JP5131448B2 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
JP5131448B2
JP5131448B2 JP2007251218A JP2007251218A JP5131448B2 JP 5131448 B2 JP5131448 B2 JP 5131448B2 JP 2007251218 A JP2007251218 A JP 2007251218A JP 2007251218 A JP2007251218 A JP 2007251218A JP 5131448 B2 JP5131448 B2 JP 5131448B2
Authority
JP
Japan
Prior art keywords
steam
once
control
boiler
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007251218A
Other languages
Japanese (ja)
Other versions
JP2009079875A (en
Inventor
靖 田渕
義尚 岸根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007251218A priority Critical patent/JP5131448B2/en
Publication of JP2009079875A publication Critical patent/JP2009079875A/en
Application granted granted Critical
Publication of JP5131448B2 publication Critical patent/JP5131448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃焼量を段階的に制御可能な複数台の貫流ボイラを並列に備えた蒸気発生装置に係り、上記貫流ボイラからの蒸気が供給される負荷の変動に追従させて前記各貫流ボイラの燃焼量を最適に制御することのできる蒸気発生装置に関する。   The present invention relates to a steam generator provided in parallel with a plurality of once-through boilers capable of controlling the combustion amount in stages, and each of the once-through boilers is made to follow fluctuations in a load supplied with steam from the once-through boiler. The present invention relates to a steam generator capable of optimally controlling the amount of combustion of the gas.

飲料や液状食品等(液状製品)の滅菌処理に供される滅菌機は、蒸気を用いて上記液状製品を加熱するように構成される。ちなみに滅菌器における液状製品の滅菌温度は、該滅菌機を通流させる液状製品の供給量と該滅菌機への蒸気供給量とによって変化する。そこで一般的には蒸気発生装置から出力される蒸気の圧力(蒸気圧)を前記滅菌機(負荷)の運転条件に応じて一定化制御し、これによって前記液状製品に対する滅菌温度の安定化を図るようにしている。   Sterilizers used for sterilization of beverages, liquid foods, etc. (liquid products) are configured to heat the liquid products using steam. Incidentally, the sterilization temperature of the liquid product in the sterilizer varies depending on the supply amount of the liquid product to be passed through the sterilizer and the steam supply amount to the sterilizer. Therefore, generally, the pressure (steam pressure) of steam output from the steam generator is controlled to be constant according to the operating conditions of the sterilizer (load), thereby stabilizing the sterilization temperature for the liquid product. I am doing so.

ちなみに大容量の普通ボイラを用いた蒸気発生装置では、上記ボイラにて発生させた高圧の蒸気を減圧弁を介して減圧することで、安定化した一定圧力の蒸気を得ている。しかし減圧弁を用いて蒸気圧を減圧する分、ボイラにて発生させる蒸気の圧力を高くすることが必要であり、エネルギの無駄が生じることが否めない。そこで小容量の貫流ボイラを複数台用い、必要とする蒸気量に応じて上記複数台の貫流ボイラを選択的に運転することが行われている(例えば特許文献1,2を参照)。この制御はボイラの運転台数制御と称される。また上記貫流ボイラは、一般的にはそのバーナ燃焼量を2段階または3段階に切り替え可能なことから、必要とする蒸気量に応じて上記各貫流ボイラの燃焼量を1台毎にそれぞれ段階的に制御することも行われている。
特開2004−317105号公報 特開2006−317104号公報
Incidentally, in a steam generator using a large-capacity ordinary boiler, stabilized high-pressure steam is obtained by reducing the pressure of high-pressure steam generated by the boiler via a pressure reducing valve. However, it is necessary to increase the pressure of the steam generated by the boiler as much as the steam pressure is reduced by using the pressure reducing valve, and it is undeniable that energy is wasted. Therefore, a plurality of once-through boilers having a small capacity are used, and the plurality of once-through boilers are selectively operated according to the required amount of steam (see, for example, Patent Documents 1 and 2). This control is referred to as boiler operation number control. The once-through boiler is generally capable of switching the burner combustion amount between two stages or three stages, so that the amount of combustion in each of the once-through boilers is step by step according to the required amount of steam. It is also being controlled.
JP 2004-317105 A JP 2006-317104 A

ところで複数台の貫流ボイラの運転台数を制御しながら、各貫流ボイラの燃焼量をそれぞれ段階的に制御する場合、全体的には略連続的に燃焼量を制御し得る。しかしこれらの貫流ボイラは1台毎に独立しているので、例えばその燃焼量を一段階増やす場合、停止中の貫流ボイラを再着火しなければならない状態が起こり得る。しかも再着火しようとする貫流ボイラが冷缶状態であると、着火から蒸気が得られるまでに時間が掛かることが否めない。このような貫流ボイラの燃焼特性は、フィードバック制御から見ると無駄時間遅れを含んだ制御特性であり、一般的にはその燃焼制御が非常に困難である。   By the way, when controlling the amount of combustion of each once-through boiler while controlling the number of operation of a plurality of once-through boilers, the amount of combustion can be controlled almost continuously as a whole. However, since each of these once-through boilers is independent, for example, when the combustion amount is increased by one stage, there may occur a state where the stopped once-through boiler must be reignited. Moreover, if the once-through boiler to be re-ignited is in the cold can state, it cannot be denied that it takes time until the steam is obtained from the ignition. The combustion characteristics of such a once-through boiler are control characteristics including a dead time delay from the viewpoint of feedback control, and in general, the combustion control is very difficult.

また各貫流ボイラは、前述したようにそれぞれ段階的にしかその燃焼量を制御することができない。これ故、負荷変動に追従させて上記貫流ボイラの燃焼量をフィードバック制御する場合、一般的には段階的な燃焼制御の下で生成された蒸気の圧力(負荷蒸気圧)と目標蒸気圧との間にずれ(偏差)が生じることが否めない。従って貫流ボイラは目標蒸気圧を上回る蒸気を生成し得る燃焼量と、この燃焼量よりも1段階下の上記目標蒸気圧を下回る蒸気を生成し得る燃焼量との間で交互に燃焼制御される。この結果、負荷蒸気圧は上記目標蒸気圧を挟んで短い周期で交互に変化し、その負荷蒸気圧を時間的に平均化したときに、その圧力が目標蒸気圧となるように制御される。   Each once-through boiler can control the amount of combustion only in a stepwise manner as described above. Therefore, when feedback control is performed for the combustion amount of the once-through boiler following the load fluctuation, generally, the pressure of the steam (load steam pressure) generated under the stepwise combustion control and the target steam pressure There is no denying that there is a gap between them. Accordingly, the once-through boiler is alternately controlled between a combustion amount capable of generating steam exceeding the target steam pressure and a combustion amount capable of generating steam lower than the target steam pressure one stage lower than the combustion amount. . As a result, the load vapor pressure is alternately changed in a short cycle with the target vapor pressure interposed therebetween, and when the load vapor pressure is averaged over time, the load vapor pressure is controlled to become the target vapor pressure.

しかしながら前述したように貫流ボイラは無駄時間遅れ要素を含んでいるので、上述したように貫流ボイラの燃焼量をフィードバック制御するとオーバーシュートが発生し易くなり、蒸気圧の変動が大きくなると言う不具合が生じる。更にはその制御ゲインを高くすると、つまり圧力制御幅を狭くすると僅かな圧力変動を端緒として脱調(発振)する可能性が高くなる。   However, as described above, since the once-through boiler includes a dead time delay element, if the amount of combustion of the once-through boiler is feedback-controlled as described above, overshoot is likely to occur, resulting in a problem that the fluctuation of the steam pressure increases. . Furthermore, if the control gain is increased, that is, if the pressure control width is narrowed, the possibility of step-out (oscillation) starting from slight pressure fluctuation increases.

本発明はこのような事情を考慮してなされたもので、その目的は、燃焼量が段階的に制御可能な複数台の貫流ボイラの燃焼量を、上記貫流ボイラから負荷に供給する蒸気の圧力に応じてフィードバック制御する蒸気発生装置であって、制御の脱調(発振)を招来することなく負荷変動に対して前記負荷蒸気圧を安定に追従制御することのできる制御系を備えた蒸気発生装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide the pressure of steam to supply the combustion amount of a plurality of once-through boilers whose combustion amount can be controlled in stages to the load from the once-through boiler. Steam generating apparatus that performs feedback control according to the control, and has a control system capable of stably following and controlling the load steam pressure against load fluctuations without causing control out-of-step (oscillation) To provide an apparatus.

上述した目的を達成するべく本発明に係る蒸気発生装置は、並列に設けられた複数台の貫流ボイラと、これらの貫流ボイラにて生成された蒸気を統合して出力する蒸気ヘッダと、この蒸気ヘッダから負荷に供給される蒸気圧に応じて前記各貫流ボイラの発生蒸気量を制御する制御装置とを具備したものであって、
前記制御装置は、前記複数台の貫流ボイラを2つのボイラ群に分けて、一方のボイラ群の燃焼量を前記貫流ボイラでの発生蒸気量の変化に伴う前記蒸気圧の変化に応じて制御する第1の制御系と、他方のボイラ群の燃焼量を前記負荷の変動に伴う前記蒸気圧の変化に応じて制御する第2の制御系とを備えることを特徴としている。
In order to achieve the above-mentioned object, a steam generator according to the present invention includes a plurality of once-through boilers provided in parallel, a steam header that outputs steam generated by these once-through boilers, and the steam. A controller for controlling the amount of steam generated by each once-through boiler according to the steam pressure supplied from the header to the load,
The control device divides the plurality of once-through boilers into two boiler groups, and controls the combustion amount of one of the boiler groups in accordance with the change in the steam pressure accompanying the change in the amount of steam generated in the once-through boiler. A first control system and a second control system for controlling the combustion amount of the other boiler group according to the change in the vapor pressure accompanying the change in the load are provided.

ちなみに前記第1の制御系は、前記負荷に供給される蒸気圧と目標蒸気圧との偏差に応じて前記一方のボイラ群の燃焼量をP制御(比例制御)またはPD制御(比例・微分制御)する第1のPID制御器を用いて実現され、また前記第2の制御系は、前記負荷に供給される蒸気圧と前記目標蒸気圧との偏差に応じて前記他方のボイラ群の燃焼量をPI制御(比例・積分制御)する第2のPID制御器を用いて実現される。   Incidentally, the first control system uses P control (proportional control) or PD control (proportional / differential control) for the combustion amount of the one boiler group in accordance with the deviation between the steam pressure supplied to the load and the target steam pressure. The second control system is realized by using a first PID controller, and a combustion amount of the other boiler group according to a deviation between a steam pressure supplied to the load and the target steam pressure. Is realized using a second PID controller that performs PI control (proportional / integral control).

また前記各貫流ボイラは、燃焼量を多段に制御可能なバーナを備えたものであって、前記第1および第2の制御系は、前記負荷に供給すべき蒸気圧に応じて前記複数台の貫流ボイラの運転台数を制御すると共に、各貫流ボイラの燃焼量を段階的に制御するように構成される。
そして前記第1の制御系により燃焼量が制御されるボイラ群は、常時着火状態にある少なくとも1台の貫流ボイラからなり、また前記第2の制御系により燃焼量が制御されるボイラ群は、前記複数台の貫流ボイラ中の残された貫流ボイラであって、選択的に着火・停止されて運転台数の制御に供されるものからなる。
Each of the once-through boilers is provided with a burner capable of controlling the combustion amount in multiple stages, and the first and second control systems have the plurality of units according to the vapor pressure to be supplied to the load. The number of operating once-through boilers is controlled, and the combustion amount of each once-through boiler is controlled stepwise.
The boiler group whose combustion amount is controlled by the first control system is composed of at least one once-through boiler that is constantly ignited, and the boiler group whose combustion amount is controlled by the second control system is: The remaining once-through boilers in the plurality of once-through boilers are selectively fired and stopped and used for controlling the number of operating units.

尚、前記負荷は、例えば流量調整バルブを介して蒸気が供給され、液状製品が通流する管路を通して上記液状製品を加熱滅菌する滅菌機からなる。   The load comprises a sterilizer that heats and sterilizes the liquid product through a conduit through which the liquid product flows, for example, via a flow rate adjusting valve.

本発明によれば2つに分けたボイラ群の一方を、貫流ボイラでの発生蒸気量の変化に伴う蒸気圧の変化に応じて制御することで該貫流ボイラの段階的な燃焼制御に伴う蒸気圧の変動を小さく抑えるので、負荷変動に伴う蒸気圧の変化に応じて他方のボイラ群の燃焼を制御する制御系への影響を抑えることができる。この結果、高い制御ゲインの下で前記一方のボイラ群を応答性良く制御しながら、他方のボイラ群を制御時間遅れを伴いながらも安定に燃焼制御することが可能となる。   According to the present invention, one of the two groups of boilers is controlled according to the change in the steam pressure accompanying the change in the amount of steam generated in the once-through boiler, whereby the steam accompanying the stepwise combustion control of the once-through boiler. Since the pressure fluctuation is kept small, it is possible to suppress the influence on the control system that controls the combustion of the other boiler group in accordance with the change in the steam pressure accompanying the load fluctuation. As a result, the one boiler group can be controlled with high responsiveness under a high control gain, and the other boiler group can be stably controlled with a control time delay.

より具体的には、常時燃焼状態にある少なくとも1台の貫流ボイラ(一方のボイラ群)を用いて圧力制御幅の狭いP制御(比例制御)を実行すると共に、必要に応じて不本意な圧力変動を抑制するべくD制御(微分制御)を実行するので、負荷に対する蒸気量の過不足に起因して蒸気圧が変動した場合には速やかに貫流ボイラの燃焼量を制御し、負荷蒸気圧を一定化することができる。その上で負荷が変動した場合には、これに伴う負荷蒸気圧の変動に応じて前記他のボイラ群の燃焼状態、即ち、他のボイラ群に含まれる複数台の貫流ボイラの運転台数と各貫流ボイラの段階的な燃焼量を制御するので、負荷の変動に追従させて負荷蒸気圧を滑らかに制御することが可能となる。この場合、制御応答の遅れを見込んでI制御(積分制御)を主体としたフィードバック制御を実行することで、制御量を急激に変えることなく燃焼量を制御してその発生蒸気量を負荷の変動に追従させることが可能となる。   More specifically, P control (proportional control) with a narrow pressure control width is performed using at least one once-through boiler (one boiler group) that is always in a combustion state, and unintentional pressure is used as necessary. Since D control (differential control) is executed to suppress the fluctuation, when the steam pressure fluctuates due to the excess or deficiency of the steam amount with respect to the load, the combustion amount of the once-through boiler is quickly controlled, and the load steam pressure is reduced. Can be constant. In addition, when the load fluctuates, the combustion state of the other boiler group in accordance with the fluctuation of the load steam pressure accompanying this, that is, the number of operation of a plurality of once-through boilers included in the other boiler group and each Since the stepwise combustion amount of the once-through boiler is controlled, it is possible to smoothly control the load steam pressure by following the fluctuation of the load. In this case, the control of the combustion amount is controlled without abruptly changing the control amount by executing the feedback control mainly based on the I control (integral control) in anticipation of the delay in the control response, and the generated steam amount is fluctuated in the load. It becomes possible to follow.

従って段階的な燃焼制御しかできない複数台の貫流ボイラを用いると雖も、またこれらの貫流ボイラの運転台数を制御すると雖も、負荷状態に応じた極めの細かい燃焼制御によって、負荷状態の変化に追従した蒸気圧を安定に得ることが可能となる。従って負荷の作動状態を安定に保つことができる。   Therefore, when using multiple once-through boilers that can only perform stepwise combustion control, and when controlling the number of operating these once-through boilers, it is possible to control changes in the load state through extremely fine combustion control according to the load state. It becomes possible to stably obtain the following vapor pressure. Accordingly, the operating state of the load can be kept stable.

以下、図面を参照して本発明の一実施形態に係る蒸気発生装置について説明する。
図1は蒸気を用いて液状製品を滅菌処理する滅菌システムの概略構成図であって、10は蒸気を発生する蒸気発生装置、20は上記蒸気発生装置10の負荷となる滅菌機である。この滅菌器20は、流量調整バルブ21を介して流量調整されて供給される液状製品を通流する管路22と、この管路22に沿って設けられ、流量調整バルブ23を介して流量調整されて供給される蒸気を通流して前記管路22内を通流する上記液状製品を加熱する蒸気パイプ24とを備えたものからなる。
Hereinafter, with reference to drawings, the steam generator concerning one embodiment of the present invention is explained.
FIG. 1 is a schematic configuration diagram of a sterilization system for sterilizing a liquid product using steam, in which 10 is a steam generator for generating steam, and 20 is a sterilizer serving as a load for the steam generator 10. The sterilizer 20 is provided along a conduit 22 through which the liquid product supplied with the flow rate adjusted via a flow rate adjusting valve 21 is supplied, and the flow rate adjusted via the flow rate adjusting valve 23. And a steam pipe 24 for heating the liquid product flowing through the pipe 22 through the supplied steam.

本発明に係る蒸気発生装置10は、上述した滅菌器20に蒸気を供給することで該滅菌器20を駆動するものであり、基本的には並列に設けられた複数台の貫流ボイラ11a〜11nを備え、蒸気ヘッダ12を用いて上記各貫流ボイラ11a〜11nが生成した蒸気を統合して(まとめて)出力するように構成される。尚、蒸気ヘッダ12から前述した滅菌機(負荷)10に供給される蒸気の圧力(負荷蒸気圧)は圧力計13にて検出され、制御機14による前記各貫流ボイラ11a〜11nの燃焼制御に供される。   The steam generator 10 according to the present invention drives the sterilizer 20 by supplying steam to the sterilizer 20 described above, and basically a plurality of once-through boilers 11a to 11n provided in parallel. The steam generated by each of the once-through boilers 11a to 11n using the steam header 12 is integrated (collectively) and output. Note that the pressure of the steam (load steam pressure) supplied from the steam header 12 to the sterilizer (load) 10 described above is detected by a pressure gauge 13, and the controller 14 controls the combustion of each of the once-through boilers 11a to 11n. Provided.

ちなみに上記各貫流ボイラ11a〜11nは、例えば1時間当たり最大2.5t程度の蒸気を発生させることで最大1.0MPa程度の蒸気圧を生成可能な、いわゆる小容量型のものである。また上記貫流ボイラ11a〜11nは、一般的には、例えば100%燃焼と50%燃焼との2段階に、或いは100%燃焼,66%燃焼,33%燃焼の3段階にその燃焼量が制御可能に構成される。尚、停止(消火)を含めて3段階、4段階に燃焼量が制御可能であるとも言える。   Incidentally, each of the once-through boilers 11a to 11n is a so-called small capacity type capable of generating a steam pressure of about 1.0 MPa at maximum by generating, for example, steam of up to about 2.5 t per hour. The once-through boilers 11a to 11n can generally control the amount of combustion in two stages, for example, 100% combustion and 50% combustion, or in three stages of 100% combustion, 66% combustion, and 33% combustion. Configured. It can be said that the combustion amount can be controlled in three stages and four stages including stop (fire extinguishing).

さて本発明の実施形態に係る蒸気発生装置10は、上述した複数台の貫流ボイラ11a〜11nを、常時着火状態に保たれる少なくとも1台の貫流ボイラからなる第1のボイラ群Aと、残りの貫流ボイラであって負荷状態に応じて停止・着火されて運転台数制御に供される第2のボイラ群Bとに分け、これらの各ボイラ群A,Bの燃焼量を前記圧力計13にて検出される負荷蒸気圧に応じてそれぞれ制御することを特徴としている。特に上記第1のボイラ群Aを目標蒸気圧と負荷蒸気圧との偏差に応じてP制御(比例制御)、若しくはPD制御(比例微分制御)する第1の制御系14aと、また第2のボイラ群Bを前記目標蒸気圧と負荷蒸気圧との偏差に応じてPI制御(比例積分制御)する第2の制御系14bとを備えたことを特徴としている。   Now, the steam generator 10 according to the embodiment of the present invention includes a first boiler group A including at least one once-through boiler in which the above-described plurality of once-through boilers 11a to 11n are always kept in an ignition state, and the rest. Divided into a second boiler group B which is stopped and ignited according to the load state and used for operation number control, and the combustion amount of each of these boiler groups A and B is transferred to the pressure gauge 13 Control is performed according to the load vapor pressure detected in this manner. In particular, a first control system 14a that performs P control (proportional control) or PD control (proportional derivative control) on the first boiler group A according to a deviation between the target steam pressure and the load steam pressure, and a second control system 14a The boiler group B includes a second control system 14b that performs PI control (proportional integral control) in accordance with a deviation between the target steam pressure and the load steam pressure.

即ち、図2にボイラの圧力制御のブロックダイヤグラムを示すように、複数台の貫流ボイラ11a〜11n(第1および第2のボイラ群A,B)にて生成された蒸気は、蒸気ヘッダ13を介して統合されて送り出される。このようにして負荷に送り出される蒸気の圧力は、その配管系の容量や各ボイラにおけるバーナ(図示せず)の着火・燃焼遅れ等に起因する外乱を受けて変化し、また負荷(滅菌器20)の運転状態によっても変化する。このような変動要素を含む負荷蒸気圧を圧力計13にて検出し、これをフィードバックすることで前記各貫流ボイラ11a〜11n(第1および第2のボイラ群A,B)の燃焼量が制御される。   That is, as shown in the block diagram of the boiler pressure control in FIG. 2, the steam generated in the plurality of once-through boilers 11 a to 11 n (first and second boiler groups A and B) passes through the steam header 13. It is sent out through integration. The pressure of the steam sent to the load in this way changes due to disturbance caused by the capacity of the piping system and ignition / combustion delay of a burner (not shown) in each boiler, and the load (sterilizer 20 ) Also varies depending on the driving condition. The load steam pressure including such a variable element is detected by the pressure gauge 13 and fed back to control the combustion amount of each of the once-through boilers 11a to 11n (first and second boiler groups A and B). Is done.

ちなみにボイラの燃焼量制御は前述したように目標蒸気圧と負荷蒸気圧との偏差に基づいて、第1および第2の制御系14a,14bをそれぞれ構築するPID制御器を用いて行われる。特に常時着火状態に保たれる第1のボイラ群Aの貫流ボイラに対して燃焼制御を実行する第1の制御系14aは、制御ゲインを高くして、つまり圧力制御幅を狭くした制御条件にて上記偏差に基づいてその燃焼量をP制御を、好ましくはPD制御することにより行われる。つまり常時着火状態に保たれる貫流ボイラに関しては、運転停止とその燃焼再開に伴う時間遅れ要素がその制御特性に入り込むことがないので、第1の制御系14aは、圧力制御幅の狭いP制御と圧力変動を抑制するように働くD制御とを掛けてその燃焼量を制御するように構成される。これによって負荷(滅菌器20)に対する蒸気量の過不足に起因して蒸気圧が変動しても、その変動に対して応答性良く燃焼量を変更することが可能となる。   Incidentally, the combustion amount control of the boiler is performed by using the PID controllers that respectively construct the first and second control systems 14a and 14b based on the deviation between the target steam pressure and the load steam pressure as described above. In particular, the first control system 14a that executes the combustion control for the once-through boiler of the first boiler group A that is always in the ignition state has a control condition in which the control gain is increased, that is, the pressure control width is reduced. Based on the above deviation, the combustion amount is controlled by P control, preferably PD control. In other words, for the once-through boiler that is always kept in the ignition state, the time delay element that accompanies the operation stop and the resumption of combustion does not enter its control characteristics. And the amount of combustion is controlled by multiplying by D control which works to suppress pressure fluctuation. As a result, even if the steam pressure fluctuates due to the excess or deficiency of the steam amount with respect to the load (sterilizer 20), the combustion amount can be changed with good responsiveness to the fluctuation.

これに対して第2のボイラ群Bの貫流ボイラに対しては、前述した第2の制御系14bにて前記偏差に基づいてその燃焼量を、各貫流ボイラの運転停止を含めてPI制御することによって行われる。具体的には第2のボイラ群Bの貫流ボイラの内、少なくとも低燃焼状態を続けている貫流ボイラに対して圧力制御幅の広いP制御を加える。その上で第2のボイラ群Bに対して圧力の制御偏差を打ち消す為のI制御を掛け、負荷変動に応じてその燃焼量を段階的に可変制御する。この第2の制御系14bによる前記第2のボイラ群Bの燃焼量の制御は、各貫流ボイラの燃焼量を段階的に可変することのみならず、貫流ボイラを選択的に運転・停止させる運転台数制御を含むものであり、その発生蒸気量を負荷の状態に合わせる制御である。この際、第2の制御系14bは、I制御を主体として燃焼量制御を実行することで負荷変動に対する操作量の変化を緩やかにし、ボイラの再燃焼に伴う時間遅れ要素を加味した燃焼制御を実行する。   On the other hand, for the once-through boiler of the second boiler group B, the amount of combustion is PI-controlled including the operation stop of each once-through boiler based on the deviation by the second control system 14b described above. Is done by. Specifically, among the once-through boilers of the second boiler group B, P control with a wide pressure control range is applied to at least the once-through boiler that continues the low combustion state. Then, I control for canceling the pressure control deviation is applied to the second boiler group B, and the amount of combustion is variably controlled stepwise according to the load fluctuation. The control of the combustion amount of the second boiler group B by the second control system 14b not only changes the combustion amount of each once-through boiler stepwise but also the operation of selectively operating and stopping the once-through boiler. This includes control of the number of units, and is control for adjusting the amount of generated steam to the state of the load. At this time, the second control system 14b executes the combustion amount control mainly on the I control to moderate the change in the operation amount with respect to the load fluctuation, and performs the combustion control in consideration of the time delay element accompanying the recombustion of the boiler. Run.

尚、理想的には前述した第1のボイラ群AをP制御またはPD制御し、第2のボイラ群BをI制御するようにしても良い。しかしこの種の制御に用いられるPID制御器は、一般的にはI制御だけを実行することが困難なので、P制御を緩く掛けながらI制御を行うようにその制御パラメータを設定すれば良い。また急激な負荷変動に対しては、第1および第2のボイラ群A,Bにおいて低燃焼状態にある貫流ボイラに対して、その発生蒸気量を即時変化させるような燃焼制御(D制御)を掛け、先ずは急激な圧力変動が発生しないように押さえ込むことが好ましい。   Ideally, the above-described first boiler group A may be P-controlled or PD-controlled, and the second boiler group B may be I-controlled. However, since it is generally difficult for a PID controller used for this type of control to execute only the I control, the control parameters may be set so that the I control is performed while loosely applying the P control. For sudden load fluctuations, combustion control (D control) that immediately changes the amount of steam generated for the once-through boilers in the low combustion state in the first and second boiler groups A and B is performed. First, it is preferable to press down so that a sudden pressure fluctuation does not occur.

かくして上述した如く制御系を構築した蒸気発生装置によれば、段階的な燃焼量の変化しかできない貫流ボイラにおいては、蒸気負荷と発生蒸気量とが常に不均衡であることに起因する蒸気圧の変動を、常に燃焼状態に保たれる第1のボイラ群Aに対するP制御によって効果的に抑制することができる。特に変動周期が短い上記圧力変動を第1のボイラ群Aに対するP制御とD制御とによって押さえ込むことができる。この結果、貫流ボイラの段階的な燃焼特性に起因する圧力変動の影響が、負荷変動に伴う圧力変動に及ぶことを防止することが可能となる。   Thus, according to the steam generator constructed with the control system as described above, in the once-through boiler that can only change the combustion amount in stages, the steam pressure and the generated steam amount are always imbalanced. The fluctuation can be effectively suppressed by the P control for the first boiler group A that is always kept in the combustion state. In particular, the pressure fluctuation having a short fluctuation cycle can be suppressed by P control and D control for the first boiler group A. As a result, it becomes possible to prevent the influence of the pressure fluctuation resulting from the stepwise combustion characteristics of the once-through boiler from reaching the pressure fluctuation accompanying the load fluctuation.

その上で負荷状態の変動に起因する圧力変動に応じて第2のボイラ群Bに対する燃焼制御を、特にI制御(積分制御)を主体として実行するので、停止状態にある貫流ボイラを再着火するような場合であっても、その制御応答遅れを踏まえて発生蒸気量を調整することができ、オーバシュートやハンチング等の不具合を招来することなく貫流ボイラの燃焼量を制御することが可能となる。従って燃焼量を段階的にしか可変することができない貫流ボイラを複数台用いると雖も安定した蒸気圧の制御が可能であり、また負荷変動に追従させてその蒸気圧を制御することが可能となる等の実用上多大なる効果が奏せられる。   In addition, since the combustion control for the second boiler group B is performed mainly based on the I control (integral control) according to the pressure fluctuation caused by the fluctuation of the load state, the once-through boiler in the stopped state is reignited. Even in such a case, the amount of generated steam can be adjusted based on the delay in the control response, and the combustion amount of the once-through boiler can be controlled without causing problems such as overshoot and hunting. . Therefore, by using multiple once-through boilers whose combustion amount can only be changed in stages, it is possible to control the steam pressure stably, and to control the steam pressure by following the load fluctuation. In practice, a great effect can be obtained.

図3は第1のボイラ群Aとして2台の貫流ボイラを準備し、また運転台数制御用の第2のボイラ群Bとして2台の貫流ボイラを用いた蒸気発生装置において、上述した如く燃焼制御しながら製品流量を変化させたときの蒸気圧の変化特性を示している。尚、この特性は、図3に破線で示すように液状製品を毎分100リットルの流量で4時間に亘って滅菌機20に供給した後、その流量を毎分140リットルに変更して4時間に亘って供給したときの蒸気圧の変化を実線で示している。特にこの蒸気圧の変化は、図4に拡大して示すように略0.82MPaを中心として±0.01MPa程度の圧力変動を呈しただけであり、その安定度が非常に良好であることが確認できた。   FIG. 3 shows a case where two once-through boilers are prepared as the first boiler group A, and the combustion control is performed as described above in a steam generator using two once-through boilers as the second boiler group B for operating number control. It shows the change characteristics of vapor pressure when the product flow rate is changed. As shown by the broken line in FIG. 3, the liquid product is supplied to the sterilizer 20 at a flow rate of 100 liters per minute for 4 hours, and then the flow rate is changed to 140 liters per minute for 4 hours. The change of the vapor pressure when it is supplied over the line is shown by a solid line. In particular, the change in the vapor pressure only exhibits a pressure fluctuation of about ± 0.01 MPa centering on about 0.82 MPa as shown in an enlarged view in FIG. 4, and the stability is very good. It could be confirmed.

ちなみに上記4台全ての貫流ボイラをP制御しただけの場合には、貫流ボイラの段階的な燃焼量の制御に伴って0.07MPa程度の大きな圧力変動が生じ、また上記4台全ての貫流ボイラをPI制御した場合にも0.1MPa程度の大きな圧力変動が生じた。従ってこのような圧力変動に比較して、前述した本発明の制御系によれば複数台(4台)の貫流ボイラを用いたにも拘わらず、負荷蒸気圧を高精度に制御することができ、しかもその制御性が非常に良好であることが確認できた。   By the way, when all of the four once-through boilers are only P-controlled, a large pressure fluctuation of about 0.07 MPa occurs with the stepwise combustion amount control of the once-through boiler, and all the four once-through boilers. Even when PI was controlled by PI, a large pressure fluctuation of about 0.1 MPa occurred. Therefore, compared to such pressure fluctuations, the above-described control system of the present invention can control the load steam pressure with high accuracy even though a plurality (four) of once-through boilers are used. Moreover, it was confirmed that the controllability was very good.

そして負荷変動に伴って蒸気圧が急激に変動した場合には、目標蒸気圧と負荷蒸気圧の不均衡に伴って第2のボイラ群Bに対する制御系が反応してその燃焼量が上記負荷変動に追従して可変され、また蒸気圧が緩やかに変化した場合には、第1のボイラ群Aに対する制御性が反応して、その蒸気圧の変動を抑えるべく、その燃焼量が小刻みに可変制御されることが確認できた。   When the steam pressure fluctuates abruptly with the load fluctuation, the control system for the second boiler group B reacts with the imbalance between the target steam pressure and the load steam pressure, and the combustion amount becomes the load fluctuation. When the steam pressure changes slowly, the controllability to the first boiler group A reacts, and the combustion amount is controlled in small increments to suppress the fluctuation of the steam pressure. It was confirmed that

尚、本発明は上述した実施形態に限定されるものではない。例えば貫流ボイラの使用台数は、負荷の仕様に応じて定めれば良いものであり、またその仕様に応じて常時着火状態に保つ第1のボイラ群Aとして用いる貫流ボイラの台数を決定すれば十分である。また貫流ボイラに対する圧力制御幅等の制御パラメータについては、負荷の仕様等に応じて要求される蒸気発生装置の仕様に応じて決定すれば良いことは言うまでもない。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, the number of once-through boilers to be used may be determined according to the specifications of the load, and it is sufficient to determine the number of once-through boilers used as the first boiler group A that is always kept in an ignition state according to the specifications. It is. Needless to say, the control parameters such as the pressure control width for the once-through boiler may be determined according to the specifications of the steam generator required according to the load specifications and the like. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明に係る蒸気発生装置を用いて構築される、蒸気を用いて流体製品を滅菌処理する滅菌システムの概略構成図。The schematic block diagram of the sterilization system constructed | assembled using the steam generator which concerns on this invention, and sterilizes a fluid product using steam. 本発明に係る蒸気発生装置における複数台の貫流ボイラに対する圧力制御のブロックダイヤグラムを示す図。The figure which shows the block diagram of the pressure control with respect to the several once-through boiler in the steam generator which concerns on this invention. 本発明に係る蒸気発生装置での負荷変動に対する蒸気圧の変動特性を示す図。The figure which shows the fluctuation | variation characteristic of the steam pressure with respect to load fluctuation | variation in the steam generator which concerns on this invention. 図3に示す蒸気圧の変動特性を拡大して示す図。The figure which expands and shows the fluctuation | variation characteristic of the vapor pressure shown in FIG.

符号の説明Explanation of symbols

10 蒸気発生装置
11 貫流ボイラ
12 蒸気ヘッダ
13 圧力計
14 制御機(PID制御器)
14a 第1の制御系(P制御またはPD制御)
14b 第2の制御系(PI制御)
20 滅菌機
DESCRIPTION OF SYMBOLS 10 Steam generator 11 Cross-flow boiler 12 Steam header 13 Pressure gauge 14 Controller (PID controller)
14a First control system (P control or PD control)
14b Second control system (PI control)
20 Sterilizer

Claims (5)

並列に設けられた複数台の貫流ボイラと、これらの貫流ボイラにて生成された蒸気を統合して出力する蒸気ヘッダと、この蒸気ヘッダから負荷に供給される蒸気圧に応じて前記各貫流ボイラの発生蒸気量を制御する制御装置とを具備し、
前記制御装置は、前記複数台の貫流ボイラを2つのボイラ群に分けて、一方のボイラ群の燃焼量を前記貫流ボイラでの発生蒸気量の変化に伴う前記蒸気圧の変化に応じて制御する第1の制御系と、他方のボイラ群の燃焼量を前記負荷の変動に伴う前記蒸気圧の変化に応じて制御する第2の制御系とを備えることを特徴とする蒸気発生装置。
A plurality of once-through boilers provided in parallel, a steam header that integrates and outputs steam generated by these once-through boilers, and each of the once-through boilers according to the steam pressure supplied from the steam header to a load. And a control device for controlling the amount of generated steam,
The control device divides the plurality of once-through boilers into two boiler groups, and controls the combustion amount of one of the boiler groups in accordance with the change in the steam pressure accompanying the change in the amount of steam generated in the once-through boiler. A steam generator comprising: a first control system; and a second control system that controls a combustion amount of the other boiler group in accordance with a change in the steam pressure accompanying a change in the load.
前記第1の制御系は、前記負荷に供給される蒸気圧と目標蒸気圧との偏差に応じて前記一方のボイラ群の燃焼量をP制御またはPD制御する第1のPID制御器からなり、
前記第2の制御系は、前記負荷に供給される蒸気圧と前記目標蒸気圧との偏差に応じて前記他方のボイラ群の燃焼量をPI制御する第2のPID制御器からなる請求項1に記載の蒸気発生装置。
The first control system includes a first PID controller that performs P control or PD control on a combustion amount of the one boiler group according to a deviation between a steam pressure supplied to the load and a target steam pressure,
2. The second control system includes a second PID controller that performs PI control of a combustion amount of the other boiler group in accordance with a deviation between a steam pressure supplied to the load and the target steam pressure. The steam generator described in 1.
前記各貫流ボイラは、燃焼量を多段に制御可能なバーナを備えたものであって、
前記第1および第2の制御系は、前記負荷に供給すべき蒸気圧に応じて前記複数台の貫流ボイラの運転台数を制御すると共に、各貫流ボイラの燃焼量を段階的に制御するものである請求項1に記載の蒸気発生装置。
Each once-through boiler is provided with a burner capable of controlling the combustion amount in multiple stages,
The first and second control systems control the operation number of the plurality of once-through boilers in accordance with the vapor pressure to be supplied to the load, and stepwise control the combustion amount of each once-through boiler. The steam generator according to claim 1.
前記第1の制御系により燃焼量が制御されるボイラ群は、常時着火状態にある少なくとも1台の貫流ボイラからなり、
前記第2の制御系により燃焼量が制御されるボイラ群は、前記複数台の貫流ボイラ中の残された貫流ボイラであって、選択的に着火・停止されて運転台数の制御に供されるものである請求項1に記載の蒸気発生装置。
The boiler group whose combustion amount is controlled by the first control system is composed of at least one once-through boiler that is always in an ignition state,
The boiler group whose combustion amount is controlled by the second control system is the remaining once-through boiler in the plurality of once-through boilers, and is selectively ignited and stopped to be used for controlling the number of operating units. The steam generator according to claim 1, wherein
前記負荷は、流量調整バルブを介して蒸気が供給され、液状製品が通流する管路を通して上記液状製品を加熱滅菌する滅菌機である請求項1に記載の蒸気発生装置。   The steam generator according to claim 1, wherein the load is a sterilizer that is supplied with steam through a flow rate adjusting valve and heat sterilizes the liquid product through a conduit through which the liquid product flows.
JP2007251218A 2007-09-27 2007-09-27 Steam generator Expired - Fee Related JP5131448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251218A JP5131448B2 (en) 2007-09-27 2007-09-27 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251218A JP5131448B2 (en) 2007-09-27 2007-09-27 Steam generator

Publications (2)

Publication Number Publication Date
JP2009079875A JP2009079875A (en) 2009-04-16
JP5131448B2 true JP5131448B2 (en) 2013-01-30

Family

ID=40654753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251218A Expired - Fee Related JP5131448B2 (en) 2007-09-27 2007-09-27 Steam generator

Country Status (1)

Country Link
JP (1) JP5131448B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343935B2 (en) * 2010-06-30 2013-11-13 三浦工業株式会社 Boiler system
JP2012226458A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Multimotor control device and movable body
JP6255795B2 (en) * 2013-08-19 2018-01-10 三浦工業株式会社 Boiler system
JP6256856B2 (en) * 2013-10-18 2018-01-10 三浦工業株式会社 boiler
JP6289119B2 (en) * 2014-01-22 2018-03-07 株式会社サムソン Multi-can boiler with air supply valve
JP6341015B2 (en) * 2014-09-12 2018-06-13 三浦工業株式会社 Boiler system
JP6375914B2 (en) * 2014-12-05 2018-08-22 三浦工業株式会社 Boiler system
JP6375954B2 (en) * 2015-01-06 2018-08-22 三浦工業株式会社 Boiler system
JP6424725B2 (en) * 2015-04-20 2018-11-21 三浦工業株式会社 Boiler system
JP6551005B2 (en) * 2015-07-27 2019-07-31 三浦工業株式会社 Boiler system
JP7272182B2 (en) * 2019-08-28 2023-05-12 三浦工業株式会社 boiler system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116003A (en) * 1979-02-27 1980-09-06 Shimadzu Corp Method of controlling parallel operation of boilers
JPS6044561B2 (en) * 1980-12-08 1985-10-04 株式会社山武 Load distribution control method between two boilers
JPH0424603U (en) * 1990-06-20 1992-02-27
JP4341065B2 (en) * 2003-02-27 2009-10-07 三浦工業株式会社 Number control method of boiler

Also Published As

Publication number Publication date
JP2009079875A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5131448B2 (en) Steam generator
JP2006233796A (en) Lng utilizing power generation plant and its operation method
US10240775B2 (en) Multi-objective steam temperature control
KR102627385B1 (en) Once-through evaporator systems
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
JP6102475B2 (en) Boiler system
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP5914147B2 (en) Multi-can type once-through boiler unit control system
KR102627386B1 (en) Once-through evaporator systems
JP2016109357A (en) Boiler system
KR102003136B1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JP2008248808A (en) Power generation system
JP2013083226A (en) Control method and control device for waste heat boiler system
JP2008292119A (en) Power generator
KR102627373B1 (en) Once-through evaporator systems
KR20190068438A (en) Once-through evaporator systems
US20190338944A1 (en) Method for operating a waste heat steam generator
KR102010145B1 (en) Supercritical CO2 Power generation plant
KR102075556B1 (en) Method for flexibly operating a nuclear power plant
WO2017145427A1 (en) Combined cycle plant, method for reducing minimum output thereof, and control device therefor
SU767371A1 (en) Method of controlling a power plant
JPH1047609A (en) Steam temperature control method of boiler
JPH10212906A (en) Flow control valve control system for steam turbine
JP2014105905A (en) Boiler
JPH02130203A (en) Steam temperature controller for composite power plant facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees