JP5124101B2 - Alpha-type sialon phosphor, method for producing the same, and lighting apparatus - Google Patents

Alpha-type sialon phosphor, method for producing the same, and lighting apparatus Download PDF

Info

Publication number
JP5124101B2
JP5124101B2 JP2006131018A JP2006131018A JP5124101B2 JP 5124101 B2 JP5124101 B2 JP 5124101B2 JP 2006131018 A JP2006131018 A JP 2006131018A JP 2006131018 A JP2006131018 A JP 2006131018A JP 5124101 B2 JP5124101 B2 JP 5124101B2
Authority
JP
Japan
Prior art keywords
phosphor
sialon
powder
producing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006131018A
Other languages
Japanese (ja)
Other versions
JP2007302757A (en
Inventor
秀幸 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006131018A priority Critical patent/JP5124101B2/en
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to KR1020127018633A priority patent/KR101221683B1/en
Priority to KR1020107028743A priority patent/KR20110004917A/en
Priority to CN201210072617.5A priority patent/CN102676163B/en
Priority to PCT/JP2007/059527 priority patent/WO2007129713A1/en
Priority to KR1020087029585A priority patent/KR20090018085A/en
Priority to EP07742962.9A priority patent/EP2022835B1/en
Priority to EP16150385.9A priority patent/EP3093327A3/en
Priority to CN200780016969.6A priority patent/CN101443432B/en
Priority to CN201210072625.XA priority patent/CN102643645B/en
Priority to US12/300,127 priority patent/US20100237767A1/en
Priority to KR1020107028742A priority patent/KR101204573B1/en
Priority to KR1020127018634A priority patent/KR101221691B1/en
Publication of JP2007302757A publication Critical patent/JP2007302757A/en
Priority to US13/464,855 priority patent/US20120270049A1/en
Application granted granted Critical
Publication of JP5124101B2 publication Critical patent/JP5124101B2/en
Priority to US13/791,762 priority patent/US8685279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Phosphor that can provide white LED that uses a blue LED or an ultraviolet LED as a light source and that has superior luminous efficiency. This phosphor includes, as a main component, +--type sialon represented by a general expression: (M1)x(M2)y(Si,Al) 12 (O,N) 16 (where M1 is one or more types of elements selected from a group consisting of Li, Mg, Ca, Y, and lanthanide element (except for La and Ce) and M2 is one or more types of elements selected from a group consisting of Ce, Pr, Eu, Tb, Yb, and Er, and 0.3<=X+Y<=1.5 and 0<Y<=0.7 are established and the sialon phosphor consists of a powder having a specific surface area of 0.2 to 0.5m<2>/g.

Description

本発明は、紫外線乃至青色光で励起され、可視光線を発するα型サイアロン蛍光体とその製造方法、及びそれを利用した照明器具、特に白色LEDに関する。 The present invention relates to an α-type sialon phosphor that is excited by ultraviolet or blue light and emits visible light, a method for manufacturing the α-sialon phosphor, and a lighting fixture using the α-sialon phosphor, and particularly a white LED.

蛍光体として、母体材料にケイ酸塩、リン酸塩、アルミン酸塩、硫化物を用い発光中心に遷移金属もしくは希土類金属を用いたものが広く知られている。 As phosphors, silicates, phosphates, aluminates, and sulfides are used as a base material, and transition metals or rare earth metals are used as emission centers.

一方、白色LEDについては、紫外線乃至青色光などの高いエネルギーを有した励起源により励起され可視光線を発するものが注目され、開発が進んでいる。しかしながら、前記した従来の蛍光体は、この用途に適用しようとすると、励起源に曝される結果として、蛍光体の輝度が低下するという問題がある。 On the other hand, white LEDs that are excited by an excitation source having high energy such as ultraviolet light or blue light and emit visible light have been attracting attention and are being developed. However, when the above-described conventional phosphor is applied to this application, there is a problem that the luminance of the phosphor is lowered as a result of being exposed to an excitation source.

輝度低下の少ない蛍光体として、最近、結晶構造が安定で、励起光や発光を長波長側にシフトできる材料であることから、窒化物や酸窒化物蛍光体が注目されている。 Nitride and oxynitride phosphors have recently attracted attention as phosphors with low luminance reduction because they have a stable crystal structure and can shift excitation light and light emission to the longer wavelength side.

窒化物、酸窒化物蛍光体として、特定の希土類元素が付活されたα型サイアロンは、有用な蛍光特性を有することが知られており、白色LED等への適用が検討されている(特許文献1〜5、非特許文献1)
特許第3668770号公報 特開2003−336059公報 特開2003−124527公報 特開2003−206481公報 特開2004−186278公報 J.W.H.van Krebel”On New Rare−Earth Doped M−Si−Al−O−N Materials”,TU Eindhoven,The Netherlands,145−161(1998)
As nitride and oxynitride phosphors, α-sialons in which specific rare earth elements are activated are known to have useful fluorescence characteristics, and their application to white LEDs and the like are being studied (patents) Literature 1-5, Non-patent literature 1)
Japanese Patent No. 3668770 JP 2003-336059 A JP 2003-124527 A JP 2003-206481 A JP 2004-186278 A J. et al. W. H. van Krebel "On New Rare-Earth Doped M-Si-Al-O-N Materials", TU Eindhoven, The Netherlands, 145-161 (1998)

α型サイアロンは、α型窒化ケイ素結晶の、Si−N結合が部分的にAl−N結合とAl−O結合で置換され、電気的中性を保つために、結晶格子間に特定の元素(Ca、並びにLi、Mg、Y、又はLaとCeを除くランタニド金属)が格子内に侵入固溶した構造を有している。侵入固溶する元素の一部を発光中心となる希土類元素とすることにより蛍光特性が発現する。 The α-type sialon has a specific element (α) between the crystal lattices in order to maintain the electrical neutrality by partially replacing the Si—N bond of the α-type silicon nitride crystal with an Al—N bond and an Al—O bond. Ca and Li, Mg, Y, or a lanthanide metal excluding La and Ce) have a structure in which they enter and dissolve in the lattice. Fluorescence characteristics are exhibited by using a rare earth element as a light emission center for a part of the element that enters and dissolves.

α型サイアロンは、窒化ケイ素、窒化アルミニウム、必要に応じて酸化アルミニウム、及び侵入固溶する元素の酸化物等からなる混合粉末を窒素中の高温で焼成することにより得られる。窒化ケイ素とアルミニウム化合物の比率と侵入固溶させる元素の種類並びに発光中心となる元素の割合等により、多様な蛍光特性が得られる。特に、侵入固溶元素としてCa及び発光中心であるEuを固溶させたα型サイアロンは、紫外〜青色領域の幅広い波長域で効率良く励起され、黄〜橙色発光を示す。そのため、補色関係にある青色発光のLEDと組み合わせることにより、白色LED用途への展開が期待されている。 The α-sialon is obtained by firing a mixed powder composed of silicon nitride, aluminum nitride, aluminum oxide if necessary, and oxides of intruding solid solution elements at a high temperature in nitrogen. Various fluorescent characteristics can be obtained depending on the ratio of silicon nitride and aluminum compound, the type of element that enters and dissolves, the ratio of the element that becomes the emission center, and the like. In particular, α-sialon in which Ca and the emission center Eu as a penetrating solid solution element are solidly dissolved is efficiently excited in a wide wavelength range from ultraviolet to blue, and exhibits yellow to orange emission. For this reason, it is expected to be used in white LED applications by combining with a blue light emitting LED having a complementary color relationship.

白色は、単色光と異なる複数の色の組み合わせが必要であり、一般的な白色LEDは、紫外LED又は青色LEDと、それらの光を励起源とし可視光を発する蛍光体との組み合わせにより構成されている。従って、白色LEDの効率向上のためには、紫外LED又は青色LEDのLED自体の発光効率向上と共に、そこに用いられている蛍光体の効率向上、更には、発せられた光を外部に取り出す効率の向上が必要である。白色LEDの一般照明用まで含めた用途拡大のためには、これら全ての効率向上が必要である。 White requires a combination of a plurality of colors different from monochromatic light, and a general white LED is composed of a combination of an ultraviolet LED or a blue LED and a phosphor that emits visible light using the light as an excitation source. ing. Therefore, in order to improve the efficiency of the white LED, the luminous efficiency of the LED of the ultraviolet LED or the blue LED itself is improved, the efficiency of the phosphor used therefor, and the efficiency of extracting emitted light to the outside Need to be improved. In order to expand the application including the general illumination of the white LED, it is necessary to improve all of these efficiencies.

白色LED用蛍光体は、一般的に、エポキシ樹脂やシリコーン樹脂等の封止材料中にミクロンサイズの粒子として分散して使用される。α型サイアロン蛍光体の場合、この粒子は細かな一次粒子が複数個焼結した二次粒子となる。そのサイズや分布等については検討されてはいるが、その二次粒子の表面性状に関しては着目されていなかった。 The phosphor for white LED is generally used by being dispersed as micron-sized particles in a sealing material such as an epoxy resin or a silicone resin. In the case of an α-type sialon phosphor, the particles are secondary particles obtained by sintering a plurality of fine primary particles. Although the size and distribution have been studied, attention has not been paid to the surface properties of the secondary particles.

本発明は、α型サイアロン蛍光体に関していろいろ検討し、540〜600nmの範囲の波長にピークを持ち、発光効率に優れる白色LED、特に青色LED又は紫外LEDを光源とする発光効率に優れる白色LEDを提供することを目的になされたものである。 The present invention has been studied variously with respect to the α-type sialon phosphor, and a white LED having a peak at a wavelength in the range of 540 to 600 nm and excellent luminous efficiency, particularly a white LED excellent in luminous efficiency using a blue LED or an ultraviolet LED as a light source. It was made for the purpose of providing.

本発明者は、α型サイアロンを母体材料とする蛍光体について検討を行い、α型サイアロンの侵入固溶元素を特定のものとし、結晶格子サイズを適切な範囲として、更に二次粒子の表面性状を平滑にすることにより、540〜600nmの範囲の波長にピークを持ち、発光効率に優れる蛍光体が得られ、これを用いて優れた発光特性の照明器具が得られることを見いだし、本発明に至ったものである。 The present inventor has studied a phosphor using α-sialon as a base material, and has specified a penetrating solid solution element of α-sialon, a crystal lattice size within an appropriate range, and a surface property of secondary particles. It is found that a phosphor having a peak at a wavelength in the range of 540 to 600 nm and having excellent luminous efficiency can be obtained by smoothing the light, and that a lighting apparatus having excellent luminous characteristics can be obtained using the phosphor. It has come.

また、本発明者は、原料粉末中に粒成長の核となる種粒子の添加や合成過程で緻密な窒化ホウ素質の坩堝を用いることにより、二次粒子の表面平滑性が向上することを見いだし、本発明に至ったものである。 In addition, the present inventors have found that the surface smoothness of the secondary particles is improved by adding seed particles that are the core of grain growth in the raw material powder and using a dense boron nitride crucible in the synthesis process. This has led to the present invention.

即ち、本発明の蛍光体は、一般式:(M1)(M2)(Si,Al)12(O,N)16(但し、M1はLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる1種以上の元素であり、M2はCe、Pr、Eu、Tb、Yb及びErからなる群から選ばれる1種以上の元素であり、0.3≦X+Y ≦1.5、かつ0<Y ≦0.7)で示されるα型サイアロンを主成分とし、比表面積が0.2〜0.5m/gの粉末であることを特徴とする。また、本発明の蛍光体の主成分であるα型サイアロン蛍光体は格子定数aが5.80〜5.88nm、格子定数cが5.65〜5.73nmの範囲にあることを特徴とする。 That is, the phosphor of the present invention has a general formula: (M1) x (M2) y (Si, Al) 12 (O, N) 16 (where M1 is Li, Mg, Ca, Y and a lanthanide element (La and M2 is one or more elements selected from the group consisting of Ce, Pr, Eu, Tb, Yb and Er, and 0.3 ≦ X + Y ≦ 1.5 and 0 <Y ≦ 0.7), which is a powder having an α-sialon as a main component and a specific surface area of 0.2 to 0.5 m 2 / g. The α-sialon phosphor, which is the main component of the phosphor of the present invention, is characterized in that the lattice constant a is in the range of 5.80 to 5.88 nm and the lattice constant c is in the range of 5.65 to 5.73 nm. .

更に本発明の蛍光体は、粉末X線回折法で評価した際に、α型サイアロン以外の結晶相の回折強度がα型サイアロンの(102)面の回折線強度に対して、いずれも10%以下であることを特徴とする。 Furthermore, when the phosphor of the present invention was evaluated by the powder X-ray diffraction method, the diffraction intensity of the crystal phase other than the α-type sialon was 10% of the diffraction line intensity of the (102) plane of the α-type sialon. It is characterized by the following.

本発明の蛍光体は、好ましくは、M1が少なくともCaを含み、M2が少なくともEuを含み、しかも、0<Y ≦0.1であり、250〜500nmの波長を持つ紫外線又は可視光を励起源として照射することにより、540〜600nmの範囲の波長域にピークを持つ発光特性を示す。 In the phosphor of the present invention, preferably, M1 contains at least Ca, M2 contains at least Eu, and 0 <Y ≦ 0.1, and ultraviolet or visible light having a wavelength of 250 to 500 nm is excited as an excitation source. , The emission characteristics having a peak in the wavelength range of 540 to 600 nm.

また、本発明の蛍光体の製造方法は、出発原料にα型サイアロンを5〜30質量%含有させることを特徴とし、好ましくは、その比表面積が0.5〜2m/gであることを特徴とする。更に、本発明の蛍光体の製造方法は、出発原料を密度1.75g/cm以上の窒化ホウ素材質の坩堝に充填し、窒化性雰囲気で焼成することを特徴とし、好ましくは窒化ホウ素が熱分解性窒化ホウ素(P−BN)であることを特徴とする。 The phosphor production method of the present invention is characterized in that the starting material contains 5 to 30% by mass of α-sialon, and preferably has a specific surface area of 0.5 to 2 m 2 / g. Features. Further, the phosphor production method of the present invention is characterized in that the starting material is filled in a crucible made of boron nitride material having a density of 1.75 g / cm 3 or more, and is fired in a nitriding atmosphere. It is decomposable boron nitride (P-BN).

本発明は、発光光源と蛍光体から構成される照明器具において、少なくとも前記蛍光体を用いることを特徴とする照明器具である。 The present invention is a lighting fixture comprising a light emitting source and a phosphor, wherein at least the phosphor is used.

