JP5128760B2 - Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products - Google Patents

Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products Download PDF

Info

Publication number
JP5128760B2
JP5128760B2 JP2005142168A JP2005142168A JP5128760B2 JP 5128760 B2 JP5128760 B2 JP 5128760B2 JP 2005142168 A JP2005142168 A JP 2005142168A JP 2005142168 A JP2005142168 A JP 2005142168A JP 5128760 B2 JP5128760 B2 JP 5128760B2
Authority
JP
Japan
Prior art keywords
polyglutamate
pga
polyglutamic acid
nutritional supplement
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005142168A
Other languages
Japanese (ja)
Other versions
JP2006316022A (en
Inventor
ホ グアン−フェイ
ヤン ジェン
ヤン トゥ−シウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tung Hai Biotechnology Corp
Original Assignee
Tung Hai Biotechnology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tung Hai Biotechnology Corp filed Critical Tung Hai Biotechnology Corp
Priority to JP2005142168A priority Critical patent/JP5128760B2/en
Priority to CN2005101149086A priority patent/CN101061867B/en
Publication of JP2006316022A publication Critical patent/JP2006316022A/en
Application granted granted Critical
Publication of JP5128760B2 publication Critical patent/JP5128760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

本発明は、腸内でのカルシウム吸収や骨のカルシウム吸収を向上させるためのγ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体、又はこれらの混合物のダイエタリー製品における使用に関する。更に詳細には、本発明は、カルシウムの吸収促進や骨粗鬆症の予防、カルシウム損失の低減、骨強度の維持、成長や健康状態の改善のために、γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体、又はこれらの混合物を、食品又は動物用飼料組成物中において錯形成吸着剤(complex adsorbent)又は栄養補助剤として使用することに関する。 The present invention relates to γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate K + form, γ for improving calcium absorption in the intestine and bone calcium absorption. -Polyglutamate NH 4 + form, γ-polyglutamate Mg ++ form, γ-polyglutamate Ca ++ form, or a mixture thereof in a dietary product. More specifically, the present invention relates to γ-polyglutamic acid (γ-PGA, H form) for promoting calcium absorption, preventing osteoporosis, reducing calcium loss, maintaining bone strength, and improving growth and health. Γ-polyglutamate Na + isomer, γ-polyglutamate K + isomer, γ-polyglutamate NH 4 + isomer, γ-polyglutamate Mg ++ isomer, γ-polyglutamate Ca ++ isomer, or a mixture thereof, It relates to use as a complex adsorbent or nutritional supplement in food or animal feed compositions.

「トランスフォーミング増殖因子−β」(TGF−β)はタンパク質ファミリーの一種であり、進化過程において高度に保存されており、広範な種類の細胞に影響を及ぼす。当初、TGF−βは初代細胞培養を足場非依存的に増殖させる因子として特定された。インビボにおいてTGF−βは、結合組織の形成(deposition)を促進し、間充織細胞の増殖を誘起する。TGF−βは、造血幹細胞(非特許文献1参照)やNK細胞(非特許文献2参照)等の免疫系細胞の増殖及び分化に影響を及ぼす。TGF−βはまた、癌や白血病等の過増殖を抑制するために投与することができる(特許文献1参照)。   “Transforming growth factor-β” (TGF-β) is a member of the protein family that is highly conserved during evolution and affects a wide variety of cells. Initially, TGF-β was identified as a factor that allowed primary cell cultures to grow in an anchorage-independent manner. In vivo, TGF-β promotes connective tissue deposition and induces mesenchymal cell proliferation. TGF-β affects the proliferation and differentiation of immune system cells such as hematopoietic stem cells (see Non-patent Document 1) and NK cells (see Non-Patent Document 2). TGF-β can also be administered to suppress overgrowth such as cancer and leukemia (see Patent Document 1).

特許文献2及び3の開示に従って、脱石灰した骨から尿素又は塩酸グアニジンを用いて「骨形成因子(BMP)」を抽出・再沈澱させた。セイデンとトーマス(Seyedin and Thomas)は特許文献4において、カオトロピック剤を用いた抽出と、pH4.8でCMCに吸着したフラクションからの活性物質を回収することにより骨形成刺激骨由来タンパク質を部分精製したことを報告している。この新規なタンパク質フラクションは「骨形成因子(osteogenic factor)」と称され、約30000ダルトン未満の分子量を有すると特定された。   According to the disclosures of Patent Documents 2 and 3, “bone forming factor (BMP)” was extracted and reprecipitated from decalcified bone using urea or guanidine hydrochloride. Seidin and Thomas partially purified bone-derived stimulating bone-derived protein in US Pat. No. 6,057,049 by extraction with a chaotropic agent and recovery of active substances from fractions adsorbed to CMC at pH 4.8. It is reported that. This novel protein fraction is referred to as the “osteogenic factor” and has been identified as having a molecular weight of less than about 30000 daltons.

アクチビンは、二量体タンパク質であり、構造的にTGF−β1に類似するタンパク質ファミリーの一種で、インヒビンに類似している。インヒビンは、アクチビンサブユニットと他のアクチビンサブユニットとからなるヘテロ二量体である。アクチビンは、卵胞刺激ホルモンの放出(非特許文献3参照)やランゲルハンス島からのインスリン分泌(非特許文献4参照)、骨髄培養における赤芽球多能性前駆細胞(erythroid and multipotential progenitor cell)のコロニー形成(非特許文献5参照)を刺激し、また、インビボにおいて軟骨性骨の形成を誘起する(非特許文献6参照)ことが判明している。   Activin is a dimeric protein, a member of a protein family that is structurally similar to TGF-β1 and is similar to inhibin. Inhibin is a heterodimer composed of activin subunits and other activin subunits. Activin is a release of follicle-stimulating hormone (see Non-Patent Document 3), insulin secretion from Langerhans Island (see Non-Patent Document 4), and colonies of erythroid and multipotential progenitor cells in bone marrow culture. It has been found that it stimulates formation (see Non-Patent Document 5) and induces the formation of cartilage bone in vivo (see Non-Patent Document 6).

骨シアロタンパク質(BSP)は高度にグリコシレート化及びサルフェート化されたリンタンパク質であり、石灰化した結合組織にのみ認められる。ポリグルタミン酸モチーフは、ヒドロキシアパタイトと細胞表面インテグリンとを結合する能力を有する。BSPは骨ニュークリエーターが有する生物物理学的及び化学的機能を有する。ヒドロキシアパタイト結合ポリグルタミン酸配列は二官能性の物質(entites)を提供するが、この物質により、BSPのターゲティングと骨表面への正常細胞及び転移細胞の付着が仲介される(非特許文献7参照)。   Bone sialoprotein (BSP) is a highly glycosylated and sulfated phosphoprotein found only in calcified connective tissue. The polyglutamic acid motif has the ability to bind hydroxyapatite and cell surface integrins. BSP has the biophysical and chemical functions of bone neucreators. Hydroxyapatite-linked polyglutamate sequences provide bifunctional entities, which mediate BSP targeting and attachment of normal and metastatic cells to the bone surface (see Non-Patent Document 7). .

本技術分野において、可溶性、抗原性及び生物学的タンパク質クリアランスを変化させるためにポリマーと共有結合させて改変したタンパク質に関する文献がある(特許文献5、特許文献6、特許文献7及び特許文献8参照)。特許文献9(1992年11月11日公開)は、骨成長因子と標的組織への親和性を有するターゲティング分子とを含む組成物を開示しており、この骨成長因子及びターゲティング分子はクロスリンカーと化学的に結合している。クロスリンカーとしては合成親水性ポリマーが好ましい。これら分子は骨に対する親和性を有することが好ましい。骨成長因子としてはTGF−β、アクチビン、骨形成因子(BMP)又は骨シアロタンパク質(BSP)が好ましい。標的とする組織の例としては骨や、軟骨、骨成長因子が標的とするその他の各種組織や細胞が挙げられる。これら組成物は、骨形成の促進目的での使用、及び骨粗鬆症や骨関節炎、加齢による骨量損失においてよく見受けられる骨損失の修復や処置における使用を意図したものである。   In this technical field, there are documents related to proteins modified by covalent bonding with polymers in order to change solubility, antigenicity and biological protein clearance (see Patent Document 5, Patent Document 6, Patent Document 7 and Patent Document 8). ). Patent Document 9 (published on November 11, 1992) discloses a composition comprising a bone growth factor and a targeting molecule having an affinity for a target tissue, the bone growth factor and the targeting molecule comprising a crosslinker and It is chemically bonded. As the crosslinker, a synthetic hydrophilic polymer is preferable. These molecules preferably have affinity for bone. As the bone growth factor, TGF-β, activin, bone morphogenetic factor (BMP) or bone sialoprotein (BSP) is preferable. Examples of target tissues include bones, cartilage, and other various tissues and cells targeted by bone growth factors. These compositions are intended for use in promoting bone formation and in the repair and treatment of bone loss often found in osteoporosis, osteoarthritis, and bone loss due to aging.

人体のカルシウム吸収は、基本的に二経路によることが知られている。即ち、能動輸送と受動輸送である。能動輸送経路は主としてビタミンD及び種々のホルモンの調節により制御されており、ここではカルシウムは小腸上部において濃度勾配とは逆勾配で吸収される。一方、受動輸送経路では、カルシウムは小腸下部で濃度勾配に従って吸収される。可溶性カルシウムが大量に存在する場合、小腸下部に対する受動輸送の比率が非常に高くなる。能動輸送経路では、可溶性カルシウムの濃度を増加させても一定量以上に吸収量を増加させることはできないが、受動輸送では腸内の可溶性カルシウムの濃度が増加するにつれ吸収が上昇する。腸内のカルシウム吸収率は10〜50%であると報告されている。腸における乳タンパク質であるカゼインの酵素分解物である、カゼインホスホペプチド(CPP)は小腸の可溶性カルシウムの濃度を増加させ、これによりカルシウム吸収を促進させる(特許文献10参照(1995年9月5日発行))。カルシウムは、CPPに含まれる酸性アミノ酸のカルボキシレート基とホスホセリンのホスフェート基に配位することにより可溶性の状態に維持される。   It is known that the absorption of calcium in the human body is basically by two pathways. That is, active transport and passive transport. The active transport pathway is primarily controlled by the regulation of vitamin D and various hormones, where calcium is absorbed in the upper small intestine with a reverse gradient to the concentration gradient. On the other hand, in the passive transport pathway, calcium is absorbed in the lower small intestine according to a concentration gradient. When soluble calcium is present in large quantities, the ratio of passive transport to the lower small intestine is very high. In the active transport pathway, even if the concentration of soluble calcium is increased, the amount of absorption cannot be increased beyond a certain amount, but in passive transport, the absorption increases as the concentration of soluble calcium in the intestine increases. Intestinal calcium absorption has been reported to be 10-50%. Casein phosphopeptide (CPP), which is an enzymatic degradation product of casein, a milk protein in the intestine, increases the concentration of soluble calcium in the small intestine, thereby promoting calcium absorption (see Patent Document 10 (September 5, 1995). Issue)). Calcium is maintained in a soluble state by coordinating to the carboxylate group of acidic amino acids contained in CPP and the phosphate group of phosphoserine.

US4816442US4816442 US4294753US4294753 US4455256US4455256 US4434094US4434094 US4261973US4261973 US4301144US4301144 US4179337US4179337 US4830847US4830847 CA2102808CA2102808 US5447732US5447732 オオタ(Ohta)ら,Nature(1987年),329巻,p539Ohta et al., Nature (1987), 329, p539. ルーク(Rook)ら,J.Immunol.,(1986年),136巻,p3916Rook et al. Immunol. (1986), 136, p3916. W.ベール(Vale)ら,Nature(1986年),321巻,p776−79W. Vale et al., Nature (1986), 321, p776-79. Y.トツカ(Totsuka)ら,Biochem.&Biophys.Res.Comm.(1988年),156巻,p335−39Y. Totsuka et al., Biochem. & Biophys. Res. Comm. (1988), 156, p335-39. J.ユー(Yu)ら,Nature(1987年),330巻,p765−67J. et al. Yu et al., Nature (1987), 330, p765-67. M.E.ジョイス(Joyce)ら,J. Cell Biol.(1990年),110巻,p2195−2207M.M. E. Joyce et al. Cell Biol. (1990), 110, p2195-2207. ゲインズ(Ganes)ら,「骨シアロタンパク質」,Critical Reviews in Oral Biology and Medicine,10巻(1),p79−98Ganes et al., “Bone Sialoprotein”, Critical Reviews in Oral Biology and Medicine, 10 (1), p79-98.

骨粗鬆症や骨折は、高齢者や閉経後の女性によく見られる代謝性疾患である。ダイエタリーカルシウムは、高齢者の骨粗鬆症の予防のためカルシウム要求量を考慮する場合や、骨強度や骨のミネラル密度を増加する際に不可欠である。骨粗鬆症は、骨損失を特徴とする疾患であり、骨折の危険性の増加や背中痛や関節痛に関連している。骨粗鬆症の予防には十分なダイエタリー栄養物、特にカルシウム含有量の高い食品の摂取が重要である。ダイエタリーカルシウムは吸収性及び生体利用性が非常に高く、年齢とともにカルシウム吸収が低下する事実を考えると、高齢者のカルシウム要求量を考慮するうえで重要である。   Osteoporosis and fractures are metabolic diseases that are common in elderly people and postmenopausal women. Dietary calcium is indispensable when considering calcium requirements for the prevention of osteoporosis in the elderly and when increasing bone strength and bone mineral density. Osteoporosis is a disease characterized by bone loss and is associated with an increased risk of fracture, back pain and joint pain. In order to prevent osteoporosis, it is important to take sufficient dietary nutrients, particularly foods with a high calcium content. Dietary calcium has an extremely high absorbability and bioavailability, and considering the fact that calcium absorption decreases with age, it is important in considering the calcium requirements of the elderly.

本発明は、γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体又はこれらの混合物を、ダイエタリーカルシウムの吸収と骨芽細胞の増殖とを促進する栄養補助剤として、食品や動物用飼料において使用することに関する。 The present invention relates to γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Mg ++ form Γ-polyglutamate Ca ++ or a mixture thereof is used in foods and animal feeds as a nutritional supplement that promotes dietary calcium absorption and osteoblast proliferation.

本発明において、栄養補助剤としてγ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体又はこれらの混合物を使用すれば、錯体形成によってカルシウム、マグネシウムのいずれも効果的に溶解・安定化することができ、食品や飼料組成物に用いた場合、効果的にカルシウム及びマグネシウムの生体利用性を向上させることができる。 In the present invention, γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate as nutritional supplements If Mg ++ form, γ-polyglutamate Ca ++ form or a mixture thereof is used, both calcium and magnesium can be effectively dissolved and stabilized by complex formation, and can be used for food and feed compositions. If so, the bioavailability of calcium and magnesium can be improved effectively.

γ−ポリグルタミン酸(γ−PGA、H体)及びγ−ポリグルタメート(Na+、K+、NH4 +、Ca++及びMg++体)は生分解性であって、L−グルタミン酸から液内発酵プロセス(H.クボタ(Kubota)ら、「枯草菌F−2−01によるポリ(γ−グルタミン酸)の生産(Production of Poly((-Glutamic Acid) by Bacillus subtitlis F-2-01)」、Biosci.Biotech.Biochem.57(7)、1212−1213、1993及びY.オガワ(Ogawa)ら、「ジャー内発酵における枯草菌(ナットウ)によるγ−ポリグルタミン酸の効果的な生産(Efficient Production of (-Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermentation)」、61(10)、1684−1687、1997参照)によって生産される非毒性バイオポリマーである。γ−ポリグルタメート(Na+、K+、NH4 +、Ca++及びMg++体)は吸水性に優れ、金属イオンのCa++、Mg++、Zn++、Mn++、Se++++及びCr+++に対し良好な配位能を有し、錯体を形成する。また、γ−ポリグルタメートのポリアニオン性は水系において前記金属イオンを溶解・安定化するという用途に関し研究されている。図1にγ−ポリグルタミン酸(γ−PGA)及びγ−ポリグルタメート(Na+、K+、NH4+、Ca++、Mg++体)の分子構造を示す。図2、図3及び図4に、1H−NMR、13C−NMR及びFT−IRスペクトルをそれぞれ示す。これらスペクトル及び分析データを表1にまとめた。図5にpH滴定曲線を示す。 γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate (Na + , K + , NH 4 + , Ca ++ and Mg ++ forms) are biodegradable and are liquids from L-glutamic acid. Internal fermentation process (H. Kubota et al., "Production of Poly ((-Glutamic Acid) by Bacillus subtitlis F-2-01)", Biosci. Biotech. Biochem. 57 (7), 1212-1213, 1993, and Y. Ogawa et al., “Efficient Production of (Efficient Production of ( -Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermentation) ", 61 (10), 1684-1687, 1997). Γ-polyglutamate (Na + , K + , NH 4 + , Ca ++ and Mg ++ isomers) are excellent in water absorption, and metal ions Ca ++ , Mg ++ , Zn ++ , Mn ++ , Se ++++ In addition, it has a good coordination ability to Cr +++ and forms a complex, and the polyanionic property of γ-polyglutamate has been studied for use in dissolving and stabilizing the metal ion in an aqueous system. 1 shows the molecular structures of γ-polyglutamic acid (γ-PGA) and γ-polyglutamate (Na + , K + , NH 4+ , Ca ++ , Mg ++ isomers). The 1 H-NMR, 13 C-NMR and FT-IR spectra are shown in Fig. 4. These spectra and analytical data are summarized in Table 1. Fig. 5 shows the pH titration curve.

γ−ポリグルタミン酸(γ−PGA、H体)は、重合度が1000から20000までのグルタミン酸のバイオポリマーであり、グルタミック単位同士のγ−ペプチド結合のみから成る。γ−ポリグルタミン酸(γ−PGA、H体)及びγ−ポリグルタメート(Na+、K+、NH4 +、Ca++及びMg++体)は末端アミンと多数のα−カルボン酸/カルボキシレート基とを含む。γ−ポリグルタミン酸(γ−PGA、H体)及びγ−ポリグルタメート(Na+、K+、NH4 +、Ca++及びMg++体)はpHやイオン強度、その他のカチオン性種等の環境条件により、幾つかのコンホメーション状態、即ち、αヘリックス、ランダムコイル、βシート、ヘリックスコイル転移領域及び包み込まれた会合体(enveloped aggregation)として存在する。通常、円二色性(CD)を用いて、αヘリックス体の存在量を222nmにおけるスペクトル強度の関数として測定する。ヘリックスコイル転移は均一な水溶液中で、約pH3〜5から生じ、γ−ポリグルタミン酸(γ−PGA、H体)は非結合の形態となり、pHがより高い5〜7にシフトすると結合した形態となる。ランダムコイルから包み込まれた会合体への転移は、γ−PGAの大規模のコンホメーション変化によって二価以上の金属イオンとの配位錯体が形成の場合に生じる。 γ-Polyglutamic acid (γ-PGA, H form) is a biopolymer of glutamic acid having a degree of polymerization of 1000 to 20000, and consists only of γ-peptide bonds between glutamic units. γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate (Na + , K + , NH 4 + , Ca ++ and Mg ++ forms) are terminal amines and a number of α-carboxylic acids / carboxylates. Group. γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate (Na + , K + , NH 4 + , Ca ++ and Mg ++ forms) are used for pH, ionic strength, other cationic species, etc. Depending on environmental conditions, there are several conformational states: alpha helix, random coil, beta sheet, helix coil transition region and enveloped aggregation. Usually, circular dichroism (CD) is used to measure the abundance of α-helix bodies as a function of spectral intensity at 222 nm. The helix coil transition occurs in a homogeneous aqueous solution from about pH 3-5, and γ-polyglutamic acid (γ-PGA, H form) is in an unbound form, and is bound when the pH is shifted to 5-7, Become. The transition from the random coil to the encapsulated aggregate occurs when a coordination complex with a divalent or higher metal ion is formed by a large-scale conformational change of γ-PGA.

本発明者らの研究により、γ−ポリグルタミン酸(γ−PGA、H体)及びγ−ポリグルタメート(Na+、K+、NH4 +、Mg++及びCa++体)は、錯体形成によりカルシウム及びマグネシウムのいずれも溶解・安定化させるのに有効であり、食品や動物用飼料に栄養補助剤として用いる場合、カルシウム及びマグネシウムの生体利用性を高めるのに有効であることが分かった。 According to the studies by the present inventors, γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate (Na + , K + , NH 4 + , Mg ++ and Ca ++ forms) It has been found that both calcium and magnesium are effective for dissolving and stabilizing, and when used as a nutritional supplement in foods and animal feeds, it is effective in enhancing the bioavailability of calcium and magnesium.

γ−ポリグルタミン酸(γ−PGA、H体)はカルシウム塩やマグネシウム塩と反応し、安定した水溶性のカルシウムγ−ポリグルタメートやマグネシウムγ−ポリグルタメートをそれぞれ生成する。本発明者らは、インビトロの細胞培養研究により、配位錯体であるこれらカルシウムγ−ポリグルタメート及びマグネシウムγ−ポリグルタメートには高い吸収性、生体利用性があることを見出した。   γ-polyglutamic acid (γ-PGA, H form) reacts with calcium salt and magnesium salt to produce stable water-soluble calcium γ-polyglutamate and magnesium γ-polyglutamate, respectively. The present inventors have found through in vitro cell culture studies that these calcium γ-polyglutamate and magnesium γ-polyglutamate, which are coordination complexes, have high absorbability and bioavailability.

γ−PGAへの金属吸着には二つの可能な機構、即ち、(A)金属イオンとカルボキシル部位との直接相互作用及び(B)COO-基により生じる静電ポテンシャル場による移動可能な重金属対イオンの保持が関与している。カルボキシレート基との相互作用の他に、アミド結合も弱い相互作用部位を提供することができる。γ−PGAの配座構造とイオン化に加え、水溶液中に存在する加水分解金属種の種類を知ることも重要である。種々の異なる化学種が生成するので、金属イオンに対する吸着能に差が生じ得る。 There are two possible mechanisms for metal adsorption on γ-PGA: (A) a direct interaction between a metal ion and a carboxyl moiety and (B) a movable heavy metal counterion due to an electrostatic potential field generated by a COO - group. Retention is involved. In addition to interaction with carboxylate groups, amide bonds can also provide weak interaction sites. In addition to the conformation structure and ionization of γ-PGA, it is also important to know the type of hydrolyzed metal species present in the aqueous solution. Since a variety of different chemical species are generated, there may be differences in the adsorption capacity for metal ions.

本発明者らは、鋭意研究を行った結果、γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートCa++体、γ−ポリグルタメートMg++体又はこれらの混合物をカルシウム及びマグネシウムの錯形成吸着剤として添加し、可溶性及び生体利用性を向上させ腸におけるカルシウム吸収性を高めることを見出した。食料品によっては無機ミネラルの塩やミネラル粉末を含有させることによってミネラル分を増加させたのものもあるが、これらは他の共存物質と不溶な塩を生成する可能性がある。特定ミネラル種を過剰摂取すると他のミネラルの吸着を阻害する可能性があるため、体内のミネラル利用はあまり向上しない。例えば、カルシウムの大量摂取は鉄の吸収を阻害する。更に、食品がミネラル分を含み過ぎると食品の味という点において不利である。また、一般にミネラルは、小腸で吸収されるためには溶解した状態で存在しなければならないと考えられている。 As a result of intensive studies, the present inventors have found that γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate K + form, and γ-polyglutamate NH 4 + form. , Γ-polyglutamate Ca ++ isomer, γ-polyglutamate Mg ++ isomer or a mixture thereof is added as a calcium and magnesium complexing adsorbent to improve solubility and bioavailability and increase calcium absorption in the intestine I found out. Some foods have minerals increased by containing inorganic mineral salts or mineral powders, but these may produce salts that are insoluble with other coexisting substances. Since excessive intake of a specific mineral species may inhibit the adsorption of other minerals, the use of minerals in the body does not improve much. For example, large intakes of calcium inhibit iron absorption. Furthermore, if the food contains too much mineral, it is disadvantageous in terms of the taste of the food. In general, minerals are considered to have to exist in a dissolved state in order to be absorbed in the small intestine.

γ−ポリグルタミン酸(γ−PGA、H体)及び各種γ−ポリグルタメート(Na+、K+、NH4 +、Ca++、Mg++体)は小腸下部でミネラルに対し良好な溶解作用を有し、人体又は動物体内でカルシウム吸収を促進する。特に、本発明はγ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートK+体、γ−ポリグルタメートCa++体、γ−ポリグルタメートMg++体又はこれらの混合物のダイエタリー製品において栄養補助剤として使用することに関する。 γ-polyglutamic acid (γ-PGA, H form) and various γ-polyglutamate (Na + , K + , NH 4 + , Ca ++ , Mg ++ form) have a good dissolving action on minerals in the lower part of the small intestine. And promotes calcium absorption in the human or animal body. In particular, the present invention relates to γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate NH 4 + form, γ-polyglutamate K + form, γ-polyglutamate Ca ++ The present invention relates to use as a dietary supplement in dietary products of the body, γ-polyglutamate Mg ++ body or mixtures thereof.

本発明の一実施形態において、ダイエタリー製品は栄養物質であり、前記ダイエタリー製品の全乾燥重量に対し0.005重量%〜100重量%の前記栄養補助剤を含む。他の実施形態において、ダイエタリー製品は食品又は飼料組成物であり、前記ダイエタリー製品の全乾燥重量に対し0.005重量%〜5重量%の前記栄養補助剤を含む。   In one embodiment of the present invention, the dietary product is a nutritional substance and comprises 0.005% to 100% by weight of the nutritional supplement based on the total dry weight of the dietary product. In another embodiment, the dietary product is a food or feed composition and comprises 0.005% to 5% by weight of the nutritional supplement relative to the total dry weight of the dietary product.

本発明に係るダイエタリー製品は、5〜40デキストロース当量のマルトデキストラン、乳タンパク質、大豆タンパク質単離物、グルコース、ラクトース、スクロース、フルクトース、小鎖オリゴ−フルクトース、グルカン又は他のオリゴ−ポリ多糖、コラーゲン、コラーゲンゼラチン加水分解物、α−デンプン、大豆タンパク質加水分解物、デンプン部分加水分解物、グリセロール、プロピレングリコール、エタノール、アラビアガム、グアーガム、カラギーナン(caragheneen)、セルロース及び他の変性セルロース、及びこれらの混合物から成る群から選択される成分を更に含むことができる。更に、前記ダイエタリー製品はソフトゲルカプセル又はハードゲルカプセル、錠剤又は液剤の形状とすることができる。   Dietary products according to the present invention include 5-40 dextrose equivalents of maltodextran, milk protein, soy protein isolate, glucose, lactose, sucrose, fructose, small chain oligo-fructose, glucan or other oligo-polypolysaccharide, collagen Collagen gelatin hydrolyzate, α-starch, soy protein hydrolyzate, starch partial hydrolysate, glycerol, propylene glycol, ethanol, gum arabic, guar gum, caragheneen, cellulose and other modified celluloses, and these It can further comprise a component selected from the group consisting of a mixture. Furthermore, the dietary product can be in the form of soft gel capsules or hard gel capsules, tablets or liquids.

本発明によれば、γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートCa++体及びγ−ポリグルタメートMg++体の分子量は、それぞれ5000〜2.5×106の範囲である。本発明者らは、インビトロの研究において150×103〜450×103ダルトンの範囲の分子量をそれぞれ有するγ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートCa++体及びγ−ポリグルタメートMg++体が骨芽細胞の増殖を促進することを見出し、インビボの研究において産卵鶏のパフォーマンスとブロイラー鶏の成長を向上させることを見出した。 According to the present invention, γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Ca + form The molecular weights of the + form and the γ-polyglutamate Mg ++ form are in the range of 5000 to 2.5 × 10 6 , respectively. In the in vitro studies, the present inventors have found that γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ- each having a molecular weight ranging from 150 × 10 3 to 450 × 10 3 daltons. It was found that polyglutamate K + body, γ-polyglutamate NH 4 + body, γ-polyglutamate Ca ++ body and γ-polyglutamate Mg ++ body promote the proliferation of osteoblasts, and lay eggs in in vivo studies. Found to improve chicken performance and broiler chicken growth.

市販目的量のγ−ポリグルタミン酸(γ−PGA、H体)及びその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)は、液内発酵プロセスにより、枯草菌(納豆菌)(Bacillus subtilis. Bacillus subtilis var. natto)(H.クボタ(Kubota)ら、「枯草菌F−2−01によるポリ(γ−グルタミン酸)の生産(Production of Poly((-Glutamic Acid) by Bacillus subtitlis F-2-01)」、Biosci.Biotech.Biochem.57(7)、1212−1213、1993及びY.オガワ(Ogawa)ら、「ジャー内発酵(Jar Fermentation)における枯草菌(ナットウ)によるγ−ポリグルタミン酸の効果的な生産(Efficient Production of (-Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermentation)」、61(10)、1684−1687、1997参照)を用いて生産することができ、また、バシラス・リシェニフォルミス(Bacillus licheniformis)(JP05−316999(1993年3月12日公開)参照)を用いL−グルタミン酸及びグルコースを主な供給原料として使用して生産することができる。微生物培養培地には、炭素源、窒素源、各種無機ミネラル分及び他の栄養分が含まれている。通常、炭素源の一部としてL−グルタミン酸量を3〜12%、グルコースを5〜12%の濃度範囲で用い、クエン酸を0.2〜2%の濃度で用い、ペプトンと硫酸アンモニウム又は尿素とを窒素源として用い、酵母抽出物を栄養源として用い、Mn++、Mg++やNaClをミネラル源として用いる。培養は、適切な通気と撹拌の下、30〜40℃の温度で維持し、pHを尿素溶液又は水酸化ナトリウム溶液を用いて6〜7.5に維持する。培養時間は通常48〜84時間である。γ−ポリグルタミン酸(γ−PGA、H体)及びその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)は細胞外に蓄積される。 Commercial target amounts of γ-polyglutamic acid (γ-PGA, H form) and salts thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-poly Glutamate Mg ++ form and γ-polyglutamate Ca ++ form are produced by Bacillus subtilis. Bacillus subtilis var. Natto (H. Kubota et al. Production of Poly ((-Glutamic Acid) by Bacillus subtitlis F-2-01) by Fungus F-2-01, Biosci. Biotech. Biochem. 57 (7), 1212-1213 1993 and Y. Ogawa et al., “Efficient Production of (-Polyglutamic Acid by Bacillus su) by Bacillus subtilis (Natto). btilis (natto) in Jar Fermentation ”, 61 (10), 1684-1687, 1997), and Bacillus licheniformis (JP 05-316999 (1993)). (Published on March 12))) using L-glutamic acid and glucose as main feedstocks, including microbial culture medium, carbon source, nitrogen source, various inorganic minerals and other nutrients Usually, as part of the carbon source, the amount of L-glutamic acid is 3-12%, glucose is used in a concentration range of 5-12%, citric acid is used in a concentration of 0.2-2%, using the peptone and ammonium sulfate or urea as a nitrogen source, using yeast extract as a nutrient source, Mn ++, using Mg ++ and NaCl as mineral sources. cultivation is suitably The temperature is maintained at 30-40 ° C. under aeration and stirring, and the pH is maintained at 6-7.5 using urea solution or sodium hydroxide solution, and the culture time is usually 48-84 hours. Polyglutamic acid (γ-PGA, H form) and salts thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Mg ++ form, (γ-polyglutamate Ca ++ form) accumulates extracellularly.

γ−ポリグルタミン酸(γ−PGA、H体)及びその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)は通常、発酵用ブロスから一連の手続により抽出するが、その手続には超遠心や加圧ろ過により細胞を分離し、3〜4倍のエタノールを添加してγ−ポリグルタミン酸(γ−PGA、H体)やその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)を沈澱させる工程が含まれる。沈澱物を水に再度溶解し、新たにエタノールを使用しγ−ポリグルタミン酸(γ−PGA、H体)やその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)を沈澱させる。この溶解−沈澱ステップを数回繰り返し、純粋なγ−ポリグルタミン酸(γ−PGA、H体)やその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)を回収する。 γ-polyglutamic acid (γ-PGA, H form) and salts thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Mg ++ Body, γ-polyglutamate Ca ++ form) is usually extracted from the broth for fermentation by a series of procedures, in which cells are separated by ultracentrifugation or pressure filtration, and 3-4 times ethanol is added. Γ-polyglutamic acid (γ-PGA, H form) and salts thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Mg) ++ form, γ-polyglutamate Ca ++ form) is included. The precipitate is redissolved in water, and γ-polyglutamic acid (γ-PGA, H form) or a salt thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ is newly used using ethanol. -Precipitating polyglutamate NH 4 + form, γ-polyglutamate Mg ++ form, γ-polyglutamate Ca ++ form). This dissolution-precipitation step is repeated several times to obtain pure γ-polyglutamic acid (γ-PGA, H form) or a salt thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate). NH 4 + isomer, γ-polyglutamate Mg ++ isomer, and γ-polyglutamate Ca ++ isomer) are recovered.

通常、γ−ポリグルタミン酸(γ−PGA、H体)やその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)は、水やエタノール、メタノール等の適切な溶媒に溶解し、pHは5.0〜7.5に調節する。定常的に撹拌しながら、この溶液に、適切に選択した多官能化学架橋剤、例えばポリグリセロールポリグリシジルエーテルやソルビトールポリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、トリメチロールプロパントリアクリレートを添加する。添加量は、架橋剤の種類やヒドロゲルに要求される品質により異なるが、γ−ポリグルタミン酸(γ−PGA、H体)又はその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)の重量の0.01〜20%の範囲である。通常、ゲル化反応は50〜120℃の反応温度で1〜4時間で完了するが、使用する器具や条件により異なる。次に、生成したヒドロゲルを凍結乾燥し、乾燥した架橋γ−ポリグルタミン酸(γ−PGA、H体)或いはその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)を生成する。これは、超吸水能を有し、非水溶性であり、水中で完全に膨張すると、無色透明で生分解可能なヒドロゲルを形成する。 Usually, γ-polyglutamic acid (γ-PGA, H form) and salts thereof (that is, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Mg) The ++ form and the γ-polyglutamate Ca ++ form are dissolved in an appropriate solvent such as water, ethanol, methanol, and the pH is adjusted to 5.0 to 7.5. With constant stirring, an appropriately selected polyfunctional chemical cross-linking agent such as polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polyethylene glycol diglycidyl ether, trimethylolpropane triacrylate is added to this solution. The amount added varies depending on the type of crosslinking agent and the quality required for the hydrogel, but γ-polyglutamic acid (γ-PGA, H form) or a salt thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K) + Γ-polyglutamate NH 4 + isomer, γ-polyglutamate Mg ++ isomer, γ-polyglutamate Ca ++ isomer) in a range of 0.01 to 20%. Usually, the gelation reaction is completed in 1 to 4 hours at a reaction temperature of 50 to 120 ° C., but varies depending on the equipment and conditions used. Next, the produced hydrogel was freeze-dried, and the dried crosslinked γ-polyglutamic acid (γ-PGA, H form) or a salt thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ- Polyglutamate NH 4 + form, γ-polyglutamate Mg ++ form, and γ-polyglutamate Ca ++ form). It is super water-absorbing, water-insoluble, and forms a colorless, transparent and biodegradable hydrogel when fully swollen in water.

分子量が5000〜900000のγ−ポリグルタミン酸(γ−PGA、H体)又はその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)は、選択された特定の反応条件(pH、温度、反応時間、γ−ポリグルタミン酸(γ−PGA、H体)濃度)で制御された酸加水分解により生成することができる。pHについては、HClやH2SO4、他の有機酸等の適切な酸類(acidulants)でpH2.5〜6.5の範囲にすることができる。加水分解の温度は、50〜120℃の範囲にすることができる。反応時間は0.5〜5時間とすることができ、そして分子量1×106以上のγ−ポリグルタミン酸(γ−PGA、H体)の濃度は、適宜必要ないかなる濃度とすることもできる。高純度で、低分子量から中程度の分子量のγ−ポリグルタミン酸(γ−PGA、H体)又はその塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体、γ−ポリグルタメートCa++体)を選択的に生成するためには、反応終了後、透析や膜ろ過による更なる精製と乾燥を行う必要がある。酸加水分解速度はpHが低い程、温度が高い程、また、γ−ポリグルタミン酸(γ−PGA、H体)の濃度が高い程速い。γ−ポリグルタメート塩(即ち、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体及びγ−ポリグルタメートCa++体)は、選択したγ−ポリグルタミン酸(γ−PGA、H体)を、選択したNa+、K+、NH4 +、Ca++又はMg++の金属イオン塩基性水酸化物溶液又は酸化物と反応させることにより生産することができ、pHは必要に応じて5.0〜7.2の所望の値に調節できる。 Γ-polyglutamic acid (γ-PGA, H form) having a molecular weight of 5000 to 900,000 or a salt thereof (that is, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ -Polyglutamate Mg ++ form and γ-polyglutamate Ca ++ form are controlled by selected specific reaction conditions (pH, temperature, reaction time, γ-polyglutamic acid (γ-PGA, H form) concentration) Can be produced by acid hydrolysis. The pH, HCl or H 2 SO 4, with a suitable acid such as other organic acids (acidulants) can be in the range of PH2.5~6.5. The temperature of hydrolysis can be in the range of 50-120 ° C. The reaction time can be 0.5 to 5 hours, and the concentration of γ-polyglutamic acid (γ-PGA, H form) having a molecular weight of 1 × 10 6 or more can be any required concentration. High purity, low to medium molecular weight γ-polyglutamic acid (γ-PGA, H form) or a salt thereof (ie, γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate) NH 4 + form, γ-polyglutamate Mg ++ form, γ-polyglutamate Ca ++ form) must be further purified and dried by dialysis or membrane filtration after the reaction is completed. There is. The acid hydrolysis rate is faster as the pH is lower, the temperature is higher, and the concentration of γ-polyglutamic acid (γ-PGA, H form) is higher. γ-polyglutamate salt (ie, γ-polyglutamate Na + isomer, γ-polyglutamate K + isomer, γ-polyglutamate NH 4 + isomer, γ-polyglutamate Mg ++ isomer and γ-polyglutamate Ca ++ isomer) ) A selected γ-polyglutamic acid (γ-PGA, H form) with a selected metal ion basic hydroxide solution or oxide of Na + , K + , NH 4 + , Ca ++ or Mg ++ The pH can be adjusted to a desired value of 5.0 to 7.2 as necessary.

本発明を更に詳細に説明するため、以下に実施例を示し、本発明がどのように非常に改善されたカルシウム吸収を達成し、骨の成長と強度に健康上の利点をもたらし、カルシウム損失を減らし、骨粗鬆症の症状を軽減するのかを示す。しかしながら、本発明の範囲はこれら実施例によって何ら限定されるものではない。   To further illustrate the present invention, the following examples are provided to illustrate how the present invention achieves greatly improved calcium absorption, brings health benefits to bone growth and strength, and reduces calcium loss. Shows whether to reduce and reduce the symptoms of osteoporosis. However, the scope of the present invention is not limited by these examples.

<実施例1> インビトロにおける細胞培養の研究−骨芽細胞の増殖促進
分子量980×103ダルトンのγ−ポリグルタミン酸(γ−PGA、H体)HM、分子量880×103ダルトンのγ−ポリグルタメートNa+体HM及び分子量250×103ダルトンのγ−ポリグルタメートNa+体LMを本研究に使用した。
γ−ポリグルタミン酸(γ−PGA、H体)及び/又はγ−ポリグルタメートNa+体10mgを、10%ウシ胎児血清(FBS)含有F−12DMEM培地(ダルベッコ変法イーグル培地)1mLに加え段階希釈を適切に行うことにより、同一組成の栄養培地中におけるγ−ポリグルタミン酸(γ−PGA、H体)及び/又はγ−ポリグルタメートNa+体の濃度が異なる(0.1%〜4.9×10-5%)培地を調製し、各サンプル200μLを96ウェル培養プレートに三連で添加した。10%ウシ胎児血清(FBS)のみを含むF−12DMEM培地(ダルベッコ変法イーグル培地)をコントロールとして用いた。
<Example 1> Research of cell culture in vitro-Promotion of osteoblast proliferation γ-polyglutamic acid (γ-PGA, H form) HM having a molecular weight of 980 × 10 3 daltons, γ-polyglutamate having a molecular weight of 880 × 10 3 daltons Na + form HM and γ-polyglutamate Na + form LM having a molecular weight of 250 × 10 3 daltons were used in this study.
Serial dilution by adding 10 mg of γ-polyglutamic acid (γ-PGA, H form) and / or γ-polyglutamate Na + form to 1 mL of F-12 DMEM medium (Dulbecco's modified Eagle medium) containing 10% fetal bovine serum (FBS) Are appropriately performed, the concentration of γ-polyglutamic acid (γ-PGA, H form) and / or γ-polyglutamate Na + form in the nutrient medium having the same composition is different (0.1% to 4.9 ×). 10 −5 %) medium was prepared and 200 μL of each sample was added in triplicate to a 96-well culture plate. F-12 DMEM medium (Dulbecco's modified Eagle medium) containing only 10% fetal bovine serum (FBS) was used as a control.

指数増殖期のヒト骨髄幹細胞から骨芽細胞のサンプルを、1200rpmで6分間遠心することにより生育培地から分離し、10mLのリン酸緩衝溶液(PBS)(0.01Mホスフェート、pH7.4)で3回洗浄し、10%ウシ胎児血清(FBS)含有F−12DMEM培地中で再度懸濁し、細胞密度を1×105個/mLとした。活発に増殖している細胞の懸濁液200μLを各サンプルウェルに加えた。96ウェル培養プレートのサンプルをボルテックスミキサーで十分に混合し、5%CO2雰囲気下RH75%、34℃で48時間インキュベートした。MTT[3−(4,5−ジメチルチアゾール−2−イル)−2,5−ジフェノールテトラゾリウムブロミド]溶液(1mg/mL)20μLを各ウェルに加え、十分に混合し再度4時間インキュベートした。10%SDS/0.01N HCl緩衝液100μLを各サンプルウェルに加え、室温で一晩結晶を溶解させた。各サンプルウェルの光学濃度(OD570nm)を測定、記録し、骨芽細胞の増殖向上について計算した。 Samples of osteoblasts from exponentially growing human bone marrow stem cells are separated from the growth medium by centrifugation at 1200 rpm for 6 minutes and 3 with 10 mL of phosphate buffered saline (PBS) (0.01 M phosphate, pH 7.4). The cells were washed once and suspended again in F-12 DMEM medium containing 10% fetal bovine serum (FBS) to a cell density of 1 × 10 5 cells / mL. A 200 μL suspension of actively growing cells was added to each sample well. Samples from a 96-well culture plate were thoroughly mixed with a vortex mixer and incubated for 48 hours at 34 ° C., 75% RH in a 5% CO 2 atmosphere. 20 μL of MTT [3- (4,5-dimethylthiazol-2-yl) -2,5-diphenoltetrazolium bromide] solution (1 mg / mL) was added to each well, mixed well and incubated again for 4 hours. 100 μL of 10% SDS / 0.01N HCl buffer was added to each sample well to dissolve the crystals overnight at room temperature. The optical density (OD 570 nm ) of each sample well was measured and recorded and calculated for improved osteoblast proliferation.

骨芽細胞のミトコンドリアの脱水素酵素はMTT塩(無色のテトラゾリウム塩)と反応し、青色のホルマザン塩の結晶を生成することができる。次いで、ホルマザンの結晶はSDSと反応し、可溶性の青色ホルマザンに変化した。青色ホルマザンの色の強度は骨芽細胞の増殖量を表す。骨芽細胞の増殖の向上は次に示すように計算できる。
増加(MTT)%=((OD570)a−(OD570)c)/(OD570)c×100%
(OD570)a:サンプルウェルの光学濃度
(OD570)c:コントロールウェルの光学濃度
Osteoblast mitochondrial dehydrogenase can react with MTT salt (colorless tetrazolium salt) to produce blue formazan salt crystals. The formazan crystals then reacted with SDS and changed to a soluble blue formazan. The intensity of blue formazan color represents the amount of osteoblast proliferation. The improvement in osteoblast proliferation can be calculated as follows.
Increase (MTT)% = ((OD 570 ) a− (OD 570 ) c) / (OD 570 ) c × 100%
(OD 570 ) a: Optical density of sample well
(OD 570 ) c: Optical density of control well

<実施例2>
実施例1から得た増殖向上率の結果を表2に示す。
<Example 2>
The results of the growth improvement rate obtained from Example 1 are shown in Table 2.

結果から明らかなように、0.39ppmという低濃度においても骨芽細胞の増殖は、γ−ポリグルタメートNa+体HMの場合で130%以上、γ−ポリグルタメートNa+体LMの場合で80%以上、γ−ポリグルタミン酸(γ−PGA、H体)HMの場合で125%以上、向上した。より高分子量のγ−ポリグルタメートNa+体HMの場合に、より良好な増殖向上が示された。 As is apparent from the results, even at a low concentration of 0.39 ppm, osteoblast proliferation is 130% or more in the case of γ-polyglutamate Na + form HM and 80% in the case of γ-polyglutamate Na + form LM. As described above, in the case of γ-polyglutamic acid (γ-PGA, H form) HM, the improvement was 125% or more. In the case of higher molecular weight γ-polyglutamate Na + form HM, better growth improvement was shown.

<実施例3> インビトロにおける細胞培養の研究−骨の形成促進
分子量980×103ダルトンのγ−ポリグルタミン酸(γ−PGA、H体)HM、分子量880×103ダルトンのγ−ポリグルタメートNa+体HM及び分子量250×103ダルトンのγ−ポリグルタメートNa+体LMを本研究に使用した。
<Example 3> In vitro cell culture study-promotion of bone formation γ-polyglutamic acid (γ-PGA, H form) HM having a molecular weight of 980 × 10 3 daltons, γ-polyglutamate Na + having a molecular weight of 880 × 10 3 daltons Body HM and gamma-polyglutamate Na + form LM with a molecular weight of 250 × 10 3 daltons were used in this study.

γ−ポリグルタミン酸(γ−PGA、H体)及び/又はγ−ポリグルタメートNa+体10mgを、10%ウシ胎児血清(FBS)含有F−12DMEM培地(ダルベッコ変法イーグル培地)1mLに加え段階希釈を適切に行うことにより、栄養培地中におけるγ−ポリグルタミン酸(γ−PGA、H体)及び/又はγ−ポリグルタメートNa+体の濃度が異なる(0.1%〜3.1×10-3%)培地を調製し、各サンプル1mLを6ウェル培養プレートに三連で添加した。10%ウシ胎児血清(FBS)のみを含むF−12DMEM培地(ダルベッコ変法イーグル培地)をコントロールとして用いた。 Serial dilution by adding 10 mg of γ-polyglutamic acid (γ-PGA, H form) and / or γ-polyglutamate Na + form to 1 mL of F-12 DMEM medium (Dulbecco's modified Eagle medium) containing 10% fetal bovine serum (FBS) Is appropriately performed, the concentration of γ-polyglutamic acid (γ-PGA, H form) and / or γ-polyglutamate Na + form in the nutrient medium is different (0.1% to 3.1 × 10 −3). %) Medium was prepared and 1 mL of each sample was added in triplicate to a 6-well culture plate. F-12 DMEM medium (Dulbecco's modified Eagle medium) containing only 10% fetal bovine serum (FBS) was used as a control.

10%ウシ胎児血清(FBS)含有F−12DMEM(ダルベッコ変法イーグル培地)2mLを各サンプルウェルに添加し十分に混合した。
指数増殖期のヒト骨髄幹細胞から骨芽細胞のサンプルを、1200rpmで6分間遠心することにより成長培地から分離し、10mLのリン酸緩衝溶液(PBS)(0.01Mリン酸、pH7.4)で3回洗浄し、10%ウシ胎児血清(FBS)含有F−12DMEM培地中で再度懸濁し、細胞密度を1×105個/mLとした。活発に増殖している細胞の懸濁液1mLを各サンプルウェルに加えた。6ウェル培養プレートのサンプルをボルテックスミキサーで十分に混合し、5%CO2雰囲気下RH75%、34℃で7日間インキュベートした。次いで、トリプシン溶液200μLを各ウェルに添加し、34℃で約30秒間反応させた。F−12DMEM培地(ダルベッコ変法イーグル培地)1mLを各サンプルウェルに添加し十分に混合した。懸濁した細胞を回収除去した。pNPP(100μL)/p−ニトロフェニルホスフェート溶液(SK−5900、ベクター社)(2mL)を含有する0.01M重炭酸/炭酸ナトリウム溶液(pH10)1mLを添加し、十分に混合して室温で30分間反応させ、0.1M NaOH溶液1mLを添加し反応を停止させた。410nmでの吸光度を測定し記録した。
2 mL of F-12DMEM (Dulbecco's modified Eagle medium) containing 10% fetal bovine serum (FBS) was added to each sample well and mixed well.
A sample of osteoblasts from exponentially growing human bone marrow stem cells is separated from the growth medium by centrifuging at 1200 rpm for 6 minutes, and 10 mL of phosphate buffered saline (PBS) (0.01 M phosphate, pH 7.4). The cells were washed three times and resuspended in F-12DMEM medium containing 10% fetal bovine serum (FBS) to a cell density of 1 × 10 5 cells / mL. A 1 mL suspension of actively growing cells was added to each sample well. Samples from 6-well culture plates were mixed well with a vortex mixer and incubated for 7 days at 34 ° C., 75% RH in 5% CO 2 atmosphere. Then, 200 μL of trypsin solution was added to each well and reacted at 34 ° C. for about 30 seconds. 1 mL of F-12 DMEM medium (Dulbecco's modified Eagle medium) was added to each sample well and mixed well. Suspended cells were collected and removed. Add 1 mL of 0.01 M bicarbonate / sodium carbonate solution (pH 10) containing pNPP (100 μL) / p-nitrophenyl phosphate solution (SK-5900, Vector) (2 mL), mix well, and mix at room temperature for 30 The reaction was allowed to proceed for 1 minute, and 1 mL of 0.1 M NaOH solution was added to stop the reaction. The absorbance at 410 nm was measured and recorded.

<実施例4>
実施例3から得た結果を次の表3に示した。
<Example 4>
The results obtained from Example 3 are shown in Table 3 below.

アルカリホスファターゼ活性は骨芽細胞が存在することを示すものである。アルカリホスファターゼ活性は細胞が石灰化する前に高くなり、細胞密度は骨前駆体の分化及び骨形成を規定する。ヒト骨髄幹細胞を1週間培養した場合、骨芽細胞の存在を示すアルカリホスファターゼ活性が出現する(ヴァインレープ(Weinreb)M.、スキナー(Schinar)D.M.及びロダン(Rodan)G.A.1990、「in situハイブリダイゼーションにより可視化したラットの骨発達におけるオステオデンティン及びオステオカルシンの発現、アルカリフォスファターゼの異なるパターン(Different Pattern of Alkaline Phosphatase、Osteodentin, and Osteocalcin Expression in Developing Rat Bone Visualized by in situ Hybridization)」、J.Bone Miner.Res.5:838−842;ヤオ(Yao)K.L.、トデスカン(Todescan)R.Jr.及びソデック(Sodek)J.、1994、「成熟ラットの培養骨髄細胞による石灰化組織形成中のマトリックスタンパク質合成における一時的変化及びmRNAの発現(Temporal Changes in Matrix Protein Synthesis and mRNA Expression during Mineralized Tissue Formation by Adult Rat Bone Marrow Cells in Culture)」、J.Bone Miner.Res.9:231−240;及びヘスベルトソン(Hesbertson)A.及びオービン(Aubin)J.E.1995、「デキサメタゾンはラットの骨髄基質培養物のサブポピュレーション構成を変化させる(Dexamethasone, Alters the Subpopulation Make-Up of Rat Bone Marror Stromal Cultures)」J.Bone Miner.Res.10:285−294参照)。   Alkaline phosphatase activity indicates the presence of osteoblasts. Alkaline phosphatase activity is increased before the cells are mineralized, and cell density defines osteoprogenitor differentiation and bone formation. When human bone marrow stem cells are cultured for 1 week, alkaline phosphatase activity indicating the presence of osteoblasts appears (Weinreb M., Skinar DM and Rodan GA 1990). , “Different Pattern of Alkaline Phosphatase, Osteodentin, and Osteocalcin Expression in Developing Rat Bone Visualized by In Situ Hybridization” J. Bone Miner.Res.5: 838-842; Yao KL, Todescan R.Jr., and Sodek J., 1994, “Climate by cultured rat bone marrow cells. In the synthesis of matrix proteins during chemical tissue formation “Temporal Changes in Matrix Protein Synthesis and mRNA Expression during Mineralized Tissue Formation by Adult Rat Bone Marrow Cells in Culture”, J. Bone Miner. Res. 9: 231-240; and Hesbertson A. and Aubin JE 1995, “Dexamethasone, Alters the Subpopulation Make-Up of Rat Bone Marror Stromal Cultures,” J. Bone. Miner. Res. 10: 285-294).

表3の結果はγ−ポリグルタメートNa+体HM及びγ−ポリグルタメートNa+体ヒドロゲルの双方が骨芽細胞の増殖促進において効果的であることを示しており、最適濃度はそれぞれγ−ポリグルタメートNa+体HMの場合で500ppm(0.05%)とγ−ポリグルタメートNa+体ヒドロゲルの場合で6.2ppm(0.0062%)である。低分子量のγ−ポリグルタメートNa+体LMもまた骨芽細胞の増殖を促進するが、1000ppm(0.1%)という非常に高い濃度である。この結果は、γ−ポリグルタメートNa+体が、骨芽細胞とその前駆体による生体利用可能なカルシウムの吸収を効果的に促進することを示唆しており、骨の成長においてγ−ポリグルタメートNa+体の強い親水性と活性コイルコンホメーションが、骨成長因子(TGF−β、アクチビン、骨形成因子(BMP)、骨シアロタンパク質(BSP)等)の機能を、この因子と効果的に錯体形成することにより促進し、骨芽細胞へ因子を輸送し、骨を形成及び成長させる。 The results in Table 3 show that both γ-polyglutamate Na + form HM and γ-polyglutamate Na + form hydrogel are effective in promoting osteoblast proliferation, and the optimum concentrations are respectively γ-polyglutamate. In the case of Na + form HM, it is 500 ppm (0.05%), and in the case of γ-polyglutamate Na + form hydrogel, it is 6.2 ppm (0.0062%). Low molecular weight γ-polyglutamate Na + form LM also promotes osteoblast proliferation, but at a very high concentration of 1000 ppm (0.1%). This result suggests that γ-polyglutamate Na + form effectively promotes the absorption of bioavailable calcium by osteoblasts and their precursors, and γ-polyglutamate Na in bone growth. + Strong hydrophilicity and active coil conformation of the body effectively complex the function of bone growth factors (TGF-β, activin, bone morphogenetic factor (BMP), bone sialoprotein (BSP), etc.) with this factor Promotes by forming, transports factors to osteoblasts, and forms and grows bone.

<実施例5> インビボにおける屋外給餌実験−ユアン−アン(Yuan-an)養鶏場での放牧養鶏(産卵鶏)
73週齢の産卵鶏を本研究に用いた。全8区画(1区画8000羽)を用いた。通常飼料(アホ(Aho)P.W. 2002, 「米国鶏肉産業案内(Introduction to the US chicken meat industry)」801〜818頁、「商用鶏肉・鶏卵の生産(Commercial Chicken Meat and Egg Production)」、第5版、ベル(Bell), D. D.及びウェーバー・ジュニア(Weaver, junior)W.D.編、Kluwer Publishing;ノーウェル(Norwell) BS、ヘブンスタイン(Havenstein) G.B.ら、1994, 「1957年、1991年の「典型的」ブロイラー餌を給餌したときの、生育、生存率、飼料要求率に関する1957年対1991年の比較(Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed "typical" 1957 and 1991 broiler diets)」、Poult. Sci. 73: 1785-1794)を4週間与え、次の4週間は100ppmのγ−ポリグルタメートNa+体LM(分子量200×103〜400×103)を含有する通常飼料を与え、次いで2週間、通常飼料を与え、これら期間に亘って鶏卵サンプルを集めた。鶏卵サンプルについて、卵殻強度、卵殻厚、卵白及び卵黄のpH、卵白高を決定し、HU値(鶏卵の品質の凡その鮮度指数又は健全性指数)を算出した
<Example 5> Outdoor feeding experiment in vivo-Grazing chicken (laying hen) in Yuan-an poultry farm
A 73-week-old laying hen was used in this study. A total of 8 compartments (1 compartment 8000 birds) were used. Normal feed (Aho PW 2002, “Introduction to the US chicken meat industry”, pages 801-818, “Commercial Chicken Meat and Egg Production”, 5th edition , Bell, DD and Weaver, junior WD, Kluwer Publishing; Norwell BS, Havenstein GB, et al. 1957 vs. 1991 broilers when fed "typical" 1957 and 1991 broiler diets), "Poult,""Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed" typical "1957 and 1991 broiler diets" Sci. 73: 1785-1794) for 4 weeks, then for the next 4 weeks, a normal diet containing 100 ppm γ-polyglutamate Na + form LM (molecular weight 200 × 10 3 to 400 × 10 3 ) was given, and then 2 weeks, normal feed Given were collected egg samples over these periods. For egg samples, eggshell strength, eggshell thickness, pH of egg white and egg yolk, egg white height were determined, and HU value (approximate freshness index or health index of chicken egg quality) was calculated.

<実施例6>
実施例5で得た結果を表4、5及び6に示した。
<Example 6>
The results obtained in Example 5 are shown in Tables 4, 5 and 6.

注:1.73週齢の産卵鶏を用いた。
2.4区画(8000羽/区画)を用いた。
3.「*」は鶏卵10個の平均値である。
4.HU値は次のように定義される:
HU=ハウユニット・・・補正された卵アルブミンの高さの値
=100*log(H−G*0.5(30*W*0.37−100)/100+1.9
ここで、H−アルブミンの高さ(mm)
W−卵重(g)
G−32.2、重力定数
5.KGF−卵殻強度の単位
Note: 1.73 weeks old laying hens were used.
2.4 sections (8000 birds / section) were used.
3. “ * ” Is the average value of 10 eggs.
4). The HU value is defined as follows:
HU = Howe unit: Corrected height of egg albumin
= 100 * log (HG * 0.5 (30 * W * 0.37-100) /100+1.9
Here, the height of H-albumin (mm)
W-Egg weight (g)
G-32.2, gravity constant 5. KGF-eggshell strength unit

表4、5及び6の結果から、卵黄、卵白の強度及び卵殻強度に顕著な改善が示された。これは、γ−ポリグルタメートNa+体を含有する飼料を与えた期間のHU値の差の減少及びKGF値の差の減少に示されている。γ−ポリグルタメートNa+体を含有する飼料を与えた期間では、卵殻厚、卵白高、卵黄色の全てが改善された。 The results in Tables 4, 5 and 6 showed significant improvements in egg yolk, egg white strength and eggshell strength. This is shown in the decrease in the difference in HU values and the decrease in the difference in KGF values during the period of feeding the feed containing γ-polyglutamate Na + form. In the period when the feed containing the γ-polyglutamate Na + body was given, eggshell thickness, egg white height, and egg yolk were all improved.

<実施例7> インビボにおける屋外給餌実験−イーチャン(Yee−Thiang)養豚場での放牧養豚
γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体及びγ−ポリグルタメートCa++体の栄養的・健康的側面について子豚(2群2セット)を用いた放牧養豚を39日間行って調べた。標準飼料に対し100ppmの濃度でγ−ポリグルタメートNa+体及びγ−ポリグルタメートCa++体を飼料補助剤として含む。表7に結果を示す。
<Example 7> Outdoor feeding experiment in vivo-grazing pigs in Yee-Thiang pig farm γ-polyglutamic acid (γ-PGA, H-form), γ-polyglutamate Na + form and γ-polyglutamate Ca + + The nutritional and health aspects of the body were investigated by conducting grazing pigs using piglets (2 groups, 2 sets) for 39 days. Γ-polyglutamate Na + form and γ-polyglutamate Ca ++ form are contained as feed supplements at a concentration of 100 ppm with respect to the standard feed. Table 7 shows the results.

<実施例8>
表7に実施例7の結果を示す。
<Example 8>
Table 7 shows the results of Example 7.

表7の結果より、γ−ポリグルタメートCa++体は体脂肪の減少及び子豚の飼料要求率(feed-to meat conversion)の減少に有効であるが、γ−ポリグルタメートNa+体ではこの飼料要求率が若干増加し、子豚の体脂肪減少においては効果はほとんど認められないことが明らかとなった。 From the results of Table 7, γ-polyglutamate Ca ++ body is effective in reducing body fat and feed-to meat conversion, but in γ-polyglutamate Na + body, The feed demand rate increased slightly, and it was clarified that there was almost no effect in reducing body fat in piglets.

<実施例9> インビボにおける屋外給餌実験−トン−サン(Tong San)養鶏場での放牧養鶏(ブロイラー)
γ−ポリグルタメートNa+体の栄養的・健康的側面をブロイラーの雛(4群2セット)を用いた放牧養鶏を25日間行い調べた。標準飼料に対し100ppmの濃度で分子量250×103のγ−ポリグルタメートNa+体LMを飼料補助剤として含む。表8に結果を示す。
<Example 9> In vivo outdoor feeding experiment-grazing chicken (broiler) at Tong San poultry farm
The nutritional and healthy aspects of the γ-polyglutamate Na + body were examined by carrying out grazing chickens using broiler chicks (4 groups, 2 sets) for 25 days. Γ-polyglutamate Na + form LM having a molecular weight of 250 × 10 3 and a concentration of 100 ppm relative to the standard feed is included as a feed supplement. Table 8 shows the results.

<実施例10>
表8に実施例9の結果を示す。
<Example 10>
Table 8 shows the results of Example 9.

この結果、γ−ポリグルタメートNa+体はカルシウム吸収を促進し、ブロイラーの雌雄両方の全体重を増加させる。25日間の給餌において、開始時体重kg当りの終了時体重の平均はγ−ポリグルタメートNa+体を含有させた通常飼料(ヘブンスタイン(Havenstein) G.B.ら、1994, 「1957年、1991年の「典型的」ブロイラー餌を給餌したときの、生育、生存率、飼料要求率に関する1957年対1991年の比較(Growth、livability、and feed conversion of 1957 vs 1991 broilers when fed "typical" 1957 and 1991 broiler diets)」、Poult. Sci. 73: 1795-1794)を与えた群では4.712kgで、通常飼料(コントロール)を与えた群では4.629kgである。脛骨の長さは、γ−ポリグルタメートNa+体を含有した飼料を適用した試験のブロイラー雄については9.38cm、ブロイラー雌については9.18cmであり、通常飼料を適用したコントロールのブロイラー雄については9.25cm、ブロイラー雌については9.10cmである。脛骨中のカルシウム含有量は通常飼料を適用したコントロールのブロイラー雄については17.66%、ブロイラー雌については16.69%である。 As a result, the γ-polyglutamate Na + form promotes calcium absorption and increases the overall weight of both male and female broilers. In 25 days of feeding, the average of the end body weight per kg body weight at the start was the normal feed containing γ-polyglutamate Na + body (Havenstein GB et al., 1994, “1957, 1991” 1957 vs. 1991 broilers when fed "typical" 1957 and 1991 broiler diets, compared to 1957 vs. 1991 ) ", Poult. Sci. 73: 1795-1794), the group was 4.712 kg, and the group fed the normal feed (control) was 4.629 kg. The length of the tibia is 9.38 cm for the broiler male in the test with the feed containing the γ-polyglutamate Na + body and 9.18 cm for the broiler female, and for the control broiler male with the normal feed applied. Is 9.25 cm and for broiler females is 9.10 cm. The calcium content in the tibia is 17.66% for control broiler males to which normal feed is applied and 16.69% for broiler females.

<実施例11> インビトロにおける細胞培養研究−3T3−L1細胞モデルによるGTF(ブドウ糖耐性因子)活性の促進
本細胞培養実験には、分子量880×103のγ−ポリグルタメートNa+体HM及び分子量250×103のγ−ポリグルタメートNa+体LMを用いた。
脂肪前駆細胞である3T3−L1のサンプルを解凍し、これを37℃、5%CO2のインキュベーターにおいて10%ウシ胎児血清(FBS)含有DMEM(ダルベッコMEM)培地中で一週間培養し、次いで分化培養を行った。分化培養培地DMEM(10%FBS、0.5mM IBMX、1μMDX及び1μg/mLインスリン含有)における2日間の培養の後、脂肪前駆細胞を通常の10%FBSを含有するDMEM培地に移し、更に10日間90%を超える細胞が成熟脂肪細胞に変化するまで培養を継続した。ここで、細胞の形状は当初の星形から油滴状へと変化するため、培養プレートの下部に白色油状物質として視覚的に観察することができる。細胞分化完了後、次の実験を続ける。
<Example 11> Cell culture research in vitro-Promotion of GTF (glucose resistance factor) activity by 3T3-L1 cell model In this cell culture experiment, γ-polyglutamate Na + form HM having a molecular weight of 880 × 10 3 and a molecular weight of 250 were used. × 10 3 γ-polyglutamate Na + form LM was used.
A sample of 3T3-L1, which is a preadipocyte, was thawed and cultured for one week in DMEM (Dulbecco MEM) medium containing 10% fetal bovine serum (FBS) in an incubator at 37 ° C. and 5% CO 2 , and then differentiated. Culture was performed. After 2 days of culture in differentiation culture medium DMEM (containing 10% FBS, 0.5 mM IBMX, 1 μMDX and 1 μg / mL insulin), the preadipocytes are transferred to DMEM medium containing normal 10% FBS for another 10 days. The culture was continued until more than 90% of the cells changed to mature adipocytes. Here, since the shape of the cells changes from the original star shape to oil droplets, it can be visually observed as a white oily substance at the bottom of the culture plate. After cell differentiation is complete, continue with the next experiment.

この成熟脂肪細胞をまず、37℃、5%CO2のインキュベーターにおいて2%FBSを含有した無糖のDMEM培地中で1時間培養し、PBS(0.01Mリン酸緩衝溶液、pH7.4)で洗浄した。次いで、異なる濃度のγ−ポリグルタメートNa+体を含むテストサンプル200μL及び10nMインスリンと2.5g/Lグルコースとを含むKBR溶液200μLを添加し、37℃、5%CO2で2時間インキュベートした。細胞を遠心分離し、清澄な上清を採取し、グルコース濃度をグルコースアナライザーを用いて分析した。反応前後のグルコース量の差は脂肪細胞による全グルコース摂取量で定義される。摂取されたグルコースの増加率は次に示すようにGTF活性として定義される。
GTF活性の増加(%)=((サンプルによるグルコース摂取量−コントロールによるグルコース摂取量)/コントロールによるグルコース摂取量)×100%
The mature adipocytes were first cultured in a sugar-free DMEM medium containing 2% FBS in an incubator at 37 ° C. and 5% CO 2 for 1 hour, and PBS (0.01 M phosphate buffer solution, pH 7.4) was used. Washed. Next, 200 μL of a test sample containing γ-polyglutamate Na + form at different concentrations and 200 μL of a KBR solution containing 10 nM insulin and 2.5 g / L glucose were added and incubated at 37 ° C., 5% CO 2 for 2 hours. The cells were centrifuged, the clear supernatant was collected, and the glucose concentration was analyzed using a glucose analyzer. The difference in glucose level before and after the reaction is defined by the total glucose intake by fat cells. The rate of increase in ingested glucose is defined as GTF activity as shown below.
Increase in GTF activity (%) = ((glucose intake by sample−glucose intake by control) / glucose intake by control) × 100%

<実施例12>
図6に、γ−ポリグルタメートNa+体の分子量の変化の実施例11のGTF活性へ及ぼす効果を示す。
この結果、高分子量、低分子量両方のγ−ポリグルタメートNa+体でGTF活性が増加することが示され、より高分子量のγ−ポリグルタメートNa+体HMは約300ppmで21%という最も高い増加率を示し、低分子量のγ−ポリグルタメートNa+体LMは、濃度が150〜600ppmの範囲内において約33.5%という最高のGTF活性を示した。
<Example 12>
FIG. 6 shows the effect of the change in molecular weight of the γ-polyglutamate Na + form on the GTF activity of Example 11.
As a result, it was shown that the GTF activity was increased in both high molecular weight and low molecular weight γ-polyglutamate Na + form, and the higher increase in high molecular weight γ-polyglutamate Na + form HM was 21% at about 300 ppm. The low molecular weight γ-polyglutamate Na + form LM showed the highest GTF activity of about 33.5% in the concentration range of 150-600 ppm.

この結果は、γ−ポリグルタメートNa+体が脂肪細胞のGTFによるグルコースの消費を促進し、これは生体に対し、成長を維持し、健康上の効果を与えるのに非常に有効でありヒトの糖尿病の症状をコントロールするうえで、良好な生物学的機能を発揮し得ることを明らかに示唆している。 This result shows that the γ-polyglutamate Na + body promotes the consumption of glucose by GTF of adipocytes, which is very effective for maintaining growth and giving health effects to the living body. It clearly suggests that it can exert a good biological function in controlling the symptoms of diabetes.

(A)γ−ポリグルタミン酸(γ−PGA、H体)、(B)M(I)γ−ポリ−(L)−グルタメートの繰り返し単位[M(I)γ−(L)−PGA]:γ−ポリグルタメートK+体、γ−ポリグルタメートNa+体及びγ−ポリグルタメートNH4 +体、(C)M(II)1/2γ−ポリ−(D)−グルタメートの繰り返し単位[M(II)1/2γ−(D)−PGA]:γ−ポリグルタメートCa++体及びγ−ポリグルタメートMg++体(M(I)=K+、Na+、又はNH4 +;M(II)=Ca++又はMg++)の化学構造。(A) γ-polyglutamic acid (γ-PGA, H form), (B) M (I) γ-poly- (L) -glutamate repeating unit [M (I) γ- (L) -PGA]: γ -Polyglutamate K + isomer, γ-polyglutamate Na + isomer and γ-polyglutamate NH 4 + isomer, (C) M (II) 1/2 γ-poly- (D) -glutamate repeating unit [M (II ) 1/2 γ- (D) -PGA]: γ-polyglutamate Ca ++ form and γ-polyglutamate Mg ++ form (M (I) = K + , Na + , or NH 4 + ; M (II ) = Chemical structure of Ca ++ or Mg ++ ). pH中性、温度30℃のD2Oにおける各種(A)γ−ポリグルタメートNa+体、(B)γ−ポリグルタメートK+体、(C)γ−ポリグルタメートNH4 +体の400MHz1H−NMRスペクトル。化学シフトは内部標準からppm単位で測定。Xは不純物ピークを示す。それぞれ、縦軸は透過率(%)、横軸は波数(cm-1)を示す。400 MHz 1 H of various (A) γ-polyglutamate Na + isomers, (B) γ-polyglutamate K + isomers, and (C) γ-polyglutamate NH 4 + isomers in D 2 O at neutral pH and 30 ° C. -NMR spectrum. Chemical shift is measured in ppm from internal standard. X represents an impurity peak. The vertical axis represents transmittance (%), and the horizontal axis represents wave number (cm −1 ). pH中性、温度30℃のD2Oにおける各種(A)γ−ポリグルタメートK+体、(B)γ−ポリグルタメートNa+体、(C)γ−ポリグルタメートCa++体及び(D)γ−ポリグルタメートMg++体の13C−NMRスペクトル。化学シフトは内部標準からppm単位で測定。Various (A) γ-polyglutamate K + isomers, (B) γ-polyglutamate Na + isomers, (C) γ-polyglutamate Ca ++ isomers and (D) in D 2 O at pH neutral and temperature 30 ° C. 13 C-NMR spectrum of γ-polyglutamate Mg ++ form. Chemical shift is measured in ppm from internal standard. KBrペレットによる(C)γ−ポリグルタメートCa++体及び(D)γ−ポリグルタメートMg++体の赤外(FT−IR)吸収スペクトル。Infrared (FT-IR) absorption spectra of (C) γ-polyglutamate Ca ++ form and (D) γ-polyglutamate Mg ++ form by KBr pellets. 各種(A)γ−PGAと0.2N NaOH、(B)γ−PGAとCa(OH)2及び(C)γ−PGAと5N NH4OHの25℃でのpH滴定曲線。PH titration curves at 25 ° C. of various (A) γ-PGA and 0.2N NaOH, (B) γ-PGA and Ca (OH) 2, and (C) γ-PGA and 5N NH 4 OH. 実施例11において例示した各種分子量のγ−ポリグルタメートNa+体のブドウ糖耐性因子(GTF)活性へ及ぼす効果。縦軸はGTF活性の増加(%)、横軸はγ−ポリグルタメートNa+体濃度(ppm)を示す。The effect which the gamma-polyglutamate Na <+> body of various molecular weight illustrated in Example 11 has on glucose tolerance factor (GTF) activity. The vertical axis represents the increase (%) in GTF activity, and the horizontal axis represents the γ-polyglutamate Na + body concentration (ppm).

Claims (7)

γ−ポリグルタメートヒドロゲルを含む栄養補助剤。A nutritional supplement comprising γ-polyglutamate hydrogel. 前記γ−ポリグルタメートヒドロゲルが、以下の(a)を(b)で架橋することで得られるものである、請求項1に記載の栄養補助剤。The nutritional supplement according to claim 1, wherein the γ-polyglutamate hydrogel is obtained by crosslinking the following (a) with (b).
(a)γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa(A) γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na ++ 体、γ−ポリグルタメートKBody, γ-polyglutamate K ++ 体、γ−ポリグルタメートNHBody, γ-polyglutamate NH 4Four ++ 体、γ−ポリグルタメートMgBody, γ-polyglutamate Mg ++++ 体若しくはγ−ポリグルタメートCaBody or γ-polyglutamate Ca ++++ 体、又はこれらの混合物Body, or a mixture of these
(b)当該γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa(B) γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na ++ 体、γ−ポリグルタメートKBody, γ-polyglutamate K ++ 体、γ−ポリグルタメートNHBody, γ-polyglutamate NH 4Four ++ 体、γ−ポリグルタメートMgBody, γ-polyglutamate Mg ++++ 体若しくはγ−ポリグルタメートCaBody or γ-polyglutamate Ca ++++ 体、又はこれらの混合物の重量の0.01〜20%の範囲の量の、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、トリメチロールプロパントリアクリレートPolyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polyethylene glycol diglycidyl ether, trimethylolpropane triacrylate in an amount ranging from 0.01 to 20% by weight of the body or a mixture thereof
γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++若しくはγ−ポリグルタメートCa++体、又はこれらの混合物を更に含む、請求項1又は2に記載の栄養補助剤。 γ-polyglutamic acid (γ-PGA, H form), γ-polyglutamate Na + form, γ-polyglutamate K + form, γ-polyglutamate NH 4 + form, γ-polyglutamate Mg ++ form or γ-poly The nutritional supplement according to claim 1 or 2, further comprising a glutamate Ca ++ form, or a mixture thereof . 栄養補助剤の全乾燥重量に対し0.005重量%〜100重量%の前記γ−ポリグルタメートヒドロゲルを含む、請求項1又は2に記載の栄養補助剤Total dry weight before Symbol supplements to contain 0.005 wt% to 100 wt% of said γ- polyglutamate hydrogel, nutritional supplement according to claim 1 or 2. 記γ−ポリグルタミン酸(γ−PGA、H体)、γ−ポリグルタメートNa+体、γ−ポリグルタメートK+体、γ−ポリグルタメートNH4 +体、γ−ポリグルタメートMg++体及びγ−ポリグルタメートCa++体がそれぞれ、5000〜2.5×106の範囲の分子量を有する、請求項2又は3に記載の栄養補助剤 Before SL .gamma.-polyglutamic acid (γ-PGA, H body), .gamma.-polyglutamate in Na + form, .gamma.-polyglutamate K + body, .gamma.-polyglutamate NH 4 + body, .gamma.-polyglutamate Mg ++ member and gamma The nutritional supplement according to claim 2 or 3 , wherein each of the polyglutamate Ca ++ bodies has a molecular weight in the range of 5000 to 2.5 x 10 6 . キストロース当量5〜40のマルトデキストラン、乳タンパク質、大豆タンパク質単離物、グルコース、ラクトース、スクロース、フルクトース、小鎖オリゴ−フルクトース、グルカン又は他のオリゴ−ポリ多糖、コラーゲン、コラーゲンゼラチン加水分解物、α−デンプン、大豆タンパク質加水分解物、デンプン部分加水分解物、グリセロール、プロピレングリコール、エタノール、アラビアガム、グアーガム、カラギーナン、セルロース、他の変性セルロース、及びこれらの混合物から成る群から選択される成分を更に含む、請求項1又は2に記載の栄養補助剤Maltodextran de Kisutorosu eq 5-40, milk protein, soy protein isolate, glucose, lactose, sucrose, fructose, small chain oligo - fructose, glucan or other oligo - polysaccharide, collagen, collagen gelatin hydrolyzate, an ingredient selected from the group consisting of α-starch, soy protein hydrolysate, starch partial hydrolysate, glycerol, propylene glycol, ethanol, gum arabic, guar gum, carrageenan, cellulose, other modified celluloses, and mixtures thereof; The nutritional supplement according to claim 1 or 2 , further comprising: フトゲルカプセル又はハードゲルカプセル、錠剤、又は液剤の形態である、請求項1又は2に記載の栄養補助剤 Soft gel capsules or hard gel capsules, in the form of a tablet, or solutions, nutritional supplement according to claim 1 or 2.
JP2005142168A 2005-05-16 2005-05-16 Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products Active JP5128760B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005142168A JP5128760B2 (en) 2005-05-16 2005-05-16 Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products
CN2005101149086A CN101061867B (en) 2005-05-16 2005-11-11 Gamma-polyglutamic acid (gamma-PGA, H form) and gamma-polyglutamate used as nutrition supplement in dietary product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142168A JP5128760B2 (en) 2005-05-16 2005-05-16 Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products

Publications (2)

Publication Number Publication Date
JP2006316022A JP2006316022A (en) 2006-11-24
JP5128760B2 true JP5128760B2 (en) 2013-01-23

Family

ID=37537005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142168A Active JP5128760B2 (en) 2005-05-16 2005-05-16 Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products

Country Status (2)

Country Link
JP (1) JP5128760B2 (en)
CN (1) CN101061867B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926170B1 (en) 2007-10-05 2009-11-10 정재수 Biopolymer produced by fermenting the extract of soybean with folic acid and a composition containing thereof
US8933025B2 (en) 2009-07-16 2015-01-13 Kao Corporation Agent for suppressing postprandial elevation of blood insulin concentration
WO2011007864A1 (en) 2009-07-16 2011-01-20 花王株式会社 Inhibitor of blood gip level elevation
CN101692851B (en) * 2009-10-20 2014-01-08 华中农业大学 Application of r-polyglutamic acid or salt thereof in dairy product as addition agent
CN101999525B (en) * 2010-11-02 2012-11-21 河北科技大学 Composite probiotics feed additive
JP5844529B2 (en) * 2011-01-12 2016-01-20 花王株式会社 Blood GIP level increase inhibitor
EP2664338B1 (en) 2011-01-12 2019-01-30 Kao Corporation Potassium polyglutamate for use in the treatment of obesity, diabetes, hypertriglyceridemia and hyperlipidemia
CN103535520A (en) * 2012-07-10 2014-01-29 汪秀红 Application of polyaspartic acid and salts thereof as animal feed additive
CN103330112A (en) * 2013-05-30 2013-10-02 亚洲渔港(大连)海鲜食品有限公司 Gel property modifier of frozen surimi product, and application thereof
CN104920944B (en) * 2015-06-30 2019-03-01 河南农业大学 A kind of longer gelatinized corn starch of ageing time and preparation method thereof
CN107549474A (en) * 2017-09-22 2018-01-09 吴洪生 Animal feed additive polyaminoacid zinc-iron method and application are produced using zinc gray cadmia Synchronos method
CN117186395B (en) * 2023-09-13 2024-07-23 南京轩凯生物科技股份有限公司 Preparation method and application of calcium polyglutamate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132347A (en) * 1987-03-24 1989-05-24 Takeda Chem Ind Ltd Polyglutamic acid-containing noodles and shape retaining agent
JPH01132331A (en) * 1987-03-24 1989-05-24 Takeda Chem Ind Ltd Polyglutamic acid-containing bakery food and shape retaining agent
JPH01132355A (en) * 1987-03-24 1989-05-24 Takeda Chem Ind Ltd Egg food and method for improving quality of said food
JP2712583B2 (en) * 1989-06-28 1998-02-16 味の素株式会社 Foods and drinks containing easily absorbable minerals
JP3112724B2 (en) * 1991-10-08 2000-11-27 明治製菓株式会社 Healthy foods and drinks containing poly-gamma-glutamic acid as a main component
JP3232718B2 (en) * 1992-03-24 2001-11-26 味の素株式会社 Easy-absorbable mineral-containing composition and food and drink containing it
JPH0632742A (en) * 1992-07-15 1994-02-08 Kikkoman Corp Production of calcium ion solubilization agent
JPH0928309A (en) * 1995-05-12 1997-02-04 Ajinomoto Co Inc Feed containing poly-gamma-glutamic acid
JP3838283B2 (en) * 1996-10-25 2006-10-25 味の素株式会社 Feed composition containing poly-γ-glutamic acid
JPH11343339A (en) * 1997-09-30 1999-12-14 Toshio Hara Biodegradable water-absorbing resin
JP4015988B2 (en) * 2003-12-19 2007-11-28 トン ハイ バイオテクノロジー コーポレイション Three-dimensionally cross-linked, stable biodegradable superabsorbent γ-polyglutamic acid hydrogel and preparation method thereof
JP2006307004A (en) * 2005-04-28 2006-11-09 Osaka Univ Hydrogel comprising polyamino acid as constituent component

Also Published As

Publication number Publication date
JP2006316022A (en) 2006-11-24
CN101061867B (en) 2011-07-20
CN101061867A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP5128760B2 (en) Γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamate for use as dietary supplements in dietary products
EP0704218B1 (en) Bone reinforcing agent and foods and drinks product containing the same
JP6244336B2 (en) Biotechnological production of cyanophycin dipeptides
EP1723855B1 (en) Hydrogels containing gamma-polyglutamic acid (gamma-PGA, H Form) and gamma-polyglutamates for use as nutrition supplements in dietary products
WO2003072133A2 (en) Immunostimulatory agent comprising a biomass of methanotrophic bacterium
CN109090443A (en) It is a kind of to replenish the calcium the nutrition formula product of strong bone function with lock calcium
KR101513855B1 (en) A composition for the treatment or prevention of osteoarthrits comprising an extract of crinum asiaticum
US20200046772A1 (en) Cartilage regeneration-promoting agent
US7632804B2 (en) Dietary products comprising one or more of γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamates for use as nutrition supplements
BR112014009984B1 (en) METHOD OF PREPARATION FOR FERMENTED CORN GLUTEN FOR FOOD WITH AN INCREASED PROTEIN CONTENT COMPARED TO THE PREVIOUS FERMENTATION
CN101028098A (en) Food composition containing
JPWO2009057287A1 (en) Food material for inhibiting osteoclast formation
YOON-HO et al. Effect of High-Molecular-Weight Poly-$\gamma $-Glutamic Acid from Bacillus subtilis (chungkookjang) on Ca Solubility and Intestinal Absorption
CN115005337A (en) Special artificial milk for piglet in sterility test and preparation method thereof
JP2022025155A (en) Elastin production promoter in fibroblasts or chondrocytes
KR101067335B1 (en) Bacillus subtilis se-4 and calcium supplement composition comprising a culture of bacillus subtilis se-4
CN115192602B (en) Composite prebiotics and application thereof in regulating intestinal functions
CN108541804A (en) A method of preparing goldbeater&#39;s skin nutrition peptide microballoon using hydrolyzed wheat protein
TWI804459B (en) Use of lactoperoxidase, cystatin, hmg protein and/or degradation products thereof
JP6173054B2 (en) Preparation method of collagen peptide and well-absorbed collagen peptide
CN102850430A (en) Animal colostrum derived protein fragment and application thereof
CN114369143A (en) Bioactive polypeptide and application thereof
CN115569152A (en) Preparation method and application of rumen-derived washing microbial inoculum
CN102325782A (en) Oligosaccharide ingredient
JP2019126344A (en) Food composition for promoting gene expression related to food factor sensing,food factor sensing related gene expression promoter,food composition for enhancing food factor function,food factor function enhancer and food additives for enhancing food factor function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100910

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250