JP4572368B2 - Method for producing sialon phosphor - Google Patents

Method for producing sialon phosphor Download PDF

Info

Publication number
JP4572368B2
JP4572368B2 JP2004235549A JP2004235549A JP4572368B2 JP 4572368 B2 JP4572368 B2 JP 4572368B2 JP 2004235549 A JP2004235549 A JP 2004235549A JP 2004235549 A JP2004235549 A JP 2004235549A JP 4572368 B2 JP4572368 B2 JP 4572368B2
Authority
JP
Japan
Prior art keywords
particle size
sialon phosphor
sialon
phosphor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004235549A
Other languages
Japanese (ja)
Other versions
JP2006052337A (en
Inventor
健 佐久間
尚登 広崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute for Materials Science
Original Assignee
Fujikura Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, National Institute for Materials Science filed Critical Fujikura Ltd
Priority to JP2004235549A priority Critical patent/JP4572368B2/en
Publication of JP2006052337A publication Critical patent/JP2006052337A/en
Application granted granted Critical
Publication of JP4572368B2 publication Critical patent/JP4572368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Description

本願発明は、微細粒子を低減したサイアロン蛍光体の製造方法に関するものである。さらに詳しくは、一次粒子の粒径を増大させた、一般式M(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、MがCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srのうち1種もしくは2種以上であるサイアロン蛍光体、及びその製造方法に関するものである。 The present invention relates to a method for producing a sialon phosphor with reduced fine particles. More specifically, the primary particle size is increased, which is represented by the general formula M x (Si, Al) 12 (O, N) 16 : Eu 2+ y , the main phase is an alpha sialon crystal structure, and M is A sialon phosphor that is one or more of Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and It relates to the manufacturing method.

発光ダイオード(LED)は、電気を直接光に変換するため発熱が少なく、エネルギー変換効率が高く、寿命が長く、また指向性の強い光源として注目されている。LEDを利用して白色光を得る方法には、青色LEDを光源として黄色光を発光する蛍光体を発光させ、この黄色光と光源の青色光とを混色させた白色LEDがある。近年、白色LEDは、照明用途への適用を目指し高輝度化が求められており、半導体発光素子の改善はもちろんのこと、その実装技術においても発光効率の向上が急務となってきている。このような白色LED用蛍光体として、ユーロピウム元素を賦活させたカルシウム固溶アルファサイアロン蛍光体が報告されている。(特開2002−363554号公報)また、このようなユーロピウム元素を賦活させたカルシウム固溶アルファサイアロン蛍光体の合成原料として、窒化ケイ素(Si)、窒化アルミニウム(AlN)粉末、炭酸カルシウム(CaCO)粉末、酸化ユーロピウム(Eu)を利用することが報告されている。(Rong−Jun Xieら、「Preparation and Luminescence Spectra of Calcium− and Rare Earth (R=Eu、Tb、and Pr)−Codoped α−SiAlON Ceramics」、J.Am.Ceram.Soc.,vol.85[5]pp.1229−1234(2002))
このアルファサイアロン蛍光体粉末を白色LEDに実装する場合、透明な樹脂にアルファサイアロン蛍光体粉末を分散させたものを、青色LED半導体素子を覆うように塗布して硬化させる。蛍光体樹脂層を透過した青色光と、蛍光体の発する黄色光との混色により白色光が実現されることから、効率よく白色光を発生させるためには、蛍光体の変換効率が高いことの他に、光の取り出し効率すなわち蛍光体分散樹脂層の青色光及び黄色光に対する透過率が高いことが重要であり、そのためにはアルファサイアロン蛍光体粉末の粒径を適切なものとすることが重要である。
Light emitting diodes (LEDs) are attracting attention as light sources that convert electricity directly into light, generate little heat, have high energy conversion efficiency, have a long lifetime, and are highly directional. As a method of obtaining white light using an LED, there is a white LED in which a phosphor emitting yellow light is emitted using a blue LED as a light source, and the yellow light and the blue light of the light source are mixed. In recent years, white LEDs have been required to have high brightness with the aim of being applied to lighting applications. In addition to improvement of semiconductor light emitting elements, improvement in luminous efficiency has become an urgent task in the mounting technology. As such a phosphor for white LED, a calcium solid solution alpha sialon phosphor in which europium element is activated has been reported. (JP-A-2002-363554) Further, as a raw material for synthesizing such a calcium solid solution alpha sialon phosphor activated with europium element, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN) powder, calcium carbonate It has been reported that (CaCO 3 ) powder, europium oxide (Eu 2 O 3 ) is used. (Rong-Jun Xie et al., “Preparation and Luminescence Spectra of Calcium- and Rare Earth (R = Eu, Tb, and Pr) -Coded α-SiAlON Ceramics”, J. Am. Ceram. Soc. ] Pp. 1229-1234 (2002))
When this alpha sialon phosphor powder is mounted on a white LED, a solution in which the alpha sialon phosphor powder is dispersed in a transparent resin is applied and cured so as to cover the blue LED semiconductor element. Since white light is realized by mixing the blue light transmitted through the phosphor resin layer and the yellow light emitted by the phosphor, the phosphor conversion efficiency is high in order to generate white light efficiently. In addition, it is important that the light extraction efficiency, that is, the transmittance of the phosphor-dispersed resin layer with respect to blue light and yellow light is high. For that purpose, it is important to make the particle size of the alpha sialon phosphor powder appropriate. It is.