本発明の蛍光体は、従来のものと比較し、二次粒子サイズを変えることなく、一次粒子が大きく、さらに粒子表面が平滑であることから励起光を効率良く、粒内に吸収することができ、優れた発光特性を有している。また、本発明の照明器具は、前記蛍光体を用いているので、良好な発光特性が得られる。 Compared with the conventional phosphor, the phosphor of the present invention can absorb excitation light efficiently in the grains because the primary particles are large and the particle surface is smooth without changing the secondary particle size. And has excellent light emission characteristics. Moreover, since the lighting fixture of this invention uses the said fluorescent substance, a favorable light emission characteristic is acquired.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

α型サイアロンは、α型窒化ケイ素におけるSi−N結合の一部がAl−N結合及びAl−O結合に置換し、電気的中性を保つために、特定の陽イオンが格子内に侵入した固溶体であり、一般式:M(Si,Al)12(O,N)16で表される。ここで、Mは格子内への侵入可能な元素であり、Li、Mg、Ca、Y及びランタニド金属(LaとCeを除く)である。Mの固溶量Z値は、Si−N結合のAl−N結合置換率により決まる数値である。 In α-type sialon, a part of Si—N bond in α-type silicon nitride is replaced by Al—N bond and Al—O bond, and a specific cation enters the lattice in order to maintain electrical neutrality. It is a solid solution and is represented by the general formula: M z (Si, Al) 12 (O, N) 16 . Here, M is an element that can enter the lattice, and is Li, Mg, Ca, Y, and a lanthanide metal (excluding La and Ce). The solid solution amount Z value of M is a numerical value determined by the Al—N bond substitution rate of the Si—N bond.

蛍光特性を発現させるためには、Mの一部を固溶可能で発光中心となる元素とする必要があり、可視光発光の蛍光体を得るためにはCe、Pr、Eu、Tb、Yb、Erを使用することが好ましい。格子内に侵入固溶する元素の内、発光に寄与しない元素をM1、発光中心となる元素をM2とすると、一般式は(M1)(M2)(Si,Al)12(O,N)16となる。ここで、蛍光特性を発現させるためには、0.3≦X+Y ≦1.5、0<Y ≦0.7の範囲にあることが好ましい。 In order to express the fluorescence characteristics, it is necessary to use a part of M as an element capable of forming a solid solution and serving as an emission center. To obtain a phosphor emitting visible light, Ce, Pr, Eu, Tb, Yb, It is preferable to use Er. If the element that does not contribute to light emission among the elements that enter and dissolve in the lattice is M1, and the element that is the emission center is M2, the general formula is (M1) x (M2) y (Si, Al) 12 (O, N ) 16 Here, in order to express the fluorescence characteristics, it is preferable that the range is 0.3 ≦ X + Y ≦ 1.5 and 0 <Y ≦ 0.7.

一般的にα型サイアロンは、窒化ケイ素、窒化アルミニウム、酸化アルミニウム及び侵入固溶元素からなる混合粉末を高温の窒素雰囲気中で加熱して反応させることにより得られる。昇温の過程で、構成成分の一部が液相を形成し、それを介して、物質が移動することにより、α型サイアロン固溶体が生成する。そのために、合成後のα型サイアロンは、複数の一次粒子が焼結して二次粒子、更に塊状物を形成するので、それを粉砕等することにより、粉末状とする。 In general, α-sialon is obtained by heating and reacting a mixed powder composed of silicon nitride, aluminum nitride, aluminum oxide, and an interstitial solid solution element in a high-temperature nitrogen atmosphere. In the process of increasing the temperature, a part of the constituent components forms a liquid phase, and the substance moves through the liquid phase, thereby generating an α-sialon solid solution. For this purpose, the synthesized α-sialon is formed into a powder form by pulverizing it because a plurality of primary particles are sintered to form secondary particles and further a lump.

本発明者は、発光特性と粒子性状との関係を検討した結果、粒子表面の平滑性を示すと共に、微粉の存在状態に鋭敏な比表面積が発光特性と密接に結びついているという知見を得て、本発明に至ったものである。 As a result of studying the relationship between the luminescent properties and the particle properties, the present inventor has obtained the knowledge that the specific surface area sensitive to the state of the presence of fine powder is closely related to the luminescent properties while exhibiting the smoothness of the particle surface. This has led to the present invention.

即ち、本発明の蛍光体においては、前記組成に加えて、蛍光体の粉末の比表面積が0.2〜0.5m/gであることが好ましい。比表面積が0.5m/gを超えると、粒子表面かつ微粒子による光散乱のため、励起光が粒内に取り込まれる効率が低下し、発光特性が低下するので、好ましくない。比表面積が0.2m/gよりも小さいものは、孤立した一次粒子では得難く、緻密に焼結した粒子でなければ実現できず、必然的に二次粒子が巨大となり、LED等の蛍光体としては好適なサイズから大きく逸脱するので、好ましくない。 That is, in the phosphor of the present invention, in addition to the above composition, the specific surface area of the phosphor powder is preferably 0.2 to 0.5 m 2 / g. If the specific surface area is more than 0.5 m 2 / g, the surface of the particle and light scattering by the fine particles will cause the efficiency of excitation light to be taken into the particles and the light emission characteristics will deteriorate, which is not preferable. Particles with a specific surface area smaller than 0.2 m 2 / g are difficult to obtain with isolated primary particles, and can only be realized by densely sintered particles, and the secondary particles are inevitably enormous, resulting in fluorescence from LEDs and the like. Since it deviates greatly from a suitable size as a body, it is not preferable.

また、本発明の蛍光体は、α型サイアロンを主成分とするが粒子界面に組成の異なる粒界相を形成するとともに、結晶質又は非晶質の第二相を形成しやすいために、蛍光体粉末の全組成は必ずしもα型サイアロンの固溶組成に対応しない。α型サイアロン結晶においては、アルミニウム及び酸素の固溶量が増加するに伴い、結晶格子サイズが増加する。そこで、このα型サイアロンの格子定数に着目し、検討した結果、格子定数aが0.780〜0.788nm、格子定数cが0.565〜0.573nmの範囲にある場合に良好な発光特性が得られることを見いだした。 In addition, the phosphor of the present invention is mainly composed of α-sialon but forms a grain boundary phase having a different composition at the particle interface and easily forms a crystalline or amorphous second phase. The total composition of the body powder does not necessarily correspond to the solid solution composition of α-sialon. In the α-type sialon crystal, the crystal lattice size increases as the solid solution amount of aluminum and oxygen increases. Therefore, as a result of studying and examining the lattice constant of this α-sialon, good emission characteristics are obtained when the lattice constant a is in the range of 0.780 to 0.788 nm and the lattice constant c is in the range of 0.565 to 0.573 nm. I found out that

本発明では、蛍光発光の観点からは、α型サイアロン結晶相を高純度で極力多く含むこと、できれば単相から構成されていることが望ましいが、若干量の不可避的な非晶質相及び他の結晶相を含む混合物であっても、特性が低下しない範囲であれば構わない。本発明者の検討結果によれば、粉末X線回折法で評価した際に、α型サイアロン以外の結晶相の回折強度がα型サイアロンの(102)面の回折線強度に対して、いずれも10%以下であることが好ましい。10%を超える結晶相が存在すると発光特性が低下するので好ましくない。 In the present invention, from the viewpoint of fluorescence emission, it is desirable that the α-sialon crystal phase contains as much as possible high purity and is preferably composed of a single phase. Even if it is a mixture containing the crystal phase of this, as long as a characteristic is not fallen, it is good. According to the study results of the present inventor, when evaluated by powder X-ray diffraction method, the diffraction intensity of the crystal phase other than α-type sialon is any relative to the diffraction line intensity of the (102) plane of α-type sialon. It is preferable that it is 10% or less. The presence of a crystal phase exceeding 10% is not preferable because the light emission characteristics deteriorate.

α型サイアロンの結晶格子内に固溶する元素としてM1にCa、M2にEuを選択する場合には、250〜500nmの波長を持つ紫外線又は可視光を励起源として照射することにより540〜600nmの範囲の波長域にピークを持ち、黄〜橙色の発光を示す蛍光体が得られる。この蛍光体は、例えば、励起源として青色LEDを使用すると蛍光体から発光する黄色光と励起光の混合により白色LEDが得られることから、白色LEDをはじめとする白色光を放つ照明器具を提供できるので好ましい。 When Ca is selected as M1 and Eu as M2 is selected as an element that dissolves in the crystal lattice of the α-sialon, it is irradiated with ultraviolet light or visible light having a wavelength of 250 to 500 nm as an excitation source. A phosphor having a peak in the wavelength range of the range and emitting yellow to orange light is obtained. For example, when a blue LED is used as an excitation source, a white LED can be obtained by mixing yellow light emitted from the phosphor and excitation light. Thus, a phosphor that emits white light such as a white LED is provided. It is preferable because it is possible.

α型サイアロンの結晶格子内に固溶する元素に関して、発光中心となるEuの原子量比としては、0<Y ≦0.1の範囲にあることが好ましい。Yが0.1を超えると固溶しているEuイオン間の干渉により濃度消光を起こすことにより、発光輝度が低下するので好ましくない。 Regarding the element dissolved in the crystal lattice of α-sialon, the atomic weight ratio of Eu serving as the emission center is preferably in the range of 0 <Y ≦ 0.1. If Y exceeds 0.1, concentration quenching occurs due to interference between solid-solved Eu ions, which is not preferable because emission luminance decreases.

本発明の蛍光体を得る方法として、CaとEuとが固溶したα型サイアロンの合成方法について以下説明する。 As a method for obtaining the phosphor of the present invention, a method for synthesizing α-sialon in which Ca and Eu are dissolved will be described below.

窒化ケイ素、窒化アルミニウム、カルシウム含有化合物及び酸化ユーロピウムの粉末を原料として使用する。本発明の蛍光体の製造方法に於いては、所定の組成となるように前記原料粉末を配合したものに、予め合成されたα型サイアロン粉末を5〜30質量%含有させることを特徴とする。 Silicon nitride, aluminum nitride, calcium-containing compound and europium oxide powder are used as raw materials. The phosphor production method of the present invention is characterized in that 5 to 30% by mass of α-sialon powder synthesized in advance is contained in the raw material powder blended so as to have a predetermined composition. .

予め原料粉末に配合されるα型サイアロン粉末は、加熱処理の際に、選択的に粒形成の基点となり、一次粒子の成長を促進し、一次粒子の粗大化及び表面平滑性の向上に結びつく。更に、α型サイアロン粉末の原料粉末への予めの添加は、合成過程での焼結を抑制する効果があり、易粉砕性のサイアロンの生成が可能である。このサイアロンは過度な粉砕が不要であり、簡単な解砕処理により所望の粒度の粉末が得られ、発光特性を低下させる粉砕処理に伴う微粒子生成を抑制する効果がある。 The α-sialon powder previously blended with the raw material powder selectively becomes the starting point of grain formation during the heat treatment, promotes the growth of primary particles, and leads to coarsening of primary particles and improvement of surface smoothness. Further, the addition of α-sialon powder to the raw material powder in advance has an effect of suppressing sintering during the synthesis process, and it is possible to produce easily pulverizable sialon. This sialon does not require excessive pulverization, and a powder having a desired particle size can be obtained by a simple pulverization process, and has the effect of suppressing the generation of fine particles accompanying the pulverization process that lowers the light emission characteristics.

α型サイアロン粉末の添加量が5質量%以上であれば、添加したα型サイアロン粒子以外の部分で、新たなα型サイアロン粒子の形成及び焼結、粒成長が進行することもなく、比表面積の小さな粉末を得ることができる。α型サイアロン粉末の添加量が30質量%以下であれば、粒成長の基点が多すぎて、個々の粒子の成長がわずかとなり、十分に平滑な粒子表面が得難くなることも防止でき、好ましい。 If the amount of α-sialon powder added is 5% by mass or more, the specific surface area does not progress in the formation and sintering of new α-sialon particles and the growth of grains in portions other than the added α-sialon particles. Small powder can be obtained. If the amount of α-sialon powder added is 30% by mass or less, it is preferable because there are too many base points for grain growth, and the growth of individual particles becomes small, making it difficult to obtain a sufficiently smooth particle surface. .

予め原料中に含有させるα型サイアロン粉末の構成元素及び組成は限定されない。紫外線〜青色光励起においては、蛍光特性は主として粉末表面に近い領域で発現するためである。しかしながら、異なる発光中心元素を含有したり、発光を阻害する鉄等の不純物元素を含有するα型サイアロン粉末の使用は、その表面に形成されるα型サイアロン蛍光体層の特性に大きく影響を及ぼすので好ましくない。 The constituent elements and composition of α-sialon powder previously contained in the raw material are not limited. This is because in the excitation of ultraviolet light to blue light, the fluorescence characteristics are expressed mainly in a region close to the powder surface. However, the use of α-sialon powder containing different luminescent center elements or containing impurity elements such as iron that inhibits light emission greatly affects the characteristics of the α-sialon phosphor layer formed on the surface. Therefore, it is not preferable.

本発明では、予め添加するα型サイアロン粉末の比表面積を0.5〜2m/gとすることが好ましい。比表面積が2m/g以下であれば、粒成長に対する効果が十分に達成されるし、一方、比表面積が0.5m/g以上であれば、合成粉末の二次粒子径が著しく大きくなり、最終的に粉砕処理等が必要となることもなく、結果的に目的の0.2〜0.5m/gの比表面積が容易に得ることができるので、好ましい。 In the present invention, it is preferable that the specific surface area of the α-sialon powder added in advance is 0.5 to 2 m 2 / g. If the specific surface area is 2 m 2 / g or less, the effect on the grain growth is sufficiently achieved, while if the specific surface area is 0.5 m 2 / g or more, the secondary particle diameter of the synthetic powder is remarkably large. Thus, the final specific surface area of 0.2 to 0.5 m 2 / g can be easily obtained without finally requiring a pulverization treatment or the like, which is preferable.

前記したα型サイアロンを含む各原料を混合する方法については、乾式混合する方法、原料各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法などを採用することができる。尚、混合装置としては、V型混合機、ロッキングミキサー、ボールミル、振動ミル等が好適に利用される。 As a method of mixing each raw material containing the α-sialon described above, a method of dry mixing, a method of removing the solvent after wet mixing in an inert solvent that does not substantially react with each component of the raw material, etc. may be adopted. it can. In addition, as a mixing apparatus, a V-type mixer, a rocking mixer, a ball mill, a vibration mill, etc. are used suitably.

所望組成となるように混合して得た粉末(以下、単に原料粉末という)を、少なくとも当該原料粉末が接する面が窒化ホウ素材質の坩堝等の容器内に充填し、窒素雰囲気中で1600〜1800℃の温度範囲で所定時間加熱することによりα型サイアロンを得る。容器材質に窒化ホウ素を使用するのは、原料各成分との反応性が非常に低いためであるが、本発明者は坩堝に使用する窒化ホウ素の密度を高くすることにより、原料粉末中にα型サイアロン粉末を添加した場合と同様に一次粒子を大きくし、その表面を平滑にする効果があることを見いだした。 A powder obtained by mixing so as to have a desired composition (hereinafter simply referred to as a raw material powder) is filled in a container such as a crucible made of boron nitride at least on the surface in contact with the raw material powder, and 1600-1800 in a nitrogen atmosphere. Α-sialon is obtained by heating for a predetermined time in a temperature range of ° C. The reason why boron nitride is used as the container material is that the reactivity with each component of the raw material is very low, but the present inventor has increased the density of boron nitride used in the crucible to make α in the raw material powder. As in the case of adding type sialon powder, it was found that primary particles were enlarged and the surface was smoothed.

坩堝に使用する窒化ホウ素の密度は1.75g/cm以上にすることが好ましい。密度が1.75g/cmよりも小さいと坩堝中の気体透過が容易に起こり、坩堝内に充填した原料粉末に含まれる成分の揮発が促進され、組成ずれが起きるだけでなく、炉内に存在する一酸化炭素ガスやシアンガス等が坩堝内に侵入し、原料粉末との反応や粒成長阻害を引き起こし、好ましくない。坩堝の密度はできるだけ高くすることが好ましく、特に気相法により製造される熱分解性窒化ホウ素(P−BN)は非常に緻密であり、好適に使用される。 The density of boron nitride used in the crucible is preferably 1.75 g / cm 3 or more. When the density is less than 1.75 g / cm 3 , gas permeation in the crucible easily occurs, volatilization of the components contained in the raw material powder filled in the crucible is promoted, and not only compositional deviation occurs but also in the furnace. The existing carbon monoxide gas, cyan gas, etc. penetrate into the crucible and cause reaction with the raw material powder and inhibition of grain growth, which is not preferable. The density of the crucible is preferably as high as possible. In particular, pyrolytic boron nitride (P-BN) produced by a vapor phase method is very dense and is preferably used.

原料粉末の容器内への充填は、加熱中に粒子間焼結を抑制する観点から、できるだけ嵩高くすることが好ましい。具体的には、原料粉末の合成容器へ充填する際のかさ密度を1.0g/cm以下とすることが好ましい。 The filling of the raw material powder into the container is preferably as bulky as possible from the viewpoint of suppressing interparticle sintering during heating. Specifically, it is preferable that the bulk density when filling the raw material powder into the synthesis container is 1.0 g / cm 3 or less.

加熱処理の温度が1600℃以上の場合には未反応生成物が多く存在したり、一次粒子の成長が不十分であったりすることがないし、1800℃以下であれば粒子間の焼結が顕著となったりすることもない。 When the temperature of the heat treatment is 1600 ° C. or higher, there are many unreacted products or the primary particle growth is insufficient, and if it is 1800 ° C. or lower, sintering between particles is remarkable. It will never be.

加熱処理における加熱時間については、未反応物が多く存在したり、一次粒子が成長不足であったり、或いは粒子間の焼結が生じてしまったりという不都合が生じない時間範囲が選択され、本発明者の検討に拠れば、2〜24時間程度が好ましい範囲である。 Regarding the heating time in the heat treatment, a time range is selected in which there is no inconvenience that many unreacted substances are present, primary particles are insufficiently grown, or sintering between particles occurs. According to a person's examination, about 2 to 24 hours is a preferable range.

上述した操作で得られるα型サイアロンは塊状なので、これを解砕、粉砕及び場合によっては分級処理と組み合わせて所定のサイズの粉末にし、いろいろな用途へ適用される粉末状の蛍光体となる。 Since the α-sialon obtained by the above-described operation is in the form of a lump, this is combined with pulverization, pulverization, and, in some cases, classification treatment to form a powder of a predetermined size, and becomes a powdery phosphor applicable to various uses.

白色LED用蛍光体として好適に使用するためには、二次粒子の平均粒径を3〜30μmにすることが好ましい。二次粒子の平均粒径が3μm以上であれば発光強度が低くなることもなく、平均粒径が30μm以下であればLEDを封止する樹脂への均一分散が容易であり、発光強度及び色調のバラツキを生じることもなく、実用上使用可能である。 In order to use suitably as a fluorescent substance for white LED, it is preferable to make the average particle diameter of a secondary particle into 3-30 micrometers. If the average particle size of the secondary particles is 3 μm or more, the light emission intensity is not lowered, and if the average particle size is 30 μm or less, uniform dispersion to the resin for sealing the LED is easy, and the light emission intensity and color tone. It can be used practically without causing any variation.

上述した製法で得られたα型サイアロンからなる塊状物は、比較的易粉砕性に優れ、乳鉢等で容易に所定粒度に粉砕できる特徴を示すが、ボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用することも当然許容される。 The agglomerates made of α-sialon obtained by the above-mentioned production method are relatively easy to grind and show characteristics that can be easily pulverized to a predetermined particle size with a mortar or the like, but are generally used for ball mills, vibration mills, jet mills, etc. Of course, it is acceptable to use a simple grinder.

本発明の蛍光体は、紫外線から可視光の幅広い励起範囲を有し、可視光を発光することから、照明器具に好適である。特に、α型サイアロンの結晶格子内への侵入元素としてCaとEuを選択して得られる蛍光体は、Si−N結合のAl−N結合及びAl−O結合への置換率により、ピーク波長を540〜600nmの黄〜橙色光に制御できるとともに、高輝度発光特性を有している。従って、青色LEDとの組み合わせにより、容易に白色光が得られるという特徴がある。また、α型サイアロンは、高温にさらしても劣化しないこと耐熱性に優れており、酸化雰囲気及び水分環境下での長期間の安定性にも優れている。 The phosphor of the present invention has a wide excitation range from ultraviolet to visible light, and emits visible light, and thus is suitable for a lighting fixture. In particular, the phosphor obtained by selecting Ca and Eu as the intrusion elements into the crystal lattice of α-sialon has a peak wavelength due to the substitution rate of Si—N bonds to Al—N bonds and Al—O bonds. It can be controlled to yellow to orange light of 540 to 600 nm and has high luminance light emission characteristics. Therefore, there is a feature that white light can be easily obtained by combination with the blue LED. In addition, α-sialon does not deteriorate even when exposed to high temperatures, has excellent heat resistance, and has excellent long-term stability in an oxidizing atmosphere and moisture environment.

本発明の照明器具は、少なくとも発光光源と本発明の蛍光体を用いて構成される。本発明の照明器具としては、LED照明器具、蛍光ランプなどが含まれ、例えば、特開平5−152609号公報、特開平7−099345号公報などに記されているような公知の方法により、本発明の蛍光体を用いてLED照明器具を製造することができる。尚、この場合において、発光光源は350〜500nmの波長の光を発する紫外LED又は青色LEDが好ましく、これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長に光を発する発光光源となりうる。 The lighting fixture of this invention is comprised using the light-emitting light source and the fluorescent substance of this invention at least. Examples of the lighting fixture of the present invention include LED lighting fixtures, fluorescent lamps, and the like. For example, the lighting fixture can be formed by a known method as described in JP-A-5-152609, JP-A-7-099345, and the like. An LED lighting apparatus can be manufactured using the phosphor of the invention. In this case, the light emitting light source is preferably an ultraviolet LED or a blue LED that emits light having a wavelength of 350 to 500 nm. These light emitting elements are made of a nitride semiconductor such as GaN or InGaN, and the composition is adjusted. By doing so, it can be a light emitting light source that emits light at a predetermined wavelength.

照明器具において、本発明の蛍光体を単独で使用する方法以外に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する照明器具を構成することができる。 In addition to the method of using the phosphor of the present invention alone in a lighting fixture, a lighting fixture that emits a desired color can be configured by using it together with a phosphor having other light emission characteristics.

次に、実施例、比較例に基づいて、本発明を更に詳細に説明する。 Next, based on an Example and a comparative example, this invention is demonstrated still in detail.

(実施例1〜3、比較例1〜2)
(原料粉末中に含有させるα型サイアロン粉末(以後、α核粉末と記す)の合成)
原料粉末の配合組成として、窒化ケイ素粉末を75.4質量%と、窒化アルミニウム粉末を14質量%、炭酸カルシウム粉末を5.5質量%、フッ化カルシウム粉末を4.3質量%、酸化ユーロピウム粉末を0.8質量%とした。この原料粉末をエタノール溶媒中において、窒化ケイ素質ポットとボールにより湿式ボールミル混合を3時間行い、ろ過し、乾燥して混合粉末を得た。
(Examples 1-3, Comparative Examples 1-2)
(Synthesis of α-sialon powder (hereinafter referred to as α-nuclear powder) to be contained in the raw material powder)
The composition of the raw material powder is 75.4% by mass of silicon nitride powder, 14% by mass of aluminum nitride powder, 5.5% by mass of calcium carbonate powder, 4.3% by mass of calcium fluoride powder, and europium oxide powder. Was 0.8 mass%. This raw material powder was wet ball milled for 3 hours in an ethanol solvent with a silicon nitride pot and balls, filtered and dried to obtain a mixed powder.

次に、混合粉末を目開き75μmの篩を通過させた後、窒化ホウ素質坩堝(電気化学工業製、N1グレード)に充填し、カーボンヒーターの電気炉で大気圧窒素中、1700℃で5時間の加熱処理を行った。得られた生成物を軽く解砕し、目開き45μmの篩を通過したものをα核粉末Aとした。 Next, after passing the mixed powder through a sieve having an opening of 75 μm, it is filled in a boron nitride crucible (manufactured by Denki Kagaku Kogyo Co., Ltd., N1 grade), and in an electric furnace of a carbon heater in atmospheric pressure nitrogen at 1700 ° C. for 5 hours. The heat treatment was performed. The obtained product was lightly crushed and passed through a sieve having an opening of 45 μm to obtain α core powder A.

前記α核粉末Aの一部について、更にエタノール溶媒中において、窒化ケイ素質ポットとボールによる湿式ボールミル粉砕を24時間行い、ろ過、乾燥してα核粉末Bを得た。 Part of the α nucleus powder A was further subjected to wet ball milling with a silicon nitride pot and balls for 24 hours in an ethanol solvent, filtered and dried to obtain α nucleus powder B.

前記α型サイアロン粉末及びα型サイアロン微粉末の比表面積は、日本ベル社製比表面積測定装置(BELSORP−mini)による定容量式ガス吸着法により測定し、BET多点解析により算出した。尚、測定試料は予め、大気圧Nフロー中、305℃で2時間以上の脱気処理を行った後、行った。吸着質にはNを使用し、その分子断面積は16.2×10−20とした。この様にして得られた比表面積は、α核粉末Aが0.70m/gで、α核粉末Bが3.9m/gであった。 The specific surface areas of the α-sialon powder and the α-sialon fine powder were measured by a constant volume gas adsorption method using a specific surface area measuring apparatus (BELSORP-mini) manufactured by Nippon Bell Co., Ltd. and calculated by BET multipoint analysis. The measurement sample was previously subjected to deaeration treatment at 305 ° C. for 2 hours or more in an atmospheric pressure N 2 flow. N 2 was used as the adsorbate, and its molecular cross-sectional area was 16.2 × 10 −20 m 2 . The specific surface area obtained in this manner, alpha kernel powder A is 0.70 m 2 / g, the alpha kernel powder B was 3.9 m 2 / g.

(α型サイアロン蛍光体の合成)
原料粉末として、前記α核粉末A又はα核粉末B、窒化ケイ素粉末、窒化アルミニウム粉末、炭酸カルシウム粉末、酸化ユーロピウム粉末を用いて、合成後にα型サイアロン単相となる様に、表1に示す配合とした。
(Synthesis of α-type sialon phosphor)
As the raw material powder, the α nucleus powder A or α nucleus powder B, silicon nitride powder, aluminum nitride powder, calcium carbonate powder, and europium oxide powder are used, and are shown in Table 1 so as to become an α-sialon single phase after synthesis. Formulated.

配合した原料用粉末を、エタノールを溶媒として、プラスチック製ポットと窒化ケイ素質ボールを用いて、湿式ボールミル混合を行い、ロータリーエバポレータによる溶媒除去を行い、目開き75μmの篩を通過させ、混合粉末を得た。 The blended raw material powder is wet ball milled using ethanol as a solvent and a plastic pot and silicon nitride balls, and the solvent is removed by a rotary evaporator, and the mixture powder is passed through a sieve with an opening of 75 μm. Obtained.

前記混合粉末約20gを内径60mm、高さ35mmの窒化ホウ素質坩堝(電気化学工業製、NB1000グレード、密度1.5g/cm、肉厚5mm)に充填し、この坩堝に同材質の蓋をし、カーボンヒーターの電気炉内において、0.45MPaの加圧窒素雰囲気中、1750℃で12時間の加熱処理を行った。得られた試料は、粉砕処理等をすることなく、篩分級を行い、最終的に目開き45μm篩を通過した粉末を最終生成物とした。この際、合成物の易粉砕性を表す指標として、最終生成物質量を篩分級処理を行った全質量で除した値(篩通過率)を求めた。 About 20 g of the mixed powder is filled into a boron nitride crucible (made by Denki Kagaku Kogyo, NB1000 grade, density 1.5 g / cm 3 , wall thickness 5 mm) having an inner diameter of 60 mm and a height of 35 mm. Then, in a carbon heater electric furnace, heat treatment was performed at 1750 ° C. for 12 hours in a 0.45 MPa pressurized nitrogen atmosphere. The obtained sample was subjected to sieving without pulverization or the like, and the powder finally passing through a sieve having an opening of 45 μm was used as the final product. Under the present circumstances, the value (screening rate) which remove | divided the amount of final product substances by the total mass which performed the sieve classification process was calculated | required as a parameter | index showing the easily grindability of a composite.

(蛍光体粉末の評価)
・比表面積・・・前記の方法により測定
・CuKα線を用いた粉末X線回折測定により合成粉末に存在する結晶相を調べるとともに、Si粉末を内部標準とし、JIS K0131に準拠した格子定数測定を行い、α型サイアロン六方晶結晶の格子定数a及び格子定数cを算出した。
・蛍光特性・・・ローダミンB法及び標準光源を用いて校正した分光蛍光光度計(日立ハイテクノロジーズ製、F4500)を用いて455nm励起光における蛍光スペクトル測定を行い、ピーク波長、ピーク強度及び輝度を求めた。ピーク強度、輝度はいずれも実施例1を100とした場合の相対値として示す。また、蛍光スペクトルから、CIE1931色度座標値(x、y)を求めた。
評価結果を表2及び表3に示す。
(Evaluation of phosphor powder)
・ Specific surface area: Measured by the above method. ・ Checks the crystal phase present in the synthetic powder by powder X-ray diffraction measurement using CuKα rays, and uses Si powder as an internal standard to measure the lattice constant in accordance with JIS K0131. The lattice constant a and the lattice constant c of the α-type sialon hexagonal crystal were calculated.
Fluorescence characteristics: Fluorescence spectrum measurement at 455 nm excitation light is performed using a spectrofluorometer (F4500, manufactured by Hitachi High-Technologies Corporation) calibrated using the rhodamine B method and a standard light source, and the peak wavelength, peak intensity, and luminance are measured. Asked. Both peak intensity and luminance are shown as relative values when Example 1 is set to 100. Moreover, CIE1931 chromaticity coordinate value (x, y) was calculated | required from the fluorescence spectrum.
The evaluation results are shown in Tables 2 and 3.

(比較例3)
加熱処理温度を1500℃とした以外は、実施例1と全く同じ条件で合成を行った。篩通過率は90%、比表面積は1.20m/gであった。X線回折の結果、未反応のα-SiとAlNが第二結晶相として存在していることが認められた。このα-Si及びAlNの最強ピーク強度のα型サイアロンの(102)面回折線強度に対する比は、それぞれ32%及び6%であった。この蛍光体の455nm励起における蛍光スペクトルのピーク波長は576nmで、相対ピーク強度は38%と低い値を示した。
(Comparative Example 3)
The synthesis was performed under exactly the same conditions as in Example 1 except that the heat treatment temperature was 1500 ° C. The sieve passing rate was 90%, and the specific surface area was 1.20 m 2 / g. As a result of X-ray diffraction, it was confirmed that unreacted α-Si 3 N 4 and AlN exist as the second crystal phase. The ratio of the strongest peak intensity of α-Si 3 N 4 and AlN to the (102) plane diffraction line intensity of α-sialon was 32% and 6%, respectively. When the phosphor was excited at 455 nm, the peak wavelength of the fluorescence spectrum was 576 nm, and the relative peak intensity was as low as 38%.

(実施例4〜5)
BN坩堝を比較例1の密度1.5g/cmのものから、実施例4では、密度1.75g/cmのもの(電気化学工業製、N−1グレード)、実施例5では、2.17g/cmのもの(信越化学製、P−BN)に変更して合成を行った。評価結果を表4及び表5に示す。
(Examples 4 to 5)
The BN crucible has a density of 1.5 g / cm 3 in Comparative Example 1; in Example 4, the density is 1.75 g / cm 3 (manufactured by Denki Kagaku Kogyo; N-1 grade); .17 g / cm 3 (Shin-Etsu Chemical Co., P-BN) was used for synthesis. The evaluation results are shown in Tables 4 and 5.

BN坩堝材質を変えても、合成物の焼結性は変わらず、篩通過率は低いが、高密度のBN坩堝を使用することにより、一次粒子径が増加し、比表面積が低下した。その結果、発光特性が比較例1に比べ、向上した。 Even if the material of the BN crucible was changed, the sinterability of the composite was not changed and the passing rate of the sieve was low. However, by using a high-density BN crucible, the primary particle diameter was increased and the specific surface area was decreased. As a result, the light emission characteristics were improved as compared with Comparative Example 1.

本発明のα型サイアロン粉末及びその製造方法によれば、発光特性に優れた蛍光体を再現性良く、量産性良く製造できる。本発明のα型サイアロン蛍光体は、紫外〜青色光の励起光により540〜600nmの領域にピークを有する発光特性を示すので、紫外光又は青色光を光源とする照明器具、特に紫外LED又は青色LEDを発光光源とする白色LED用の蛍光体として好適であり、産業上非常に有用である。 According to the α-sialon powder and the method for producing the same of the present invention, a phosphor excellent in emission characteristics can be produced with good reproducibility and mass productivity. Since the α-sialon phosphor of the present invention exhibits a light emission characteristic having a peak in the region of 540 to 600 nm by excitation light of ultraviolet to blue light, it is a lighting fixture using ultraviolet light or blue light as a light source, particularly ultraviolet LED or blue light. It is suitable as a phosphor for a white LED using an LED as a light emitting light source, and is very useful industrially.

また、本発明の照明器具は、前記蛍光体を用いているので、優れた発光特性を有し、エネルギー効率が高く、産業上、非常に有用である。 Moreover, since the lighting fixture of this invention uses the said fluorescent substance, it has the outstanding light emission characteristic, its energy efficiency is high, and it is very useful industrially.

Claims (7)

一般式:(M1)(M2)(Si,Al)12(O,N)16(但し、M1はLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる1種以上の元素であり、M2はCe、Pr、Eu、Tb、Yb及びErからなる群から選ばれる1種以上の元素であり、0.3≦X+Y≦1.5、かつ0<Y≦0.7)で示されるα型サイアロンを主成分とし、比表面積が0.2〜0.5m/gの粉末であることを特徴とする蛍光体を製造する蛍光体の製造方法であって、出発原料を密度1.75g/cm 以上の窒化ホウ素材質の坩堝に充填し、窒化性雰囲気で焼成することを特徴とする蛍光体の製造方法。 General formula: (M1) x (M2) y (Si, Al) 12 (O, N) 16 (where M1 is selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce)) M2 is one or more elements selected from the group consisting of Ce, Pr, Eu, Tb, Yb and Er, and 0.3 ≦ X + Y ≦ 1.5 and 0 <Y ≦ 0.7) is a phosphor production method for producing a phosphor , characterized in that it is a powder having an α-sialon as a main component and a specific surface area of 0.2 to 0.5 m 2 / g. The phosphor is filled in a crucible made of a boron nitride material having a density of 1.75 g / cm 3 or more and fired in a nitriding atmosphere. 請求項1記載の蛍光体の製造方法であって、製造された蛍光体のうちのα型サイアロンの格子定数aが0.780〜0.788nm、格子定数cが0.565〜0.573nmの範囲にあることを特徴とする蛍光体の製造方法 It is a manufacturing method of the fluorescent substance of Claim 1, Comprising: The α-sialon of the manufactured fluorescent substance has a lattice constant a of 0.780 to 0.788 nm and a lattice constant c of 0.565 to 0.573 nm. A method for producing a phosphor , characterized by being in the range. 請求項1又は請求項2のいずれか記載の蛍光体の製造方法であって、製造された蛍光体が、粉末X線回折法で評価した際に、α型サイアロン以外の結晶相の回折強度がα型サイアロンの(102)面の回折線強度に対して、いずれも10%以下であることを特徴とする蛍光体の製造方法 The method for producing a phosphor according to claim 1 or 2, wherein when the produced phosphor is evaluated by a powder X-ray diffraction method, the diffraction intensity of a crystal phase other than α-sialon is A method for producing a phosphor , characterized in that the intensity of diffraction lines on the (102) plane of α-sialon is 10% or less. 請求項1乃至請求項3のいずれか一項に記載の蛍光体の製造方法であって、製造された蛍光体が、M2が少なくともEuを含有し、0<Y≦0.1であり、250〜500nmの波長を持つ紫外線又は可視光を励起源として照射することにより、540〜600nmの範囲の波長域にピークを持つ発光特性を示すことを特徴とする蛍光体の製造方法。 4. The method of manufacturing a phosphor according to claim 1, wherein the manufactured phosphor includes M2 containing at least Eu, and 0 <Y ≦ 0.1, 250 A phosphor production method characterized by exhibiting emission characteristics having a peak in a wavelength range of 540 to 600 nm by irradiating ultraviolet light or visible light having a wavelength of ˜500 nm as an excitation source . 請求項1乃至4のいずれか一項に記載の蛍光体の製造方法であって、出発原料にα型サイアロンを5〜30質量%含有させることを特徴とする蛍光体の製造方法。 The method for producing a phosphor according to any one of claims 1 to 4, wherein the starting material contains 5 to 30% by mass of α-sialon. 出発原料に含有させるα型サイアロンの比表面積が0.5〜2mSpecific surface area of α-sialon contained in starting material is 0.5-2m 2 /gであることを特徴とする請求項5記載の蛍光体の製造方法。The method for producing a phosphor according to claim 5, wherein / g. 前記坩堝が熱分解性窒化ホウ素からなることを特徴とする請求項1乃至請求項6のいずれか一項に記載の蛍光体の製造方法。The method for manufacturing a phosphor according to any one of claims 1 to 6, wherein the crucible is made of pyrolytic boron nitride.
JP2006131018A 2006-05-10 2006-05-10 Alpha-type sialon phosphor, method for producing the same, and lighting apparatus Active JP5124101B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2006131018A JP5124101B2 (en) 2006-05-10 2006-05-10 Alpha-type sialon phosphor, method for producing the same, and lighting apparatus
US12/300,127 US20100237767A1 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
CN201210072617.5A CN102676163B (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
PCT/JP2007/059527 WO2007129713A1 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
KR1020087029585A KR20090018085A (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
EP07742962.9A EP2022835B1 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
EP16150385.9A EP3093327A3 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
CN200780016969.6A CN101443432B (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
KR1020127018633A KR101221683B1 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
KR1020107028743A KR20110004917A (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
KR1020107028742A KR101204573B1 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
KR1020127018634A KR101221691B1 (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
CN201210072625.XA CN102643645B (en) 2006-05-10 2007-05-08 Sialon phosphor, process for producing same, and illuminator and luminescent element employing same
US13/464,855 US20120270049A1 (en) 2006-05-10 2012-05-04 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
US13/791,762 US8685279B2 (en) 2006-05-10 2013-03-08 Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131018A JP5124101B2 (en) 2006-05-10 2006-05-10 Alpha-type sialon phosphor, method for producing the same, and lighting apparatus

Publications (2)

Publication Number Publication Date
JP2007302757A JP2007302757A (en) 2007-11-22
JP5124101B2 true JP5124101B2 (en) 2013-01-23

Family

ID=38836965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131018A Active JP5124101B2 (en) 2006-05-10 2006-05-10 Alpha-type sialon phosphor, method for producing the same, and lighting apparatus

Country Status (2)

Country Link
JP (1) JP5124101B2 (en)
CN (1) CN101443432B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534326B1 (en) * 2013-01-03 2015-07-07 한국기계연구원 Manufacturing Methods for α―SIALON Phospor with Enhanced Photo-luminescence Properties

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544881B2 (en) * 2007-11-30 2014-07-09 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor
JP5388699B2 (en) * 2009-05-29 2014-01-15 電気化学工業株式会社 α-type sialon phosphor and light-emitting device using the same
KR101455486B1 (en) * 2010-03-31 2014-10-27 우베 고산 가부시키가이샤 Method for producing sialon-based acid nitride phosphor, and sialon-based acid nitride phosphor
CN101914377B (en) * 2010-08-10 2013-06-19 中山大学 Light emitting material for emitting light blue, green, yellow and white light for series field emission displays and preparation method thereof
US9487696B2 (en) 2012-03-16 2016-11-08 Kabushiki Kaisha Toshiba Phosphor of SiAlON crystal, method for producing phosphor and light emitting device
CN102643646B (en) * 2012-04-25 2014-04-02 中国科学院上海硅酸盐研究所 Red Nitrogen oxide fluorescent powder and preparation method thereof
JPWO2014030637A1 (en) * 2012-08-22 2016-07-28 デンカ株式会社 β-sialon manufacturing method, β-sialon and light-emitting device
KR102142672B1 (en) * 2012-11-13 2020-08-07 덴카 주식회사 Phosphor, light-emitting element and lighting device
CN104371723B (en) * 2014-11-12 2016-09-14 河北利福化工科技有限公司 A kind of white light LEDs preparation method of efficient class ball-type green emitting phosphor
WO2017038622A1 (en) 2015-08-28 2017-03-09 国立大学法人群馬大学 Charged particle radiation measuring method and charged particle radiation measuring device
CN106281317B (en) * 2016-08-12 2019-02-22 河北利福光电技术有限公司 A kind of high brightness, bulky grain size beta-SiAlON:Eu2+Green emitting phosphor and preparation method thereof
KR102674932B1 (en) * 2018-03-29 2024-06-14 덴카 주식회사 α-type sialon phosphor and light emitting device
CN110655920A (en) * 2019-09-20 2020-01-07 北京科技大学 Divalent europium doped alpha-sialon based long-afterglow luminescent material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236685A (en) * 1985-04-13 1986-10-21 Denki Kagaku Kogyo Kk Crucible for growing compound semiconductor
JP2004277663A (en) * 2003-03-18 2004-10-07 National Institute For Materials Science Sialon fluorescent material and method for producing the same
US7906040B2 (en) * 2004-06-18 2011-03-15 National Institute For Materials Science α-Sialon, α-sialon phosphor and method for producing the same
US7476337B2 (en) * 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4572368B2 (en) * 2004-08-12 2010-11-04 株式会社フジクラ Method for producing sialon phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534326B1 (en) * 2013-01-03 2015-07-07 한국기계연구원 Manufacturing Methods for α―SIALON Phospor with Enhanced Photo-luminescence Properties

Also Published As

Publication number Publication date
JP2007302757A (en) 2007-11-22
CN101443432B (en) 2013-06-05
CN101443432A (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP5124101B2 (en) Alpha-type sialon phosphor, method for producing the same, and lighting apparatus
JP4762892B2 (en) α-sialon and method for producing the same
JP3837588B2 (en) Phosphors and light emitting devices using phosphors
JP2009096882A (en) Phosphor and method for producing the same
TWI393765B (en) Method for preparing β-sialon phosphor
JP5025474B2 (en) β-type sialon phosphor
JP5122765B2 (en) Phosphor production method, phosphor and lighting apparatus
KR101221683B1 (en) Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
KR101660618B1 (en) Oxynitride phosphor powder
JP4894048B2 (en) Phosphor and production method thereof
JP4494306B2 (en) Method for producing α-sialon powder
KR101732746B1 (en) -sialon phosphor method for producing same and light-emitting device
TW201125955A (en) β type SiAlON, method for preparing the same and luminescence device using the same
JP2006016413A (en) Phosphor and luminescent implement
JPWO2008062781A1 (en) Phosphor, method for manufacturing the same, and light emitting device
JP2011140664A (en) Method for producing phosphor
JPWO2007099862A1 (en) Phosphor, method for producing the same, and light emitting device
JP5854051B2 (en) Oxynitride phosphor powder and method for producing the same
JPWO2015002139A1 (en) Phosphor and light emitting device
JP4538739B2 (en) α-type sialon phosphor and lighting equipment using the same
JP5954425B2 (en) Wavelength conversion member and light emitting device using the same
KR20180004020A (en) β-sialon fluorescent material, Method of producing thereof, Light-emitting member and Light-emitting device
JP4364189B2 (en) α-type sialon, phosphor comprising α-type sialon, and lighting apparatus using the same
JP2018150433A (en) Orange phosphor and light-emitting device
JP2010116564A (en) Alpha-type sialon fluorescent material and illumination instrument using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5124101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250