JP5127378B2 - Aluminum nitride sintered body and substrate mounting apparatus using the same - Google Patents

Aluminum nitride sintered body and substrate mounting apparatus using the same Download PDF

Info

Publication number
JP5127378B2
JP5127378B2 JP2007240592A JP2007240592A JP5127378B2 JP 5127378 B2 JP5127378 B2 JP 5127378B2 JP 2007240592 A JP2007240592 A JP 2007240592A JP 2007240592 A JP2007240592 A JP 2007240592A JP 5127378 B2 JP5127378 B2 JP 5127378B2
Authority
JP
Japan
Prior art keywords
substrate
aluminum nitride
sintered body
mounting apparatus
substrate mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007240592A
Other languages
Japanese (ja)
Other versions
JP2009067662A (en
Inventor
弘徳 石田
千可士 齋藤
徹夫 北林
俊哉 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2007240592A priority Critical patent/JP5127378B2/en
Publication of JP2009067662A publication Critical patent/JP2009067662A/en
Application granted granted Critical
Publication of JP5127378B2 publication Critical patent/JP5127378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体製造装置、フラットパネルディスプレイ製造装置に使用される基板載置装置に関する発明である。 The present invention relates to a substrate mounting apparatus used in a semiconductor manufacturing apparatus and a flat panel display manufacturing apparatus.

半導体プロセス用ヒータ等の基板載置装置としてセラミックス製のものが多くのプロセスに用いられてきた。これは、セラミックスの熱的、電気的、機械的特性がこれらの工程に好適だからである。特に、セラミックスは耐摩耗性に優れるため、基板との接触によるパーティクルが少ないため有利であった。近年では低パーティクル性の要求は非常に厳しくなっており、セラミックスを用いるだけでは、要求を満たすことが難しいことから、基板との接触面積を小さくすることが行われている(例えば、特許文献1)。
特開平5−267436号公報
Ceramic substrates have been used in many processes as substrate mounting devices such as semiconductor process heaters. This is because the thermal, electrical and mechanical properties of ceramics are suitable for these processes. In particular, ceramics are advantageous because they are excellent in wear resistance and have few particles due to contact with the substrate. In recent years, the demand for low particle properties has become very strict, and it is difficult to satisfy the demand only by using ceramics. For this reason, the contact area with the substrate has been reduced (for example, Patent Document 1). ).
JP-A-5-267436

しかしながら、接触面積が小さいと基板を加熱するときの熱応答性が低下するため、問題となっていた。この問題に対して、接触面積を小さくするために設けた突起により基体と基板との間に形成された空間にガスを対流させて加熱することが行われているが、基板の処理効率を上げるためには、より熱応答性を高めることが求められていた。 However, if the contact area is small, the thermal response when heating the substrate is lowered, which is a problem. To solve this problem, gas is convected and heated in a space formed between the base and the substrate by a protrusion provided to reduce the contact area, but the substrate processing efficiency is increased. For this purpose, it has been demanded to further improve the thermal responsiveness.

また、基板の処理工程には、加熱だけでなく、冷却しなければならない工程もある。例えば、プラズマエッチングを行う場合には、投入されたエネルギーが熱に変化されるため基板が発熱する。この場合には、エッチング処理を一定条件で行うために、基板載置装置に冷媒を流して基板を冷却することが行われる。このような場合も、冷却時の熱応答性を高めることで精度よく基板の温度を制御することが可能となる。 In addition, the substrate processing process includes not only heating but also cooling. For example, in the case of performing plasma etching, the input energy is changed to heat, so that the substrate generates heat. In this case, in order to perform the etching process under a certain condition, the substrate is cooled by flowing a coolant through the substrate mounting apparatus. Even in such a case, it is possible to control the temperature of the substrate with high accuracy by increasing the thermal responsiveness during cooling.

このように、基板載置装置においては、低パーティクル性と同時に熱応答性も要求されるが、パーティクル低減のために接触面積を小さくすれば、熱応答性が低下することになるため、低パーティクル性と熱応答性とを両立させることは困難であった。 Thus, in the substrate mounting apparatus, thermal responsiveness is required at the same time as low particle property, but if the contact area is reduced for particle reduction, the thermal responsiveness will be lowered. It has been difficult to achieve both compatibility and thermal responsiveness.

本発明では、これらの課題を解決し、パーティクルの発生が少なく、しかも、熱応答性に優れた基板載置装置を提供する。 The present invention solves these problems, and provides a substrate mounting apparatus that generates less particles and has excellent thermal response.

本発明者らは、上述の課題を解決するために鋭意研究した結果、以下の発明をするに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have made the following invention.

すなわち、本発明は、窒化アルミニウムの含有量が99.4体積%以上であり、表面粗さRaが0.01〜0.1μmであり、かつ、200℃における全放射率が60%以上である窒化アルミニウム焼結体からなる基体と、前記基体の表面に形成され、その先端部に基板が載置される突起と、を備え、前記基体の200℃における全放射率が、前記突起の先端部の200℃における全放射率よりも大きいことを特徴とする基板載置装置を提供するものである。全放射率の大きい窒化アルミニウムを用いれば、熱応答性に優れた基板載置装置を得ることができる。しかも、200℃以上の使用温度範囲における全放射率が大きいことから、高温域においても充分な熱応答性を発揮できる。 That is, in the present invention, the aluminum nitride content is 99.4% by volume or more, the surface roughness Ra is 0.01 to 0.1 μm, and the total emissivity at 200 ° C. is 60% or more. A base made of an aluminum nitride sintered body, and a protrusion formed on the surface of the base and on which the substrate is placed, and the total emissivity of the base at 200 ° C. is the tip of the protrusion The substrate mounting apparatus is characterized by being larger than the total emissivity at 200 ° C. If aluminum nitride having a high total emissivity is used, a substrate mounting device having excellent thermal response can be obtained. In addition, since the total emissivity in the operating temperature range of 200 ° C. or higher is large, sufficient thermal responsiveness can be exhibited even in a high temperature range.

基板載置装置が、前記基体に埋設されている、又は前記表面とは反対側に露出している発熱抵抗体をさらに備えていることが好ましい It is preferable that the substrate mounting device further includes a heating resistor embedded in the base body or exposed on the side opposite to the surface .

本発明の基板載置装置は、基板が200℃以上となるような処理工程に好適に用いられる。セラミックスは、温度が高くなると、熱伝導性が低下するため、基板との接触部での熱伝導に対して、非接触部分からの放射の効果が高温になるほど大きくなる。しかも、本発明の基板載置装置のように非接触部分の放射が接触部分の放射よりも大きいときに熱応答性が高いことを見出した。この理由は、高温ほど直接接触による熱伝導よりも輻射の効果が大きくなるからである。この効果は、基板との接触面積が小さく、熱媒体も少ない減圧下での加熱や冷却には特に有効である。 The substrate mounting apparatus of the present invention is suitably used for a processing step in which the substrate is 200 ° C. or higher. Since the thermal conductivity of ceramics decreases as the temperature rises, the effect of radiation from the non-contact portion becomes greater with respect to the heat conduction at the contact portion with the substrate. Moreover, it has been found that the thermal response is high when the radiation of the non-contact part is larger than the radiation of the contact part as in the substrate mounting apparatus of the present invention. This is because the effect of radiation is greater at higher temperatures than heat conduction by direct contact. This effect is particularly effective for heating and cooling under reduced pressure with a small contact area with the substrate and a small heat medium.

基体の放射率については、先端部の全放射率よりも大きくすることにより、基板の熱応答性を高めることができる。したがって、均熱のためのガスを用いなくとも基体からの放射により充分な均熱を図ることができ、均熱のためのガスを用いた場合にも、より効率よく均熱を図ることができる。 About the emissivity of a base | substrate, the thermal responsiveness of a board | substrate can be improved by making it larger than the total emissivity of a front-end | tip part. Therefore, sufficient soaking can be achieved by radiation from the substrate without using a soaking gas, and soaking can be achieved more efficiently even when a soaking gas is used. .

さらに、基体の全放射率を高めることにより、基板が載置された突起の先端部と基体との温度差を素早く低減することができる。これにより、熱膨張差による突起先端部への応力集中を抑制できる結果、基板との接触による機械的な応力と熱応力とを合わせた複合応力が低減できることからパーティクルの発生を少なくすることが可能となる。 Furthermore, by increasing the total emissivity of the substrate, the temperature difference between the tip of the protrusion on which the substrate is placed and the substrate can be quickly reduced. As a result, the stress concentration on the tip of the protrusion due to the difference in thermal expansion can be suppressed. As a result, the combined stress of mechanical stress and thermal stress due to contact with the substrate can be reduced, so the generation of particles can be reduced It becomes.

本発明によれば、高温における全放射率が高く、基板載置装置に適した窒化アルミニウム焼結体を提供し、また、高温域においても充分な熱応答性を有する低パーティクル性の基板載置装置を提供することができる。 According to the present invention, an aluminum nitride sintered body having a high total emissivity at a high temperature and suitable for a substrate mounting apparatus is provided, and a low particle property substrate mounting having sufficient thermal response even in a high temperature region. An apparatus can be provided.

本発明の窒化アルミニウム焼結体においては、窒化アルミニウムの含有量は90体積%以上とするのが望ましい。窒化アルミニウムの含有量が90体積%未満であると全放射率は急激に低下するため好ましくない。窒化アルミニウムは、熱伝導率をあげるために2a族元素や3a族元素の酸化物からなる焼結助剤を添加することが多い。一般的に、焼結助剤の添加量は、量を増やすと熱伝導率が高くなるが、一定量以上添加すると熱伝導率の低下を引き起こすことが知られている。しかし、本発明者等の検討によれば、2a族元素や3a族元素の酸化物からなる焼結助剤の含有量が一定量以上になると熱伝導率が低下するだけでなく、全放射率の低下も生じることがわかった。したがって、2a族元素や3a族元素の酸化物からなる焼結助剤の含有量は、10体積%以下とすることが望ましい。2a族元素の添加物としては、Mg、Ca、Sr、Ba等が挙げられ、3a族元素の添加物としては、Y、La、Sm、Ce等が挙げられる。 In the aluminum nitride sintered body of the present invention, the aluminum nitride content is desirably 90% by volume or more. If the aluminum nitride content is less than 90% by volume, the total emissivity is abruptly lowered, which is not preferable. In order to increase the thermal conductivity, aluminum nitride often adds a sintering aid made of an oxide of a 2a group element or a 3a group element. Generally, the amount of the sintering aid added increases the thermal conductivity, but it is known that the addition of a certain amount or more causes a decrease in the thermal conductivity. However, according to the study by the present inventors, when the content of the sintering aid composed of the oxide of group 2a element or group 3a element exceeds a certain amount, not only the thermal conductivity decreases but also the total emissivity. It was found that a decrease in the temperature also occurred. Therefore, it is desirable that the content of the sintering aid composed of the oxide of the group 2a element or the group 3a element is 10% by volume or less. Examples of the additive of the group 2a element include Mg, Ca, Sr, and Ba, and examples of the additive of the group 3a element include Y, La, Sm, and Ce.

逆に窒化アルミニウムが90体積%以上であれば、その残部に、窒化アルミニウムよりも全放射率が小さい物質であって窒化アルミニウムと反応しない物質を添加しても影響を及ぼさないことがわかった。このような物質としては、例えば、窒化チタン、炭化チタン、炭化ケイ素、カーボン、タングステン、モリブデン等が該当する。このような物質を添加することによって、高い全放射率を維持しつつ、窒化アルミニウムの熱伝導率、体積抵抗率、強度等の制御が可能となる。これらの添加物の含有量としては、焼結助剤と同様に10体積%以下が好ましい。 On the contrary, it was found that if aluminum nitride is 90% by volume or more, the addition of a substance that has a lower total emissivity than aluminum nitride and does not react with aluminum nitride has no effect. Examples of such a substance include titanium nitride, titanium carbide, silicon carbide, carbon, tungsten, molybdenum, and the like. By adding such a substance, it is possible to control the thermal conductivity, volume resistivity, strength, and the like of aluminum nitride while maintaining a high total emissivity. The content of these additives is preferably 10% by volume or less like the sintering aid.

突起の基板と接触する先端部の窒化アルミニウムの含有量は、基体同様90体積%以上であることが望ましいが、基体の窒化アルミニウムの含有量より少なくてもよい。 The aluminum nitride content at the tip of the protrusion that contacts the substrate is desirably 90% by volume or more, as with the substrate, but may be less than the aluminum nitride content of the substrate.

以下、図面を参照して、本発明の基板載置装置の一例としてセラミックスヒータをとりあげ、より詳細に説明する。図1は本発明の一実施形態に係るセラミックスヒータの概略構成を示す断面図である。セラミックスヒータ1は、基体2の載置面側に基板を載置する複数のピン状突起2を有している。突起2の高さは、ほぼ同一で、突起の先端部は平面加工されており、この先端部に基板Wが載置される。 Hereinafter, with reference to the drawings, a ceramic heater will be taken up as an example of the substrate mounting apparatus of the present invention and described in more detail. FIG. 1 is a cross-sectional view showing a schematic configuration of a ceramic heater according to an embodiment of the present invention. The ceramic heater 1 has a plurality of pin-shaped protrusions 2 on which the substrate is placed on the placement surface side of the base 2. The heights of the protrusions 2 are substantially the same, and the front end portions of the protrusions are flattened, and the substrate W is placed on the front end portions.

窒化アルミニウムの全放射率の制御方法としては、上記のような窒化アルミニウムの含有量、添加物の種類および添加量の他、窒化アルミニウム焼結体の表面粗さを調整することによっても、制御することができる。表面粗さRa(JISB0601)は0.01〜3の範囲で調整することが好ましい。0.01より小さいと、200℃における全放射率が60%以上とならないからである。また、3より大きいと、パーティクルが著しく増加するため、好ましくない。ここでいう全放射率とは、波数400〜6000cm−1における放射率を指す。 The total emissivity of aluminum nitride is controlled by adjusting the surface roughness of the aluminum nitride sintered body in addition to the content of aluminum nitride, the kind of additive, and the amount added as described above. be able to. The surface roughness Ra (JIS B0601) is preferably adjusted in the range of 0.01 to 3. This is because if it is smaller than 0.01, the total emissivity at 200 ° C. does not become 60% or more. On the other hand, if it is larger than 3, the number of particles is remarkably increased, which is not preferable. The total emissivity here refers to the emissivity at a wave number of 400 to 6000 cm −1 .

突起の先端部と基体の全放射率を制御する方法としては、基体の成形時に、基体部分と先端部との配合を調整しても良いし、基体部分と先端部を同一配合で作成し、表面粗さを調整しても良い。 As a method of controlling the total emissivity of the tip of the protrusion and the base, the base part and the tip may be adjusted at the time of molding the base, or the base part and the tip may be prepared with the same composition. The surface roughness may be adjusted.

なお、本発明のセラミックスヒータは上記の一実施形態に限定されることなく種々変形可能である。例えば、突起の大きさ、高さ、数、および配置は限定されるものではなく任意に選択されて良い。さらには、載置部の外形も円形、四角形等、被載置基板の形状に応じて選択されて良い。 The ceramic heater of the present invention can be variously modified without being limited to the above embodiment. For example, the size, height, number, and arrangement of the protrusions are not limited and may be arbitrarily selected. Furthermore, the outer shape of the mounting portion may be selected according to the shape of the mounting substrate, such as a circle or a rectangle.

突起の形状は、上述のようなピン形状の他、リング状、格子状、網状、またはこれらの組み合わせ等、特に限定しない。ただし、先に述べたように、基板と先端部の接触面積は小さいほうが良いので、ピン形状が最も望ましい。ピン形状は、角柱、円柱等種々の形状を採用でき、基板との接触面積を基板の面積の10%以下にすることが望ましい。 The shape of the protrusion is not particularly limited, such as the above-described pin shape, ring shape, lattice shape, mesh shape, or a combination thereof. However, as described above, since the contact area between the substrate and the tip portion should be small, the pin shape is most desirable. As the pin shape, various shapes such as a prism and a cylinder can be adopted, and the contact area with the substrate is desirably 10% or less of the area of the substrate.

突起の高さは特に限定されないが、5〜50μmとすることが望ましい。基体からの放射に加えて、熱媒体としてセラミックスヒータと基板の間にHeガスを流して熱応答性を高めようとする場合、基板を固定しないと基板がセラミックスヒータから離脱してしまうため、セラミックスヒータに静電チャック機能を付与し、基板を静電吸着固定する必要がある。このとき、突起高さが5μmより小さいと、Heガスの対流が不十分になることがあり、熱応答に不利になることがあるからである。この場合は均熱性も著しく低下する。また、突起高さが50μmより大きいと、静電吸着力が急激に低下するため、基板がセラミックスヒータから離脱しやすくなるからである。 The height of the protrusion is not particularly limited, but is desirably 5 to 50 μm. In addition to radiation from the substrate, when trying to improve the thermal responsiveness by flowing He gas between the ceramic heater and the substrate as a heating medium, the substrate will be detached from the ceramic heater unless the substrate is fixed. It is necessary to provide an electrostatic chuck function to the heater and to electrostatically fix the substrate. At this time, if the height of the protrusion is smaller than 5 μm, the convection of He gas may be insufficient, which may be disadvantageous for the thermal response. In this case, the heat uniformity is also significantly reduced. In addition, if the height of the protrusion is larger than 50 μm, the electrostatic attractive force is abruptly decreased, so that the substrate is easily detached from the ceramic heater.

基体に突起を形成する方法としては特に限定されず、突起を形成する部分にマスクをして、それをブラスト加工する方法の他、エッチング処理したり、マシニングにより形成したりする方法が採用できる。 The method for forming the protrusions on the substrate is not particularly limited, and a method of forming a mask on a portion where the protrusions are to be formed and blasting the mask, or a method of performing etching treatment or machining can be employed.

また、突起を形成する基体の載置面以外の部分については、基体と同一のセラミックスであっても良いし、その他のセラミックス、金属、金属とセラミックスの複合材料等であっても良い。したがって、セラミックスの製造方法としては、常圧、ホットプレスのような焼結法の他、溶射、CVD、AD法等の周知の方法が採用できる。 Further, the portion other than the mounting surface of the base on which the protrusions are formed may be the same ceramic as the base, or may be other ceramics, metal, a composite material of metal and ceramics, or the like. Therefore, as a method for producing ceramics, well-known methods such as thermal spraying, CVD, and AD methods can be adopted in addition to sintering methods such as normal pressure and hot pressing.

所定の全放射率を得るには、相対密度が98%以上、気孔率は0.5%以下が望ましい。この範囲外では、範囲内に比べてパーティクルが発生し易くなる。したがって、相対密度はより大きいことが好ましく、気孔率もより小さいことが好ましい。 In order to obtain a predetermined total emissivity, it is desirable that the relative density is 98% or more and the porosity is 0.5% or less. Outside this range, particles are more likely to be generated than in the range. Accordingly, the relative density is preferably larger and the porosity is preferably smaller.

発熱抵抗体としては、タングステン、モリブデン等の耐熱金属を用いることができる。窒化アルミニウム焼結体からなる基体内部に埋設してあっても、表面(載置面と反対側の面)に露出していても構わない。たとえば板、箔、線または網状等の発熱抵抗体を成形時に埋設し焼結しても良いし、耐熱金属粉末のペーストを窒化アルミニウム焼結体に塗布して焼き付けても良い。 As the heating resistor, a heat-resistant metal such as tungsten or molybdenum can be used. Even if it is embedded in the base made of an aluminum nitride sintered body, it may be exposed on the surface (surface opposite to the mounting surface). For example, a heating resistor such as a plate, foil, wire, or net may be embedded and sintered at the time of molding, or a paste of heat-resistant metal powder may be applied to an aluminum nitride sintered body and baked.

さらに、本発明の基板載置装置の実施形態としては、上述のような窒化アルミニウム焼結体からなる基体の内部または表面に発熱抵抗体を備えたセラミックスヒータの他、基体の内部に冷却媒体を流して、基板を冷却する載置装置、例えばエッチングに用いられる窒化アルミニウム静電チャック等にも適用することができる。放射率が高い物質は、吸収率も良いため、エッチング中に熱せられたウエハから熱を吸収し、エッチング処理の温度条件を一定に保つことができるという効果も期待できる。 Furthermore, as an embodiment of the substrate mounting apparatus of the present invention, a cooling medium is provided inside the base in addition to the ceramic heater provided with a heating resistor inside or on the surface made of the aluminum nitride sintered body as described above. It can also be applied to a mounting device that cools the substrate and, for example, an aluminum nitride electrostatic chuck used for etching. Since a substance having a high emissivity has a good absorption rate, an effect of absorbing heat from a wafer heated during etching and maintaining a constant temperature condition of the etching process can be expected.

さらに、上記のような冷却装置においても、基体の全放射率を高めることにより、基板が載置された突起の先端部と基体との温度差を素早く低減することができるので、突起先端部の熱応力を抑制し、基板との接触による機械的な応力と熱応力とを合わせた複合応力が低減できることからパーティクルの発生を少なくすることが可能となる。 Furthermore, even in the cooling device as described above, by increasing the total emissivity of the substrate, the temperature difference between the tip of the protrusion on which the substrate is placed and the substrate can be quickly reduced. Generation of particles can be reduced because thermal stress is suppressed and composite stress combining mechanical stress and thermal stress due to contact with the substrate can be reduced.

窒化アルミニウムに酸化イットリウムを添加して、所定の窒化アルミニウム含有量(表1)の原料粉末を準備した。次にこの原料粉末を用いてCIP成形し、得られた成形体を還元雰囲気で焼成し、100×100×10mmの焼結体を得た。これらの焼結体を所定の表面粗さになるように、研削、研磨を実施した。得られた焼結体を、フーリエ変換赤外分光光度計と積分球を用いて全放射率を測定した。結果を表1に示す。なお、測定領域は波数400〜6000cm−1である。 Yttrium oxide was added to aluminum nitride to prepare a raw material powder having a predetermined aluminum nitride content (Table 1). Next, CIP molding was performed using this raw material powder, and the obtained molded body was fired in a reducing atmosphere to obtain a sintered body of 100 × 100 × 10 mm. These sintered bodies were ground and polished so as to have a predetermined surface roughness. The total emissivity of the obtained sintered body was measured using a Fourier transform infrared spectrophotometer and an integrating sphere. The results are shown in Table 1. Note that the measurement region has a wave number of 400 to 6000 cm −1 .

Figure 0005127378
Figure 0005127378

試験例1〜5では、200℃における全放射率が60%以上の窒化アルミニウム焼結体が得られた。一方、試験例6、7では、200℃における全放射率が60%よりも小さかった。 In Test Examples 1 to 5, an aluminum nitride sintered body having a total emissivity at 200 ° C. of 60% or more was obtained. On the other hand, in Test Examples 6 and 7, the total emissivity at 200 ° C. was smaller than 60%.

次にセラミックスヒータの実施例を示して本発明をさらに詳細に説明する。表1のNo1とNo.7の窒化アルミニウム含有量になるように、窒化アルミニウム粉末に酸化イットリウムを添加した原料粉末を用い、モリブデン製の発熱抵抗体を埋設し焼成することで、φ210×10mmの焼結体を得た。各焼結体の相対密度は99%、気孔率は0.5%であった。 Next, the present invention will be described in more detail with reference to examples of ceramic heaters. By using a raw material powder obtained by adding yttrium oxide to an aluminum nitride powder so that the aluminum nitride content of No. 1 and No. 7 in Table 1 is obtained, a heating resistor made of molybdenum is embedded and fired to obtain φ210 × 10 mm A sintered body was obtained. Each sintered body had a relative density of 99% and a porosity of 0.5%.

次にこの焼結体について、円筒および平面研削を行って、絶縁層厚さを1mmに、外形をφ200×8mmに加工した。さらに載置面が形成される面について平面度が3μm以下となるようラップ加工を行った。次に絶縁層に、図2に示したような直径Dが0.5mm、間隔Pが2mm、千鳥60°のピンパターンのマスクを貼り、ブラスト加工により高さ30μmのピン状突起を形成した。突起の先端部および基体の研磨は、化学繊維製のクロス研磨盤を用い、砥粒を混合した研削液を用いて研磨を行い、所定の放射率になるように表面粗さRaを調整した。 Next, this sintered body was subjected to cylindrical and surface grinding to process the insulating layer thickness to 1 mm and the outer shape to φ200 × 8 mm. Further, lapping was performed so that the flatness of the surface on which the placement surface is formed is 3 μm or less. Next, a pin pattern mask having a diameter D of 0.5 mm, a spacing P of 2 mm, and a staggered 60 ° as shown in FIG. 2 was applied to the insulating layer, and pin-shaped protrusions having a height of 30 μm were formed by blasting. The tip of the protrusion and the substrate were polished by using a chemical fiber cloth polishing disk and polishing using a grinding liquid mixed with abrasive grains, and the surface roughness Ra was adjusted to a predetermined emissivity.

しかる後に、突起の先端部について、研磨定盤を用いたラップ加工を施し、突起先端からなる平面の平面度を1μm以下に調整した。載置面と反対の面に発熱抵抗体への給電端子接続のための有底孔を加工して発熱抵抗体を露出させ、ろう付けにより発熱抵抗体と端子を接続した。 After that, lapping using a polishing surface plate was performed on the tip of the protrusion, and the flatness of the flat surface made up of the protrusion tip was adjusted to 1 μm or less. A bottomed hole for connecting a power supply terminal to the heating resistor was processed on the surface opposite to the mounting surface to expose the heating resistor, and the heating resistor and the terminal were connected by brazing.

ヒータを真空中に設置し、給電端子を介して発熱抵抗体に電圧を印加してセラミックスヒータの温度を400℃に加熱しておき、そこに室温(23℃)のウエハを載せ、ウエハが400℃に達するまでに要した時間をそれぞれのヒータについて比較した。また、レーザー散乱方式の異物検査装置によりウエハに付着した0.2〜1.0μmサイズのパーティクル測定を実施した。結果を表2に示す。 The heater is placed in a vacuum, a voltage is applied to the heating resistor through the power supply terminal to heat the ceramic heater to 400 ° C., and a wafer at room temperature (23 ° C.) is placed thereon. The time required to reach ° C was compared for each heater. Moreover, the particle | grains of the 0.2-1.0 micrometer size adhering to the wafer were implemented by the laser scattering type foreign material inspection apparatus. The results are shown in Table 2.

Figure 0005127378
Figure 0005127378

200℃における基体の放射率が60%以上である試験例8〜10では、ウエハが400℃に達するまでの時間が早く、またパーティクルも少なかった。一方、基体の放射率が60%に満たない試験例11と12では、ウエハが400℃に達するまでの時間が試験例8〜10よりも長かった。また、試験例8〜10と比べてパーティクルが多く発生した。 In Test Examples 8 to 10 where the emissivity of the substrate at 200 ° C. was 60% or more, the time until the wafer reached 400 ° C. was early, and the number of particles was small. On the other hand, in Test Examples 11 and 12 where the emissivity of the substrate was less than 60%, the time until the wafer reached 400 ° C. was longer than Test Examples 8-10. Further, more particles were generated than in Test Examples 8 to 10.

以上より、本発明によれば、高温域においても充分な熱応答性を有し、パーティクルの発生が抑えられた基板載置装置を提供できることが示された。 As described above, according to the present invention, it has been shown that a substrate mounting apparatus that has sufficient thermal responsiveness even in a high temperature range and that suppresses generation of particles can be provided.

セラミックスヒータの模式断面図である。It is a schematic cross section of a ceramic heater. ピン状突起の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of a pin-shaped protrusion.

符号の説明Explanation of symbols

1;セラミックスヒータ
2;突起
3;基体
4;発熱抵抗体
5;有底孔
6;給電端子
W;ウエハ
DESCRIPTION OF SYMBOLS 1; Ceramics heater 2; Protrusion 3; Base | substrate 4; Heating resistor 5; Bottomed hole 6;

Claims (2)

窒化アルミニウムの含有量が99.4体積%以上であり、表面粗さRaが0.01〜0.1μmであり、かつ、200℃における全放射率が60%以上である窒化アルミニウム焼結体からなる基体と、前記基体の表面に形成され、その先端部に基板が載置される突起と、を備え、前記基体の200℃における全放射率が、前記突起の先端部の200℃における全放射率よりも大きいことを特徴とする基板載置装置。 From an aluminum nitride sintered body having an aluminum nitride content of 99.4% by volume or more, a surface roughness Ra of 0.01 to 0.1 μm, and a total emissivity at 200 ° C. of 60% or more. And a projection formed on the surface of the substrate and on which the substrate is placed . The total emissivity of the substrate at 200 ° C. is the total radiation of the projection at the tip of the projection at 200 ° C. A substrate mounting apparatus characterized by being larger than the rate . 請求項記載の基板載置装置において、前記基体に埋設されている、又は前記表面とは反対側に露出している発熱抵抗体をさらに備えていることを特徴とする基板載置装置。 The substrate mounting apparatus according to claim 1 , further comprising a heating resistor embedded in the base body or exposed on a side opposite to the surface.
JP2007240592A 2007-09-18 2007-09-18 Aluminum nitride sintered body and substrate mounting apparatus using the same Active JP5127378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240592A JP5127378B2 (en) 2007-09-18 2007-09-18 Aluminum nitride sintered body and substrate mounting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240592A JP5127378B2 (en) 2007-09-18 2007-09-18 Aluminum nitride sintered body and substrate mounting apparatus using the same

Publications (2)

Publication Number Publication Date
JP2009067662A JP2009067662A (en) 2009-04-02
JP5127378B2 true JP5127378B2 (en) 2013-01-23

Family

ID=40604320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240592A Active JP5127378B2 (en) 2007-09-18 2007-09-18 Aluminum nitride sintered body and substrate mounting apparatus using the same

Country Status (1)

Country Link
JP (1) JP5127378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753658B1 (en) * 2015-10-22 2017-07-05 (주)티티에스 Electrostatic chuck

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203980A (en) * 2013-04-05 2014-10-27 住友電気工業株式会社 Wafer heater
WO2020262368A1 (en) * 2019-06-28 2020-12-30 日本碍子株式会社 Electrostatic chuck heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908678B2 (en) * 2003-02-28 2007-04-25 株式会社日立ハイテクノロジーズ Wafer processing method
JP2005285355A (en) * 2004-03-26 2005-10-13 Ngk Insulators Ltd Heating apparatus
JP2007201068A (en) * 2006-01-25 2007-08-09 Taiheiyo Cement Corp Electrostatic chuck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753658B1 (en) * 2015-10-22 2017-07-05 (주)티티에스 Electrostatic chuck

Also Published As

Publication number Publication date
JP2009067662A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR101142000B1 (en) Electrostatic chuck
US20060000822A1 (en) Ceramic heater, wafer heating device using thereof and method for manufacturing a semiconductor substrate
JP5957812B2 (en) Electrostatic chuck device
JP2008085129A (en) Substrate mounting apparatus
JP2006127883A (en) Heater and wafer heating device
JPWO2003008359A1 (en) Ceramic bonded body, bonding method thereof, and ceramic structure
JP5080954B2 (en) Heater unit and manufacturing method thereof
WO2002003434A1 (en) Ceramic heater for semiconductor manufacturing/testing apparatus
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2007201068A (en) Electrostatic chuck
JP5127378B2 (en) Aluminum nitride sintered body and substrate mounting apparatus using the same
JP2003317906A (en) Ceramic heater
JP2007142441A (en) Wafer supporting member
JP4744016B2 (en) Manufacturing method of ceramic heater
JP6503689B2 (en) Electrostatic chuck device and method of manufacturing the same
JP2005340043A (en) Heating device
JP2007234425A (en) Heating device
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
JP2001319967A (en) Method for manufacturing ceramic substrate
JP2004140347A (en) Wafer holder and semiconductor manufacturing device
JP2005026585A (en) Ceramic joined body
JP2023019342A (en) ceramic heater
JP3924513B2 (en) Wafer support member
JP2006237023A (en) Electrostatic chuck
JP2005050820A (en) Hot plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250