アルファサイアロン蛍光体粉末を白色LED用蛍光体として用いる場合には、粉末状の焼結体を用いる。このとき、蛍光体粉末の粒径が大きい場合には発光効率は一般に向上するが、一方で樹脂に混練して塗布するという実装技術上の問題から、粒径が大きすぎると好ましくない。粒径数十μm程度であれば実装が可能であり、粒径20μm以下(粒度分布中央粒径10μm以下)、さらには粒径10μm以下(中央粒径5μm以下)であることが好ましい。このことから、適度な粉末粒径となるように焼結工程を工夫するか、または、焼結後にボールミル等で粉砕し適度に微細な粉末としたものを用いる。一方、蛍光体粉末の粒径がサブミクロンオーダーであり小さすぎる場合には、励起光の吸収が悪くなり黄色光の発光が少なくなってしまう。励起光である青色光の波長と同程度の粒径の粒子は、ミー散乱を生じ、励起光である青色光がアルファサイアロン蛍光体に十分吸収されず散乱してしまい励起効率が悪くなる。また、アルファサイアロン蛍光体の黄色の発光波長と同程度の粒径の粒子もまたミー散乱を生じ、これによりアルファサイアロン蛍光体分散樹脂層の透過率が低下する結果となり、光の取り出し効率が低下する。このような問題を防止するためには、ミー散乱を強く生じる可視光波長と同程度の粒径の微細粒子を除去することが必要である。さらには、ミー散乱の影響を無視できない粒径2μm以下の微細粒子を除去できることがさらに好ましい。   When alpha sialon phosphor powder is used as a phosphor for white LED, a powdery sintered body is used. At this time, when the particle size of the phosphor powder is large, the light emission efficiency is generally improved. On the other hand, it is not preferable that the particle size is too large due to a problem in mounting technology in which the phosphor powder is kneaded and applied. If the particle size is about several tens of μm, mounting is possible, and it is preferable that the particle size is 20 μm or less (particle size distribution median particle size 10 μm or less), and further the particle size is 10 μm or less (median particle size 5 μm or less). For this reason, the sintering process is devised so as to obtain an appropriate powder particle diameter, or a powder that is pulverized with a ball mill or the like after sintering to obtain an appropriately fine powder is used. On the other hand, when the particle size of the phosphor powder is on the submicron order and is too small, the absorption of the excitation light is deteriorated and the emission of yellow light is reduced. Particles having a particle size similar to the wavelength of blue light, which is excitation light, cause Mie scattering, and the blue light, which is excitation light, is not sufficiently absorbed by the alpha sialon phosphor and is scattered, resulting in poor excitation efficiency. In addition, particles with a particle size similar to the yellow emission wavelength of the alpha sialon phosphor also cause Mie scattering, resulting in a decrease in the transmittance of the alpha sialon phosphor dispersed resin layer, resulting in a decrease in light extraction efficiency. To do. In order to prevent such a problem, it is necessary to remove fine particles having a particle size comparable to the visible light wavelength that strongly generates Mie scattering. Furthermore, it is more preferable that fine particles having a particle diameter of 2 μm or less that cannot ignore the influence of Mie scattering can be removed.

またアルファサイアロンは、複数の原料粉末を秤量し、混合、焼結することによって焼結体を得る、いわゆるセラミックス材料である。一般に、セラミックス材料に要求される特性として、高耐熱性、高強度、高靱性等が挙げられる。これらの特性を満たすためには、緻密な焼結体を得ることが重要である。従って、セラミックス材料の焼結原料としては、焼結性を高めるため、粒径0.1〜0.5μm程度、さらには粒径0.1μm以下の微細な粉末が使用されてきた。   Alphasialon is a so-called ceramic material in which a plurality of raw material powders are weighed, mixed and sintered to obtain a sintered body. In general, characteristics required for ceramic materials include high heat resistance, high strength, high toughness, and the like. In order to satisfy these characteristics, it is important to obtain a dense sintered body. Accordingly, fine powders having a particle size of about 0.1 to 0.5 μm and further a particle size of 0.1 μm or less have been used as a sintering raw material for ceramic materials in order to improve sinterability.

しかし、このような微細な粉末を出発原料としてアルファサイアロン蛍光体粉末を製造すると、ミー散乱の原因となる微細粒子が生じてしまい、励起効率が低下したり蛍光体分散樹脂層の透過率が低下するなどの問題が生じる。風力分級等を利用して微細粒子を除去することも可能であるが、工程の増加は高コスト化の要因となる。さらに、ボールミル等による粉砕工程と風力分級等による分級工程とを組み合わせて製造する場合、微細粒子を出発原料として焼結した1次粒径(結晶粒径)の小さなアルファサイアロン蛍光体では、粉砕工程で微細粒子となる割合が高く、これらは分級工程で除去されるため収率が低下し高コスト化の原因となっていた。
特開2002−363554号公報 J.Am.Ceram.Soc.,vol.85[5]pp.1229−1234(2002)
However, when alpha sialon phosphor powder is produced using such a fine powder as a starting material, fine particles that cause Mie scattering are generated, resulting in a decrease in excitation efficiency and a decrease in the transmittance of the phosphor-dispersed resin layer. Problems occur. Although it is possible to remove fine particles using air classification or the like, an increase in the number of processes is a factor in increasing costs. Furthermore, in the case of producing a combination of a pulverization step using a ball mill or the like and a classification step such as air classification, the alpha sialon phosphor having a small primary particle size (crystal particle size) sintered using fine particles as a starting material is used in the pulverization step. The ratio of becoming fine particles is high, and since these are removed in the classification step, the yield is reduced and the cost is increased.
JP 2002-363554 A J. et al. Am. Ceram. Soc. , Vol. 85 [5] pp. 1229-1234 (2002)

本願発明は、一次粒子の粒径を増大させたサイアロン蛍光体、及びその製造方法を提供するものである。詳しくは、一次粒子の粒径を増大させた、一般式M(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、MがCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srのうち1種もしくは2種以上であるサイアロン蛍光体、及びその製造方法を提供するものである。 The present invention provides a sialon phosphor having an increased primary particle size and a method for producing the same. Specifically, it is represented by the general formula M x (Si, Al) 12 (O, N) 16 : Eu 2+ y in which the primary particle size is increased, the main phase is an alpha sialon crystal structure, and M is Ca. Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and a sialon phosphor that is one or more of them, and A manufacturing method is provided.

本発明に係るサイアロン蛍光体の製造方法は、一般式MThe method for producing a sialon phosphor according to the present invention has a general formula M x (Si,Al)(Si, Al) 1212 (O,N)(O, N) 1616 :Eu: Eu 2+2+ y で示され、主相がアルファサイアロン結晶構造であり、MはCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srのうち1種もしくは2種以上であるサイアロン蛍光体の製造方法であって、出発原料に粒度分布中央粒径が0.7〜1.0μmの窒化ケイ素粉末を用いることを特徴とする。The main phase is an alpha sialon crystal structure, and M is Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, A method for producing a sialon phosphor that is one or more of Sr, wherein silicon nitride powder having a median particle size distribution of 0.7 to 1.0 μm is used as a starting material.
本発明に係るサイアロン蛍光体の製造方法は、一般式MThe method for producing a sialon phosphor according to the present invention has a general formula M x (Si,Al)(Si, Al) 1212 (O,N)(O, N) 1616 :Eu: Eu 2+2+ y で示され、主相がアルファサイアロン結晶構造であり、MはCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srのうち1種もしくは2種以上であるサイアロン蛍光体の製造方法であって、出発原料に比表面積が2〜4mThe main phase is an alpha sialon crystal structure, and M is Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, A method for producing a sialon phosphor that is one or more of Sr, wherein the starting material has a specific surface area of 2 to 4 m. 2 /gの窒化ケイ素粉末を用いることを特徴とする。/ G silicon nitride powder is used.
本発明に係るサイアロン蛍光体の製造方法において、Mが、少なくともCaを含有することが好ましい。In the method for producing a sialon phosphor according to the present invention, it is preferable that M contains at least Ca.
本発明に係るサイアロン蛍光体の製造方法において、Mが、Caであることが好ましい。In the method for producing a sialon phosphor according to the present invention, M is preferably Ca.
本発明に係るサイアロン蛍光体の製造方法において、一般式CaIn the method for producing a sialon phosphor according to the present invention, the general formula Ca x (Si,Al)(Si, Al) 1212 (O,N)(O, N) 1616 :Eu: Eu 2+2+ y で示され、主相がアルファサイアロン結晶構造であり、xが0.75以上1.0以下であり、且つyが0.04以上0.25以下であることが好ましい。It is preferable that the main phase has an alpha sialon crystal structure, x is 0.75 or more and 1.0 or less, and y is 0.04 or more and 0.25 or less.

さらに、本願発明のサイアロン蛍光体の製造方法によって得られる、一般式Ca(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、一次粒子の粒度分布中央値が1〜10μmであるアルファサイアロンが、白色LED用蛍光体として特に好適であることを見出した。 Furthermore, it is represented by the general formula Ca X (Si, Al) 12 (O, N) 16 : Eu 2+ y obtained by the method for producing a sialon phosphor of the present invention, the main phase is an alpha sialon crystal structure, It has been found that alpha sialon having a median particle size distribution of 1 to 10 μm is particularly suitable as a phosphor for white LED.

本願発明のサイアロン蛍光体の製造方法は、従来の製造方法とは異なり、出発原料として粒度分布中央粒径が0.7〜10μmの窒化ケイ素粉末を用いるため、サイアロンの一次粒子の粒径を増大させることが可能である。また、出発原料として比表面積が6m/g以下の窒化ケイ素粉末を用いるため、サイアロンの一次粒子の粒径を増大させることが可能である。さらに、本願発明の方法によって製造した、一般式Ca(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、一次粒子の粒度分布中央値が1〜10μmであるアルファサイアロンは、蛍光体として使用する際、微細粒子を除去する分級工程が不要であり、蛍光体の製造工程を簡略化することが可能である。さらに、この一次粒子の粒径が増大したアルファサイアロン蛍光体を白色LEDに実装した場合、ミー散乱の原因となる微細粒子が少ないため良好な発光特性が得られる。 The manufacturing method of the sialon phosphor of the present invention is different from the conventional manufacturing method because the silicon nitride powder having a median particle size distribution of 0.7 to 10 μm is used as a starting material, so that the primary particle size of sialon is increased. It is possible to make it. In addition, since silicon nitride powder having a specific surface area of 6 m 2 / g or less is used as a starting material, it is possible to increase the primary particle size of sialon. Furthermore, the general formula Ca X (Si, Al) 12 (O, N) 16 : Eu 2+ y produced by the method of the present invention is used, the main phase is an alpha sialon crystal structure, and the particle size distribution center of the primary particles Alpha sialon having a value of 1 to 10 μm does not require a classification step for removing fine particles when used as a phosphor, and can simplify the production process of the phosphor. Furthermore, when the alpha sialon phosphor having an increased primary particle size is mounted on a white LED, good light emission characteristics can be obtained because there are few fine particles that cause Mie scattering.

本願発明におけるサイアロン蛍光体の製造方法は、原材料を均一に混合し焼結するものである。また、本願発明におけるサイアロンを蛍光体として用いる場合には、粉末状の焼結体を使用する。その際、適切な粒度分布を得るために焼結体を粉砕工程により微細化しても良い。   The method for producing a sialon phosphor in the present invention is to uniformly mix and sinter raw materials. Moreover, when using the sialon in this invention as a fluorescent substance, a powdery sintered compact is used. At that time, in order to obtain an appropriate particle size distribution, the sintered body may be refined by a grinding process.

本願発明におけるサイアロン蛍光体の原材料としては、窒化ケイ素(Si)粉末に、窒化アルミニウム(AlN)、及びCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srから選ばれる金属の酸化物または炭酸化物から少なくとも1種以上を含むものを使用する。特に、本願発明のサイアロンを青色LEDを光源とする白色LED用の蛍光体とて使用する場合は、原材料として窒化ケイ素、窒化アルミニウム、炭酸カルシウム(CaCO)、酸化ユーロピウム(Eu)を使用することが好ましい。 As a raw material of the sialon phosphor in the present invention, silicon nitride (Si 3 N 4 ) powder, aluminum nitride (AlN), and Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb , Dy, Ho, Er, Tm, Yb, Lu, Sr, or a metal oxide or carbonate containing at least one selected from oxides or carbonates is used. In particular, when the sialon of the present invention is used as a phosphor for a white LED using a blue LED as a light source, silicon nitride, aluminum nitride, calcium carbonate (CaCO 3 ), and europium oxide (Eu 2 O 3 ) are used as raw materials. It is preferable to use it.

本願発明で使用する窒化ケイ素粉末は、粒度分布中央粒径が0.7〜10μmであり、好ましくは0.7〜5μmである。さらに、サイアロン製造時の焼結性を考慮すると、窒化ケイ素粉末の粒度分布中央粒径が0.7〜1.0μmのものが特に好ましい。また、本願発明で使用する窒化ケイ素粉末は、比表面積が6m/g以下であり、好ましくは2〜4m/gである。さらに、出発原料としてアルファ相結晶率が95%以上の窒化ケイ素粉末を使用することが好ましい。このような窒化ケイ素粉末を使用することにより、後述するようなLED蛍光体として好適な粒径を持つサイアロン蛍光体粉末が得られる。 The silicon nitride powder used in the present invention has a median particle size distribution of 0.7 to 10 μm, preferably 0.7 to 5 μm. Furthermore, considering the sinterability at the time of sialon production, it is particularly preferable that the silicon nitride powder has a median particle size distribution of 0.7 to 1.0 μm. The silicon nitride powder used in the present invention has a specific surface area of 6 m 2 / g or less, preferably 2 to 4 m 2 / g. Furthermore, it is preferable to use silicon nitride powder having an alpha phase crystallinity of 95% or more as a starting material. By using such silicon nitride powder, a sialon phosphor powder having a particle size suitable as an LED phosphor as described later can be obtained.

本願発明のおいて、AlN、およびCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srから選ばれる金属の酸化物または炭酸化物は、微細で球状に近い形状のものが焼結性に優れており好ましい。   In the present invention, AlN and oxidation of a metal selected from Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sr A thing or a shape of a carbonate close to a spherical shape is preferable because it has excellent sinterability.

本願発明において「中央粒径」とは、粒度分布分析時に累積重量パーセントが50%となったところの粒径である。なお、粒度分布分析には、レーザー回折・散乱式流度分布装置(シーラス社製:CILAS1064)を使用した。   In the present invention, the “median particle size” is the particle size at which the cumulative weight percentage becomes 50% during the particle size distribution analysis. For particle size distribution analysis, a laser diffraction / scattering flow rate distribution device (CILAS 1064, manufactured by Cirrus) was used.

本願発明において原材料を混合する方法としては、乾式混合、湿式混合のいずれの方法を用いてもよいが、特に湿式混合が好ましい。混合装置としては、原材料スラリーを均一に混合できるものであれば特に限定されないが、ボールミル、ロールミル、ダイノミル等を使用することができる。これら混合装置の容器、邪魔板、撹拌翼、ボール等のメディアは窒化ケイ素製のものが好ましい。湿式混合の場合、混合溶媒としてはヘキサン等の低級炭化水素を用い、混合終了後留去等によって除去する。また所望により、混合後、造粒や分級等によって原材料の凝集体の粒度を整えても良い。   In the present invention, as a method for mixing raw materials, either dry mixing or wet mixing may be used, but wet mixing is particularly preferable. The mixing apparatus is not particularly limited as long as the raw material slurry can be uniformly mixed, and a ball mill, a roll mill, a dyno mill, or the like can be used. The media such as containers, baffle plates, stirring blades and balls of these mixing devices are preferably made of silicon nitride. In the case of wet mixing, a lower hydrocarbon such as hexane is used as a mixed solvent and is removed by distillation or the like after completion of mixing. If desired, the particle size of the aggregates of the raw materials may be adjusted by granulation or classification after mixing.

本願発明における焼結方法は、セラミックス製造における焼結方法であれば特に限定されない。その中でも、ガス加圧焼結装置等を用い加熱温度1600〜2000℃、窒素雰囲気下1気圧超の高温加圧下で焼結することが好ましい。窒素加圧は特に限定されないが、通常、5〜10気圧程度あれば良好な焼結体が得られる。   The sintering method in this invention will not be specifically limited if it is a sintering method in ceramic manufacture. Among them, it is preferable to sinter using a gas pressure sintering apparatus or the like at a heating temperature of 1600 to 2000 ° C. under a nitrogen atmosphere under a high temperature and pressure exceeding 1 atm. Although nitrogen pressurization is not particularly limited, a good sintered body is usually obtained if it is about 5 to 10 atm.

本願発明のサイアロン蛍光体の焼結体を粉砕する方法としては、乾式粉砕、湿式粉砕の何れの方法を用いても良い。乾式粉砕装置としては、乳鉢、ボールミル、ロールミル、ジェットミル等を使用することができる。湿式粉砕装置としては、ボールミル、ロールミル、ダイノミル等を使用することができる。これら粉砕装置の容器、およびボール等の粉砕メディアは窒化ケイ素製のものが好ましい。本願発明では、ボールミルによる湿式粉砕が特に好ましい。湿式粉砕時に使用する溶媒としては、サイアロンと反応しないものであれば水、有機溶媒の何れを用いてもかまわないが、サイアロンとの分離の容易さから、ヘキサン、エタノール等の、低級炭化水素、低級アルコール等を用いることが好ましい。   As a method for pulverizing the sintered body of the sialon phosphor of the present invention, either dry pulverization or wet pulverization may be used. As the dry pulverizer, a mortar, ball mill, roll mill, jet mill, or the like can be used. As a wet pulverizer, a ball mill, a roll mill, a dyno mill, or the like can be used. The container of these pulverizers and the pulverization media such as balls are preferably made of silicon nitride. In the present invention, wet grinding by a ball mill is particularly preferable. As the solvent used in wet grinding, water or an organic solvent may be used as long as it does not react with sialon. From the ease of separation from sialon, lower hydrocarbons such as hexane and ethanol, It is preferable to use a lower alcohol or the like.

本発明のサイアロン蛍光体粉末を白色LED用蛍光体として用いる場合には、樹脂に混練して塗布するという実装技術上の問題から、好ましくは粒径2〜20μm(粒度分布中央粒径1〜10μm)であり、より好ましくは粒径2〜10μm以下(粒度分布中央粒径1〜5μm)であることが好ましい。   When the sialon phosphor powder of the present invention is used as a phosphor for white LED, the particle size is preferably 2 to 20 μm (particle size distribution median particle size 1 to 10 μm) because of the mounting technology problem of kneading and applying to resin. More preferably, the particle size is 2 to 10 μm or less (particle size distribution median particle size 1 to 5 μm).

以下、本願発明を、一般式Ca(Si,Al)12(O,N)16:Eu2+ で示されるアルファサイアロンの製造方法により詳細に説明するが、本願発明は何らこれに限定されるものではない。 Hereinafter, the present invention will be described in detail by a method for producing alpha sialon represented by the general formula Ca x (Si, Al) 12 (O, N) 16 : Eu 2+ y , but the present invention is not limited to this. It is not a thing.

(実施例1)
出発原料として、窒化ケイ素粉末(宇部興産株式会社製SN−E03:比表面積2〜4m/g、粒度分布中央粒径約1.0μm)32.57g、窒化アルミニウム(株式会社トクヤマ製Fグレード)9.515g、炭酸カルシウム(株式会社高純度化学研究所製)6.78g、および酸化ユーロピウム(信越化学工業株式会社製)1.135gにn−ヘキサン180mlを加え、湿式遊星ボールミルにより2時間混合した。その後、ロータリーエバポレーターによりn−ヘキサンを留去した。得られた乾燥物を乳鉢にて粉砕し、JIS Z 8801に準拠した公称目開き125μmのステンレス製試験用網篩を利用して、粒径125μm以下に造粒した。造粒物を、窒化ホウ素製ふた付容器に入れ、ガス加圧焼結装置にて、1700℃、窒素雰囲気下0.5MPaに加圧し、24時間焼結してユーロピウムを賦活させたカルシウム固溶アルファサイアロン蛍光体[MxSi12−(m+n)Al(m+n)16−n:Eu2+ (ここでx=0.875、y=0.0833、m=1.9999、n=0.99995)]を作製した。冷却後、乳鉢にて粉砕し、走査型電子顕微鏡(日本電子株式会社製フィールドエミッション走査電子顕微鏡JSM−6700F)にて結晶を観察した。その結果を図1〜3に示した。
Example 1
As a starting material, silicon nitride powder (SN-E03 manufactured by Ube Industries, Ltd .: specific surface area 2 to 4 m 2 / g, particle size distribution median particle size of about 1.0 μm) 32.57 g, aluminum nitride (F grade manufactured by Tokuyama Corporation) To 9.515 g, calcium carbonate (manufactured by Kojundo Chemical Laboratory Co., Ltd.) 6.78 g, and europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd.) 1.135 g, n-hexane 180 ml was added and mixed for 2 hours by a wet planetary ball mill. . Thereafter, n-hexane was distilled off by a rotary evaporator. The obtained dried product was pulverized in a mortar, and granulated to a particle size of 125 μm or less using a stainless test screen sieve having a nominal opening of 125 μm according to JIS Z8801. The granulated product is put into a container with a boron nitride lid, and pressurized to 1700 ° C. and 0.5 MPa in a nitrogen atmosphere by a gas pressure sintering apparatus, and sintered for 24 hours to activate europium. alpha siAlON phosphor [MxSi 12- (m + n) Al (m + n) O n n 16-n: Eu 2+ y ( where x = 0.875, y = 0.0833, m = 1.9999, n = 0. 99995)]. After cooling, the mixture was pulverized in a mortar, and the crystal was observed with a scanning electron microscope (JEOL Ltd. field emission scanning electron microscope JSM-6700F). The results are shown in FIGS.

(実施例2)
焼結時間を50時間に延ばした他は実施例1と同様にして、ユーロピウムを賦活させたカルシウム固溶アルファサイアロン蛍光体を作製した。冷却後、乳鉢にて粉砕し粒度分布測定装置(シーラス社レーザー回折・散乱式粒度分布測定装置CILAS1064)にて粒度分布を測定した。その後、乳鉢粉砕物5gを窒化ケイ素製ボール(2g/個のものを30個)と共に窒化ケイ素製容器に入れ、内容物が浸る程度にエタノールを加え遊星ボールミルにて6時間粉砕した後、再び粒度分布を測定した。その後、さらに遊星ボールミルにて6時間粉砕し、粉砕時間合計12時間のものについても粒度分布を測定した。測定した粒度分布の結果を図7および図8に示した。さらに、作製したアルファサイアロン蛍光体粉末の励起スペクトルと発光スペクトルを、蛍光光度計(日立製作所製F−4500)を用いて測定した(図10)。
(Example 2)
A calcium solid solution alpha sialon phosphor activated with europium was prepared in the same manner as in Example 1 except that the sintering time was extended to 50 hours. After cooling, the mixture was pulverized in a mortar, and the particle size distribution was measured with a particle size distribution measuring device (Cirrus laser diffraction / scattering particle size distribution measuring device CILAS 1064). Thereafter, 5 g of the mortar pulverized product is placed in a silicon nitride container together with silicon nitride balls (30 g of 2 g / piece), ethanol is added to the extent that the contents are immersed, and pulverized for 6 hours in a planetary ball mill. Distribution was measured. Then, it further grind | pulverized for 6 hours with the planetary ball mill, and the particle size distribution was measured also about the thing for the grind time for 12 hours in total. The results of the measured particle size distribution are shown in FIGS. Furthermore, the excitation spectrum and emission spectrum of the produced alpha sialon phosphor powder were measured using a fluorometer (F-4500, manufactured by Hitachi, Ltd.) (FIG. 10).

(比較例1)
出発原料として、窒化ケイ素粉末(宇部興産株式会社製SN−E10:比表面積9〜13m/g、粒度分布中央粒径<0.5μm)を用いた他は、実施例1と同様にしてユーロピウムを賦活させたカルシウム固溶アルファサイアロン蛍光体を作製し走査型電子顕微鏡で観察した。その結果を図4〜6に示した。
(Comparative Example 1)
Europium as in Example 1 except that silicon nitride powder (SN-E10 manufactured by Ube Industries, Ltd .: specific surface area 9 to 13 m 2 / g, particle size distribution median particle size <0.5 μm) was used as a starting material. Calcium solid solution alpha sialon phosphor with activated activated carbon was prepared and observed with a scanning electron microscope. The results are shown in FIGS.

(比較例2)
出発原料として、窒化ケイ素粉末(宇部興産株式会社SN−E10:比表面積9〜13m/g、粒度分布中央粒径<0.5μm)を用いた他は、実施例2と同様にしてユーロピウムを賦活させたカルシウム固溶アルファサイアロン蛍光体を作製した。実施例2と同様に、焼結体を乳鉢粉砕したもの、遊星ボールミルで6時間、および12時間粉砕したものについて粒度分布を測定した。測定した粒度分布の結果を図7および図9に示した。
(Comparative Example 2)
Europium was used in the same manner as in Example 2 except that silicon nitride powder (Ube Industries, Ltd. SN-E10: specific surface area 9 to 13 m 2 / g, particle size distribution median particle size <0.5 μm) was used as a starting material. An activated calcium solid solution alpha sialon phosphor was prepared. In the same manner as in Example 2, the particle size distribution was measured for a sintered body obtained by pulverizing a mortar, and by pulverizing with a planetary ball mill for 6 hours and 12 hours. The results of the measured particle size distribution are shown in FIGS.

実施例1と比較例1で作製した、ユーロピウムを賦活させたカルシウム固溶アルファサイアロンの焼結体を構成する一次粒子を比較した。図1と図4より、実施例1および比較例1の焼結体は、何れも微細な一次粒子が多数凝集し多孔質の焼結体を形成していることが確認された。また、実施例1では粒子の幅または長さが0.5μmを下回るような微細な粒子は少なく、大部分が0.5〜1.0μm程度の幅または長さを有していた(図3)。一方、比較例1では、一部に長さ2〜3μmに達しているものが認められるが、大部分の粒子は幅または長さが0.5μmを下回っていた(図6)。従って、実施例1の一次粒子が比較例1の一次粒子よりも粗大化していることが確認できた。   The primary particles composing the sintered body of calcium solid solution alpha sialon activated in Example 1 and Comparative Example 1 and activated by europium were compared. 1 and 4, it was confirmed that the sintered bodies of Example 1 and Comparative Example 1 were both agglomerated with a large number of fine primary particles to form a porous sintered body. In Example 1, there were few fine particles whose width or length was less than 0.5 μm, and most of them had a width or length of about 0.5 to 1.0 μm (FIG. 3). ). On the other hand, in Comparative Example 1, some particles reaching a length of 2 to 3 μm were observed, but most of the particles had a width or length of less than 0.5 μm (FIG. 6). Therefore, it was confirmed that the primary particles of Example 1 were coarser than the primary particles of Comparative Example 1.

また、実施例2と比較例2で作製したユーロピウムを賦活させたカルシウム固溶アルファサイアロン蛍光体粉末をボールミルで粉砕し、微細化した粒子の粒度分布を比較した。特に白色LED用の蛍光体に使用する場合を想定し、可視光波長領域を780nm以下と考え、この領域でミー散乱の原因となる0.7μm以下の粒子の割合に着目した。アルファサイアロンは、モース硬度9の非常に硬いセラミックス材料であり、焼結体のボールミル粉砕を実施すると、まず結晶粒界が破壊されほぼ一次粒子に分割され、その後に一部の細長い粒子が破砕される。従って、比較的短時間ボールミル粉砕した後の粒度分布測定結果を示した図7〜9は、比較例2および実施例2で作製したアルファサイアロンの一次粒子の粒度分布に対応したものと考えられる。図7のボールミル粉砕6時間後のグラフより、実施例2における0.7μm以下の粒子の累積相対度数は0.29にすぎないが、比較例2における0.7μm以下の粒子の累積相対度数は0.41にまで達していた。さらに、ボールミル粉砕12時間後の場合、実施例2における0.7μm以下の粒子の累積相対度数は0.54にすぎないが、比較例2における0.7μm以下の粒子の累積相対度数は0.63にまで達している。図8および図9は、実施例2および比較例2におけるボールミル粉砕12時間後の粒度分布を示したものである。これらより、実施例2の方が比較例2よりも一次粒子が粗大であることが確認された。   Further, the calcium solid solution alpha sialon phosphor powder activated with europium prepared in Example 2 and Comparative Example 2 was pulverized with a ball mill, and the particle size distribution of the refined particles was compared. In particular, assuming a case where the phosphor is used for a white LED, the visible light wavelength region is considered to be 780 nm or less, and attention was paid to the proportion of particles of 0.7 μm or less that cause Mie scattering in this region. Alphasialon is a very hard ceramic material with a Mohs hardness of 9, and when the sintered body is ball milled, the grain boundaries are first broken and divided into almost primary particles, and then some elongated particles are crushed. The Therefore, FIGS. 7 to 9 showing the particle size distribution measurement results after ball milling for a relatively short time are considered to correspond to the particle size distribution of the primary particles of alpha sialon produced in Comparative Example 2 and Example 2. From the graph after 6 hours of ball milling in FIG. 7, the cumulative relative frequency of particles of 0.7 μm or less in Example 2 is only 0.29, but the cumulative relative frequency of particles of 0.7 μm or less in Comparative Example 2 is It reached 0.41. Furthermore, in the case of 12 hours after ball milling, the cumulative relative frequency of particles of 0.7 μm or less in Example 2 is only 0.54, but the cumulative relative frequency of particles of 0.7 μm or less in Comparative Example 2 is 0. It has reached 63. 8 and 9 show the particle size distribution after 12 hours of ball milling in Example 2 and Comparative Example 2. FIG. From these, it was confirmed that the primary particles in Example 2 were coarser than those in Comparative Example 2.

さらに、実施例2で作製したアルファサイアロンの励起スペクトル、及び発光スペクトルを測定した(図10)。測定は、分光光度計(日立製作所製:F−4500)を使用し、ローダミンB法及びメーカー提供の標準光源を用いて校正した。励起スペクトル測定時の発光モニタ波長は585nmとし、発光スペクトル測定時の励起波長は450nmとした。図10より、400〜500nmの青色波長領域に励起光の吸収が認められ、550〜650nmの黄色波長領域に発光ピークが認められる。従って、実施例2で作製したアルファサイアロンは、青色LEDを励起光源とし、黄色光を発光するため、白色LED用蛍光体として好適であることが確認された。   Furthermore, the excitation spectrum and emission spectrum of alpha sialon produced in Example 2 were measured (FIG. 10). The measurement was performed using a spectrophotometer (manufactured by Hitachi, Ltd .: F-4500) and calibrated using the rhodamine B method and a standard light source provided by the manufacturer. The emission monitor wavelength during excitation spectrum measurement was 585 nm, and the excitation wavelength during emission spectrum measurement was 450 nm. From FIG. 10, absorption of excitation light is recognized in a blue wavelength region of 400 to 500 nm, and an emission peak is recognized in a yellow wavelength region of 550 to 650 nm. Therefore, it was confirmed that the alpha sialon produced in Example 2 is suitable as a phosphor for white LED because it uses a blue LED as an excitation light source and emits yellow light.

実施例1のサイアロン蛍光体粉末の走査型電子顕微鏡写真 倍率700倍。Scanning electron micrograph of the sialon phosphor powder of Example 1 700 times magnification. 実施例1のサイアロン蛍光体粉末の走査型電子顕微鏡写真 倍率5000倍。Scanning electron micrograph of the sialon phosphor powder of Example 1 at a magnification of 5000 times. 実施例1のサイアロン蛍光体粉末の走査型電子顕微鏡写真 倍率15000倍。Scanning electron micrograph of the sialon phosphor powder of Example 1 with a magnification of 15000 times. 比較例1のサイアロン蛍光体粉末の走査型電子顕微鏡写真 倍率700倍。Scanning electron micrograph of the sialon phosphor powder of Comparative Example 1 magnification 700 times. 比較例1のサイアロン蛍光体粉末の走査型電子顕微鏡写真 倍率5000倍。Scanning electron micrograph of the sialon phosphor powder of Comparative Example 1 with a magnification of 5000 times. 比較例1のサイアロン蛍光体粉末の走査型電子顕微鏡写真 倍率15000倍。Scanning electron micrograph of the sialon phosphor powder of Comparative Example 1 with a magnification of 15000 times. 実施例2と比較例2の、焼結後、6時間粉砕後、12時間粉砕後の粒度分布。Particle size distribution of Example 2 and Comparative Example 2 after sintering, after grinding for 6 hours, and after grinding for 12 hours. 実施例2の12時間粉砕後の粒度分布。Particle size distribution after grinding for 12 hours in Example 2. 比較例2の12時間粉砕後の粒度分布。Particle size distribution after pulverization of Comparative Example 2 for 12 hours. 実施例2のサイアロン蛍光体の励起・発光スペクトル。6 shows excitation / emission spectra of the sialon phosphor of Example 2. FIG.

Claims (5)

一般式M(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、MはCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srのうち1種もしくは2種以上であるサイアロン蛍光体の製造方法であって、出発原料に粒度分布中央粒径が0.7〜1.0μmの窒化ケイ素粉末を用いることを特徴とするサイアロン蛍光体の製造方法。 It is represented by the general formula M x (Si, Al) 12 (O, N) 16 : Eu 2+ y , the main phase is an alpha sialon crystal structure, and M is Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr is a method for producing a sialon phosphor that is one or more types, and the starting material has a median particle size distribution. A method for producing a sialon phosphor, wherein 0.7 to 1.0 μm of silicon nitride powder is used. 一般式M(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、MはCa、Y、Mg、Li、Sc、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Srのうち1種もしくは2種以上であるサイアロン蛍光体の製造方法であって、出発原料に比表面積が2〜4/gの窒化ケイ素粉末を用いることを特徴とするサイアロン蛍光体の製造方法。 It is represented by the general formula M x (Si, Al) 12 (O, N) 16 : Eu 2+ y , the main phase is an alpha sialon crystal structure, and M is Ca, Y, Mg, Li, Sc, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr is a method for producing a sialon phosphor that is one or more of two, and the starting material has a specific surface area of 2 to 4 A method for producing a sialon phosphor, wherein m 2 / g silicon nitride powder is used. Mが、少なくともCaを含有することを特徴とする請求項1〜2の何れか1項に記載のサイアロン蛍光体の製造方法。   The method for producing a sialon phosphor according to any one of claims 1 to 2, wherein M contains at least Ca. Mが、Caであることを特徴とする請求項に記載のサイアロン蛍光体の製造方法。 The method for producing a sialon phosphor according to claim 3 , wherein M is Ca. 一般式Ca(Si,Al)12(O,N)16:Eu2+ で示され、主相がアルファサイアロン結晶構造であり、xが0.75以上1.0以下であり、且つyが0.04以上0.25以下であることを特徴とする請求項に記載のサイアロン蛍光体の製造方法。 It is represented by the general formula Ca x (Si, Al) 12 (O, N) 16 : Eu 2+ y , the main phase is an alpha sialon crystal structure, x is 0.75 or more and 1.0 or less, and y is method for producing a sialon phosphor according to claim 4, characterized in that a 0.25 hereinafter 0.04.
JP2004235549A 2004-08-12 2004-08-12 Method for producing sialon phosphor Active JP4572368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235549A JP4572368B2 (en) 2004-08-12 2004-08-12 Method for producing sialon phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235549A JP4572368B2 (en) 2004-08-12 2004-08-12 Method for producing sialon phosphor

Publications (2)

Publication Number Publication Date
JP2006052337A JP2006052337A (en) 2006-02-23
JP4572368B2 true JP4572368B2 (en) 2010-11-04

Family

ID=36030013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235549A Active JP4572368B2 (en) 2004-08-12 2004-08-12 Method for producing sialon phosphor

Country Status (1)

Country Link
JP (1) JP4572368B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788944B2 (en) * 2005-03-18 2011-10-05 株式会社フジクラ Powdered phosphor, method for manufacturing the same, light emitting device, and lighting apparatus
CA2776892C (en) 2006-05-09 2014-12-09 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel excellent in resistance to crevice corrosion and formability
JP5124101B2 (en) * 2006-05-10 2013-01-23 電気化学工業株式会社 Alpha-type sialon phosphor, method for producing the same, and lighting apparatus
WO2007129713A1 (en) * 2006-05-10 2007-11-15 Denki Kagaku Kogyo Kabushiki Kaisha Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
JP2007332324A (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk Sialon phosphor, method for producing the same, and light-emitting element by using the same
JP2007308593A (en) * 2006-05-18 2007-11-29 Denki Kagaku Kogyo Kk Process for production of sialon fluorescent material, sialon fluorescent material and fluorescent light assembly
JP5378644B2 (en) * 2006-09-29 2013-12-25 Dowaホールディングス株式会社 Method for producing nitride phosphor or oxynitride phosphor
JP5227503B2 (en) * 2006-09-29 2013-07-03 Dowaエレクトロニクス株式会社 Phosphor, phosphor sheet, phosphor production method, and light emitting device using the phosphor
JP2008208195A (en) * 2007-02-26 2008-09-11 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fluorescent substance for vacuum ultraviolet-excited light-emitting element
JP5229770B2 (en) * 2007-03-22 2013-07-03 株式会社フジクラ Sialon phosphor
KR101213298B1 (en) * 2007-10-10 2012-12-18 우베 고산 가부시키가이샤 β-SIALON PHOSPHOR POWDER AND PROCESS FOR PRODUCTION OF THE SAME
WO2010018873A1 (en) 2008-08-13 2010-02-18 宇部興産株式会社 LI-CONTAINING α-SIALON FLUORESCENT SUBSTANCE AND METHOD FOR MANUFACTURING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
EP2669352B1 (en) * 2011-01-26 2018-10-10 Denka Company Limited Alpha-sialon, light-emitting device and use thereof
JP5851214B2 (en) 2011-11-16 2016-02-03 株式会社東芝 Phosphor, light emitting device, and method of manufacturing phosphor
JPWO2013137435A1 (en) * 2012-03-16 2015-08-03 株式会社東芝 Phosphor, phosphor manufacturing method and light emitting device
US9512359B2 (en) 2012-03-16 2016-12-06 Kabushiki Kaisha Toshiba Phosphor, method for producing phosphor and light emitting device
US9487696B2 (en) 2012-03-16 2016-11-08 Kabushiki Kaisha Toshiba Phosphor of SiAlON crystal, method for producing phosphor and light emitting device
WO2013157524A1 (en) * 2012-04-20 2013-10-24 株式会社カネカ Phosphor and method for producing same
CN104140813A (en) * 2013-05-06 2014-11-12 海洋王照明科技股份有限公司 Manganese-chromium-codoped silicon-aluminium oxynitride alkaline-earth salt luminescent material, preparation method and application thereof
DE102013105304A1 (en) * 2013-05-23 2014-11-27 Osram Opto Semiconductors Gmbh Process for the preparation of a powdery precursor material, powdery precursor material and its use
JP6645429B2 (en) 2014-08-07 2020-02-14 三菱ケミカル株式会社 Phosphor, light emitting device, image display device and lighting device
JP6020756B1 (en) * 2015-05-29 2016-11-02 日亜化学工業株式会社 Method for producing β-sialon phosphor
JP2018150433A (en) * 2017-03-10 2018-09-27 デンカ株式会社 Orange phosphor and light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656532A (en) * 1992-08-11 1994-03-01 Toyota Central Res & Dev Lab Inc Production of silicon nitride-based sintered compact
JP2003124527A (en) * 2001-07-16 2003-04-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit equipped with at least one led as light source
WO2005123876A1 (en) * 2004-06-18 2005-12-29 National Institute For Materials Science α-SiAlON, α-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656532A (en) * 1992-08-11 1994-03-01 Toyota Central Res & Dev Lab Inc Production of silicon nitride-based sintered compact
JP2003124527A (en) * 2001-07-16 2003-04-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit equipped with at least one led as light source
WO2005123876A1 (en) * 2004-06-18 2005-12-29 National Institute For Materials Science α-SiAlON, α-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME

Also Published As

Publication number Publication date
JP2006052337A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4572368B2 (en) Method for producing sialon phosphor
CN101018841B (en) Phosphor, production method thereof and light emitting instrument
CN102676163B (en) Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
JP4891336B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP3914987B2 (en) Sialon phosphor and method for producing the same
JP5124101B2 (en) Alpha-type sialon phosphor, method for producing the same, and lighting apparatus
CN101953230B (en) Light emitting device with translucent ceramic plate
JP5025474B2 (en) β-type sialon phosphor
US8663500B2 (en) α-sialon phosphor, method for producing same, and light-emitting device
JP5122765B2 (en) Phosphor production method, phosphor and lighting apparatus
TW200925252A (en) Fluorescent substance and method for manufacturing the same
JP5954425B2 (en) Wavelength conversion member and light emitting device using the same
EP3121246A1 (en) Ceramic composite material for optical conversion, production method therefor, and light-emitting device provided with same
WO2018003564A1 (en) Ceramic sintered body
JP2009188274A (en) Light emitting device, and its manufacturing method
JP4364189B2 (en) α-type sialon, phosphor comprising α-type sialon, and lighting apparatus using the same
JP2006348139A (en) Method for producing alpha-sialon phosphor powder
JP2005272484A (en) Light-emitting device
JP2010168439A (en) Method for producing phosphor and semiconductor light-emitting device
JP2005272488A (en) METHOD FOR PRODUCING alpha-SIALON PHOSPHOR POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

R150 Certificate of patent or registration of utility model

Ref document number: 4572368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250