JP5131418B2 - Surface structure with improved transmittance - Google Patents

Surface structure with improved transmittance Download PDF

Info

Publication number
JP5131418B2
JP5131418B2 JP2006153590A JP2006153590A JP5131418B2 JP 5131418 B2 JP5131418 B2 JP 5131418B2 JP 2006153590 A JP2006153590 A JP 2006153590A JP 2006153590 A JP2006153590 A JP 2006153590A JP 5131418 B2 JP5131418 B2 JP 5131418B2
Authority
JP
Japan
Prior art keywords
sub
groove
protrusion
surface structure
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006153590A
Other languages
Japanese (ja)
Other versions
JP2007322812A (en
Inventor
英明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006153590A priority Critical patent/JP5131418B2/en
Publication of JP2007322812A publication Critical patent/JP2007322812A/en
Application granted granted Critical
Publication of JP5131418B2 publication Critical patent/JP5131418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透過率向上表面構造に関し、例えば太陽電池等の表面に適用して透過率を向上させ、光の利用効率の向上が図れる透過率向上表面構造に関するものである。   The present invention relates to a transmittance-improving surface structure, for example, a transmittance-improving surface structure that can be applied to the surface of a solar cell or the like to improve the transmittance and improve the light utilization efficiency.

光学の分野において、多層膜やモスアイ構造(特許文献1)により反射防止して透過率を向上させる技術が知られている。
特開2003−222701号公報
In the field of optics, there is known a technique for improving the transmittance by preventing reflection by a multilayer film or a moth-eye structure (Patent Document 1).
JP 2003-222701 A

しかしながら、多層膜やモスアイ構造は、波長依存性や入射角依存性により設計波長や設計入射角から外れると性能が落ちる問題がある。また、その作製上、多層膜は工程が多くなること、モスアイ構造は波長未満の微細構造を高アスペクト比(深さ/ピッチが高い)で作製しなければならず、比較的作製が難しい。   However, the multilayer film and the moth-eye structure have a problem that the performance deteriorates when they deviate from the design wavelength and the design incident angle due to the wavelength dependency and the incident angle dependency. In addition, the multilayer film requires many steps, and the moth-eye structure has to be manufactured with a high aspect ratio (depth / pitch is high) with a fine structure with a wavelength less than the wavelength, which is relatively difficult to manufacture.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、光が入射する光学部品の表面に周期構造を設けることにより、透過率を向上させて光の利用効率の向上を図る透過率向上表面構造に関するものである。   The present invention has been made in view of such problems of the prior art, and the object thereof is to provide a periodic structure on the surface of an optical component on which light is incident so as to improve the transmittance and use efficiency of light. The present invention relates to a surface structure with improved transmittance.

上記目的を達成する本発明の透過率向上表面構造は、光が入射する光学部品の表面に断面矩形状の主線状突起の間に断面矩形状の主溝が形成された基本単位を突起及び溝に直交する方向に連続して周期的に配列してなる周期構造において、
主線状突起各々に少なくとも幅を縮小した断面矩形状の副溝が形成されてなることを特徴とするものである。
The surface-enhanced surface structure of the present invention that achieves the above object includes a basic unit in which a main groove having a rectangular cross section is formed between main linear protrusions having a rectangular cross section on the surface of an optical component on which light is incident. In a periodic structure that is arranged periodically and continuously in a direction orthogonal to
Each main linear protrusion is formed with a sub-groove having a rectangular cross section with a reduced width.

この場合に、前記副溝の両側の副線状突起各々に少なくとも幅をさらに縮小した断面矩形状の副副溝が形成されていてもよい。   In this case, a sub-sub-groove having a rectangular cross-section with at least a reduced width may be formed on each of the sub-line-like protrusions on both sides of the sub-groove.

さらには、前記副副溝の両側の副副線状突起各々に少なくとも幅をさらに縮小した断面矩形状の副副副溝が形成されていてもよい。   Furthermore, sub-sub-sub-grooves having a rectangular cross-section with a further reduced width may be formed in each of the sub-sub-linear projections on both sides of the sub-sub-groove.

さらに、形成された線状突起各々に同様の溝を設ける操作をさらに1回以上行って得られる表面構造を持つようにしてもよい。   Furthermore, you may make it have the surface structure obtained by performing the operation which provides the same groove | channel in each formed linear protrusion further once or more.

また、前記主溝に対して前記副溝の深さがより浅いようにしてもよい。   Further, the depth of the sub-groove may be shallower than the main groove.

本発明のもう1つの透過率向上表面構造は、光が入射する光学部品の表面に断面矩形状の主溝の間に断面矩形状の主線状突起が形成された基本単位を溝及び突起に直交する方向に連続して周期的に配列してなる周期構造において、
主溝各々に少なくとも幅を縮小した断面矩形状の副線状突起が形成されてなることを特徴とするものである。
Another surface-enhancing surface structure according to the present invention is that a basic unit in which a main line-shaped protrusion having a rectangular cross section is formed between main grooves having a rectangular cross section on the surface of an optical component on which light is incident is orthogonal to the groove and the protrusion. In the periodic structure that is arranged periodically and continuously in the direction of
Each main groove is formed with a sub-linear protrusion having a rectangular cross section with a reduced width.

この場合に、前記副線状突起の両側の副溝各々に少なくとも幅をさらに縮小した断面矩形状の副副線状突起が形成されていてもよい。   In this case, sub-sub-linear protrusions having a rectangular cross section with at least a reduced width may be formed in each of the sub-grooves on both sides of the sub-line protrusion.

さらには、前記副副線状突起の両側の副副溝各々に少なくとも幅をさらに縮小した断面矩形状の副副副線状突起が形成されていてもよい。   Furthermore, a sub-sub-sub-linear protrusion having a rectangular cross section with at least a reduced width may be formed in each of the sub-sub-grooves on both sides of the sub-sub-line protrusion.

さらに、形成された溝各々に同様の線状突起を設ける操作をさらに1回以上行って得られる表面構造を持つようにしてもよい。   Furthermore, it may have a surface structure obtained by further performing the operation of providing a similar linear protrusion in each of the formed grooves one or more times.

また、前記主線状突起に対して前記副線状突起の高さがより低いようにしてもよい。   Further, the height of the sub linear protrusion may be lower than the main linear protrusion.

また、前記基本単位のピッチが使用波長以上であるようにしてもよい。   In addition, the pitch of the basic unit may be equal to or greater than the use wavelength.

本発明は、以上の透過率向上表面構造を備えた光学部品を含むものである。   The present invention includes an optical component having the above-described transmittance improving surface structure.

以上の本発明の透過率向上表面構造によると、簡単な構造で光が入射する光学部品の透過率を向上させて光の利用効率の向上を図ることができる。そして、本発明の透過率向上表面構造は、少ない工程で簡単に作製することができ、また、周期が比較的長く、アスペクト比が比較的小さいので作製がしやすい。   According to the transmittance improving surface structure of the present invention described above, it is possible to improve the light utilization efficiency by improving the transmittance of an optical component on which light is incident with a simple structure. The transmittance-improving surface structure of the present invention can be easily produced with few steps, and is easy to produce because the period is relatively long and the aspect ratio is relatively small.

本発明の透過率向上表面構造は、光が入射する光学部品(太陽電池等の光を取り込む部分も含む。)の表面の構造に関するものであり、基本構造は、断面矩形の一方向(1次元)周期構造である。   The surface-enhanced surface structure of the present invention relates to the structure of the surface of an optical component on which light is incident (including a part that takes in light such as a solar cell), and the basic structure is one direction (one-dimensional) with a rectangular cross section. ) Periodic structure.

まず、本発明の透過率向上表面構造を説明するための図1について、図1の図示のし方を説明する。横方向に(a)、(b)、(c)の欄をとり、縦方向に(1)、(2−1)、(2−2)の欄をとる。図1の見方は、横欄と縦欄の交差で見るもので、(a)の(1)、(a)の(2−1)等と見る。そして、(a)、(b)、(c)それぞれにつき、(1)は平面図、(2−1)、(2−2)は断面図であり、図1の(a)の(1)〜(2−2)は本発明の比較例であり、図1の(b)の(1)〜(2−2)、(c)の(1)〜(2−2)は本発明の透過率向上表面構造の例である。なお、平面図はx−y面にとり、断面図はx−z面にとっている。以下、図1の表面構造を順に説明する。   First, with reference to FIG. 1 for explaining the transmittance-enhancing surface structure of the present invention, the way of illustration in FIG. 1 will be explained. The columns (a), (b), and (c) are taken in the horizontal direction, and the columns (1), (2-1), and (2-2) are taken in the vertical direction. 1 is viewed at the intersection of the horizontal column and the vertical column, and is viewed as (1) in (a), (2-1) in (a), and the like. In each of (a), (b), and (c), (1) is a plan view, (2-1) and (2-2) are cross-sectional views, and (1) in (a) of FIG. (2-2) is a comparative example of the present invention, and (1) to (2-2) in FIG. 1 (b) and (1) to (2-2) in (c) are transmissions of the present invention. It is an example of a surface improvement surface structure. The plan view is taken on the xy plane, and the sectional view is taken on the xz plane. Hereinafter, the surface structure of FIG. 1 will be described in order.

図1の(a)は、本発明の比較例であり、本発明の透過率向上表面構造(図1の(b)、(c))を説明する上で基本となるものである。この表面構造は、光学部品の表面にピッチ(周期)Λの基本単位が一方向(x方向)に周期的に配置されている構造である。光学部品の屈折率がn2 で、その表面を覆う媒体の屈折率がn1 で、n1 <n2 のとき、この周期構造を溝型(凹型)と呼び、それとは反対に光学部品の屈折率がn1 で、その表面を覆う媒体の屈折率がn2 で、n1 >n2 のとき、この周期構造を突起型(凸型)と呼ぶことにする。溝型の場合には、周期構造の基本単位が断面矩形状の線状突起1、1の間に断面矩形状の溝2が配置され、突起型の場合には、断面矩形状の線状突起2の両側に断面矩形状の溝1、1が配置されていることになる。したがって、符号1は溝型の場合には、線状突起、突起型の場合には溝となる。また、符号2は溝型の場合には溝、突起型の場合には線状突起となる。以下の符号、11、12、111、112も同様。 FIG. 1A is a comparative example of the present invention, and is a basis for explaining the transmittance-improving surface structure of the present invention (FIGS. 1B and 1C). This surface structure is a structure in which basic units of pitch (period) Λ are periodically arranged in one direction (x direction) on the surface of the optical component. When the refractive index of the optical component is n 2 and the refractive index of the medium covering the surface is n 1 and n 1 <n 2 , this periodic structure is called a groove type (concave type). When the refractive index is n 1 , the refractive index of the medium covering the surface is n 2 , and n 1 > n 2 , this periodic structure is called a protrusion type (convex type). In the case of the groove type, a groove 2 having a rectangular cross section is arranged between the linear protrusions 1 and 1 whose basic unit of the periodic structure is a rectangular cross section, and in the case of the protrusion type, a linear protrusion having a rectangular cross section. Grooves 1 and 1 having a rectangular cross section are disposed on both sides of 2. Therefore, reference numeral 1 is a linear protrusion in the case of a groove type, and a groove in the case of a protrusion type. Reference numeral 2 denotes a groove in the case of a groove type, and a linear protrusion in the case of a protrusion type. The same applies to the following symbols, 11, 12, 111, and 112.

図1の(b)と(c)においては、(1)の平面図は共通で、(2−1)と(2−2)は異なる構造の断面図である。   1B and 1C, the plan view of (1) is common, and (2-1) and (2-2) are cross-sectional views of different structures.

図1の(b)の本発明の透過率向上表面構造の例においては、溝型の場合には、図1の(a)の構成の線状突起1の表面にさらに細かい溝12が突起1と平行に設けられ、その溝12の両側に微細な線状突起11、11が形成されている。すなわち、図1の(a)と同様に、周期構造の基本単位として、断面矩形状の主線状突起1、1の間に断面矩形状の主溝2が形成され、その主線状突起1、1各々に少なくとも幅を縮小した副溝12が形成されてなるものである。   In the example of the surface improvement surface structure of the present invention of FIG. 1B, in the case of the groove type, a finer groove 12 is formed on the surface of the linear protrusion 1 having the structure of FIG. Are formed in parallel with each other, and fine linear protrusions 11 and 11 are formed on both sides of the groove 12. That is, as in FIG. 1A, as a basic unit of the periodic structure, a main groove 2 having a rectangular cross section is formed between main linear protrusions 1 and 1 having a rectangular cross section, and the main linear protrusions 1 and 1 are formed. Sub-grooves 12 having at least a reduced width are formed in each.

突起型の場合には、図1の(a)の構成の線状突起2の両側に配置された溝1、1の表面にさらに細かい線状突起12が溝1と平行に設けられ、その線状突起12の両側に微細な溝11、11が形成されている。すなわち、図1の(a)と同様に、周期構造の基本単位として、断面矩形状の主線状突起2の両側に断面矩形状の主溝1、1が形成され、その主溝1、1各々に少なくとも幅を縮小した副線状突起12が形成されてなるものである。   In the case of the projection type, finer linear projections 12 are provided in parallel with the grooves 1 on the surfaces of the grooves 1 and 1 arranged on both sides of the linear projection 2 having the configuration shown in FIG. Fine grooves 11 and 11 are formed on both sides of the projection 12. That is, as in FIG. 1A, as a basic unit of the periodic structure, main grooves 1 and 1 having a rectangular cross section are formed on both sides of a main linear protrusion 2 having a rectangular cross section. The sub-line-shaped protrusions 12 having at least a reduced width are formed.

図1の(b)の(2−1)と(2−2)の構成の違いは、副溝12(副線状突起12)の深さ(高さ)が主溝2(主線状突起2)より浅いか、同じにしたかの違いであり、何れの構成をとってもよい。   The difference in the configuration between (2-1) and (2-2) in FIG. 1B is that the depth (height) of the sub-groove 12 (sub-linear protrusion 12) is the main groove 2 (main linear protrusion 2). ) It is a difference whether it is shallower or the same, and any configuration may be taken.

以上の、図1の(a)の、断面矩形状の主線状突起(主溝)1、1の間に断面矩形状の主溝(主線状突起)2が形成された基本単位の、主線状突起(主溝)1、1に少なくとも幅を縮小した副溝(副線状突起)12が形成されてなる本発明の透過率向上表面構造を変形1回の表面構造と呼ぶことにし、図1の(a)の表面構造を変形なしの表面構造と呼ぶことにする。   The main unit of the basic unit in which the main groove (main line protrusion) 2 having a rectangular cross section is formed between the main line protrusions (main grooves) 1 and 1 having a rectangular cross section in FIG. The transmissivity-improving surface structure of the present invention in which the sub-grooves (sub-linear protrusions) 12 having at least a reduced width are formed in the protrusions (main grooves) 1 and 1 will be referred to as a surface structure with one deformation. The surface structure of (a) is referred to as a surface structure without deformation.

図1の(b)の変形1回の表面構造に対して同様の変形を施したものが図1の(c)の変形2回の表面構造である。すなわち、溝型の場合には、図1の(b)の構成の副溝12の両側の副線状突起11各々に、少なくとも幅を縮小した副副溝112が形成されてなる表面構造である。また、突起型の場合には、図1の(b)の構成の副線状突起12の両側の副溝11各々に、少なくとも幅を縮小した副副線状突起112が形成されてなる表面構造である。これを変形2回の表面構造と呼ぶことにする。この変形2回の表面構造も本発明の透過率向上表面構造の例である。   A surface structure having the same deformation as the one-time surface structure of FIG. 1B is the two-time surface structure of FIG. That is, in the case of the groove type, the surface structure is formed by forming the sub-sub-groove 112 having at least a reduced width on each of the sub-linear protrusions 11 on both sides of the sub-groove 12 having the configuration shown in FIG. . In the case of the protrusion type, a surface structure in which the sub-sub linear protrusion 112 having at least a reduced width is formed in each of the sub-grooves 11 on both sides of the sub-linear protrusion 12 having the configuration shown in FIG. It is. This will be referred to as a surface structure with two deformations. This modified two-time surface structure is also an example of the surface structure with improved transmittance according to the present invention.

図1の(c)の(2−1)と(2−2)の構成の違いは、副副溝112(副副線状突起112)の深さ(高さ)が副溝12(副線状突起12)より浅いか、同じにしたかの違いであり、この図1の(c)の(2−2)の場合は、主溝2(主線状突起2)と副溝12(副線状突起12)と副副溝112(副副線状突起112)は深さ(高さ)が同じになっている。   The difference in the configuration between (2-1) and (2-2) in FIG. 1C is that the depth (height) of the sub-sub-groove 112 (sub-sub-line protrusion 112) is sub-groove 12 (sub-line). 1 (c), (2-2), the main groove 2 (main linear protrusion 2) and the sub groove 12 (sub line). The protrusions 12) and the sub-sub-grooves 112 (sub-sub-line protrusions 112) have the same depth (height).

図1の(c)の副副溝112の両側の副副線状突起111(副副線状突起112の両側の副副溝111)各々に、同様にして少なくとも幅を縮小した副副副溝(副副副線状突起)が形成されてなる表面構造を変形3回の表面構造と呼ぶことにする。この変形3回の表面構造も本発明の透過率向上表面構造の例である。   In each of the sub-sub linear projections 111 on both sides of the sub-sub-groove 112 in FIG. 1C (sub-sub-grooves 111 on both sides of the sub-sub-linear projection 112), at least the sub-sub-sub-groove reduced in width in the same manner. The surface structure formed with (sub-sub-sub-sub linear protrusions) will be referred to as a surface structure with three deformations. This modified three-time surface structure is also an example of the transmittance-improving surface structure of the present invention.

以下、同様に変形4回以上の表面構造が得られ、これらも本発明の透過率向上表面構造である。   Hereinafter, similarly, a surface structure having four or more deformations is obtained, and these are the surface structure with improved transmittance of the present invention.

さて、以上のような変形1回以上の本発明の透過率向上表面構造を用いると、入射光の透過率が向上することを実施例に基づいて説明する。   Now, it will be described on the basis of an embodiment that the transmittance of incident light is improved by using the surface improvement structure of the present invention that has been modified one or more times as described above.

図2は比較の基準として、空気中から屈折率3.6の媒質(Si)の平面に入射するときの透過光全光の効率(透過全光効率)の入射角依存性を示す図である。入射光の偏光角は45°である。なお、ここで、入射角は、図3に示すように、光線が入射する平面をx−y面としたとき、その法線(z軸)と入射光のなる角度であり、偏光角は、x−y面に垂直で入射光を含む平面を「入射面」としたとき、入射光の偏光ベクトル(電気ベクトル)と「入射面」のなす角である。なお、後で出てくる周期構造の表面への入射光の方位角は、周期方向をx方向としたとき、周期方向に対して入射面のなす角である。   FIG. 2 is a diagram showing the incident angle dependence of the efficiency of all transmitted light (total transmitted light efficiency) when entering the plane of a medium (Si) having a refractive index of 3.6 from the air as a reference for comparison. . The polarization angle of incident light is 45 °. Here, as shown in FIG. 3, the incident angle is an angle between the normal line (z axis) and incident light when the plane on which the light ray enters is an xy plane, and the polarization angle is When a plane perpendicular to the xy plane and including incident light is defined as an “incident surface”, it is an angle formed by the polarization vector (electric vector) of the incident light and the “incident surface”. The azimuth angle of incident light on the surface of the periodic structure that emerges later is an angle formed by the incident surface with respect to the periodic direction when the periodic direction is the x direction.

図4に、本発明の変形1回の透過率向上表面構造(図1の(b)の(2−1)の溝型の場合)と比較例(変形なし:図1の(a))の基本単位のピッチΛを変えたときの透過全光効率の入射角依存性を示す。透過全光効率は、図2の平面に入射するときの透過全光効率に対する差で示してある。基本単位中の幅の比は、本発明の変形1回の場合は、1:1:1:3:1:1:1、比較例の変形なしの場合は、1:1:1である。溝の最深部の深さは、ピッチΛの0.3倍であり、本発明の変形1回の場合の副溝12の深さは、最深部の1/3である。この場合も空気中から屈折率3.6の媒質(Si)へ入射するときの透過全光効率であり、使用波長をλとしている。入射光の方位角は0°、偏光角は45°である。なお、図4の例えば「変形1回5」は、図1の(b)の(2−1)構造で、Λ/λ=5の場合を意味する。   FIG. 4 shows a modified one-time transmittance-enhancing surface structure of the present invention (in the case of the groove type (2-1) in FIG. 1 (b)) and a comparative example (no deformation: (a) in FIG. 1). The incident angle dependence of the total transmitted light efficiency when the pitch Λ of the basic unit is changed is shown. The transmitted total light efficiency is shown as a difference with respect to the transmitted total light efficiency when entering the plane of FIG. The ratio of the width in the basic unit is 1: 1: 1: 3: 1: 1: 1 in the case of one modification of the present invention, and 1: 1: 1 in the case of no modification of the comparative example. The depth of the deepest portion of the groove is 0.3 times the pitch Λ, and the depth of the sub-groove 12 in the case of one modification of the present invention is 1/3 of the deepest portion. Also in this case, it is the transmitted total light efficiency when entering from the air into the medium (Si) having a refractive index of 3.6, and the wavelength used is λ. The azimuth angle of incident light is 0 ° and the polarization angle is 45 °. For example, “deformation once 5” in FIG. 4 means the case of (2-1) structure in FIG. 1B and Λ / λ = 5.

図4から、全体的に変形1回の方が変形なしのものより透過全光効率が高いことが分かる。そして、使用波長λに対して基本単位のピッチΛが小さい方が、必ずしも順番通りではないものの、入射角約60°以内で透過全光効率が高い傾向にあることが分かる。すなわち、使用波長λに対して基本単位のピッチΛが小さい方が透過全光効率が高い傾向にあるが、基本単位の寸法によらず、変形のあるもの(本発明の透過率向上表面構造)の方がないものに比べて透過率向上の効果があることが分かる。   From FIG. 4, it can be seen that the total transmitted light efficiency is higher in the single deformation as a whole than in the case without the deformation. It can be seen that the smaller the basic unit pitch Λ with respect to the wavelength λ used, the higher the total transmitted light efficiency tends to be higher within an incident angle of about 60 °, although this is not necessarily the order. In other words, the smaller the basic unit pitch Λ with respect to the wavelength λ used, the higher the transmitted total light efficiency tends to be higher, but there is a deformation regardless of the basic unit size (transmission-improving surface structure of the present invention). It can be seen that there is an effect of improving the transmittance as compared with the case without the.

次に、Λ/λ=3の場合の変形なしに対して、変形1回、変形2回の溝型、突起型の透過全光効率の入射角依存性を図5〜図10に示す。透過全光効率は、図2の平面に入射するときの透過全光効率に対する差で示してある。何れも空気中から屈折率3.6の媒質(Si)へ入射するときの透過全光効率であり、偏光角は45°である。   Next, FIG. 5 to FIG. 10 show the incident angle dependence of the total luminous efficiency of the groove type and the protrusion type of the deformation type and the deformation type twice as compared with the case where Λ / λ = 3. The transmitted total light efficiency is shown as a difference with respect to the transmitted total light efficiency when entering the plane of FIG. Both are the total transmitted light efficiency when entering the medium (Si) having a refractive index of 3.6 from the air, and the polarization angle is 45 °.

図5、図6はそれぞれ変形なしで、溝型、突起型の場合であり、図5は使用波長λに対する溝の最深部の深さが0.60、図6は使用波長λに対する線状突起の最高部の高さが0.55であり、これらの最深部の深さ、最高部の高さの数字は、深さ又は高さを小さい方から増加させていったときに透過全光効率が最初にピークを与える深さ又は高さである(図17参照)。以下、図7〜図10についても同じ。   5 and 6 show the case of the groove type and the protrusion type without deformation, respectively. FIG. 5 shows the depth of the deepest part of the groove with respect to the operating wavelength λ is 0.60, and FIG. 6 shows the linear protrusion with respect to the operating wavelength λ. The height of the highest part is 0.55, and the depth of these deepest parts, the figure of the highest part of the height is the total transmitted light efficiency when the depth or height is increased from the smaller one Is the depth or height giving the peak first (see FIG. 17). The same applies to FIGS. 7 to 10 below.

図7、図8はそれぞれ変形1回で、溝型、突起型の場合であり、図7は使用波長λに対する溝の最深部の深さが0.70、図8は使用波長λに対する線状突起の最高部の高さが0.85である。   FIGS. 7 and 8 show the case of a single deformation, a groove type and a protrusion type. FIG. 7 shows the depth of the deepest part of the groove with respect to the operating wavelength λ is 0.70, and FIG. The height of the highest part of the protrusion is 0.85.

図9、図10はそれぞれ変形2回で、溝型、突起型の場合であり、図9は使用波長λに対する溝の最深部の深さが0.70、図10は使用波長λに対する線状突起の最高部の高さが0.80である。   FIGS. 9 and 10 show two cases of deformation, a groove type and a protrusion type. FIG. 9 shows the depth of the deepest part of the groove with respect to the operating wavelength λ is 0.70, and FIG. The height of the highest part of the protrusion is 0.80.

なお、基本単位中の幅の比は、変形なしで、1:1:1、変形1回で、1:1:1:3:1:1:1、変形2回で、1:1:1:3:1:1:1:9:1:1:1:3:1:1:1であり、溝の深さ(線状突起の高さ)は、変形1回で、浅い溝(低い線状突起)は最深部(最高部)の1/3、変形2回で、2番目に浅い溝(低い線状突起)は最深部(最高部)の1/3、1番目に浅い溝(低い線状突起)は最深部(最高部)の1/9である。   The width ratio in the basic unit is 1: 1: 1 without deformation, 1: 1 deformation, 1: 1: 1: 3: 1: 1: 1, 1: 1 deformation, and 1: 1: 1. : 3: 1: 1: 1: 9: 1: 1: 1: 1: 3: 1: 1: 1 and the depth of the groove (the height of the linear protrusion) is one deformation, and the shallow groove (low) (Linear protrusion) is 1/3 of the deepest part (highest part), deformation is 2 times, and the second shallowest groove (low linear protrusion) is 1/3 of the deepest part (highest part), and the first shallowest groove ( (Low linear protrusion) is 1/9 of the deepest part (highest part).

次に、Λ/λ=1の場合について、図5〜図10と同様の図を図11〜図16に示す。この場合も、透過全光効率は、図2の平面に入射するときの透過全光効率に対する差で示してある。何れも空気中から屈折率3.6の媒質(Si)へ入射するときの透過全光効率であり、偏光角は45°である。   Next, in the case of Λ / λ = 1, diagrams similar to FIGS. 5 to 10 are shown in FIGS. Again, the transmitted total light efficiency is shown as the difference to the transmitted total light efficiency when incident on the plane of FIG. Both are the total transmitted light efficiency when entering the medium (Si) having a refractive index of 3.6 from the air, and the polarization angle is 45 °.

図11、図12はそれぞれ変形なしで、溝型、突起型の場合であり、図11は使用波長λに対する溝の最深部の深さが0.20、図12は使用波長λに対する線状突起の最高部の高さが0.25であり、これらの最深部の深さ、最高部の高さの数字は、深さ又は高さを小さい方から増加させていったときに透過全光効率が最初にピークを与える深さ又は高さである(図18参照)。以下、図13〜図16についても同じ。   11 and 12 show the case of the groove type and the protrusion type without deformation, respectively, FIG. 11 shows the depth of the deepest part of the groove with respect to the use wavelength λ is 0.20, and FIG. 12 shows the linear protrusion with respect to the use wavelength λ. The depth of the deepest part, the figure of the height of the deepest part, the figure of the height of the highest part is the transmitted total light efficiency when the depth or height is increased from the smaller one Is the depth or height giving the peak first (see FIG. 18). The same applies to FIGS. 13 to 16 below.

図13、図14はそれぞれ変形1回で、溝型、突起型の場合であり、図13は使用波長λに対する溝の最深部の深さが0.30、図14は使用波長λに対する線状突起の最高部の高さが0.25である。   FIGS. 13 and 14 show the case of a single deformation, a groove type and a protrusion type. FIG. 13 shows the depth of the deepest part of the groove with respect to the operating wavelength λ is 0.30, and FIG. The height of the highest part of the protrusion is 0.25.

図15、図16はそれぞれ変形2回で、溝型、突起型の場合であり、図15は使用波長λに対する溝の最深部の深さが0.40、図16は使用波長λに対する線状突起の最高部の高さが0.30である。   FIGS. 15 and 16 show two cases of deformation, a groove type and a protrusion type. FIG. 15 shows the depth of the deepest part of the groove with respect to the operating wavelength λ is 0.40, and FIG. The height of the highest part of the protrusion is 0.30.

なお、基本単位中の幅の比は、変形なしで、1:1:1、変形1回で、1:1:1:3:1:1:1、変形2回で、1:1:1:3:1:1:1:9:1:1:1:3:1:1:1であり、溝の深さ(線状突起の高さ)は、変形1回で、浅い溝(低い線状突起)は最深部(最高部)の1/3、変形2回で、2番目に浅い溝(低い線状突起)は最深部(最高部)の1/3、1番目に浅い溝(低い線状突起)は最深部(最高部)の1/9である。   The width ratio in the basic unit is 1: 1: 1 without deformation, 1: 1 deformation, 1: 1: 1: 3: 1: 1: 1, 1: 1 deformation, and 1: 1: 1. : 3: 1: 1: 1: 9: 1: 1: 1: 1: 3: 1: 1: 1 and the depth of the groove (the height of the linear protrusion) is one deformation, and the shallow groove (low) (Linear protrusion) is 1/3 of the deepest part (highest part), deformation is 2 times, and the second shallowest groove (low linear protrusion) is 1/3 of the deepest part (highest part), and the first shallowest groove ( (Low linear protrusion) is 1/9 of the deepest part (highest part).

次に、溝(線状突起)の最深部(最高部)をdとし、その最深部(最高部)dに対する透過光全光の効率(透過全光効率)の依存性をΛ/λ=3、1の場合についてそれぞれ図17、図18に示す。図17、図18の「凹]、「凸」はそれぞれ溝型、突起型を意味し、それらの後の「0」、「1」、「2」はそれぞれ変形なし、変形1回、変形2回を意味する。なお、基本単位中の幅の比は、変形なしで、1:1:1、変形1回で、1:1:1:3:1:1:1、変形2回で、1:1:1:3:1:1:1:9:1:1:1:3:1:1:1である。   Next, d is the deepest part (highest part) of the groove (linear protrusion), and the dependency of the transmitted light total light efficiency (transmitted total light efficiency) on the deepest part (highest part) d is Λ / λ = 3. The case of 1 is shown in FIGS. 17 and 18, respectively. In FIG. 17 and FIG. 18, “concave” and “convex” mean a groove type and a protrusion type, respectively, “0”, “1”, and “2” after them are no deformation, one deformation, and two deformations, respectively. Means times. The width ratio in the basic unit is 1: 1: 1 without deformation, 1: 1 deformation, 1: 1: 1: 3: 1: 1: 1, 1: 1 deformation, and 1: 1: 1. : 3: 1: 1: 1: 9: 1: 1: 1: 3: 1: 1: 1.

図5〜図18の結果から、本発明の変形1回、2回の表面構造の方が、溝型、突起型何れの場合も、方位角によらず全体に、変形なしの比較例(図1の(a))より、透過全光効率が高いことが分かる。   From the results shown in FIGS. 5 to 18, the first and second modified surface structures of the present invention are comparative examples without deformation regardless of the azimuth angle regardless of the azimuth. It can be seen from (a) of 1 that the total transmitted light efficiency is high.

次に、最適化した実施例を2つ示す。図19はその1例の透過全光効率の入射角依存性を示す。透過全光効率は、図2の平面に入射するときの透過全光効率に対する差で示してある。この例は、Λ/λ=1の溝型であり、変形2回で、空気中から屈折率3.6の媒質(Si)へ偏光角45°で入射するものとし、使用波長λに対する溝の最深部の深さが0.95で、その最深部の深さの値は、深さを小さい方から増加させていったときに透過全光効率が2番目にピークを与える深さであり、基本単位中の幅の比は、1:1:1:3:1:1:1:9:1:1:1:3:1:1:1であり、溝の深さは、2番目に浅い溝は最深部の1/3、1番目に浅い溝は最深部の1/9である。   Next, two optimized examples are shown. FIG. 19 shows the incident angle dependence of the transmitted total light efficiency of one example. The transmitted total light efficiency is shown as a difference with respect to the transmitted total light efficiency when entering the plane of FIG. This example is a groove type of Λ / λ = 1, and it is assumed that the light is incident on a medium (Si) having a refractive index of 3.6 from the air with a polarization angle of 45 ° by two deformations. The depth of the deepest part is 0.95, and the value of the depth of the deepest part is the depth at which the total transmitted light efficiency gives the second peak when the depth is increased from the smaller side, The ratio of width in the basic unit is 1: 1: 1: 3: 1: 1: 1: 9: 1: 1: 1: 3: 1: 1: 1 and the groove depth is the second The shallow groove is 1/3 of the deepest part, and the shallowest groove is 1/9 of the deepest part.

図20はその別の例の図19と同様の透過全光効率の入射角依存性を示す。この例は、Λ/λ=1の突起型であり、変形1回で、空気中から屈折率3.6の媒質(Si)へ偏光角45°で入射するものとし、使用波長λに対する線状突起の高さは、最高部で0.289、2番目に低い線状突起は0.09826で、その最高部の高さの値は、高さが小さい方から増加させていったときに透過全光効率が最初のピークを与える深さであり、基本単位中の幅の比は、0.1156:0.1088:0.1156:0.3200:0.1156:0.1088:0.1156である。   FIG. 20 shows the incident angle dependence of the total transmitted light efficiency similar to FIG. 19 of another example. In this example, a projection type with Λ / λ = 1 is assumed, and in a single deformation, the light is incident on a medium (Si) having a refractive index of 3.6 from the air at a polarization angle of 45 °, and is linear with respect to the used wavelength λ. The height of the protrusion is 0.289 at the highest part and 0.09826 for the second lowest linear protrusion, and the height value of the highest part is transmitted when the height is increased from the smaller one. The total light efficiency is the depth that gives the first peak, and the ratio of widths in the basic unit is 0.1156: 0.1008: 0.1156: 0.3200: 0.1156: 0.1008: 0.1156 It is.

以上、本発明の透過率向上表面構造を実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。また、本発明の透過率向上表面構造は、フォトリソグラフィーを利用したり、エンボス加工により比較的簡単に作製することができる。また、本発明の透過率向上表面構造はレンズ等の光学部品の表面だけでなく、光を効率的に入射させる必要のある透明、半透明の部品(例えば太陽電池)等の表面に適用可能である。   As mentioned above, although the transmittance | permeability improvement surface structure of this invention has been demonstrated based on the Example, this invention is not limited to these Examples, A various deformation | transformation is possible. Further, the transmittance-improving surface structure of the present invention can be relatively easily produced by using photolithography or embossing. Further, the transmittance improving surface structure of the present invention can be applied not only to the surface of an optical component such as a lens, but also to the surface of a transparent or translucent component (for example, a solar cell) that requires light to enter efficiently. is there.

本発明の透過率向上表面構造を説明するための図である。It is a figure for demonstrating the transmittance | permeability improvement surface structure of this invention. 比較の基準として空気中から屈折率3.6の媒質の平面に入射するときの透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the transmission total light efficiency when injecting into the plane of the medium of refractive index 3.6 from the air as a reference of comparison. 入射角、偏光角、方位角を説明するための図である。It is a figure for demonstrating an incident angle, a polarization angle, and an azimuth angle. 本発明の変形1回の透過率向上表面構造と比較例の基本単位のピッチを変えたときの透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the transmission total light efficiency when changing the pitch of the basic unit of the deformation | transformation 1 time of this invention and the basic unit of a comparative example. Λ/λ=3の場合の変形なしで溝型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of groove-shaped transmitted total light efficiency without a deformation | transformation in case of (LAMBDA) / (lambda) = 3. Λ/λ=3の場合の変形なしで突起型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of protrusion type | mold transmission total light efficiency without a deformation | transformation in case of (LAMBDA) / (lambda) = 3. Λ/λ=3の場合の変形1回で溝型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of groove-shaped transmitted total light efficiency by one deformation | transformation in case of (LAMBDA) / (lambda) = 3. Λ/λ=3の場合の変形1回で突起型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident-angle dependence of protrusion type | mold transmission total light efficiency by 1 deformation | transformation in case of (LAMBDA) / (lambda) = 3. Λ/λ=3の場合の変形2回で溝型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of groove-shaped transmitted total light efficiency in 2 deformation | transformation in case of (LAMBDA) / (lambda) = 3. Λ/λ=3の場合の変形2回で突起型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of protrusion type | mold transmission total light efficiency in 2 deformation | transformation in case of (LAMBDA) / (lambda) = 3. Λ/λ=1の場合の変形なしで溝型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of groove-shaped transmitted total light efficiency without a deformation | transformation in case of (LAMBDA) / (lambda) = 1. Λ/λ=1の場合の変形なしで突起型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of protrusion type | mold transmission total light efficiency without a deformation | transformation in case of (LAMBDA) / (lambda) = 1. Λ/λ=1の場合の変形1回で溝型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of groove-shaped transmitted total light efficiency by one deformation | transformation in case of (LAMBDA) / (lambda) = 1. Λ/λ=1の場合の変形1回で突起型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of 1st modification | transformation in the case of (LAMBDA) / (lambda) = 1 and protrusion type | mold transmission total light efficiency. Λ/λ=1の場合の変形2回で溝型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of groove-shaped transmitted total light efficiency in 2 deformation | transformation in case of (LAMBDA) / (lambda) = 1. Λ/λ=1の場合の変形2回で突起型の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the projection type | mold transmission total light efficiency by the deformation | transformation 2 times in the case of (LAMBDA) / (lambda) = 1. Λ/λ=3の場合の溝(線状突起)の最深部(最高部)に対する透過全光効率の依存性を示す図である。It is a figure which shows the dependence of the permeation | transmission total light efficiency with respect to the deepest part (highest part) of a groove | channel (linear protrusion) in the case of (LAMBDA) / (lambda) = 3. Λ/λ=1の場合の溝(線状突起)の最深部(最高部)に対する透過全光効率の依存性を示す図である。It is a figure which shows the dependence of the permeation | transmission total light efficiency with respect to the deepest part (highest part) of a groove | channel (linear protrusion) in case of (LAMBDA) / (lambda) = 1. 最適化した1つの実施例の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the transmission total light efficiency of one Example optimized. 最適化した他の実施例の透過全光効率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the transmission total light efficiency of the other Example optimized.

符号の説明Explanation of symbols

1…線状突起(溝)
2…溝(線状突起)
11…副線状突起(副溝)
12…副溝(副線状突起)
111…副副線状突起(副副溝)
112…副副溝(副副線状突起)
1 ... Linear protrusion (groove)
2 ... Groove (Linear protrusion)
11 ... Sub linear protrusion (sub groove)
12 ... Sub-groove (sub-linear protrusion)
111 ... Sub-sub linear projection (sub-sub-groove)
112 ... minor minor groove (minor minor linear projection)

Claims (10)

光が入射する光学部品の表面に断面矩形状の主線状突起の間に断面矩形状の主溝が、幅の比が突起:溝:突起=1:1:1で形成された基本単位を突起及び溝に直交する方向に連続して周期的に配列してなる周期構造において、
主線状突起各々の中央に幅を突起の幅の1/3に縮小した断面矩形状の副溝が形成されてなり、
前記副溝の両側の副線状突起各々に少なくとも幅をさらに縮小した断面矩形状の副副溝が形成されてなることを特徴とする透過率向上表面構造。
A main groove having a rectangular cross section is formed between the main linear protrusions having a rectangular cross section on the surface of the optical component on which light is incident, and a basic unit formed with a width ratio of protrusion: groove: protrusion = 1: 1: 1 And in a periodic structure that is arranged periodically and continuously in a direction perpendicular to the groove,
A sub-groove having a rectangular cross section with a width reduced to 1/3 of the width of the protrusion is formed in the center of each main linear protrusion,
Moreover the reduced cross section rectangular sub-sub-groove Toru you characterized in that is formed over rate improving surface structure at least the width in the sub linear projections each of both sides of the minor groove.
前記副副溝の両側の副副線状突起各々に少なくとも幅をさらに縮小した断面矩形状の副副副溝が形成されてなることを特徴とする請求項記載の透過率向上表面構造。 Transmittance improved surface structure according to claim 1, characterized in that the further reduced cross-sectional rectangular sub-sub-sub-grooves at least width is formed in the sub-sub-linear projections each of both sides of the sub-sub-groove. 前記副副副溝の両側の副副副線状突起各々に少なくとも幅をさらに縮小した断面矩形状の副副副副溝が形成されてなることを特徴とする請求項記載の透過率向上表面構造。 3. The transmittance improving surface according to claim 2, wherein each of the sub-sub-sub-linear projections on both sides of the sub-sub-sub-groove is formed with a sub-sub-sub-sub-groove having a rectangular cross section with a further reduced width. Construction. 前記主溝に対して前記副溝の深さがより浅いことを特徴とする請求項1からの何れか1項記載の透過率向上表面構造。 The surface structure for improving transmittance according to any one of claims 1 to 3 , wherein the depth of the sub-groove is smaller than that of the main groove. 光が入射する光学部品の表面に断面矩形状の主溝の間に断面矩形状の主線状突起が、幅の比が溝:突起:溝=1:1:1で形成された基本単位を溝及び突起に直交する方向に連続して周期的に配列してなる周期構造において、
主溝各々の中央に幅を溝の幅の1/3に縮小した断面矩形状の副線状突起が形成されてなるり、
前記副線状突起の両側の副溝各々に少なくとも幅をさらに縮小した断面矩形状の副副線状突起が形成されてなることを特徴とする透過率向上表面構造。
A main linear protrusion having a rectangular cross section is formed between the main grooves having a rectangular cross section on the surface of the optical component on which light is incident, and a basic unit formed with a width ratio of groove: protrusion: groove = 1: 1: 1 And in a periodic structure that is arranged periodically and continuously in a direction perpendicular to the protrusions,
In the center of each main groove, a sub-line-shaped protrusion having a rectangular cross section whose width is reduced to 1/3 of the width of the groove is formed,
The further reduced cross-sectional rectangular sub-sub-linear projection Toru characterized in that is formed over rate improving surface structure at least the width to the minor groove of each of both sides of the sub linear protrusions.
前記副副線状突起の両側の副副溝各々に少なくとも幅をさらに縮小した断面矩形状の副副副線状突起が形成されてなることを特徴とする請求項記載の透過率向上表面構造。 6. The transmissivity-improving surface structure according to claim 5, wherein each of the sub-sub-grooves on both sides of the sub-sub-line protrusion is formed with a sub-sub-sub-line-shaped protrusion having a rectangular cross section with a further reduced width. . 前記副副副線状突起の両側の副副副溝各々に少なくとも幅をさらに縮小した断面矩形状の副副副副線状突起が形成されてなることを特徴とする請求項記載の透過率向上表面構造。 7. The transmittance according to claim 6, wherein each of the sub-sub-sub-grooves on both sides of the sub-sub-sub-line-like protrusion is formed with a sub-sub-sub-sub-sub-line-like protrusion having a rectangular cross section with a further reduced width. Improved surface structure. 前記主線状突起に対して前記副線状突起の高さがより低いことを特徴とする請求項からの何れか1項記載の透過率向上表面構造。 The transmittance improving surface structure according to any one of claims 5 to 7 , wherein a height of the sub linear protrusion is lower than the main linear protrusion. 前記基本単位のピッチが使用波長以上であることを特徴とする請求項1からの何れか1項記載の透過率向上表面構造。 The transmittance improving surface structure according to any one of claims 1 to 8 , wherein the pitch of the basic unit is not less than a used wavelength. 請求項1からの何れか1項記載の透過率向上表面構造を備えたことを特徴とする光学部品。 An optical component comprising the transmittance improving surface structure according to any one of claims 1 to 9 .
JP2006153590A 2006-06-01 2006-06-01 Surface structure with improved transmittance Active JP5131418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153590A JP5131418B2 (en) 2006-06-01 2006-06-01 Surface structure with improved transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153590A JP5131418B2 (en) 2006-06-01 2006-06-01 Surface structure with improved transmittance

Publications (2)

Publication Number Publication Date
JP2007322812A JP2007322812A (en) 2007-12-13
JP5131418B2 true JP5131418B2 (en) 2013-01-30

Family

ID=38855669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153590A Active JP5131418B2 (en) 2006-06-01 2006-06-01 Surface structure with improved transmittance

Country Status (1)

Country Link
JP (1) JP5131418B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131390A (en) * 2001-03-22 2003-05-09 Seiko Epson Corp Method of manufacturing fine structure, method of manufacturing electronic device and apparatus for manufacturing the same
JP4338558B2 (en) * 2004-03-11 2009-10-07 三洋電機株式会社 Optical pickup

Also Published As

Publication number Publication date
JP2007322812A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
FI128551B (en) Diffractive grating with variable diffraction efficiency and method for displaying an image
US7789548B2 (en) Optical diffusion module having convex and concave portions arranged in a two dimensional array
CN1363048A (en) Broadband grid polarizer for the visible spectrum
JP2005509918A (en) Photonic crystal structure for mode conversion
CN114371529B (en) Stacked grating and AR display device
JP2010153358A (en) Light guide plate and backlight module
US6990275B2 (en) Stray light absorber including grating array
JP4012367B2 (en) Single-mode optical waveguide coupling element
US20090002834A1 (en) Device for Homogenizing Light
CN112965228B (en) Peep-proof film, display panel and display device
JP2018180415A (en) Optical structure and display device
JP5131418B2 (en) Surface structure with improved transmittance
JP4735513B2 (en) Optical element
CN113219571A (en) Grating structure
US20160313488A1 (en) Display device
JP5989092B2 (en) Optical element
JP2017533451A (en) Dielectric polarization beam splitter
JP2014154332A (en) Surface light source device
WO2013185384A1 (en) Light guide plate applicable to 3d display
CN108646429B (en) Structured light projector
CN112180507A (en) Multi-waveguide cross device, waveguide chip and forming method thereof
JP6084797B2 (en) Surface light source device and display device
US20020041441A1 (en) Optical element with microstructures
JP3215902U (en) Optical film and display device
US20200393609A1 (en) Optical waveguide and diffractive waveguide display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150