JP5128900B2 - Lithium secondary battery and manufacturing method thereof - Google Patents

Lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5128900B2
JP5128900B2 JP2007277433A JP2007277433A JP5128900B2 JP 5128900 B2 JP5128900 B2 JP 5128900B2 JP 2007277433 A JP2007277433 A JP 2007277433A JP 2007277433 A JP2007277433 A JP 2007277433A JP 5128900 B2 JP5128900 B2 JP 5128900B2
Authority
JP
Japan
Prior art keywords
lithium secondary
battery
secondary battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007277433A
Other languages
Japanese (ja)
Other versions
JP2009104979A (en
Inventor
廣 菊池
晃二 東本
康介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2007277433A priority Critical patent/JP5128900B2/en
Publication of JP2009104979A publication Critical patent/JP2009104979A/en
Application granted granted Critical
Publication of JP5128900B2 publication Critical patent/JP5128900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウム二次電池、および、その製造方法に関する。   The present invention relates to a lithium secondary battery and a manufacturing method thereof.

従来、リチウム二次電池は、正極材料であるマンガン酸リチウム中に含まれる遷移金属が、充放電に伴って溶解し、負極表面上にデンドライト(樹)状に析出してセパレータを貫通することにより、電圧不良が発生することが知られている。   Conventionally, a lithium secondary battery has a transition metal contained in lithium manganate, which is a positive electrode material, dissolved with charge and discharge, and deposited on the negative electrode surface in a dendrite (dendritic) shape, penetrating the separator. It is known that a voltage failure occurs.

特許文献1に記載される技術では、マンガン酸リチウムに含まれる銅量を考慮した厚さのセパレータを介して正極と負極とを捲回することにより、上記のような微小短絡を防止している。   In the technique described in Patent Document 1, the above-described micro short circuit is prevented by winding the positive electrode and the negative electrode through a separator having a thickness in consideration of the amount of copper contained in lithium manganate. .

特開2002−203531号公報JP 2002-203531 A

しかしながら最近では、遷移金属であるニッケルの微小な粒子や箔片が、素子の捲回群終端部に入り込むことによって、内部短絡を引き起こすことが知られるようになった。内部短絡が起きれば、電池の急速な自己放電によって発生した熱によって、電池自体が焼損する可能性がある。   However, recently, it has been known that minute particles or foil pieces of nickel, which is a transition metal, enter an end portion of a wound group of an element, thereby causing an internal short circuit. If an internal short circuit occurs, the battery itself may burn out due to the heat generated by the rapid self-discharge of the battery.

リチウム二次電池の製造法としては、内外両表面にニッケルめっきを施した金属電池缶へ捲回群を挿入した後、該捲回群を固定するために、電池缶の開口側の外周にディスクを押し付けて、溝を設ける。次に、電解液を注入して、金属電池蓋をカシメて封止を行うのが一般的である。   A lithium secondary battery is manufactured by inserting a wound group into a metal battery can whose inner and outer surfaces are plated with nickel, and then fixing the wound group with a disk on the outer periphery on the opening side of the battery can. To provide a groove. Next, it is common to inject an electrolytic solution and crimp the metal battery lid to perform sealing.

上記の問題を引き起こすニッケル微小粒子の起源は必ずしも全てが明らかではないが、その一つに、金属電池缶の内部表面に施されたニッケルめっき層が、電池缶の上部に溝を形成する工程で剥離し、微小片となって電解液と共に電池内部に混入している可能性が挙げられている。   The origin of the nickel microparticles that cause the above problems is not completely clear, but one of them is the process in which the nickel plating layer applied to the inner surface of the metal battery can forms a groove in the upper part of the battery can. There is a possibility that it peels off and becomes a small piece and is mixed with the electrolyte inside the battery.

また、缶の上部に溝を形成する工程で、電池缶に施されたニッケルめっき層に割れ(クラック)が生じる場合がある。クラックが生じた部分では、スチール缶下地がめっき層によって保護されないため、腐食し易い。   Further, in the step of forming a groove in the upper portion of the can, a crack (crack) may occur in the nickel plating layer applied to the battery can. The cracked portion is easily corroded because the steel can base is not protected by the plating layer.

そこで、本発明は、耐食作用を維持しながら、電池缶の加工による内部へのニッケル微小粒子の混入を防ぐことが可能な技術を提供することを目的とする。   Then, an object of this invention is to provide the technique which can prevent mixing of the nickel microparticles to the inside by the process of a battery can, maintaining a corrosion resistance.

以上の課題を解決するため、本発明は、電池缶を封止した後に、電池の外部表面にめっきを施すことで、内外両表面にめっきの剥離を無くすことができる。   In order to solve the above problems, in the present invention, after the battery can is sealed, the outer surface of the battery is plated so that the peeling of the plating on both the inner and outer surfaces can be eliminated.

例えば、本発明に係るリチウム二次電池の製造方法は、底部と、側壁部と、上部開口と、を備える電池缶に、正極と、負極と、セパレータと、からなる捲回群を挿入する工程と、前記電池缶に、電解液を注入する工程と、前記電池缶の側壁部の外周面に、溝部を形成する工程と、前記電池缶の上部開口を、電池蓋で封止する工程と、封止された前記電池の外部表面に、めっき層を形成する工程と、を含むことを特徴とする。   For example, the method for manufacturing a lithium secondary battery according to the present invention includes a step of inserting a wound group consisting of a positive electrode, a negative electrode, and a separator into a battery can having a bottom portion, a side wall portion, and a top opening. A step of injecting an electrolytic solution into the battery can, a step of forming a groove in the outer peripheral surface of the side wall of the battery can, a step of sealing the upper opening of the battery can with a battery lid, Forming a plating layer on the outer surface of the sealed battery.

まず、本発明をより明確にするために、従来の製造方法で作成される円筒形リチウム二次電池200について、図5、図6(a)〜図6(e)を参照しながら説明する。図5は、従来の円筒形リチウム二次電池200の製造工程を示すフローチャートであり、図6(a)〜図6(e)は、従来の円筒形リチウム二次電池200の製造工程を表わす概略図である。   First, in order to clarify the present invention, a cylindrical lithium secondary battery 200 produced by a conventional manufacturing method will be described with reference to FIGS. 5 and 6A to 6E. FIG. 5 is a flowchart showing a manufacturing process of a conventional cylindrical lithium secondary battery 200, and FIGS. 6A to 6E are schematic views showing a manufacturing process of the conventional cylindrical lithium secondary battery 200. FIG.

まず、図6(a)に示すように、スチール製の電池缶107の内外両表面に、ニッケルめっき120を施す(S21)。次に、図6(b)に示すように、予め生成しておいた、正極と負極とをセパレータを介して捲回した捲回群102を、ニッケルめっき120を施した電池缶107に挿入する(S22)。さらに、図6(c)に示すように、電池缶107の上部開口側に、挿入された捲回群102を、電池缶107内部に固定するための溝部109を形成する(S23)。電解液115を注入後(S24、図6(d))、電池蓋110によって、電池缶107の開口を封止し(S25)、図6(e)に示すような、円筒型リチウム二次電池200が製造される。   First, as shown in FIG. 6A, nickel plating 120 is applied to both the inner and outer surfaces of a steel battery can 107 (S21). Next, as shown in FIG. 6 (b), the winding group 102 that has been produced in advance and wound with the positive electrode and the negative electrode through a separator is inserted into a battery can 107 with nickel plating 120 applied thereto. (S22). Further, as shown in FIG. 6C, a groove 109 for fixing the inserted wound group 102 inside the battery can 107 is formed on the upper opening side of the battery can 107 (S23). After injecting the electrolytic solution 115 (S24, FIG. 6D), the opening of the battery can 107 is sealed with the battery lid 110 (S25), and a cylindrical lithium secondary battery as shown in FIG. 200 is manufactured.

しかしながら、このような従来の方法では、ステップ23の溝加工によって、溝部109における内外両表面のニッケルめっき120が剥離して、ステップ24の電解液注入時に、内部表面のニッケル微小片が電池缶170内部へ入り込んでしまう不都合があった。また、外部表面のクラックが、腐食を招く可能性もある。   However, in such a conventional method, the nickel plating 120 on both the inner and outer surfaces of the groove portion 109 is peeled off by the groove processing in step 23, and the nickel fine pieces on the inner surface are removed from the battery can 170 at the time of electrolyte injection in step 24. There was an inconvenience of getting inside. In addition, cracks on the external surface can lead to corrosion.

そこで本発明では、新規な製造方法により、より安全な円筒形リチウム二次電池100を製造する。以下、図1と、図2(a)〜図2(e)を参照しながら説明する。図1は、本発明に係る円筒形リチウム二次電池100の製造工程を示すフローチャートであり、図2(a)〜図2(e)は、本発明に係る円筒形リチウム二次電池100の製造工程を表わす概略図である。   Therefore, in the present invention, a safer cylindrical lithium secondary battery 100 is manufactured by a novel manufacturing method. Hereinafter, description will be made with reference to FIG. 1 and FIGS. 2 (a) to 2 (e). FIG. 1 is a flowchart showing a manufacturing process of a cylindrical lithium secondary battery 100 according to the present invention, and FIGS. 2A to 2E show the manufacturing of the cylindrical lithium secondary battery 100 according to the present invention. It is the schematic showing a process.

まず、図2(a)に示すように、予め生成しておいた、正極と負極とをセパレータを介して捲回した捲回群102を、電池缶107に挿入する(S11)。このとき、電池缶107は、予めニッケル等によるめっきが施されていないものを使用する。次に、図2(b)に示すように、電池缶107の上部開口側に、挿入された捲回群102を、電池缶107内部に固定するための溝部109を形成する(S12)。さらに、電解液115を注入して(S13、図2(c))、電池蓋110によって、電池缶107の開口を封止する(S14、図2(d)参照)。その後、電池の外部表面にのみニッケルめっき120を施して(S15、図2(e)参照)に示すような、円筒型リチウム二次電池100を製造する。   First, as shown in FIG. 2 (a), a wound group 102 prepared by winding a positive electrode and a negative electrode through a separator is inserted into the battery can 107 (S11). At this time, the battery can 107 is not subjected to plating with nickel or the like in advance. Next, as shown in FIG. 2B, a groove 109 for fixing the inserted wound group 102 inside the battery can 107 is formed on the upper opening side of the battery can 107 (S12). Further, an electrolytic solution 115 is injected (S13, FIG. 2 (c)), and the opening of the battery can 107 is sealed by the battery lid 110 (S14, see FIG. 2 (d)). Thereafter, nickel plating 120 is applied only to the outer surface of the battery (S15, see FIG. 2 (e)) to manufacture a cylindrical lithium secondary battery 100.

以下に本発明の実施例を、図3、図4を参照しながら詳細に説明する。ただし、本発明はこれらの実施例に限定されるものではない。図3は、本発明に係る円筒形リチウム二次電池100の断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. However, the present invention is not limited to these examples. FIG. 3 is a cross-sectional view of a cylindrical lithium secondary battery 100 according to the present invention.

<ステップ1> 正極の作製
まず、正極活物質のリチウム遷移金属複酸化物としてマンガン酸リチウム(LiMn)と、導電材として黒鉛粉末、及び、アセチレンブラックと、バインダ(結着材)としてポリフッ化ビニリデン(以下、PVdF)と、を質量比85:8:2:5の割合で混合し、正極混合材を得た。ここへ、必要に応じて分散溶媒のN−メチル−2−ピロリドン(以下、NMP)を添加し、混練して得られたスラリを、厚さ20μmのアルミニウム箔(正極集電体)の両面に塗布した。このとき、長手方向の一方の側縁に、幅30mmの未塗布部を残しておいた。
<Step 1> Preparation of positive electrode First, lithium manganate (LiMn 2 O 4 ) as a lithium transition metal complex oxide of a positive electrode active material, graphite powder and acetylene black as a conductive material, and a binder (binder) Polyvinylidene fluoride (hereinafter referred to as PVdF) was mixed at a mass ratio of 85: 8: 2: 5 to obtain a positive electrode mixture. The slurry obtained by adding N-methyl-2-pyrrolidone (hereinafter referred to as NMP) as a dispersion solvent and kneading the mixture as necessary is applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. Applied. At this time, an uncoated portion with a width of 30 mm was left on one side edge in the longitudinal direction.

なお、正極活物質は、上記のものに限られない。リチウム遷移金属複酸化物であれば、ニッケルや、コバルト等を用いても良い。また、バインダについても上記に限定されず、他の重合体、例えば、ポリエチレン、ポリスチレン、ポリブタジエン、ニトロセルロース、ラテックス、アクリロニトリル等を用いても良い。さらに、導電材についても同様に、通常使用される導電材であれば、他のものを用いても良い。   The positive electrode active material is not limited to the above. As long as it is a lithium transition metal double oxide, nickel, cobalt, or the like may be used. The binder is not limited to the above, and other polymers such as polyethylene, polystyrene, polybutadiene, nitrocellulose, latex, acrylonitrile and the like may be used. Furthermore, similarly, other conductive materials may be used as long as they are normally used.

これを乾燥後、プレス、裁断して、幅82mm、任意の長さ、そして、正極混合材塗布部が任意の厚さを持つ正極を得た。なお、ここでは正極混合材層のかさ密度は2.65g/cmとするが、本発明はこれに限定されず、正極として適する大きさや、かさ密度を有していれば良い。 This was dried and then pressed and cut to obtain a positive electrode having a width of 82 mm, an arbitrary length, and a positive electrode mixed material application part having an arbitrary thickness. Here, the bulk density of the positive electrode mixture layer is 2.65 g / cm 3 , but the present invention is not limited to this, as long as it has a size suitable for the positive electrode and a bulk density.

さらに、上記処理によって得られた正極の一方の側縁に残したスラリ未塗布部に、切り欠きを入れた。切り欠き残部は正極リード片103とし、隣り合う正極リード片103の間隔を50mm、正極リード片103の幅を5mmとした。   Furthermore, a notch was made in the slurry uncoated portion left on one side edge of the positive electrode obtained by the above treatment. The remaining part of the notch was the positive electrode lead piece 103, the interval between the adjacent positive electrode lead pieces 103 was 50 mm, and the width of the positive electrode lead piece 103 was 5 mm.

<ステップ2> 負極の作製
負極活物質として塊状黒鉛と、導電材として気相成長炭素繊維と、バインダとしてPVdFと、後述する熱硬化性可塑化ポリビニルアルコール系樹脂組成物(以下、PVA)と、の混合物のNMP溶液を、質量比87.62:4.76:7.62の割合で混合して、負極混合材を得た。ここへ、必要に応じて分散溶媒のNMPを添加し、混練して得られたスラリを、厚さ10μmの圧延銅箔(負極集電体)の両面に塗布した。このとき、長手方向の一方の側縁に幅30mmの未塗布部を残した。
<Step 2> Production of negative electrode Lump graphite as a negative electrode active material, vapor-grown carbon fiber as a conductive material, PVdF as a binder, a thermosetting plasticized polyvinyl alcohol resin composition (hereinafter referred to as PVA) described later, The NMP solution of the mixture was mixed at a mass ratio of 87.62: 4.76: 7.62 to obtain a negative electrode mixture. A slurry obtained by adding NMP as a dispersion solvent and kneading as needed was applied to both surfaces of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. At this time, an uncoated portion having a width of 30 mm was left on one side edge in the longitudinal direction.

なお、負極活物質は、炭素質材料であれば良く、上記のものに限られない。さらに、導電材についても同様に、通常使用される導電材であれば、他のものを用いても良い。   In addition, the negative electrode active material should just be a carbonaceous material, and is not restricted to said thing. Furthermore, similarly, other conductive materials may be used as long as they are normally used.

また、上記処理に際して、PVAは、熱硬化性ポリビニルアルコール系樹脂からなる第一の樹脂成分と、アクリル樹脂系可塑剤からなる第二の樹脂成分とが、NMP中に混合溶解されているものを用いた。第一の樹脂成分である熱硬化性ポリビニルアルコール系樹脂は、平均重合度約2000程度のポリビニルアルコール系樹脂に、NMP等の有機溶媒中で、例えば、コハク酸無水物等の環状酸無水物を、トリエチルアミン等の触媒存在下で実質的に無水の状態で反応させて得られる。ポリビニルアルコール系樹脂と環状酸無水物との反応割合は、ポリビニルアルコール系樹脂のアルコール性ヒドロキシル基1当量に対し、環状酸無水物の無水物基が、約0.1当量とするのが適する。第二の樹脂成分であるアクリル樹脂系可塑剤は、ラウリルアクリレート/アクリル酸共重合物と、二官能型エポキシ樹脂との反応物が好ましい。   In the above treatment, the PVA is prepared by mixing and dissolving a first resin component made of a thermosetting polyvinyl alcohol resin and a second resin component made of an acrylic resin plasticizer in NMP. Using. The thermosetting polyvinyl alcohol resin as the first resin component is obtained by adding a cyclic acid anhydride such as succinic acid anhydride to an polyvinyl alcohol resin having an average degree of polymerization of about 2000 in an organic solvent such as NMP. , And obtained in a substantially anhydrous state in the presence of a catalyst such as triethylamine. The reaction ratio between the polyvinyl alcohol resin and the cyclic acid anhydride is preferably about 0.1 equivalent of the anhydride group of the cyclic acid anhydride with respect to 1 equivalent of the alcoholic hydroxyl group of the polyvinyl alcohol resin. The acrylic resin plasticizer as the second resin component is preferably a reaction product of a lauryl acrylate / acrylic acid copolymer and a bifunctional epoxy resin.

これを乾燥後、プレス、裁断して、幅86mm、任意の長さ、そして、負極混合材塗布部が任意の厚さを持つ負極を得た。ここで、本実施例においては、負極混合材層の空隙率が約35%となるように負極を圧縮したが、本発明はこれに限定されず、負極として適する大きさや、空隙率を有していれば、他の構成としても良い。   This was dried and then pressed and cut to obtain a negative electrode having a width of 86 mm, an arbitrary length, and a negative electrode mixed material application part having an arbitrary thickness. Here, in this example, the negative electrode was compressed so that the porosity of the negative electrode mixture layer was about 35%, but the present invention is not limited to this, and has a size suitable for the negative electrode and a porosity. If so, other configurations may be used.

さらに、上記処理によって得られた負極の一方の側縁に残した未塗布部に、正極と同様に切り欠きを入れた。切り欠き残部は負極リード片106とし、隣り合う負極リード片106の間隔を50mm、負極リード片106の幅を5mmとした。   Furthermore, the not-applied part left on one side edge of the negative electrode obtained by the above-described treatment was notched in the same manner as the positive electrode. The remainder of the notch was a negative electrode lead piece 106, the interval between adjacent negative electrode lead pieces 106 was 50 mm, and the width of the negative electrode lead piece 106 was 5 mm.

<ステップ3> 捲回群の作製
作製した正極と、負極とを、これら両極が直接接触しないように、幅90mm、厚さ40μmのポリエチレン製セパレータと共に捲回した。捲回の中心には、ポリプロピレン製の中空円筒状の軸芯101を用いた。このとき、正極リード片103と負極リード片106とが、それぞれ捲回群102(電極群)の互いに反対側の両端面に位置するようにした。また、正極、負極、セパレータの長さを調整し、捲回群102の直径を38±0.1mmとした。もちろん、セパレータの長さ、厚さは共に、上記のものに限定されない。
<Step 3> Production of wound group The produced positive electrode and the negative electrode were wound together with a polyethylene separator having a width of 90 mm and a thickness of 40 μm so that the two electrodes do not directly contact each other. A hollow cylindrical shaft core 101 made of polypropylene was used at the center of winding. At this time, the positive electrode lead piece 103 and the negative electrode lead piece 106 were respectively positioned on opposite end surfaces of the wound group 102 (electrode group). Further, the lengths of the positive electrode, the negative electrode, and the separator were adjusted, and the diameter of the wound group 102 was 38 ± 0.1 mm. Of course, the length and thickness of the separator are not limited to the above.

<ステップ4> 電池の組立て
正極リード片103を変形させ、その全てを、捲回群102の軸芯101のほぼ延長線上にある正極集電リング104から延出する鍔部に集合、接触させた後、正極リード片103と、正極集電リング104の鍔部外周面と、を超音波溶接して、接続した。
<Step 4> Assembly of Battery The positive electrode lead piece 103 was deformed, and all of the positive electrode lead pieces 103 were assembled and brought into contact with the flange extending from the positive electrode current collecting ring 104 substantially on the extension line of the axis 101 of the wound group 102. Then, the positive electrode lead piece 103 and the collar outer peripheral surface of the positive electrode current collection ring 104 were connected by ultrasonic welding.

一方、負極集電リング105と負極リード片106とについても同様に、負極集電リング105から延出する鍔部外周面と、負極リード片106と、を超音波溶接して、負極リード片106を、負極集電リング105の鍔部外周面に接続した。   On the other hand, the negative electrode current collector ring 105 and the negative electrode lead piece 106 are similarly ultrasonically welded to the outer peripheral surface of the flange portion extending from the negative electrode current collector ring 105 and the negative electrode lead piece 106. Was connected to the outer peripheral surface of the flange portion of the negative electrode current collecting ring 105.

その後、正極集電リング104の鍔部外周面の全周に、絶縁被覆を施した。この絶縁被覆には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを正極集電リング104の鍔部外周面から捲回群外周面に亘って一重以上巻いて絶縁被覆とし、捲回群102を電池缶107内に挿入した。   Thereafter, an insulating coating was applied to the entire circumference of the outer peripheral surface of the flange portion of the positive electrode current collecting ring 104. For this insulation coating, an adhesive tape in which the base material was polyimide and an adhesive made of hexamethacrylate was applied on one side thereof was used. This adhesive tape was wound one or more times from the outer peripheral surface of the collar portion of the positive electrode current collecting ring 104 to the outer peripheral surface of the wound group to form an insulating coating, and the wound group 102 was inserted into the battery can 107.

電池缶107には、外形40mm、内径39mmのスチール製の容器を用いた。もちろん、電池缶107の材質には、その他の金属等を用いても良い。   As the battery can 107, a steel container having an outer diameter of 40 mm and an inner diameter of 39 mm was used. Of course, other materials or the like may be used for the material of the battery can 107.

続いて、予め負極集電リング105に溶接された電気的導通のための負極リード板108を、電池缶107の底部に溶接した。次に、電池缶107に挿入された捲回群102を固定するために、電池缶107の開口側外周面に溝加工を施し、溝部109を形成した。   Subsequently, a negative electrode lead plate 108 for electrical conduction, which was previously welded to the negative electrode current collecting ring 105, was welded to the bottom of the battery can 107. Next, in order to fix the wound group 102 inserted into the battery can 107, a groove process was performed on the opening-side outer peripheral surface of the battery can 107 to form a groove portion 109.

一方、正極集電リング104には、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リード112を溶接しておき、正極リード112の他端を、電池缶107を封口するための電池蓋110の下面に溶接した。   On the other hand, the positive electrode current collector ring 104 is preliminarily welded with a positive electrode lead 112 formed by overlapping a plurality of aluminum ribbons, and the other end of the positive electrode lead 112 is sealed with a battery for sealing the battery can 107. Welded to the lower surface of the lid 110.

次に、非水電解液を電池缶107内に注液し、その後、正極リード112を折りたたむようにして電池蓋110で電池缶107に蓋をした。   Next, the nonaqueous electrolyte was poured into the battery can 107, and then the battery can 107 was covered with the battery cover 110 so that the positive electrode lead 112 was folded.

ここでは、非水電解液は、エチレンカーボネートと、ジメチルカーボネートと、ジエチルカーボネートと、を体積比1:1:1で混合した溶媒に、6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いたが、もちろんこれに限定されず、他の電解液を用いても良い。 Here, the non-aqueous electrolyte is 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate are mixed at a volume ratio of 1: 1: 1. Although what was melt | dissolved was used, of course, it is not limited to this, You may use another electrolyte solution.

電池蓋110には、円筒型リチウム二次電池100の内圧上昇に応じて開裂する内圧開放機構として開裂弁113が設けられている。開裂弁113の開裂圧は、約9×10Paに設定した。電池蓋110は、開裂弁113(内部ガス排出弁)等の部品を積層し、EPDM樹脂製のガスケット111を介して、電池蓋110の周縁をカシメることによって密閉した。 The battery lid 110 is provided with a cleavage valve 113 as an internal pressure release mechanism that cleaves as the internal pressure of the cylindrical lithium secondary battery 100 increases. The cleavage pressure of the cleavage valve 113 was set to about 9 × 10 5 Pa. The battery lid 110 was sealed by laminating components such as a cleavage valve 113 (internal gas exhaust valve) and crimping the periphery of the battery lid 110 via a gasket 111 made of EPDM resin.

<ステップ5> ニッケルによるめっき
上記の製造工程によって得られた、密封された円筒型リチウム二次電池100に対し、以下のようなめっき工程で、円筒型リチウム二次電池100の外部にニッケルめっきを施した。
<Step 5> Nickel plating The sealed cylindrical lithium secondary battery 100 obtained by the above manufacturing process is plated with nickel on the outside of the cylindrical lithium secondary battery 100 in the following plating process. gave.

下記に示す組成の触媒液に、密封した円筒型リチウム二次電池100を5−10分浸漬し、円筒型リチウム二次電池100表面にPd触媒層を形成した。その後、純水で5分間リンスし、次いで、下記に示す無電解ニッケルめっき液に約20分間浸漬して、約3μmの厚さのニッケルめっき層を形成した。
(めっき用触媒液組成と作業条件)
塩化パラジウム 0.2g/リットル
濃塩酸 2ミリリットル/リットル
作業温度 室温
浸漬時間 5−10分
(無電解ニッケルめっき液組成と作業条件)
硫酸ニッケル 25g/リットル
次亜リン酸ナトリウム 25g/リットル
有機酸ナトリウム 25g/リットル
めっき液pH 4−5
作業温度 90℃
めっき析出速度 約10μm/時
浸漬時間 約20分
このようにして、円筒型リチウム二次電池100の外部表面にのみニッケルめっきを施した。この無電解ニッケル膜には、無電解ニッケルめっき液に含まれる次亜リン酸ナトリウム由来の、およそ10%のリンが含まれており、膜組成はニッケルとリンの合金となっている。この合金のめっきによって、円筒型リチウム二次電池100は実用的に十分な耐食性を有する。
The sealed cylindrical lithium secondary battery 100 was immersed in a catalyst solution having the composition shown below for 5-10 minutes to form a Pd catalyst layer on the surface of the cylindrical lithium secondary battery 100. Thereafter, the substrate was rinsed with pure water for 5 minutes, and then immersed in an electroless nickel plating solution shown below for about 20 minutes to form a nickel plating layer having a thickness of about 3 μm.
(Composition of catalyst solution for plating and working conditions)
Palladium chloride 0.2g / liter Concentrated hydrochloric acid 2ml / liter Working temperature Room temperature Immersion time 5-10 minutes (Electroless nickel plating solution composition and working conditions)
Nickel sulfate 25 g / liter Sodium hypophosphite 25 g / liter Organic acid sodium 25 g / liter Plating solution pH 4-5
Working temperature 90 ℃
Plating deposition rate: about 10 μm / hour Immersion time: about 20 minutes In this way, only the outer surface of the cylindrical lithium secondary battery 100 was plated with nickel. The electroless nickel film contains approximately 10% phosphorus derived from sodium hypophosphite contained in the electroless nickel plating solution, and the film composition is an alloy of nickel and phosphorus. By plating this alloy, the cylindrical lithium secondary battery 100 has practically sufficient corrosion resistance.

ステップ1から4の工程に関しては、実施例1と同様であるので、詳細な説明は省略する。以下、ステップ5について説明する。   Since the steps 1 to 4 are the same as those in the first embodiment, detailed description thereof is omitted. Hereinafter, step 5 will be described.

<ステップ5> ニッケルによるめっき
実施例1と同様に、下記に示す組成の触媒液に、密封した円筒型リチウム二次電池100を5−10分浸漬し、表面にPd触媒層を形成した。その後、純水で5分間リンスし、次に、下記に示す無電解ニッケルめっき液に約30分間浸漬し、約3μmの厚さのニッケルめっき層を、円筒型リチウム二次電池100の外部表面にのみ形成した。
(めっき用触媒液組成と作業条件)
塩化パラジウム 0.2g/リットル
濃塩酸 2ミリリットル/リットル
作業温度 室温
浸漬時間 5−10分
(無電解ニッケルめっき液組成と作業条件)
硫酸ニッケル 30g/リットル
ジメチルアミンボラン 3.5g/リットル
ホウ酸 30g/リットル
ロッシェル塩 60g/リットル
めっき液pH 5−7
作業温度 50℃
めっき析出速度 約5μm/時
浸漬時間 約30分
実施例2の方法で施した無電解ニッケル膜には、無電解ニッケルめっき液に含まれるジメチルアミンボランと、ホウ酸由来の、およそ1%のホウ素が含まれており、膜組成はニッケルとホウ素の合金となっている。この合金のめっきによって、円筒型リチウム二次電池100は実用的に十分な耐食性を有する。
<Step 5> Nickel plating As in Example 1, the sealed cylindrical lithium secondary battery 100 was immersed in a catalyst solution having the composition shown below for 5-10 minutes to form a Pd catalyst layer on the surface. Thereafter, it is rinsed with pure water for 5 minutes, and then immersed in the electroless nickel plating solution shown below for about 30 minutes, and a nickel plating layer having a thickness of about 3 μm is formed on the outer surface of the cylindrical lithium secondary battery 100. Only formed.
(Composition of catalyst solution for plating and working conditions)
Palladium chloride 0.2g / liter Concentrated hydrochloric acid 2ml / liter Working temperature Room temperature Immersion time 5-10 minutes (Electroless nickel plating solution composition and working conditions)
Nickel sulfate 30 g / liter Dimethylamine borane 3.5 g / liter Boric acid 30 g / liter Rochelle salt 60 g / liter Plating solution pH 5-7
Working temperature 50 ℃
Plating deposition rate: about 5 μm / hour Immersion time: about 30 minutes The electroless nickel film applied by the method of Example 2 includes dimethylamine borane contained in the electroless nickel plating solution and approximately 1% boron derived from boric acid. The film composition is an alloy of nickel and boron. By plating this alloy, the cylindrical lithium secondary battery 100 has practically sufficient corrosion resistance.

ステップ1から4の工程に関しては、実施例1と同様であるので、実施例1詳細な説明は省略する。以下、ステップ5について説明する。   Since the steps 1 to 4 are the same as those in the first embodiment, detailed description of the first embodiment will be omitted. Hereinafter, step 5 will be described.

<ステップ5> ニッケルによるめっき
ここでは、触媒液を用いずに、電解ニッケルめっき液のみを使用する。よって、上記のような無電解ニッケルの場合と異なり、めっき液に浸漬するだけではめっきを施すことができない。そのため、接触電極を用いて円筒型リチウム二次電池100に導通をとって負電位に維持し、円筒型リチウム二次電池100を陰極として、下記に示す電解ニッケルめっき液中で電解し、約3μmの厚さのニッケルめっき層を表面に形成した。
(電解ニッケルめっき液組成と作業条件)
硫酸ニッケル 240g/リットル
塩化ニッケル 45g/リットル
ホウ酸 30g/リットル
ロッシェル塩 60g/リットル
ナフタレンスルフォン酸ナトリウム 1g/リットル
めっき液pH 4
作業温度 30℃
めっき電流密度 約2−10A/dm
浸漬時間 約3分
実施例3の方法で施した電解ニッケル膜の組成は、ほぼ純ニッケルである。よって、ニッケルめっきを施した円筒型リチウム二次電池100は、実用的に十分な耐食性を有する。
<Step 5> Nickel plating Here, only the electrolytic nickel plating solution is used without using the catalyst solution. Therefore, unlike the case of the electroless nickel as described above, the plating cannot be performed only by being immersed in the plating solution. Therefore, the cylindrical lithium secondary battery 100 is made conductive by using a contact electrode and maintained at a negative potential, and the cylindrical lithium secondary battery 100 is used as a cathode and electrolysis is performed in an electrolytic nickel plating solution shown below, about 3 μm. The nickel plating layer of thickness was formed on the surface.
(Electrolytic nickel plating solution composition and working conditions)
Nickel sulfate 240 g / liter Nickel chloride 45 g / liter Boric acid 30 g / liter Rochelle salt 60 g / liter Sodium naphthalene sulfonate 1 g / liter Plating solution pH 4
Working temperature 30 ℃
Plating current density about 2-10 A / dm 2
Immersion time: about 3 minutes The composition of the electrolytic nickel film applied by the method of Example 3 is almost pure nickel. Therefore, the nickel-plated cylindrical lithium secondary battery 100 has practically sufficient corrosion resistance.

また、このような電解方式を使用しためっきの場合には作業温度が低く、円筒型リチウム二次電池100内部のセパレータなど、比較的耐熱性の低い材料への影響を、軽微にすることができる。   Further, in the case of plating using such an electrolytic method, the working temperature is low, and the influence on a material having relatively low heat resistance such as a separator in the cylindrical lithium secondary battery 100 can be reduced. .

本実施例によって製造された円筒型リチウム二次電池100と、従来の方法で製造されたリチウム二次電池とを比較したチャートを図4に示す。従来例では、電池缶の内部表面、外部表面共に、めっき層を有する電池缶を使用し、溝を加工する工程を経て、リチウム二次電池を製造していたため、溝の内部と外部のめっきの剥離を引き起こす可能性があった。その結果、内部に混入しためっきの微小片が原因となるような短絡や、外部の剥離部で腐食を招く可能性があった。   FIG. 4 shows a chart comparing the cylindrical lithium secondary battery 100 manufactured according to this example and the lithium secondary battery manufactured by the conventional method. In the conventional example, the battery can having a plating layer is used for both the inner surface and the outer surface of the battery can, and the lithium secondary battery is manufactured through the process of processing the groove. There was a possibility of causing peeling. As a result, there is a possibility of causing a short circuit caused by plating fine pieces mixed inside and corrosion at an external peeling portion.

しかしながら、本実施例により製造された円筒型リチウム二次電池100によれば、溝加工と密閉の両工程後にめっきを施すため、加工時の応力によってめっき層が剥離することなく、内部へのめっきの微小片混入による短絡や、外部の腐食をも防止することができる。   However, according to the cylindrical lithium secondary battery 100 manufactured according to the present embodiment, the plating is performed after both the grooving process and the sealing process, so that the plating layer is not peeled off due to the stress at the time of processing. It is possible to prevent short-circuiting due to mixing of small pieces and external corrosion.

本発明に係る円筒形リチウム二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the cylindrical lithium secondary battery which concerns on this invention. 本発明に係る円筒形リチウム二次電池の製造工程を表わす概略図である。It is the schematic showing the manufacturing process of the cylindrical lithium secondary battery which concerns on this invention. 本発明に係る円筒形リチウム二次電池の断面図である。It is sectional drawing of the cylindrical lithium secondary battery which concerns on this invention. 本実施例によって製造された円筒型リチウム二次電池と、従来の方法で製造された電池とを比較したチャートである。It is the chart which compared the cylindrical lithium secondary battery manufactured by the present Example with the battery manufactured by the conventional method. 従来の円筒形リチウム二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the conventional cylindrical lithium secondary battery. 従来の円筒形リチウム二次電池の製造工程を表わす概略図である。It is the schematic showing the manufacturing process of the conventional cylindrical lithium secondary battery.

符号の説明Explanation of symbols

100、200…円筒型リチウム二次電池、101…軸芯、102…捲回群、103…正極リード片、104…正極集電リング、105…負極集電リング、106…負極リード片、107…電池缶、108…負極リード板、109…溝部、110…電池蓋、111…ガスケット、112…正極リード、113…開裂弁 DESCRIPTION OF SYMBOLS 100, 200 ... Cylindrical lithium secondary battery, 101 ... Axle, 102 ... Winding group, 103 ... Positive electrode lead piece, 104 ... Positive electrode current collection ring, 105 ... Negative electrode current collection ring, 106 ... Negative electrode lead piece, 107 ... Battery can, 108 ... Negative electrode lead plate, 109 ... Groove, 110 ... Battery cover, 111 ... Gasket, 112 ... Positive electrode lead, 113 ... Cleavage valve

Claims (7)

底部と、側壁部と、上部開口と、を備える電池缶に、正極と、負極と、セパレータと、からなる捲回群を挿入する工程と、
前記電池缶に、電解液を注入する工程と、
前記電池缶の側壁部の外周面に、溝部を形成する工程と、
前記電池缶の上部開口を、電池蓋で封止する工程と、
封止された前記電池の外部表面に、めっき層を形成する工程と、
を含むことを特徴とする、リチウム二次電池の製造方法。
Inserting a wound group consisting of a positive electrode, a negative electrode, and a separator into a battery can comprising a bottom portion, a side wall portion, and an upper opening;
Injecting an electrolyte into the battery can;
Forming a groove on the outer peripheral surface of the side wall of the battery can;
Sealing the upper opening of the battery can with a battery lid;
Forming a plating layer on the outer surface of the sealed battery;
A method for producing a lithium secondary battery, comprising:
請求項1に記載のリチウム二次電池の製造方法であって、
前記めっき層を形成する工程は、
前記電池にパラジウム触媒層を形成した後、無電解のめっき液に浸漬する工程であること
を特徴とする、リチウム二次電池の製造方法。
It is a manufacturing method of the lithium secondary battery according to claim 1,
The step of forming the plating layer includes
A method for producing a lithium secondary battery, comprising forming a palladium catalyst layer on the battery and then immersing it in an electroless plating solution.
請求項1に記載のリチウム二次電池の製造方法であって、
前記めっき層を形成する工程は、
前記電池を陰極として、めっき液中で電気分解を行う工程であること
を特徴とする、リチウム二次電池の製造方法。
It is a manufacturing method of the lithium secondary battery according to claim 1,
The step of forming the plating layer includes
A method for producing a lithium secondary battery, comprising the step of performing electrolysis in a plating solution using the battery as a cathode.
請求項1から3のいずれか1項に記載のリチウム二次電池の製造方法であって、
前記めっき層は、前記めっき液の組成によって、Ni、Ni−P合金、Ni−B合金、のいずれかで構成されること
を特徴とする、リチウム二次電池の製造方法。
A method for producing a lithium secondary battery according to any one of claims 1 to 3,
The said plating layer is comprised with either Ni, a Ni-P alloy, and a Ni-B alloy by the composition of the said plating solution. The manufacturing method of a lithium secondary battery characterized by the above-mentioned.
請求項1から4のいずれか1項に記載のリチウム二次電池の製造方法で製造されたリチウム二次電池。   The lithium secondary battery manufactured with the manufacturing method of the lithium secondary battery of any one of Claim 1 to 4. 請求項5に記載のリチウム二次電池であって、
前記電池缶の材質は、スチールであること
を特徴とする、リチウム二次電池。
The lithium secondary battery according to claim 5,
The lithium secondary battery is characterized in that the battery can is made of steel.
請求項5または6に記載のリチウム二次電池であって、
電気自動車に使用されること
を特徴とする、リチウム二次電池。
The lithium secondary battery according to claim 5 or 6,
A lithium secondary battery characterized by being used in an electric vehicle.
JP2007277433A 2007-10-25 2007-10-25 Lithium secondary battery and manufacturing method thereof Expired - Fee Related JP5128900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277433A JP5128900B2 (en) 2007-10-25 2007-10-25 Lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277433A JP5128900B2 (en) 2007-10-25 2007-10-25 Lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009104979A JP2009104979A (en) 2009-05-14
JP5128900B2 true JP5128900B2 (en) 2013-01-23

Family

ID=40706438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277433A Expired - Fee Related JP5128900B2 (en) 2007-10-25 2007-10-25 Lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5128900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188503A1 (en) * 2013-05-21 2014-11-27 株式会社日立製作所 Electricity storage device and method for manufacturing same
CN107407000B (en) 2015-03-13 2019-09-13 东洋钢钣株式会社 The manufacturing method and battery case surface treated steel plate of battery case surface treated steel plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322345A (en) * 1989-06-19 1991-01-30 Sanyo Electric Co Ltd Battery
JP2001185095A (en) * 1999-12-22 2001-07-06 Sony Corp Secondary battery
JP2007087704A (en) * 2005-09-21 2007-04-05 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2009104979A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5194070B2 (en) Secondary battery
JP5113434B2 (en) Nonaqueous electrolyte secondary battery
CN1599099A (en) Negative electrode for a non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN106537651B (en) Secondary cell
US20090202901A1 (en) Battery
JP5156273B2 (en) Lithium ion secondary battery
JP2011187338A (en) Lithium ion secondary battery
JP2011187337A (en) Cylindrical battery cell with non-aqueous electrolyte
JP2008059765A (en) Nonaqueous secondary battery
JP2009266705A (en) Lithium secondary battery
JP5128900B2 (en) Lithium secondary battery and manufacturing method thereof
JP2011154971A (en) Cylindrical secondary battery
JP7160947B2 (en) Negative electrode external terminal for lithium ion battery, secondary battery, and method for manufacturing negative electrode external terminal for lithium ion battery
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
US20170084904A1 (en) Cylindrical single-piece lithium-ion battery of 400Ah and its preparation method
JP2011054380A (en) Cylindrical battery
JP3909996B2 (en) Non-aqueous electrolyte secondary battery
JP2008251433A (en) Battery
JP2012049073A (en) Secondary battery
JP4875868B2 (en) Non-aqueous electrolyte secondary battery
JP4794820B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2008262777A (en) Secondary battery
US7687195B2 (en) Nonaqueous electrolyte secondary battery and producing method thereof
JPH11339760A (en) Battery
CN108511690B (en) Battery cell, manufacturing method thereof, battery and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees