JP5125806B2 - Independent running device - Google Patents

Independent running device Download PDF

Info

Publication number
JP5125806B2
JP5125806B2 JP2008166245A JP2008166245A JP5125806B2 JP 5125806 B2 JP5125806 B2 JP 5125806B2 JP 2008166245 A JP2008166245 A JP 2008166245A JP 2008166245 A JP2008166245 A JP 2008166245A JP 5125806 B2 JP5125806 B2 JP 5125806B2
Authority
JP
Japan
Prior art keywords
traveling
self
gravity
center
traveling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008166245A
Other languages
Japanese (ja)
Other versions
JP2010009226A (en
Inventor
洋士 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008166245A priority Critical patent/JP5125806B2/en
Publication of JP2010009226A publication Critical patent/JP2010009226A/en
Application granted granted Critical
Publication of JP5125806B2 publication Critical patent/JP5125806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、自立走行装置に関し、特に自立走行する自走車またはロボットに関する。   The present invention relates to a self-propelled traveling device, and more particularly to a self-propelled vehicle or a robot that travels independently.

人と共存するロボット分野において、ロボットは安全性を考慮して一定速度以下を保ち、ロボットに搭載された各種センサにより障害物を検知し回避しながら走行を行っている。しかし、限られた空間や通路、出入り口付近ではロボットは歩行者の進路を妨害する恐れがある。例えば、ロボットは四方を塞がれると回避径路を見つけられずその場で停止し、歩行者の通行の邪魔となる。ロボットが歩行者と対面してすれ違う場合、ロボットにとっては歩行者が避ける方向を瞬時に察知することが困難なため、通路の真ん中で停止する恐れがある。このようにロボットは機敏性が劣るため、急いで走行している歩行者の邪魔になる。   In the field of robots that coexist with humans, robots keep a certain speed or less in consideration of safety, and travel while detecting and avoiding obstacles with various sensors mounted on the robot. However, there is a risk that the robot may interfere with the path of the pedestrian in a limited space, passage, or near the entrance / exit. For example, if the robot is blocked on all four sides, the robot cannot find an avoidance path and stops on the spot, obstructing pedestrian traffic. When the robot passes the pedestrian, it is difficult for the robot to instantly detect the direction that the pedestrian avoids, and there is a risk of stopping in the middle of the passage. Thus, the robot is insensitive to pedestrians traveling in a hurry.

図1は従来技術の二輪駆動によるロボットに力を外加えたときの走行方向の変化を示す図であり、(A)はロボットを示す図であり、(B)は停止中のロボット外に力を加えた時のロボット底面を示す図であり、(C)はロボットに外力を加えた後に旋回し走行開始する時のロボット底面を示す図である。図1に示すロボット101は2つの車輪102と2つのキャスタ103を底面に設け、2つの車輪102の速度差により旋回し方向転換を行った後に走行開始する。   FIG. 1 is a diagram showing a change in traveling direction when a force is externally applied to a conventional two-wheel drive robot, (A) is a diagram showing the robot, and (B) is a diagram showing force applied to the outside of the stopped robot. FIG. 4C is a diagram showing the bottom surface of the robot when turning and starting running after applying an external force to the robot. The robot 101 shown in FIG. 1 has two wheels 102 and two casters 103 provided on the bottom surface, and starts running after turning and changing direction due to a speed difference between the two wheels 102.

それゆえ、従来技術の二輪駆動によるロボット101は走行開始までの旋回動作に時間を要するという問題がある。また、ロボット101に外力Fが加えられると、外力Fが加えられた位置P1が旋回により旋回開始時の位置P1から旋回終了時の位置P2にずれるので、ロボット101が何れの方向FWDに走行開始するのか判断できず歩行者はロボット101と衝突する虞がある。   Therefore, the conventional robot 101 using the two-wheel drive has a problem that it takes time for the turning operation until the start of traveling. Further, when the external force F is applied to the robot 101, the position P1 where the external force F is applied shifts from the position P1 at the start of the turn to the position P2 at the end of the turn by turning, so the robot 101 starts to travel in any direction FWD. The pedestrian may collide with the robot 101 because it cannot be determined whether to do so.

本発明は、上記問題を解決するためになされたものであり、外力Fを加えた方向に自立走行する自走車またはロボット等の自立走行装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to provide a self-propelled vehicle such as a self-propelled vehicle or a robot that independently travels in a direction in which an external force F is applied.

上記目的を達成する自立走行装置は、走行本体部と、路面に接地する複数の駆動部と該複数の駆動部のそれぞれを前記走行本体部に対して全周旋回可能に操舵する操舵部とを有する走行機構部と、前記走行機構部の底面に設置され、外力による荷重を測定する3個の荷重センサと、前記3個の荷重センサにより測定された荷重から重心を求め、該重心の変位を算出し、前記走行本体部の走行方向が前記重心の変位方向に一致するように前記操舵部を制御する制御部と,を備えたことを特徴とする。 A self-propelled traveling apparatus that achieves the above object includes a traveling main body, a plurality of driving units that are grounded on a road surface, and a steering unit that steers each of the plurality of driving units so as to be capable of turning around the traveling main body. a traveling mechanism having, disposed on a bottom surface of the running mechanism section, obtains the three load sensors for measuring the load applied by the external force, the three load or RaShigeru heart measured by the load sensor, the centroid And a control unit that calculates the displacement and controls the steering unit so that the traveling direction of the traveling main body matches the displacement direction of the center of gravity .

上記自立走行装置において、自立走行装置の上体に位置する走行本体部に該自立走行装置を誘導させたい方向に力を加えることにより、自立走行装置を誘導させたい方向に容易に誘導させる全方位走行機構を実現する。   In the above self-supporting traveling device, the omni-direction that easily guides the self-supporting traveling device in the direction in which the self-supporting traveling device is guided by applying a force in the direction in which the self-supporting traveling device is to be guided to the traveling main body located on the upper body of the self-supporting traveling device. Realize the travel mechanism.

上記自立走行装置において、自律走行装置が人の経路を妨害している状況下において、自律走行装置の一端を押すことにより生じる自律走行装置の重心の変位を検出し、押された方向へ自律走行装置を走行させる操舵機構を実現する。   In the above autonomous traveling device, the autonomous traveling device detects a displacement of the center of gravity of the autonomous traveling device caused by pressing one end of the autonomous traveling device in a situation where the autonomous traveling device is obstructing a person's route, and autonomously travels in the pressed direction. A steering mechanism for running the device is realized.

上記構成により、自立走行装置を転倒させず安定な状態で移動させることができる。
上記構成により、自立走行装置を誘導させたい方向に誘導させることができる。
With the above configuration, the self-supporting traveling device can be moved in a stable state without falling down.
With the above configuration, the self-supporting traveling device can be guided in a desired direction.

図2は第1実施形態の自立走行装置の側面図である。図2に示す第1実施形態の自立走行装置1は独立3輪ステアリング機構により全方位走行を可能とする。自立走行装置1はフロア上を任意の方向に自立して走行する。自立走行装置1は制御部10と走行本体部11と走行機構部12を有する。制御部10は走行本体部11に設置しているが走行機構部12に設置してもよい。走行本体部11は走行機構部12の上方に位置する。自立走行装置1はまた走行本体部11に加えられた荷重を測定する複数の荷重センサ13を有する。第1実施形態では荷重センサ13は走行本体部11と走行機構部12との間に設置される。   FIG. 2 is a side view of the self-supporting traveling device of the first embodiment. The self-propelled traveling device 1 of the first embodiment shown in FIG. 2 enables omnidirectional traveling by an independent three-wheel steering mechanism. The self-supporting traveling device 1 travels independently on a floor in an arbitrary direction. The self-supporting traveling device 1 includes a control unit 10, a traveling main body unit 11, and a traveling mechanism unit 12. The control unit 10 is installed in the traveling main body unit 11, but may be installed in the traveling mechanism unit 12. The traveling body 11 is located above the traveling mechanism 12. The self-supporting traveling device 1 also includes a plurality of load sensors 13 that measure a load applied to the traveling main body 11. In the first embodiment, the load sensor 13 is installed between the traveling main body 11 and the traveling mechanism 12.

制御部10は、不図示のCPU、ダイナミックラム(DRAM)、スタティックラム(SRAM)、フラッシュロム(FROM)、入出力インターフェースおよび通信インターフェース等を有する。制御部10は自立走行装置1に外力Fが加えられ、荷重センサ13により検出された外力Fが加えられる前後の荷重を入力インターフェースを介して受け、取得した荷重から自立走行装置1の前後の重心を求め、重心の変位を算出し、自立走行装置1の走行方向が重心の変位方向に一致するように出力インターフェースを介して操舵部14を制御する。この重心の算出方法については後で説明する。   The control unit 10 includes a CPU (not shown), a dynamic ram (DRAM), a static ram (SRAM), a flash ROM (FROM), an input / output interface, a communication interface, and the like. The control unit 10 receives an external force F applied to the self-supporting traveling device 1 and receives a load before and after the external force F detected by the load sensor 13 is applied via an input interface, and the center of gravity of the self-supporting traveling device 1 before and after the acquired load. , The displacement of the center of gravity is calculated, and the steering unit 14 is controlled via the output interface so that the traveling direction of the self-supporting traveling device 1 matches the displacement direction of the center of gravity. A method for calculating the center of gravity will be described later.

図3は図2に示す自立走行装置の走行機構部の斜視図である。図3は走行本体部11の台と走行機構部12の構成を示している。図3に示す走行機構部12は、自立走行装置1の走行方向を変える複数の操舵部(ステアリング)14と自立走行装置1を走行させる複数の駆動部15とサスペンション16とを有する。駆動部15は駆動輪15−1を回転させるモータ15−2を有する。モータ15−2には扁平高トルクモータが用いられている。サスペンション16は操舵部14と駆動部15との間に設置され、操舵部14への振動を防止する。荷重センサ13は操舵部(ステアリング)14と走行本体部11の台との間に設置される。   FIG. 3 is a perspective view of a traveling mechanism portion of the self-supporting traveling apparatus shown in FIG. FIG. 3 shows the configuration of the base of the travel main body 11 and the travel mechanism 12. The traveling mechanism unit 12 shown in FIG. 3 includes a plurality of steering units (steers) 14 that change the traveling direction of the self-supporting traveling device 1, a plurality of driving units 15 that cause the self-supporting traveling device 1 to travel, and a suspension 16. The drive unit 15 includes a motor 15-2 that rotates the drive wheel 15-1. A flat high torque motor is used as the motor 15-2. The suspension 16 is installed between the steering unit 14 and the drive unit 15 and prevents vibration to the steering unit 14. The load sensor 13 is installed between the steering part (steering) 14 and the base of the traveling main body part 11.

図4は図3に示す走行機構部の走行ユニットを示す図である。図示の走行機構部12の走行ユニットは、操舵部(ステアリング)14と駆動部15とサスペンション16が組み込まれたものであり、2輪や4輪駆動の自立走行装置1に適用できる。   4 is a diagram showing a traveling unit of the traveling mechanism section shown in FIG. The traveling unit of the illustrated traveling mechanism unit 12 includes a steering unit (steering) 14, a drive unit 15, and a suspension 16, and can be applied to a two-wheel or four-wheel drive self-supporting traveling device 1.

図5は第1実施形態の自立走行装置1による走行方向、旋回方向を示す図であり、(A)は走行時の走行方向51を示す図であり、(B)は外力Fが加わった後の走行方向52と旋回方向53を示す図であり、(C)は走行せずに旋回方向54に旋回のみを行っている状態を示す図であり、(D)は走行も旋回もしない停止(ブレーキ)状態を示す図である。図5は自立走行装置1の走行機構部12を底面から見た図を示し、3つの駆動輪15−1が示されている。3つの駆動輪15−1が放射状になるように不図示の操舵部を旋回させることにより(D)に示す走行も旋回もしない停止(ブレーキ)状態を得ることができる。   5A and 5B are diagrams showing a traveling direction and a turning direction by the self-supporting traveling device 1 of the first embodiment. FIG. 5A is a diagram illustrating a traveling direction 51 during traveling. FIG. 5B is a diagram after an external force F is applied. (C) is a figure which shows the state which is only turning in the turning direction 54, without driving | running | working, (D) is a stop which does not drive | run and turn ( It is a figure which shows a brake state. FIG. 5 is a view of the traveling mechanism unit 12 of the self-supporting traveling device 1 as viewed from the bottom, and shows three drive wheels 15-1. By turning a steering unit (not shown) so that the three drive wheels 15-1 become radial, the stop (brake) state in which neither traveling nor turning shown in (D) can be obtained.

図6は第2実施形態の自立走行装置の側面図である。図6に示す第2実施形態の自立走行装置2は荷重センサ(ロードセル)23を走行機構部22の底面付近に配置した点で第1実施形態の自立走行装置1と異なる。第2実施形態の自立走行装置2は荷重センサ23が第1実施形態の自立走行装置1の荷重センサ13の位置よりフロア近くにあるので移動時の重心28をより正確に算出できる。その理由については図9を用いて後で説明する。   FIG. 6 is a side view of the self-supporting traveling device of the second embodiment. The self-supporting traveling device 2 of the second embodiment shown in FIG. 6 is different from the self-supporting traveling device 1 of the first embodiment in that a load sensor (load cell) 23 is disposed near the bottom surface of the traveling mechanism unit 22. In the self-supporting traveling device 2 of the second embodiment, the load sensor 23 is closer to the floor than the position of the load sensor 13 of the self-supporting traveling device 1 of the first embodiment, so that the center of gravity 28 during movement can be calculated more accurately. The reason will be described later with reference to FIG.

制御部20は、自立走行装置2に外力Fが加えられる前後の荷重を荷重センサ23により検出し、検出した荷重から自立走行装置2の重心28を求め、重心28の変位を算出し、自立走行装置2の走行方向が重心28の変位方向に一致するように不図示の操舵部を制御する。この重心28の算出方法については後で説明する。   The control unit 20 detects the load before and after the external force F is applied to the autonomous traveling device 2 by the load sensor 23, obtains the center of gravity 28 of the autonomous traveling device 2 from the detected load, calculates the displacement of the gravity center 28, and autonomously travels. A steering unit (not shown) is controlled so that the traveling direction of the device 2 coincides with the displacement direction of the center of gravity 28. A method for calculating the center of gravity 28 will be described later.

第2実施形態の自立走行装置2では、フロアに近い高さで、走行機構部22に荷重センサ23としてロードセルを3箇所に配置することにより、静止・移動時の重心28を測定する。   In the self-propelled traveling device 2 according to the second embodiment, the load cell 23 is arranged at three positions as the load sensor 23 in the traveling mechanism unit 22 at a height close to the floor, thereby measuring the center of gravity 28 when stationary and moving.

第2実施形態の自立走行装置2によれば、荷物積降時、加減速・外力Fが走行本体部21に加わった際の重心の変化を自立走行装置2の走行方向が重心28の変位方向に一致するように不図示の操舵部を制御することにより転倒防止を図ることができる。   According to the self-propelled traveling device 2 of the second embodiment, the change in the center of gravity when acceleration / deceleration / external force F is applied to the traveling main body 21 during loading / unloading is determined by the direction of travel of the self-supporting traveling device 2 being the direction of displacement of the center of gravity 28. By controlling a steering unit (not shown) so as to match the above, it is possible to prevent overturning.

また、第2実施形態の自立走行装置2によれば、歩行者が「手でよける」という直感的な動作で、ロボット等の自立走行装置2の走行方向を制御できる。   Moreover, according to the self-supporting traveling device 2 of the second embodiment, the traveling direction of the self-supporting traveling device 2 such as a robot can be controlled by an intuitive operation that a pedestrian “gets hands”.

図7は第2実施形態の自立走行装置の重心の変化を示す図であり、(A)は静止時の重心28を示す図であり、(B)は外力が加わった後の重心28を示す図であり、(C)は操舵部(ステアリング)回転後の重心28の変化を示す図であり、(D)は走行後の重心28の変化を示す図である。図7(A)〜(D)は自立走行装置2の走行機構部22を底面から見た図を示し、荷重センサ23、3つの駆動輪25−1および重心28が示されている。図7の(A)〜(D)に示すステップS1〜S4は不図示の制御部20の処理ステップを示す。   7A and 7B are diagrams showing changes in the center of gravity of the self-propelled traveling device according to the second embodiment. FIG. 7A is a diagram showing the center of gravity 28 when stationary, and FIG. 7B shows the center of gravity 28 after an external force is applied. (C) is a figure which shows the change of the gravity center 28 after a steering part (steering) rotation, (D) is a figure which shows the change of the gravity center 28 after driving | running | working. FIGS. 7A to 7D are views of the traveling mechanism 22 of the self-supporting traveling device 2 as viewed from the bottom, in which a load sensor 23, three drive wheels 25-1, and a center of gravity 28 are illustrated. Steps S1 to S4 shown in FIGS. 7A to 7D show processing steps of the control unit 20 (not shown).

図7の(A)はステップS1において自立走行装置2の静止時の重心28を計算するときの3つの駆動輪25−1と重心28の位置関係を示す。   FIG. 7A shows the positional relationship between the three driving wheels 25-1 and the center of gravity 28 when calculating the center of gravity 28 when the self-propelled traveling device 2 is stationary in step S1.

図7の(B)はステップS2において自立走行装置2に外力Fが加えられた時の重心28Aの位置を示す。自立走行装置2に外力Fが加えられると、重心28が図7の(A)に示す重心28の位置から図7の(B)に示す重心28Aの位置に移動したことが判る。   FIG. 7B shows the position of the center of gravity 28A when the external force F is applied to the self-supporting traveling device 2 in step S2. When an external force F is applied to the self-supporting traveling device 2, it can be seen that the center of gravity 28 has moved from the position of the center of gravity 28 shown in FIG. 7A to the position of the center of gravity 28A shown in FIG.

図7の(C)はステップS3において3つの駆動輪25−1が図7の(A)に示す重心28の位置から図7の(B)に示す重心28Aの位置に変位する方向に一致するように操舵部(ステアリング)を回転した後の重心28Aの位置を示す。   7C corresponds to the direction in which the three drive wheels 25-1 are displaced from the position of the center of gravity 28 shown in FIG. 7A to the position of the center of gravity 28A shown in FIG. 7B in step S3. Thus, the position of the center of gravity 28A after rotating the steering part (steering) is shown.

図7の(D)はステップS4において3つの駆動輪25−1の各モータ(不図示)を駆動して自立走行装置2を走行させることで外力が無くなり安定となった状態を示す。図7の(D)に示す重心28の位置は図7の(A)に示す重心28の位置と同じになる。   FIG. 7D shows a state in which the external force is eliminated and stabilized by driving the motors (not shown) of the three drive wheels 25-1 to drive the self-supporting traveling device 2 in step S4. The position of the center of gravity 28 shown in FIG. 7D is the same as the position of the center of gravity 28 shown in FIG.

図7に示すような3つ以上の駆動輪25−1を有する自立走行装置2は、図6に示すような走行本体部21そのものを回転させることなく、外力Fが加えられた方向、例えば人が自立走行装置2を押した方向に移動し得る。   A self-supporting traveling device 2 having three or more drive wheels 25-1 as shown in FIG. 7 does not rotate the traveling main body 21 itself as shown in FIG. Can move in the direction in which the self-supporting traveling device 2 is pressed.

図8は3つの荷重センサ(ロードセル)の出力から重心の位置RGを算出する方法を説明する図である。重心の位置RGは下記の一般式により求められる。   FIG. 8 is a diagram for explaining a method of calculating the center of gravity position RG from the outputs of three load sensors (load cells). The position RG of the center of gravity is obtained by the following general formula.

Figure 0005125806
Figure 0005125806

ここで、各ロードセルの位置、すなわち荷重点をR1〜R3とし、各ロードセルにおける荷重値をm1〜m3とする。 Here, the position of each load cell, that is, the load point is R 1 to R 3, and the load value in each load cell is m 1 to m 3 .

3点の荷重が同じ場合(外力無しの状態)、m1=m2=m3 であるため重心の位置RGは RG = RG0 = (0,0)である。 When the loads at the three points are the same (state without external force), since m 1 = m 2 = m 3 , the center of gravity position RG is R G = R G0 = (0,0).

3点の荷重が異なる場合、RG=(m1R1+m2R2+m3R3)/Mである。よって、外力Fが加わった場合、重心のズレを補正する方向RG-RG0がRGとなる方向FWDへ移動する。ロードセルの個数が4個以上の場合も重心の位置は同様に上式(1)を用いて計算することができる。 When the loads at the three points are different, R G = (m 1 R 1 + m 2 R 2 + m 3 R 3 ) / M. Therefore, when the external force F is applied, the direction R G -R G0 for correcting the deviation of the center of gravity moves to the direction FWD in which R G becomes R G. When the number of load cells is four or more, the position of the center of gravity can be similarly calculated using the above equation (1).

図9は3つの荷重センサ(ロードセル)の位置とZMP(Zero Moment Point)との関係を二輪の走行機構を用いて2次元平面で説明する図であり、(A)は走行機構が転倒状態にあるときのZMPを示す図であり、(B)は荷重センサの位置が二輪より高い位置にあるときのZMPを示す図であり、(C)は荷重センサの位置が二輪のフロア近傍にあるときのZMPを示す図である。   FIG. 9 is a diagram for explaining the relationship between the positions of three load sensors (load cells) and ZMP (Zero Moment Point) in a two-dimensional plane using a two-wheel traveling mechanism, and FIG. It is a figure which shows ZMP at a certain time, (B) is a figure which shows ZMP when the position of a load sensor is in a position higher than two wheels, and (C) is when the position of a load sensor is near the floor of two wheels It is a figure which shows ZMP.

図9の(A)〜(C)は荷重センサ(ロードセル)の位置とZMP(Zero Moment Point)との関係を二輪の走行機構を用いて2次元平面で説明する図である。図9の(A)〜(C)に示すように、実際のZMP(Zero Moment Point)は走行機構90の本体91が静止状態のときの重心CG(Center of Gravity)から路面FL(Floor Line)に向かう重力G(Gravity)と重心CGに作用する慣性力I(Inertia)または外力の合力RF(Resultant Force)の重心CGからの延長線と路面FL(Floor Line)との交点にある。   FIGS. 9A to 9C are diagrams illustrating the relationship between the position of the load sensor (load cell) and ZMP (Zero Moment Point) on a two-dimensional plane using a two-wheel traveling mechanism. As shown in FIGS. 9A to 9C, the actual ZMP (Zero Moment Point) is calculated from the center of gravity CG (Center of Gravity) when the main body 91 of the traveling mechanism 90 is stationary to the road surface FL (Floor Line). Is an intersection of an extension line from the center of gravity CG of the inertial force I (Inertia) acting on the center of gravity CG or the resultant force RF (Resultant Force) acting on the center of gravity CG and the road surface FL (Floor Line).

図9の(A)は走行機構が転倒状態にあるときのZMPを示す図である。実際のZMPが車輪92Aの接地点R1と車輪92Bの接地点R2との間にあれば本体91は安定であり転倒しないが、図9の(A)に示すように、実際のZMPが車輪92Aの接地点R1と車輪92Bの接地点R2との間から外れると本体91は不安定となり転倒する。このような本体91が転倒しない車輪92Aの接地点R1と車輪92Bの接地点R2との間のZMPは目標ZMPと呼ばれている。   FIG. 9A is a diagram showing ZMP when the traveling mechanism is in a fallen state. If the actual ZMP is between the grounding point R1 of the wheel 92A and the grounding point R2 of the wheel 92B, the main body 91 is stable and does not fall down. However, as shown in FIG. The main body 91 becomes unstable and falls over when it comes off between the ground contact point R1 and the ground contact point R2 of the wheel 92B. The ZMP between the ground point R1 of the wheel 92A and the ground point R2 of the wheel 92B where the main body 91 does not fall is referred to as a target ZMP.

図9の(B)は荷重センサの位置L1が二輪92A、92Bより高い位置にあるときのZMPを示す図である。走行機構90の本体91が静止状態のときの重心CGは重力G(Gravity)と重心CGに作用する慣性力Iまたは外力の合力RFの重心CGからの延長線と荷重センサの位置L1との交点J1に変位する。すなわち、交点J1が重心となる。   FIG. 9B is a diagram showing ZMP when the load sensor position L1 is higher than the two wheels 92A and 92B. The center of gravity CG when the main body 91 of the traveling mechanism 90 is stationary is the intersection of gravity G (Gravity) and the extension line from the center of gravity CG of the resultant force RF of inertial force I or external force acting on the center of gravity CG and the position L1 of the load sensor. Displacement to J1. That is, the intersection point J1 is the center of gravity.

重心J1から路面FLに下ろした垂線と路面FLとの交点J01を本体91が転倒する状態にあるか否かの判定に用いると、図9の(B)に示す例では、上記交点J01が車輪92Aの接地点R1と車輪92Bの接地点R2との間にあるので本体91は安定であり転倒しないと判定される。しかしながら、ZMPは車輪92Aの接地点R1と車輪92Bの接地点R2との間から外れているので本体91は不安定となり転倒する。すなわち、判定結果と実際とが異なる。   When the intersection point J01 between the perpendicular line dropped from the center of gravity J1 to the road surface FL and the road surface FL is used to determine whether or not the main body 91 is in a state of falling, in the example shown in FIG. 9B, the intersection point J01 is the wheel. Since it is between the grounding point R1 of 92A and the grounding point R2 of the wheel 92B, it is determined that the main body 91 is stable and does not fall down. However, since ZMP is out of contact between the ground contact point R1 of the wheel 92A and the ground contact point R2 of the wheel 92B, the main body 91 becomes unstable and falls. That is, the determination result is different from the actual result.

図9の(C)は荷重センサの位置L2が二輪2A、92Bのフロア近傍にあるときのZMPを示す図である。走行機構90の本体91が静止状態のときの重心CGは重力Gと重心CGに作用する慣性力Iまたは外力の合力RFの重心CGからの延長線と荷重センサの位置L2との交点J2に変位する。すなわち、交点J2が重心となる。   FIG. 9C is a diagram showing ZMP when the position L2 of the load sensor is in the vicinity of the floor of the two wheels 2A and 92B. When the main body 91 of the traveling mechanism 90 is stationary, the center of gravity CG is displaced to the intersection J2 between the extension line from the center of gravity CG of the inertia force I acting on the gravity G and the center of gravity CG or the resultant force RF of the external force and the position L2 of the load sensor. To do. That is, the intersection J2 becomes the center of gravity.

重心J2から路面FLに下ろした垂線と路面FLとの交点J02を本体91が転倒する状態にあるか否かの判定に用いると、図9の(C)に示す例では、上記交点J02が車輪92Aの接地点R1と車輪92Bの接地点R2との間から外れているので本体91は不安定であり転倒すると判定される。一方、ZMPは車輪92Aの接地点R1と車輪92Bの接地点R2との間から外れているので本体91は不安定となり転倒する。すなわち、判定結果と実際とが一致する。   When the intersection point J02 between the perpendicular line dropped from the center of gravity J2 to the road surface FL and the road surface FL is used to determine whether or not the main body 91 is in a state of falling, in the example shown in FIG. 9C, the intersection point J02 is the wheel. Since the ground contact point R1 of 92A and the ground contact point R2 of the wheel 92B are off, it is determined that the main body 91 is unstable and falls. On the other hand, since ZMP is out of contact between the ground contact point R1 of the wheel 92A and the ground contact point R2 of the wheel 92B, the main body 91 becomes unstable and falls. That is, the determination result matches the actual result.

図9の(B)と(C)に示す例から判るように、荷重センサの位置が路面FLに近くにある程、ZMPと上記交点J01、J02とが近づくので交点J01、J02をZMPの近似点とみなすことができ、本体91が安定状態にあるか否かの判定、つまり本体91が倒れるか否かの判定を正確に行うことができる。本体91を安定な状態に維持し転倒しないようにするため、制御部10は交点J01、J02が車輪92Aの接地点R1と車輪92Bの接地点R2との間に入るように操舵部14を制御するよう構成される。   As can be seen from the examples shown in FIGS. 9B and 9C, the closer the position of the load sensor is to the road surface FL, the closer the ZMP and the intersections J01 and J02 approach, so the intersections J01 and J02 are approximated by ZMP. It can be regarded as a point, and it can be accurately determined whether or not the main body 91 is in a stable state, that is, whether or not the main body 91 falls down. In order to maintain the main body 91 in a stable state so as not to fall, the control unit 10 controls the steering unit 14 so that the intersections J01 and J02 are between the ground point R1 of the wheel 92A and the ground point R2 of the wheel 92B. Configured to do.

(付記1)
フロア上を任意の方向に自立して走行する自立走行装置であって、
走行機構部と該走行機構部の上方に位置する走行本体部と該走行本体部に加えられた荷重を測定する複数の荷重センサとを備え、
前記走行機構部は、
駆動部と、該駆動部を前記走行部本体部に対して全周旋回可能に操舵する操舵部とを有する走行ユニットを複数備えると共に、
前記複数の荷重センサにより検出された荷重から前記自立走行装置の重心を求め、該重心の変位を算出し、前記自立走行装置が安定な状態を維持できるように前記操舵部を制御する制御部と、
を備えたことを特徴とする自立走行装置。
(Appendix 1)
A self-propelled traveling device that independently travels on the floor in any direction,
A traveling mechanism, a traveling body located above the traveling mechanism, and a plurality of load sensors for measuring a load applied to the traveling body,
The traveling mechanism section is
A plurality of travel units having a drive unit and a steering unit that steers the drive unit so as to be able to turn all around the travel unit main body unit,
A control unit that obtains a center of gravity of the self-supporting traveling device from loads detected by the plurality of load sensors, calculates a displacement of the center of gravity, and controls the steering unit so that the self-supporting traveling device can maintain a stable state; ,
A self-supporting traveling device characterized by comprising:

(付記2)
前記制御部は前記自立走行装置の走行方向が前記重心の変位方向に一致するように前記操舵部を制御する、
付記1に記載の自立走行装置。
(Appendix 2)
The control unit controls the steering unit so that a traveling direction of the self-supporting traveling device matches a displacement direction of the center of gravity;
The self-supporting traveling device according to appendix 1.

(付記3)
前記制御部は前記自立走行装置の重心から前記フロアへ向かう垂線と該フロア表面との交点が前記複数の荷重センサの荷重点を結んで囲む範囲内に維持されるように前記操舵部を制御する、
付記1に記載の自立走行装置。
(Appendix 3)
The control unit controls the steering unit so that an intersection of a perpendicular line from the center of gravity of the self-supporting traveling device to the floor and the floor surface is maintained within a range surrounding the load points of the plurality of load sensors. ,
The self-supporting traveling device according to appendix 1.

(付記4)
前記走行ユニットを2つ備えた、
付記1に記載の自立走行装置。
(付記5)
前記走行ユニットを3つ備えた、
付記1に記載の自立走行装置。
(付記6)
前記走行ユニットを4つ備えた、
付記1に記載の自立走行装置。
(Appendix 4)
Two traveling units are provided,
The self-supporting traveling device according to appendix 1.
(Appendix 5)
Comprising three traveling units,
The self-supporting traveling device according to appendix 1.
(Appendix 6)
Comprising four traveling units,
The self-supporting traveling device according to appendix 1.

(付記7)
前記荷重センサは前記走行本体部と前記走行機構部との間に設置されている、
付記1乃至6の何れか一つに記載の自立走行装置。
(Appendix 7)
The load sensor is installed between the traveling main body and the traveling mechanism.
The self-supporting traveling device according to any one of appendices 1 to 6.

(付記8)
前記荷重センサは前記走行機構部の底面に設置されている、
付記1乃至6の何れか一つに記載の自立走行装置。
(Appendix 8)
The load sensor is installed on the bottom surface of the traveling mechanism unit,
The self-supporting traveling device according to any one of appendices 1 to 6.

(付記9)
前記荷重センサは前記走行機構部の底面と前記フロアとの間に設置されている、
付記1乃至6の何れか一つに記載の自立走行装置。
(Appendix 9)
The load sensor is installed between a bottom surface of the traveling mechanism unit and the floor,
The self-supporting traveling device according to any one of appendices 1 to 6.

従来技術の二輪駆動によるロボットに外力を加えたときの走行方向の変化を示す図であり、(A)はロボットを示す図であり、(B)は停止中のロボットに外力を加えた時のロボット底面を示す図であり、(C)はロボットに外力を加えた後に旋回し走行開始する時のロボット底面を示す図である。It is a figure which shows the change of a running direction when external force is applied to the robot by the two-wheel drive of a prior art, (A) is a figure which shows a robot, (B) is the time when external force is applied to the robot which has stopped It is a figure which shows a robot bottom face, (C) is a figure which shows a robot bottom face when turning and starting a run after applying external force to a robot. 第1実施形態の自立走行装置の側面図である。It is a side view of the self-supporting traveling device of the first embodiment. 図2に示す自立走行装置の走行機構部の斜視図である。It is a perspective view of the traveling mechanism part of the self-supporting traveling device shown in FIG. 図3に示す走行機構部のユニットを示す図である。It is a figure which shows the unit of the traveling mechanism part shown in FIG. 第1実施形態の自立走行装置1による走行方向、旋回方向を示す図であり、(A)は走行時の走行方向を示す図であり、(B)は外力が加わった後の走行方向と旋回方向を示す図であり、(C)は走行せずに旋回方向に旋回のみを行っている状態を示す図であり、(D)は走行も旋回もしない停止(ブレーキ)状態を示す図である。It is a figure which shows the running direction and turning direction by the self-supporting traveling apparatus 1 of 1st Embodiment, (A) is a figure which shows the running direction at the time of driving | running | working, (B) is the running direction and turning after external force is added. It is a figure which shows a direction, (C) is a figure which shows the state which is only turning in the turning direction, without driving | running | working, (D) is a figure which shows the stop (brake) state which does not drive | work and turn. . 第2実施形態の自立走行装置の側面図である。It is a side view of the self-supporting traveling device of the second embodiment. 第2実施形態の自立走行装置の重心の変化を示す図であり、(A)は静止時の重心を示す図であり、(B)は外力が加わった後の重心を示す図であり、(C)は操舵部回転後の重心の変化を示す図であり、(D)は走行後の重心の変化を示す図である。It is a figure which shows the change of the gravity center of the self-supporting traveling apparatus of 2nd Embodiment, (A) is a figure which shows the gravity center at the time of stationary, (B) is a figure which shows the gravity center after external force is added, ( (C) is a figure which shows the change of the gravity center after steering part rotation, (D) is a figure which shows the change of the gravity center after driving | running | working. 3つの荷重センサ(ロードセル)の出力から重心の位置を算出する方法を説明する図である。It is a figure explaining the method of calculating the position of a gravity center from the output of three load sensors (load cell). 荷重センサ(ロードセル)の位置とZMP(Zero Moment Point)との関係を二輪の走行機構を用いて2次元平面で説明する図であり、(A)は走行機構が転倒状態にあるときのZMPを示す図であり、(B)は荷重センサの位置が二輪より高い位置にあるときのZMPを示す図であり、(C)は荷重センサの位置が二輪のフロア近傍にあるときのZMPを示す図である。It is a figure explaining the relationship between the position of a load sensor (load cell) and ZMP (Zero Moment Point) on a two-dimensional plane using a two-wheel traveling mechanism, and (A) shows ZMP when the traveling mechanism is in a falling state. (B) is a diagram showing ZMP when the position of the load sensor is higher than the two wheels, and (C) is a diagram showing ZMP when the position of the load sensor is near the floor of the two wheels. It is.

符号の説明Explanation of symbols

1、2 自立走行装置
10、20 制御部
11 走行本体部
12、22 走行機構部
13、23 荷重センサ(ロードセル)
14 操舵部(ステアリング)
15 駆動部
16 サスペンション
18、28 重心
29 ZMP
DESCRIPTION OF SYMBOLS 1, 2, Self-supporting traveling apparatus 10, 20 Control part 11 Traveling body part 12, 22 Traveling mechanism part 13, 23 Load sensor (load cell)
14 Steering part (steering)
15 Drive unit 16 Suspension 18, 28 Center of gravity 29 ZMP

Claims (3)

走行本体部と、
路面に接地する複数の駆動部と該複数の駆動部のそれぞれを前記走行本体部に対して全周旋回可能に操舵する操舵部とを有する走行機構部と、
前記走行機構部の底面に設置され、外力による荷重を測定する3個の荷重センサと
前記3個の荷重センサにより測定された荷重から重心を求め、該重心の変位を算出し、前記走行本体部の走行方向が前記重心の変位方向に一致するように前記操舵部を制御する制御部と、
を備えたことを特徴とする自立走行装置。
Traveling body part,
A traveling mechanism unit having a plurality of driving units that are in contact with the road surface and a steering unit that steers each of the plurality of driving units so as to be capable of turning around the traveling main body unit ;
Three load sensors installed on the bottom surface of the travel mechanism section for measuring a load due to an external force ;
The calculated three load or RaShigeru heart measured by the load sensor, calculates the displacement of the centroid, and controls the steering section as the traveling direction of the traveling body part coincides with the direction of displacement of the center of gravity A control unit;
A self-supporting traveling device characterized by comprising:
前記制御部は前記自立走行装置の重心から前記フロアへ向かう垂線と該フロア表面との交点が前記複数の駆動部の接地点を結んで囲む範囲内に維持されるように前記操舵部を制御する、
請求項1に記載の自立走行装置。
The control unit controls the steering unit such that an intersection of a perpendicular line from the center of gravity of the self-supporting traveling device to the floor and the floor surface is maintained within a range surrounding the ground points of the plurality of driving units. ,
The self-supporting traveling device according to claim 1.
前記荷重センサは前記走行機構部の底面と前記フロアとの間に設置されている、
請求項1又は2に記載の自立走行装置。
The load sensor is installed between a bottom surface of the traveling mechanism unit and the floor,
The self-supporting traveling device according to claim 1 or 2.
JP2008166245A 2008-06-25 2008-06-25 Independent running device Expired - Fee Related JP5125806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166245A JP5125806B2 (en) 2008-06-25 2008-06-25 Independent running device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166245A JP5125806B2 (en) 2008-06-25 2008-06-25 Independent running device

Publications (2)

Publication Number Publication Date
JP2010009226A JP2010009226A (en) 2010-01-14
JP5125806B2 true JP5125806B2 (en) 2013-01-23

Family

ID=41589662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166245A Expired - Fee Related JP5125806B2 (en) 2008-06-25 2008-06-25 Independent running device

Country Status (1)

Country Link
JP (1) JP5125806B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454333B2 (en) * 2010-04-23 2014-03-26 富士通株式会社 Mobile device and movement control program
EP2933069B1 (en) * 2014-04-17 2019-07-03 Softbank Robotics Europe Omnidirectional wheeled humanoid robot based on a linear predictive position and velocity controller
JP6350412B2 (en) * 2015-06-25 2018-07-04 トヨタ自動車株式会社 Robot fall prevention method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058061Y2 (en) * 1985-10-14 1993-03-01
JPH07187028A (en) * 1993-12-28 1995-07-25 Denken:Kk Carrier
JP3791873B2 (en) * 1998-07-01 2006-06-28 富士電機ホールディングス株式会社 Transport cart
JP4523244B2 (en) * 2003-05-22 2010-08-11 独立行政法人科学技術振興機構 Power-assisted mobile trolley
JP2008033477A (en) * 2006-07-27 2008-02-14 Meidensha Corp Control method of unattended carriage

Also Published As

Publication number Publication date
JP2010009226A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
EP3338752B1 (en) Traveling vehicle and method of controlling the traveling vehicle
CN109808686B (en) Vehicle obstacle avoidance method and device and vehicle
JP4956962B2 (en) Traveling apparatus and control method thereof
US7635041B2 (en) Inverted two-wheeled robot
JP4816058B2 (en) Traveling apparatus and control method thereof
JP4718518B2 (en) Mobile device providing position correction function
CN106029477B (en) Traveling vehicle and method for controlling traveling vehicle
JP4625859B2 (en) Inverted pendulum type moving mechanism
JP2008189089A (en) Moving body and control method therefor
KR20140012993A (en) Object tracking and steer maneuvers for materials handling vehicles
JP5125806B2 (en) Independent running device
US11845415B2 (en) AGV having dynamic safety zone
WO2018074117A1 (en) Moving device and moving device management system
JP2008241462A (en) Wheel radius estimating apparatus
JP6350412B2 (en) Robot fall prevention method
JP2009095933A (en) Overturning prevention device of vehicle and leg-wheel type robot
JP2021015415A (en) Towing device and carrier device including towing device
JP6989551B2 (en) Mobiles, controls, ambient object detectors, and monitoring devices
JP7003097B2 (en) Automated guided vehicle
JP2006107027A (en) Automatic guided vehicle
Kojima et al. Motion control of tracked vehicle based on contact force model
KR20210135526A (en) How to estimate the motion state of a vehicle during vehicle maneuvering
Endo et al. Stair climbing control of 4-degrees-of-freedom tracked vehicle based on internal sensors
JP7452127B2 (en) Autonomous mobile device and autonomous mobile device control method
JP2007145294A (en) Vehicle traveling control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees