JP5131965B2 - Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same - Google Patents
Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same Download PDFInfo
- Publication number
- JP5131965B2 JP5131965B2 JP2007241957A JP2007241957A JP5131965B2 JP 5131965 B2 JP5131965 B2 JP 5131965B2 JP 2007241957 A JP2007241957 A JP 2007241957A JP 2007241957 A JP2007241957 A JP 2007241957A JP 5131965 B2 JP5131965 B2 JP 5131965B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- sintered material
- based sintered
- electrodeposition coating
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 73
- 229910052742 iron Inorganic materials 0.000 title claims description 35
- 239000000463 material Substances 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 230000007797 corrosion Effects 0.000 title description 19
- 238000005260 corrosion Methods 0.000 title description 19
- 238000000576 coating method Methods 0.000 claims description 36
- 239000011248 coating agent Substances 0.000 claims description 33
- 238000004070 electrodeposition Methods 0.000 claims description 29
- 239000003973 paint Substances 0.000 claims description 16
- 125000002091 cationic group Chemical group 0.000 claims description 15
- 238000005480 shot peening Methods 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 10
- 230000003746 surface roughness Effects 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 7
- 229920000647 polyepoxide Polymers 0.000 claims description 7
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- 229920000178 Acrylic resin Polymers 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 13
- 239000011148 porous material Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- DPTATFGPDCLUTF-UHFFFAOYSA-N phosphanylidyneiron Chemical compound [Fe]#P DPTATFGPDCLUTF-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/20—Pretreatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/44—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
- C09D5/4488—Cathodic paints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/12—Electrophoretic coating characterised by the process characterised by the article coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Powder Metallurgy (AREA)
- Paints Or Removers (AREA)
Description
本発明は各種機械要素や機構部品として用いられる鉄系焼結材料およびその製造方法、特に、耐食性に優れる鉄系焼結材およびその表面処理技術に係り、屋外に設置されて耐食性を要求されるシリンダー錠装置用固定ケースとして好適な鉄系焼結材料およびその製造方法に関する。 The present invention relates to an iron-based sintered material used as various machine elements and mechanism parts and a method for producing the same, and more particularly to an iron-based sintered material having excellent corrosion resistance and its surface treatment technology, and is required to have corrosion resistance when installed outdoors. The present invention relates to a ferrous sintered material suitable as a fixing case for a cylinder lock device and a method for producing the same.
電着塗装により鉄系材料の表面に樹脂を被覆して耐食性に優れた機械要素などを製造する技術については、従来から種々の提案がなされている。また、特許文献1に開示されているように、鉄系金属粉の圧粉体を焼結した焼結部品本体の表面の空隙へカチオン電着塗装用の樹脂塗料を侵入させてコーティング層を形成することを特徴とした焼結部品などが知られている。 Conventionally, various proposals have been made on a technique for manufacturing a machine element having excellent corrosion resistance by coating a resin on the surface of an iron-based material by electrodeposition coating. In addition, as disclosed in Patent Document 1, a coating layer is formed by injecting a resin paint for cationic electrodeposition coating into the voids on the surface of a sintered part body obtained by sintering a green compact of iron-based metal powder. Sintered parts and the like characterized by the above are known.
しかしながら、10%以上の気孔を有する焼結材料に前記電着塗装を施すと、粗大な気孔部分にピンホール等の欠陥が発生し易く、屋外に設置されるシリンダー錠装置等の高い耐食性が要求される用途に適用する場合、耐食性が不充分である。 However, if the electrodeposition coating is applied to a sintered material having 10% or more pores, defects such as pinholes are likely to occur in coarse pores, and high corrosion resistance such as cylinder lock devices installed outdoors is required. Corrosion resistance is insufficient when applied to the intended use.
本発明の目的は、気孔を有する鉄系焼結材料の表面に、密着性に優れかつ欠陥の無い電着塗装被膜が形成された耐食性に優れる鉄系焼結材料およびその製造方法、特に、耐食性に優れる鉄系焼結部品により構成されるシリンダー錠装置およびその製造方法を提供することである。 An object of the present invention is to provide an iron-based sintered material excellent in corrosion resistance in which an electrodeposited coating film having excellent adhesion and no defects is formed on the surface of an iron-based sintered material having pores, and a manufacturing method thereof, in particular, corrosion resistance It is providing the cylinder locking device comprised with the iron-type sintered component which is excellent in and its manufacturing method.
本発明では、鉄系焼結材料の表面にショットピーニング加工により凹凸を形成し、かつ表面粗さをRaで0.5〜40μmとするとともに表層部を密度比90%以上に緻密化し、前記表面を電着塗装被膜で被覆したことを特徴とする。ここで表層部とは表面から1〜200μmの深さの範囲である。緻密化部分が1μm未満であると電着塗装工程で用いる処理液が内部の気孔まで浸透し、ピンホール等の塗膜の欠陥が発生しやすく、また200μmを超えるものは緻密化加工が困難である。なおRaはJIS B0601−1994に定義される算術平均粗さである。 In the present invention, irregularities are formed on the surface of the iron-based sintered material by shot peening, the surface roughness is 0.5 to 40 μm in Ra, and the surface layer portion is densified to a density ratio of 90% or more. Is coated with an electrodeposition coating film. Here, the surface layer portion is a range of a depth of 1 to 200 μm from the surface. When the densified part is less than 1 μm, the treatment liquid used in the electrodeposition coating process penetrates into the internal pores, and coating film defects such as pinholes are likely to occur, and those exceeding 200 μm are difficult to densify. is there. Ra is an arithmetic average roughness defined in JIS B0601-1994.
表面粗さがRaで0.5μmよりも小さいと、電着塗装被膜の密着性が低くなる。また、Raで40μmよりも大きいと、凹部において電着塗装被膜に欠陥が発生し易くなる。
また、表層部が密度比90%よりも低密度であると、焼結材料表面の気孔の露出量が多く、気孔部において電着塗装被膜にピンホール等の欠陥が発生し易くなる。
When the surface roughness Ra is less than 0.5 μm, the adhesion of the electrodeposition coating film is lowered. On the other hand, when Ra is larger than 40 μm, defects are likely to occur in the electrodeposition coating film in the recesses.
Further, when the surface layer portion has a density lower than 90%, the amount of exposed pores on the surface of the sintered material is large, and defects such as pinholes are likely to occur in the electrodeposition coating film in the pore portions.
電着塗装には、被塗装物を陽極とするアニオン電着塗装方式と、陰極とするカチオン電着塗装方式があるが、鉄系材料へのアニオン電着塗装には、被塗装物からの電気化学的な溶出等の問題があるため、カチオン電着塗装方式が好ましい。 There are two types of electrodeposition coating: the anion electrodeposition coating method with the workpiece as the anode and the cationic electrodeposition coating method with the cathode as the anode. Cationic electrodeposition coating is preferred because of problems such as chemical dissolution.
カチオン塗料には、エポキシ系樹脂塗料、アクリル系樹脂塗料等があるが、特に高い耐食性が要求される用途にはエポキシ系樹脂塗料とすることが好ましく、耐候性が要求される用途にはアクリル系樹脂塗料とすることが好ましい。 Cationic paints include epoxy resin paints and acrylic resin paints. Epoxy resin paints are preferred for applications that require particularly high corrosion resistance, and acrylic resins are used for applications that require weather resistance. It is preferable to use a resin paint.
鉄系焼結材料の表面にショットピーニング加工により凹凸を形成し、かつ表面粗さをRaで0.5〜40μmとして、電着塗装を施すと、表面の微小な凹凸に塗料が入り込み、密着性の良好な被膜を形成することができる。また、表層部を密度比90%以上に緻密化することによって、ピンホール等の欠陥の無い電着塗装被膜を形成することができる。なお、鉄系焼結材料の表面にショットピーニング加工を施すことにより、凹凸の形成と表層部の緻密化を同時に行うことができる。図2に表面に緻密化層2を設けた焼結体1aの模式図を示す。図1に示すような表面に緻密化層を設けていない焼結体1bと比べ、焼結体1aは気孔3の量が減少した緻密化層2を有するとともに、表面に微小な凹凸が形成されている。
電着塗装において、塗料粒子は電気泳動によって陰極である鉄系焼結材料の表面に移動して析出するが、この際に表面がショットピーニング加工により緻密化しているため、空隙によるピンホール等の塗膜の欠陥がなく、かつ微小な凹凸に塗料粒子が入り込むため、密着性に優れる樹脂被膜が形成される。
When irregularities are formed on the surface of an iron-based sintered material by shot peening and the surface roughness is 0.5 to 40 μm Ra, the coating enters the minute irregularities on the surface and adheres. A good film can be formed. Further, by densifying the surface layer portion to a density ratio of 90% or more, an electrodeposition coating film free from defects such as pinholes can be formed. In addition, by performing shot peening on the surface of the iron-based sintered material, it is possible to simultaneously form irregularities and densify the surface layer portion. FIG. 2 shows a schematic diagram of a sintered body 1a having a densified layer 2 on the surface. Compared with the sintered body 1b in which the densified layer is not provided on the surface as shown in FIG. 1, the sintered body 1a has the densified layer 2 in which the amount of pores 3 is reduced, and minute irregularities are formed on the surface. ing.
In electrodeposition coating, the paint particles move to the surface of the iron-based sintered material, which is the cathode, by electrophoresis and are deposited. At this time, the surface is densified by shot peening. Since there are no defects in the coating film and the paint particles enter into minute irregularities, a resin coating having excellent adhesion is formed.
上記の方法で作製した鉄系焼結材料は耐食性に優れ各種機械要素や機構部品材料として用いられるが、特にシリンダー錠装置用固定ケースに用いることにより、屋外等の苛酷な環境で使用するために要求される高い耐食性が得られ好適である。 The iron-based sintered material produced by the above method has excellent corrosion resistance and is used as a material for various machine elements and mechanical parts. Especially, it can be used in a harsh environment such as outdoors by using it as a fixing case for a cylinder lock device. The required high corrosion resistance is obtained and suitable.
以下に、実施例により本発明をさらに説明する。 The following examples further illustrate the present invention.
鉄基合金粉末に、0.6質量%の黒鉛粉末および成形潤滑剤として0.8質量%のステアリン酸亜鉛粉末を混合した原料粉末を成形用金型に充填し、成形圧力400MPaで圧縮成形し、得られた圧粉体を分解アンモニアガス雰囲気中で焼結して鉄系焼結材料を得た。なお、前記鉄基合金粉末は、0.5質量%のNi、0.5質量%のMoおよび残部が鉄からなるアトマイズ鉄基合金粉末とした。
上記の鉄系焼結材料の表面にショットピーニング加工を施し、微小な凹凸を形成して表面粗さをRaで0.5、5、10、20および40μmとするとともに表層部の最表面から少なくとも5μmの深さまで密度比90%に緻密化した。
更に、その表面にカチオン電着によりエポキシ系樹脂塗料を被覆した。このカチオン電着の工程は、以下の通りである。
第一工程として鉄系焼結材料の脱脂と水洗を行い、第二工程として化成被膜処理と水洗を行った。次に第三工程としてカチオン電着塗装による鉄系焼結材料の表面へエポキシ系樹脂塗料の付着と水洗を行った。さらに第四工程として190〜230℃で焼き付け、乾燥を行った。
[比較例1]
A raw material powder obtained by mixing iron-based alloy powder with 0.6% by mass of graphite powder and 0.8% by mass of zinc stearate powder as a molding lubricant is filled in a molding die and compression molded at a molding pressure of 400 MPa. The obtained green compact was sintered in a decomposed ammonia gas atmosphere to obtain an iron-based sintered material. The iron-based alloy powder was an atomized iron-based alloy powder made of 0.5 mass% Ni, 0.5 mass% Mo, and the balance being iron.
The surface of the iron-based sintered material is subjected to shot peening processing to form minute irregularities so that the surface roughness is 0.5, 5, 10, 20, and 40 μm in Ra and at least from the outermost surface of the surface layer portion Densification to 90% density to a depth of 5 μm.
Further, an epoxy resin coating was applied to the surface by cationic electrodeposition. This cationic electrodeposition process is as follows.
As the first step, the iron-based sintered material was degreased and washed with water, and as the second step, a chemical conversion coating treatment and washed with water were performed. Next, as a third step, the epoxy resin coating was adhered to the surface of the iron-based sintered material by cationic electrodeposition coating and washed with water. Furthermore, it baked at 190-230 degreeC as a 4th process, and performed drying.
[Comparative Example 1]
比較例1ではショットピーニング加工により凹凸を形成して表面粗さをRaで50μmとしたことを除き、実施例1と同じ製法で試料を作製した。
[比較例2]
In Comparative Example 1, a sample was produced by the same manufacturing method as in Example 1 except that irregularities were formed by shot peening and the surface roughness was Ra of 50 μm.
[Comparative Example 2]
比較例2ではショットピーニング加工により表面から5μmまでの表層部を密度比88%としたことを除き、実施例1と同じ製法で試料を作製した。なお、表面粗さはRaで5μmとした。 In Comparative Example 2, a sample was produced by the same manufacturing method as Example 1 except that the surface layer portion from the surface to 5 μm was made into a density ratio of 88% by shot peening. The surface roughness Ra was 5 μm.
(耐食性評価)
作製した試料につき、キャス試験(JIS H8502等)による耐食性評価を行った結果を表1に示す。試験時間は96時間とした。なお、表1に示した試料No.1〜5が実施例1、No.6が比較例1、No.7が比較例2に関するものである。比較例1および2の試料には赤錆の発生が認められたのに対し、本発明の鉄系焼結材料には赤錆の発生が全く無く、優れた耐食性を示すことが確認された。
(Corrosion resistance evaluation)
Table 1 shows the results of the corrosion resistance evaluation by the cast test (JIS H8502 etc.) for the prepared samples. The test time was 96 hours. In addition, the sample No. shown in Table 1 was used. 1 to 5 are those of Example 1, No. 1; 6 is Comparative Example 1, No. 6; Reference numeral 7 relates to Comparative Example 2. While generation of red rust was observed in the samples of Comparative Examples 1 and 2, it was confirmed that the iron-based sintered material of the present invention had no red rust and exhibited excellent corrosion resistance.
図3に示すようなシリンダー錠装置の固定ケース本体4用の成形体を、銅粉末1.5質量%、黒鉛粉末0.8質量%、ステアリン酸亜鉛粉末0.75質量%および残部の鉄粉末からなる混合粉末を、粉末成形用金型を用いて600MPaの成形圧力で圧縮成形して作製した。
固定ケースの前面部の防護板5用の成形体を、Cr、Mo、WおよびVを含有する鉄基合金粉末、鉄−リン合金粉末および鉄粉末を、全体組成が、Cr:4.0質量%、Mo:0.5質量%、W:0.5質量%、V:0.3質量%、P:0.5質量%およびFe:残部となるように混合し、この混合粉末に黒鉛粉末1.5質量%、ステアリン酸亜鉛粉末0.75質量%を添加混合した粉末を、粉末成形用金型を用いて600MPaの成形圧力で圧縮成形して作製した。
固定ケース本体4用の成形体には防護板5を接合する面に環状の凹部6を設けた。前記凹部6に防護板用の成形体を嵌合し、防護板を上側にしてセラミックス板に載置し、分解アンモニアガス雰囲気中、1140℃で焼結すると同時に接合した。接合した焼結素材を図4に示すような形状に切削加工した。
加工した素材を浸炭性ガス雰囲気中、850℃で1時間保持した後、油中で急冷して焼き入れし、180℃で1時間保持して焼き戻しを行った。次にショットピーニング加工により、表面から少なくとも5μmの深さまで密度比90%以上に緻密化し、その表面粗さをRaで0.5〜40μmとした。さらにカチオン電着塗装によりエポキシ系樹脂塗料を被覆した。このカチオン電着は、実施例1と同様の処理を施した。
上記の方法で作製した固定ケース4を用い、図5に示す構造のシリンダー錠装置7を組み立てた。
The molded product for the fixed
The molded body for the
The molded body for the fixed
The processed material was held in a carburizing gas atmosphere at 850 ° C. for 1 hour, then quenched in oil and quenched, and held at 180 ° C. for 1 hour for tempering. Next, it was densified to a density ratio of 90% or more from the surface to a depth of at least 5 μm by shot peening, and its surface roughness was Ra to 0.5 to 40 μm. Furthermore, an epoxy resin coating was applied by cationic electrodeposition coating. This cationic electrodeposition was performed in the same manner as in Example 1.
A cylinder lock device 7 having the structure shown in FIG. 5 was assembled using the fixed
上記シリンダー錠装置につき、キャス試験による耐食性評価を行った。この耐食性評価の結果、本発明のシリンダー錠装置用固定ケースを用いたシリンダー錠装置には、いずれも赤錆の発生が全く無く、本発明のシリンダー錠装置用固定ケースを用いることにより、優れた耐食性を示すシリンダー錠装置が得られることが確認された。 The cylinder lock device was evaluated for corrosion resistance by a cast test. As a result of this corrosion resistance evaluation, none of the cylinder lock devices using the cylinder lock device fixing case of the present invention has red rust, and by using the cylinder lock device fixing case of the present invention, excellent corrosion resistance is obtained. It was confirmed that a cylinder locking device showing
本発明は、気孔を有する鉄系焼結材料の表面に、密着性に優れかつ欠陥の無い電着塗装被膜が形成された耐食性に優れる鉄系焼結材料およびその製造方法、特に、耐食性に優れる鉄系焼結部品により構成されるシリンダー錠装置およびその製造方法を提供する。 The present invention provides an iron-based sintered material excellent in corrosion resistance in which an electrodeposited coating film having excellent adhesion and a defect is formed on the surface of an iron-based sintered material having pores, and a manufacturing method thereof, and in particular, excellent in corrosion resistance. Provided are a cylinder locking device composed of iron-based sintered parts and a method for manufacturing the same.
1a 焼結体(表面緻密化後)
1b 焼結体(表面緻密化前)
2 緻密化層
3 気孔
4 固定ケース
5 防護板
6 環状凹部
7 シリンダー錠装置
1a Sintered body (after surface densification)
1b Sintered body (before surface densification)
2 Densified layer 3
Claims (10)
A method for producing a fixed case for a cylinder lock device, comprising an iron-based sintered material produced by the production method according to claim 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241957A JP5131965B2 (en) | 2007-09-19 | 2007-09-19 | Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same |
DE102008047823A DE102008047823A1 (en) | 2007-09-19 | 2008-09-18 | An iron-based sintered material superior in corrosion resistance, a cylinder lock device mounting housing made thereof and a manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241957A JP5131965B2 (en) | 2007-09-19 | 2007-09-19 | Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009074113A JP2009074113A (en) | 2009-04-09 |
JP5131965B2 true JP5131965B2 (en) | 2013-01-30 |
Family
ID=40418359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007241957A Expired - Fee Related JP5131965B2 (en) | 2007-09-19 | 2007-09-19 | Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5131965B2 (en) |
DE (1) | DE102008047823A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6087042B2 (en) | 2010-09-30 | 2017-03-01 | 日立化成株式会社 | Method for manufacturing sintered member |
FR2978687B1 (en) * | 2011-08-05 | 2013-08-02 | Snecma | PROCESS FOR FINISHING PARTS PRODUCED IN METALLURGY OF POWDERS BY DEPOSITION OF A COATING |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0598312A (en) * | 1991-10-03 | 1993-04-20 | Sumitomo Electric Ind Ltd | Surface treatment of sintered stainless steel part |
SE9602376D0 (en) * | 1996-06-14 | 1996-06-14 | Hoeganaes Ab | Compact body |
JP2004190105A (en) * | 2002-12-12 | 2004-07-08 | Mitsubishi Materials Corp | Sintered part for engine and manufacturing method therefor |
-
2007
- 2007-09-19 JP JP2007241957A patent/JP5131965B2/en not_active Expired - Fee Related
-
2008
- 2008-09-18 DE DE102008047823A patent/DE102008047823A1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
DE102008047823A1 (en) | 2009-04-09 |
JP2009074113A (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4115826B2 (en) | Iron-based sintered body excellent in aluminum alloy castability and manufacturing method thereof | |
JP5843291B2 (en) | Composite sprayed coating | |
EP2233534A1 (en) | Method for producing a protective coating for a component of a turbomachine, the component itself and the respective machine | |
JP5131965B2 (en) | Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same | |
CN110241412B (en) | Laminated coating self-lubricating bearing and preparation method thereof | |
EP2339045B1 (en) | Wear resistant device and process therefor | |
Tay et al. | Laser sintered rapid tools with improved surface finish and strength using plating technology | |
CN113574208B (en) | Object comprising a chromium-based coating on a substrate | |
JP2009074114A (en) | Iron-based sintered material superior in corrosion resistance, fixing case for cylinder lock device made from the material, and method for manufacturing them | |
JPH10298607A (en) | Production of ferrous sintered alloy, ferrous sintered alloy produced thereby and bearing cap | |
TW200424364A (en) | Iron based part and production method for the same | |
US11680499B2 (en) | Sliding member | |
CN104264150B (en) | TiN coating die with good wear resistance and fatigue performance | |
CA2371439C (en) | H-bn modified p/m stainless steels | |
RU2401720C1 (en) | Method of producing article from multilayer solid alloy based on tungsten carbide | |
García-Cabezón et al. | Using fused filament fabrication to improve the tribocorrosion behaviour of 17-4 PH SS in comparison to other metal forming techniques | |
Palaksha Reddy et al. | Workability and corrosion behavior studies on sintered iron‐based hybrid powder metallurgy alloys | |
JPWO2018193982A1 (en) | Thermal spray coating, laminated tube, and method of manufacturing thermal spray coating | |
JP2001214207A (en) | Sintered alloy and hardening treating method therefor | |
CN203236962U (en) | Wheel hub unit for automobile | |
JP2004190105A (en) | Sintered part for engine and manufacturing method therefor | |
JP2023118127A (en) | Pore sealing treatment agent, cured object, spray coated article, and manufacturing method of spray coated article | |
US20150196956A1 (en) | Sintered and carburized porous stainless steel part and method thereof | |
JP2005060720A (en) | Aluminum-based member, its production method, and surface treatment method for aluminum-based member | |
JP2006000952A (en) | Method of machining sintered magnetic substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121030 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |