped on a quartz glass substrate (1 cm x 1 cm x 0.5 mm), and then at 800 rpm for 10 seconds. Subsequently, spin casting was performed at 2000 rpm for 60 seconds to obtain a cis-PPV film having a thickness of 100 to 200 nm. The substrate thus obtained was vacuum-dried at room temperature for 30 minutes, and then a photomask was placed on the film and placed in a cell with a quartz window.
The cell was purged with nitrogen gas, and then irradiated with ultraviolet light (main wavelength 365 nm, illuminance 260 mW / cm 2 ) for 30 minutes with a high-pressure xenon lamp. Thereafter, the substrate was taken out and the membrane was immediately washed with chloroform.

これにより得られた膜の光学顕微鏡写真を図4に示す。図4からわかるように、本発明の導電性樹脂を用いれば、線幅が50μm以下のラインパターン(図4(a))、及び径が50μm以下のドットパターン(図4(b))を形成することが可能である。   An optical micrograph of the film thus obtained is shown in FIG. As can be seen from FIG. 4, when the conductive resin of the present invention is used, a line pattern having a line width of 50 μm or less (FIG. 4A) and a dot pattern having a diameter of 50 μm or less (FIG. 4B) are formed. Is possible.

なお、本実施例では紫外光の強度を260mW/cm2としたが、これよりも弱い紫外光強度(例えば35mW/cm2)でも本発明の導電性樹脂にパターンを形成することは可能である。

In this embodiment although the intensity of ultraviolet light and 260 mW / cm 2, it is possible to form a pattern weak ultraviolet light intensity than this (for example 35 mW / cm 2) in the conductive resin of any invention .

Claims (5)

残留パターンを形成するための導電性樹脂であって、
cis-ポリ(アリーレンビニレン)とtrans-ポリ(アリーレンビニレン)の比率が72/28以上であり、数平均分子量が1500〜30000であるポリ(アリーレンビニレン)(ただし、アリーレンは、アリーレン基以外に複素環化合物基も含む。)から成ることを特徴とする、光パターニングが可能な導電性樹脂。
A conductive resin for forming a residual pattern,
Poly (arylene vinylene) having a ratio of cis-poly (arylene vinylene) and trans-poly (arylene vinylene) of 72/28 or more and a number average molecular weight of 1500 to 30000 (however, arylene is complex in addition to arylene group) A conductive resin capable of photo-patterning, comprising a ring compound group.
ポリ(アリーレンビニレン)(ただし、アリーレンは、アリーレン基以外に複素環化合物基を含む。)のアリーレンが、化学式(1)〜(17)
で表される構造を有するか、又はこれらの誘導体のいずれかであることを特徴とする請求項1に記載の光パターニングが可能な導電性樹脂。
The arylene of poly (arylene vinylene) (wherein aryl includes a heterocyclic compound group in addition to the arylene group) is represented by the chemical formulas (1) to (17)
2. The conductive resin capable of photopatterning according to claim 1, wherein the conductive resin has a structure represented by: 1 or a derivative thereof.
cis-ポリ(アリーレンビニレン)とtrans-ポリ(アリーレンビニレン)の比率が72/28以上であり、数平均分子量が1500〜30000であるポリ(アリーレンビニレン)(ただし、アリーレンは、アリーレン基以外に複素環化合物基も含む。)を含有する樹脂膜の所定の領域に200〜600nmの光を照射した後、芳香族系又はハロゲン系又はエーテル系の有機溶媒を用いて光の未照射部分を該有機溶媒に溶出させて膜のパターニングを行うことを特徴とする、所定のパターンを有する導電性樹脂膜の製造方法。Poly (arylene vinylene) having a ratio of cis-poly (arylene vinylene) and trans-poly (arylene vinylene) of 72/28 or more and a number average molecular weight of 1500 to 30000 (however, arylene is complex in addition to arylene group) A predetermined region of the resin film containing the ring compound group) is irradiated with light of 200 to 600 nm, and then the non-irradiated portion of the light is irradiated with an organic solvent such as aromatic, halogen, or ether. A method for producing a conductive resin film having a predetermined pattern, wherein the film is patterned by elution with a solvent. 前記芳香族系又はハロゲン系又はエーテル系の有機溶媒が、ベンゼン、トルエン、クロロホルム、塩化メチレン、テトラヒドロフランのいずれかであることを特徴とする請求項3に記載の所定のパターンを有する導電性樹脂膜の製造方法。  4. The conductive resin film having a predetermined pattern according to claim 3, wherein the aromatic, halogen-based or ether-based organic solvent is any one of benzene, toluene, chloroform, methylene chloride, and tetrahydrofuran. Manufacturing method. 残留パターンを形成するための露光成形用樹脂であって、
cis-ポリ(アリーレンビニレン)とtrans-ポリ(アリーレンビニレン)の比率が72/28以上であり、数平均分子量が1500〜30000であるポリ(アリーレンビニレン)樹脂(ただし、アリーレンは、アリーレン基以外に複素環化合物基も含む。)から成ることを特徴とする露光成形用樹脂。
Exposure molding resin for forming a residual pattern,
A poly (arylene vinylene) resin having a ratio of cis-poly (arylene vinylene) to trans-poly (arylene vinylene) of 72/28 or more and a number average molecular weight of 1500 to 30000 (however, the arylene is in addition to the arylene group) A resin for exposure molding, comprising a heterocyclic compound group.
JP2005515628A 2003-11-21 2004-11-17 Conductive resin capable of optical patterning Expired - Fee Related JP5132057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515628A JP5132057B2 (en) 2003-11-21 2004-11-17 Conductive resin capable of optical patterning

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003393044 2003-11-21
JP2003393044 2003-11-21
JP2005515628A JP5132057B2 (en) 2003-11-21 2004-11-17 Conductive resin capable of optical patterning
PCT/JP2004/017090 WO2005049688A1 (en) 2003-11-21 2004-11-17 Conductive resin capable of photopatterning

Publications (2)

Publication Number Publication Date
JPWO2005049688A1 JPWO2005049688A1 (en) 2007-10-04
JP5132057B2 true JP5132057B2 (en) 2013-01-30

Family

ID=34616479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515628A Expired - Fee Related JP5132057B2 (en) 2003-11-21 2004-11-17 Conductive resin capable of optical patterning

Country Status (3)

Country Link
JP (1) JP5132057B2 (en)
TW (1) TW200517409A (en)
WO (1) WO2005049688A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238725A (en) * 2006-03-07 2007-09-20 Kyoto Univ Conductive resin enabling photo-insolubilization
WO2008140087A1 (en) * 2007-05-14 2008-11-20 Nippon Shokubai Co., Ltd. Composition for electroconductive resin, electroconductive resin film, and method for forming electroconductive resin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207619A (en) * 1981-06-17 1982-12-20 Asahi Glass Co Ltd Preparation of polyarylenevinylene
JPS57207618A (en) * 1981-06-17 1982-12-20 Asahi Glass Co Ltd Preparation of polyarylenevinylene
JPH0870138A (en) * 1994-08-29 1996-03-12 Hoechst Japan Ltd Patterning of polyallylenevinylene polymer thin film through irradiation with light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207619A (en) * 1981-06-17 1982-12-20 Asahi Glass Co Ltd Preparation of polyarylenevinylene
JPS57207618A (en) * 1981-06-17 1982-12-20 Asahi Glass Co Ltd Preparation of polyarylenevinylene
JPH0870138A (en) * 1994-08-29 1996-03-12 Hoechst Japan Ltd Patterning of polyallylenevinylene polymer thin film through irradiation with light

Also Published As

Publication number Publication date
WO2005049688A1 (en) 2005-06-02
JPWO2005049688A1 (en) 2007-10-04
TW200517409A (en) 2005-06-01
TWI374899B (en) 2012-10-21

Similar Documents

Publication Publication Date Title
Feser et al. Investigation of the photocross-linking mechanism in oxetane-functionalized semiconductors
JP5205258B2 (en) Irradiation crosslinking agent
JP2007067263A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JP2007088016A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, organic thin-film transistor, and organic electroluminescent element
JP2007088222A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin-film transistor
EP1710266B1 (en) Organic semiconductor material, organic transistor, field effect transistor, switching device and thiazole compound
JP5698759B2 (en) Cross-linking component
Leliege et al. Photopatternable electrochromic materials from oxetane precursors
JP4785529B2 (en) Method for purifying electroluminescent material, electroluminescent material, and electroluminescent device
McDowell et al. Synthesis and application of photolithographically patternable deep blue emitting poly (3, 6-dimethoxy-9, 9-dialkylsilafluorene) s
JP4785530B2 (en) Method for purifying electroluminescent material, electroluminescent material, and electroluminescent device
JP2007299852A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
JP5132057B2 (en) Conductive resin capable of optical patterning
Bouffard et al. Photopatterning of Poly (arylene dienylene) by the Photoacid-Catalyzed Deprotection− Elimination Reaction of a Precursor Polymer
JP5157079B2 (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
Ohshita et al. Preparation of Poly (silylene-p-phenylene) s Containing a Pendant Fluorophor and Their Applications to PL Imaging
Rodríguez-Cantó et al. In-situ synthesis of thiophene-based multifunctional polymeric networks with tunable conductivity and high photolithographic performance
Han et al. Synthesis, solid-phase reaction, optical properties, and patterning of luminescent polyfluorenes
JP5223337B2 (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
Jiang et al. Synthesis and characterization of blue-light-emitting poly (aryl ether) s containing oligofluorenes in the main chain
JP3984586B2 (en) Conjugate polymer pattern forming composition and pattern forming method using the same
JP2008078279A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
JP2005060602A (en) Method for manufacturing polymer and organic electronic device or organic thin-film transistor using the same
JP2006036959A (en) Conjugated compound and its polymer
JP2007081288A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic thin-film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees