JP5121166B2 - Flow meter and gas flow measurement system - Google Patents

Flow meter and gas flow measurement system Download PDF

Info

Publication number
JP5121166B2
JP5121166B2 JP2006138904A JP2006138904A JP5121166B2 JP 5121166 B2 JP5121166 B2 JP 5121166B2 JP 2006138904 A JP2006138904 A JP 2006138904A JP 2006138904 A JP2006138904 A JP 2006138904A JP 5121166 B2 JP5121166 B2 JP 5121166B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
characteristic information
container
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138904A
Other languages
Japanese (ja)
Other versions
JP2007309778A (en
Inventor
宣幸 福浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006138904A priority Critical patent/JP5121166B2/en
Publication of JP2007309778A publication Critical patent/JP2007309778A/en
Application granted granted Critical
Publication of JP5121166B2 publication Critical patent/JP5121166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

本発明は流量計およびガス流量計測システムに係り、特にボンベ等に充填されたガス供給源から供給されるガスの流量を計測する流量計およびガス流量計測システムに関する。   The present invention relates to a flow meter and a gas flow rate measurement system, and more particularly to a flow meter and a gas flow rate measurement system for measuring a flow rate of gas supplied from a gas supply source filled in a cylinder or the like.

従来、例えばボンベやガスタンク(ガスホールダ)のような気密された容器(以下、単にボンベまたはガス供給源と称することがある)に充填された気体(ガス)の取引は、ガスの種類毎に定められた一定の条件下での重量もしくは体積で行われることが多く、専らボンベ単位での取引となっている。また、タンクローリ車で運搬された気体(ガス)の取引も同様に、一定の条件下での重量もしくは体積で行われることが多い。この気体(ガス)は、ガス充填工場等においてガス毎に定められた所定圧力(基準圧力)および所定温度(基準温度)の気体の状態(ガスの基準状態)を条件としてボンベ等に充填され、取引される。   Conventionally, transactions of gas (gas) filled in an airtight container such as a cylinder or a gas tank (gas holder) (hereinafter sometimes simply referred to as a cylinder or a gas supply source) are determined for each type of gas. It is often done by weight or volume under certain conditions, and is traded exclusively in cylinder units. Similarly, transactions of gas (gas) transported by a tanker truck are often carried out by weight or volume under certain conditions. This gas (gas) is filled in a cylinder or the like on condition that the gas state (gas reference state) at a predetermined pressure (reference pressure) and a predetermined temperature (reference temperature) determined for each gas in a gas filling factory or the like, Be traded.

ところで、ボンベ等のガス供給源のガス残量を管理する方法として、液面計を利用した方法がある。例えば、液化ガスボンベの内部に配置して液面計のセンサ部により液面位置を監視する方法であり、ガスを使用するうちに徐々に下がっていく液化ガスの液面が、所定の位置以下になったときには、液面計が所定値以下の液面であることを出力するので、ガス管理者は、その出力値に基づき液化ガスボンベの交換時期を判断することができる。   By the way, as a method for managing the remaining gas amount of a gas supply source such as a cylinder, there is a method using a liquid level gauge. For example, it is a method that is placed inside a liquefied gas cylinder and the liquid level position is monitored by the sensor unit of the liquid level gauge, and the liquid level of the liquefied gas that gradually decreases while using the gas is below a predetermined position. When this happens, the liquid level gauge outputs that the liquid level is equal to or lower than a predetermined value, so that the gas manager can determine the replacement timing of the liquefied gas cylinder based on the output value.

ところで、ガス充填工場等でボンベ等のガス供給源に充填されたガスは、ガスを使用する所定の工程(プロセス)に加圧して流したとしても、ガス残量管理においては、ボンベ等のガス供給源に充填された当初のガスの重量もしくは体積に対して、どれほどのガス使用量であるかを把握することになる。ガスの使用量を重量と捉える場合は、例えば、ガスボンベの重量を常時計量し、その計量値を当初のガスボンベ重量から除いた値を、ガス使用量とみなす方法がある。一方で、ガスの使用量を体積として捉える場合は、流量計で計測した体積流量の積算値を求め、その積算値をガス使用量とみなす方法がある。   By the way, even if the gas filled in a gas supply source such as a cylinder in a gas filling plant or the like is pressurized and flowed in a predetermined process (process) using the gas, the gas such as a cylinder is used in the gas remaining amount management. It will be understood how much gas is used with respect to the weight or volume of the initial gas filled in the supply source. When the amount of gas used is regarded as a weight, for example, there is a method in which the weight of a gas cylinder is constantly measured and a value obtained by removing the measured value from the initial gas cylinder weight is regarded as the gas usage. On the other hand, when the amount of gas used is captured as a volume, there is a method in which an integrated value of the volumetric flow rate measured by a flow meter is obtained and the integrated value is regarded as the amount of gas used.

また、工程に気体を送り込む際に、ガスの供給量を計測し制御する上で、ボンベ等のガス供給源と所定の工程との間に配設されたガス配管路に圧力調節計と流量計および流量調節計を介挿して、その体積流量を測定および制御する流量計測装置が知られている(例えば、特許文献1を参照)。
一般的に体積流量は、気体の状態が変化して膨張または圧縮した気体の体積をそのまま流量として表される。一方で、質量流量は、文字どおり気体の流量を重さ(質量)で計測し、流量として表される。気体は、圧縮性流体であり、質量流量計測は、気体の状態の変化に左右されない質量(重さ)そのものを捉える。このため質量流量計測は、正確に気体の流量を計測することができる。例えば、図2に示すように、同じ体積(1m/h)の容器Aと容器Bとに充填された同一の気体であっても、容器A内の圧力が2気圧、容器B内の圧力が1気圧である場合、体積流量計の計測指示値は容器Aおよび容器Bともに1m/hとなってしまう。しかるに質量流量計の計測指示値は、容器Aが2m/h、容器Bが1m/hとなり正確に流量を計測できる。このため、ガス残量の管理は、質量流量を用いることが望ましい。なお、質量流量計で計測された流量の単位は、本来は単位時間あたりの質量で示すべきものであるが、商慣習により、便宜上、温度0℃,圧力1気圧(101.3kPa;以下同じ)を標準状態とする等の条件を明記した上で、単位時間当たりの体積で表示される。
In addition, when measuring and controlling the gas supply amount when sending gas into the process, a pressure regulator and a flow meter are installed in a gas pipe line disposed between a gas supply source such as a cylinder and a predetermined process. In addition, there is known a flow rate measuring device that measures and controls the volume flow rate by inserting a flow rate controller (see, for example, Patent Document 1).
In general, the volume flow rate is expressed as the flow rate of the gas volume expanded or compressed as the gas state changes. On the other hand, the mass flow rate literally measures the gas flow rate by weight (mass) and is expressed as a flow rate. Gas is a compressible fluid, and mass flow measurement captures the mass (weight) that is not affected by changes in the state of the gas. For this reason, the mass flow measurement can accurately measure the gas flow rate. For example, as shown in FIG. 2, even if the same gas (the same volume (1 m 3 / h)) is filled in the container A and the container B, the pressure in the container A is 2 atm. When the pressure is 1 atm, the measurement instruction value of the volume flow meter is 1 m 3 / h for both the container A and the container B. However measured indicated value of the mass flow meter, the container A is 2m 3 / h, the container B is 1 m 3 / h becomes possible to accurately measure the flow rate. For this reason, it is desirable to use the mass flow rate for the management of the remaining amount of gas. The unit of the flow rate measured by the mass flow meter should originally be indicated by the mass per unit time. However, for convenience, the temperature is 0 ° C. and the pressure is 1 atm (101.3 kPa; the same applies hereinafter). Is specified in terms of volume per unit time.

ちなみに液化ガスボンベのガス残量管理をするために、液化ガスボンベと所定の工程との間に配設されたガス配管路に質量流量計を介挿して、所定の工程へ供給するガス流量を常時計測し、計測したガス流量からガス使用量を積算し、積算したガス使用量等をもとにガス残量を管理する残量管理装置が知られている(例えば、特許文献2を参照)。
また質量流量を測定する装置としてガス供給源と所定の工程との間に配設されたガス配管路に流量計を介挿してその質量流量を測定する流量計測装置が知られている(例えば、特許文献3を参照)。この流量計測装置には、例えば熱式流量計として用いられるフローセンサが適用されている。このフローセンサは、基本的には例えば図3に示すようにシリコン基台上に設けた発熱抵抗体RHを挟んで流体の通流方向Fに該発熱抵抗体RHと独立して一対の測温抵抗体Ru,Rdを設けて構成されて、発熱抵抗体RHから発せられる熱の拡散度合い(温度分布)が前記流体の通流によって変化することを利用し、前記測温抵抗体Ru,Rdの熱による抵抗値変化から前記流体の流量を検出する。つまり、このフローセンサを適用した熱式流量計は、発熱抵抗体RHから発せられた熱が流体の流量に応じて下流側の測温抵抗体Rdに加わることで、熱による抵抗値の変化が上流側の測温抵抗体Ruよりも大きいことを利用して流量を計測するものである。
By the way, in order to manage the remaining amount of gas in the liquefied gas cylinder, the gas flow rate supplied to the predetermined process is constantly measured by inserting a mass flow meter in the gas pipe line arranged between the liquefied gas cylinder and the predetermined process. In addition, a remaining amount management device that integrates the gas usage from the measured gas flow rate and manages the remaining amount of gas based on the accumulated gas usage or the like is known (see, for example, Patent Document 2).
Further, as a device for measuring a mass flow rate, a flow rate measuring device for measuring the mass flow rate by inserting a flow meter in a gas pipe line disposed between a gas supply source and a predetermined process is known (for example, (See Patent Document 3). For example, a flow sensor used as a thermal flow meter is applied to the flow rate measuring device. This flow sensor basically has a pair of temperature measuring elements independently of the heating resistor RH in the fluid flow direction F across the heating resistor RH provided on the silicon base, for example, as shown in FIG. Resistors Ru and Rd are provided to utilize the fact that the degree of diffusion (temperature distribution) of the heat generated from the heating resistor RH varies with the flow of the fluid, The flow rate of the fluid is detected from a change in resistance value due to heat. That is, in the thermal flow meter to which this flow sensor is applied, the heat generated from the heating resistor RH is applied to the temperature-measuring resistor Rd on the downstream side according to the flow rate of the fluid, so that the resistance value changes due to heat. The flow rate is measured by utilizing the fact that it is larger than the temperature sensing resistor Ru on the upstream side.

ところで、図4に示すように複数のボンベ(1a,1b,1c)にそれぞれ異なるガスが充填されてそれらのガスを混合してガス負荷(図示せず)に供給する場合、混合したガスの体積比を調整するべくそれぞれのボンベ(1a,1b,1c)からガス負荷に導くガス配管路(3a,3b,3c)には、これらのガス配管路に流れるガスの体積流量を計測する体積流量計(5a,5b,5c)が介挿される。この図は、三種類のガスとしてボンベ1aに充填されたCOガス、ボンベ1bに充填されたArガスおよびボンベ1cに充填されたNガスを混合してガス負荷(図示せず)に混合ガス供給管3を介して供給するものである。
特許第2931289号公報 特開平05−223612号公報 特開2003−106887号公報
Incidentally, when a plurality of cylinders (1a, 1b, 1c) are filled with different gases as shown in FIG. 4 and these gases are mixed and supplied to a gas load (not shown), the volume of the mixed gas Volume flowmeters for measuring the volumetric flow rate of the gas flowing through these gas pipelines are provided in the gas pipelines (3a, 3b, 3c) leading from the respective cylinders (1a, 1b, 1c) to the gas load in order to adjust the ratio. (5a, 5b, 5c) is inserted. In this figure, the CO 2 gas filled in the bomb 1a, the Ar gas filled in the bomb 1b, and the N 2 gas filled in the bomb 1c are mixed and mixed into a gas load (not shown) as three kinds of gases. The gas is supplied through the gas supply pipe 3.
Japanese Patent No. 2931289 Japanese Patent Laid-Open No. 05-223612 JP 2003-106887 A

前述したように、容器に充填された気体(ガス)の取引は、ガスの種類毎に定められた一定の条件下での重量もしくは体積で行われることが多い。例えば、ボンベに充填されたアルゴンガスを取引するにあたり、ガス会社が定めた取引上の条件である「基準温度15℃、基準圧力1気圧のガスの状態(ガスの基準状態)」において、10kgのアルゴンガスが1本のボンベに充填されているとする。このボンベをガス供給源として、所定の工程(ガス負荷)にガスを供給する場合、ガス供給源と所定の工程との間に配設されたガス配管路に介挿された質量流量計で計測されたガス流量は、前述のとおり、商慣習により気体の標準状態(0℃,1気圧)における体積表示となっている。しかし、流量計測部におけるガスの状態は、取引上の条件である前記ガスの基準状態(前記基準温度と前記基準圧力)であり、気体の標準状態とは異なる。このためガス流量は、ガスの基準状態として定められた前記基準温度および前記基準圧力における流量に換算しなければならない。つまり、取引の単位が体積で行われた場合、すなわち、ボンベ内に充填された当初のガス体積で取引が行われた場合、上述した換算を行わなければボンベ内のガス残量を正確に求めることができない。   As described above, the trade of the gas (gas) filled in the container is often performed by weight or volume under a certain condition determined for each type of gas. For example, in the case of trading argon gas filled in a cylinder, 10 kg of “gas condition (standard condition of gas)” of “standard temperature of 15 ° C. and standard pressure of 1 atm”, which is a business condition determined by a gas company. It is assumed that one cylinder is filled with argon gas. When gas is supplied to a predetermined process (gas load) using this cylinder as a gas supply source, measurement is performed with a mass flow meter inserted in a gas pipe line disposed between the gas supply source and the predetermined process. As described above, the gas flow rate is displayed as a volume in the standard state of gas (0 ° C., 1 atm) according to commercial practice. However, the gas state in the flow rate measurement unit is the gas reference state (the reference temperature and the reference pressure), which is a transactional condition, and is different from the gas standard state. For this reason, the gas flow rate must be converted into the flow rate at the reference temperature and the reference pressure determined as the reference state of the gas. In other words, when the unit of transaction is performed by volume, that is, when the transaction is performed with the original gas volume filled in the cylinder, the remaining amount of gas in the cylinder is accurately obtained unless the above conversion is performed. I can't.

特に複数のボンベに充填された各ガスの基準温度および基準圧力がそれぞれ異なり、それら複数種のガスを混合して利用する工程(プロセス)がある場合、各ガスの供給路に介挿された流量計により計測されたガス流量は、それぞれのガスの基準温度および基準圧力の流量に換算しなければ各ボンベ内のガス残量を把握することができず、残量把握が著しく煩雑になるという管理上の問題があった。   In particular, when the reference temperature and the reference pressure of each gas filled in multiple cylinders are different and there is a process (process) that mixes and uses these types of gases, the flow rate inserted in each gas supply path Management that the gas flow rate measured by the meter cannot be grasped unless it is converted to the flow rate of the reference temperature and pressure of each gas, and the remaining amount of gas in each cylinder cannot be grasped. There was a problem above.

例えば、図4に示したようにボンベ1aに充填されたCOガスは、基準温度が35℃であり、ボンベ1bに充填されたArガスは、基準温度が15℃、そして基準圧力が1気圧であり、またボンベ1cに充填されたNガスは、基準温度が0℃、そして基準圧力が1気圧のように異なった基準温度および基準圧力で取引されており、なおかつ各ボンベ(1a,1b,1c)の充填ボンベ容積が異なっているので各ボンベ内のガス残量を把握することができず、残量把握は、著しく煩雑になっていた。 For example, as shown in FIG. 4, the CO 2 gas filled in the cylinder 1a has a reference temperature of 35 ° C., and the Ar gas filled in the cylinder 1b has a reference temperature of 15 ° C. and a reference pressure of 1 atm. The N 2 gas filled in the cylinder 1c is traded at different reference temperatures and reference pressures such that the reference temperature is 0 ° C. and the reference pressure is 1 atm, and each cylinder (1a, 1b , 1c), it is difficult to grasp the remaining gas amount in each cylinder because the filling cylinder volumes are different, and the remaining amount grasping is extremely complicated.

その上、ボンベから供給されるガスを計測する流量計は、一般的に体積流量計が用いられており、一方、流量計測部におけるガスの温度および圧力は、ボンベ充填時の基準温度および基準圧力と異なっている。このため、計測された体積流量は、流量計測部における温度と圧力の影響を受け、正確に流量を測定し難く、前記ガスの基準状態の流量に換算し難いという問題がある。   In addition, a volumetric flow meter is generally used as a flow meter for measuring the gas supplied from the cylinder. On the other hand, the gas temperature and pressure in the flow measurement unit are the reference temperature and the reference pressure when filling the cylinder. Is different. For this reason, there is a problem that the measured volume flow rate is affected by the temperature and pressure in the flow rate measurement unit, it is difficult to accurately measure the flow rate, and it is difficult to convert the flow rate into the reference state of the gas.

尚、ボンベ内の使用環境(温度、圧力)を予め所定の値に仮定して、なおかつ、流量計測部における温度および圧力を計測した計測値を用いて演算し、ガスの基準状態の流量を求めることもできるものの、ボンベ内の使用環境が不明である。このため、前述したように演算された体積流量は誤差を多く含む値となり、管理値として不適当であるという問題があった。   In addition, assuming the usage environment (temperature, pressure) in the cylinder to a predetermined value in advance, and calculating using the measured values of the temperature and pressure in the flow rate measurement unit, the flow rate in the gas reference state is obtained. However, the usage environment in the cylinder is unknown. For this reason, there has been a problem that the volume flow rate calculated as described above is a value including many errors and is inappropriate as a management value.

このようなことから、想定していたよりも早くボンベのガスが空になったために工程(プロセス)の稼働が停止したり、まだ残量があるにもかかわらずボンベを交換したりする等の不具合を招来することがあった。
本発明は、このような従来の事情を考慮してなされたものであって、その目的は、ガスボンベ等のガス供給源に充填されたガスの残量を正確に把握することが可能であり、ボンベへのガス補充時期やボンベの交換時期を最適化することができる流量計を提供することにある。
For this reason, problems such as the operation of the process being stopped because the gas in the cylinder was emptied earlier than expected, or the cylinder was replaced even though there was still a remaining amount. Have been invited.
The present invention has been made in consideration of such conventional circumstances, and its purpose is to accurately grasp the remaining amount of gas filled in a gas supply source such as a gas cylinder, An object of the present invention is to provide a flow meter capable of optimizing the gas replenishment timing and gas cylinder replacement timing in the cylinder.

上述した目的を達成すべく本発明に係る流量計は、気密された容器に充填されたガスを所定の工程に導くガス配管路に介挿されて、このガス配管路に流れる前記ガスの質量流量を計測する質量流量計測部と、前記容器に充填されたガスの基準温度情報および基準圧力情報に加え、このガスの体積情報または質量情報および密度情報を含むガス特性情報を入力する入力部と、この入力部に入力された前記ガス特性情報から標準状態における体積値に前記ガスの体積情報を換算する標準状態体積変換部と、前記入力部に入力された前記ガスの基準温度および基準圧力における体積流量に前記質量流量を換算する流量換算部と、この流量換算部が換算した前記ガスの体積流量と前記ガスが所定の前記工程に供給された時間との積から前記ガスの積算流量を求める積算流量演算部と、前記標準状態体積変換部が換算した前記ガスの体積値と前記積算流量演算部が求めた積算流量との差分から前記容器に充填されたガスの残量を求める残量演算部とを備えることを特徴としている。   In order to achieve the above-mentioned object, the flow meter according to the present invention is inserted into a gas pipe that guides a gas filled in an airtight container to a predetermined process, and the mass flow rate of the gas flowing through the gas pipe A mass flow rate measuring unit for measuring the gas, and an input unit for inputting gas characteristic information including volume information or mass information and density information of the gas in addition to the reference temperature information and reference pressure information of the gas filled in the container, A standard state volume conversion unit that converts the volume information of the gas into a volume value in a standard state from the gas characteristic information input to the input unit, and a volume at the reference temperature and reference pressure of the gas input to the input unit Integration of the gas from a product of a flow rate conversion unit that converts the mass flow rate into a flow rate, a volume flow rate of the gas converted by the flow rate conversion unit, and a time when the gas is supplied to the predetermined process The remaining amount of gas filled in the container is obtained from the difference between the integrated flow rate calculation unit for obtaining the volume, the volume value of the gas converted by the standard state volume conversion unit, and the integrated flow rate obtained by the integrated flow rate calculation unit. And a remaining amount calculation unit.

特に前記容器は、この容器に充填された前記ガスのガス特性情報を保持する特性情報保持手段を備え、前記入力部は、前記特性情報保持手段に保持された前記ガスのガス特性情報を読み込む特性情報読み取り手段を備えて構成される。
また前記特性情報保持手段は、所定のコードに前記ガス特性情報をコード化して印刷されたデータラベルであることを特徴としている。
In particular, the container includes a characteristic information holding unit that holds gas characteristic information of the gas filled in the container, and the input unit reads the gas characteristic information of the gas held in the characteristic information holding unit. It comprises information reading means.
Further, the characteristic information holding means is a data label printed by encoding the gas characteristic information into a predetermined code.

次に本発明に係る流量計は、複数の気密された容器にそれぞれ充填された複数のガスを所定の工程に導くガス配管路にそれぞれ介挿されて、これらガス配管路に流れる前記各ガスの質量流量をそれぞれ計測する質量流量計測手段と、前記各ガスの基準温度情報、基準圧力情報に加え、前記各ガスの体積情報または質量情報および密度情報を含むガス特性情報をそれぞれ入力する入力手段と、この入力手段から入力された前記各ガスのガス特性情報から標準状態における体積値に前記各ガスの体積情報をそれぞれ換算する標準状態体積変換手段と、前記入力手段から入力された前記各ガスの基準温度および基準圧力における体積流量に前記質量流量をそれぞれ換算する流量換算手段と、この流量換算手段が換算した前記各ガスの体積流量とこれらガスが所定の前記工程に供給された時間との積から前記ガス毎の積算流量をそれぞれ求める積算流量演算手段と、前記標準状態体積変換部がそれぞれ換算した前記各ガスの体積値と前記積算流量演算部がそれぞれ求めた前記ガス毎の積算流量との差分から複数の前記容器にそれぞれ充填されたガスの残量を求める残量演算手段と
を備えることを特徴としている。
Next, the flow meter according to the present invention includes a plurality of gas filled in a plurality of hermetically sealed containers, which are inserted into gas pipes that lead to a predetermined process, and each of the gases flowing through the gas pipes. A mass flow rate measuring means for measuring each mass flow rate, and an input means for inputting gas characteristic information including volume information or mass information and density information of each gas in addition to the reference temperature information and reference pressure information of each gas. The standard state volume converting means for converting the volume information of each gas into the volume value in the standard state from the gas characteristic information of each gas inputted from the input means, and the respective gas inputted from the input means A flow rate conversion means for converting the mass flow rate into a volume flow rate at a reference temperature and a reference pressure, a volume flow rate of each gas converted by the flow rate conversion means, and An integrated flow rate calculation means for obtaining an integrated flow rate for each gas from the product of the time when the gas is supplied to the predetermined process, a volume value of each gas converted by the standard state volume conversion unit, and the integrated flow rate, respectively. And a remaining amount calculating means for determining a remaining amount of gas filled in each of the plurality of containers based on a difference from the integrated flow rate for each gas respectively calculated by the calculating unit.

特に複数の前記容器は、これら容器にそれぞれ充填された前記各ガスのガス特性情報をそれぞれ保持する特性情報保持手段を備え、前記入力手段は、前記データ保持手段に保持された前記各ガスのガス特性情報を読み込むデータ読み取り手段を備えることを特徴としている。
また前記特性情報保持手段は、所定のコードに複数の前記ガス毎の特性情報をコード化してそれぞれ印刷された複数のデータラベルとして構成される。
In particular, the plurality of containers are provided with characteristic information holding means for holding gas characteristic information of the respective gases filled in the containers, respectively, and the input means is the gas of each gas held in the data holding means. It is characterized by comprising data reading means for reading characteristic information.
The characteristic information holding means is configured as a plurality of data labels each of which is encoded with a plurality of characteristic information for each of the gases in a predetermined code.

本発明の請求項1に記載の流量計または請求項4に記載のガス流量計測システムによれば、質量流量計測部が計測したガス配管路を流れるガスの質量流量を入力部(入力手段)によって入力されたガスの特性情報を用いて、流量換算部(流量換算手段)が所定の使用状況下あるいは所定の環境条件下の温度に換算した質量流量を求めているので、異なる基準温度で充填されたガス毎の正しい質量流量を得ることができる。そして、流量換算部が換算したガスの質量流量と、このガスがガス負荷に供給された時間との積からガスの積算流量、即ちガス負荷に供給されたガスの使用容積を求めることができる。更にこの流量計は、残量演算部にてボンベに充填されたガスの容積と積算流量演算部が求めた積算流量との差分からボンベのガス残量を求めることができる。したがって例えば、ガス管理担当者は、ボンベ内のガス残量を正確に把握することができ、引いてはボンベに対するガスの補充時期を最適化することができる等の優れた効果を奏し得る。   According to the flow meter of the first aspect of the present invention or the gas flow rate measurement system of the fourth aspect of the present invention, the mass flow rate of the gas flowing through the gas pipeline measured by the mass flow rate measurement unit is determined by the input unit (input means). Since the flow rate conversion unit (flow rate conversion means) uses the input gas characteristic information to obtain the mass flow rate converted to a temperature under a predetermined use condition or a predetermined environmental condition, it is filled at a different reference temperature. The correct mass flow rate for each gas can be obtained. The integrated flow rate of the gas, that is, the use volume of the gas supplied to the gas load can be obtained from the product of the mass flow rate of the gas converted by the flow rate conversion unit and the time when the gas is supplied to the gas load. Furthermore, this flow meter can determine the gas remaining amount in the cylinder from the difference between the volume of the gas filled in the cylinder in the remaining amount calculating unit and the integrated flow rate obtained by the integrated flow rate calculating unit. Therefore, for example, the person in charge of gas management can accurately grasp the remaining amount of gas in the cylinder, and thus can exhibit excellent effects such as being able to optimize the gas replenishment timing for the cylinder.

また本発明の請求項2に記載の流量計または請求項5に記載のガス流量計測システムによれば、ガスが充填された容器の特性情報保持手段がガス特性情報を保持し、このガス特性情報をデータ読み取り手段によって読み取っているので迅速、容易にして正確なガスの特性情報を得ることができる。
特に本発明の請求項3に記載の流量計または請求項6に記載のガス流量計測システムによれば、前記特性情報保持手段は、ガスの特性情報を例えばバーコード等にコード化されたデータラベルとして用意されるので、取り扱いが容易である。
According to the flow meter according to claim 2 or the gas flow rate measurement system according to claim 5 of the present invention, the characteristic information holding means of the container filled with gas holds the gas characteristic information, and this gas characteristic information Can be obtained quickly and easily and accurate gas characteristic information can be obtained.
Particularly, according to the flow meter according to claim 3 or the gas flow rate measurement system according to claim 6 of the present invention, the characteristic information holding means is a data label in which the characteristic information of the gas is encoded into a bar code or the like. As it is prepared, it is easy to handle.

以下、本発明の一実施形態に係る流量計について図面を参照しながら説明する。尚、図1は本発明を実施する形態の一例であって、この図によって本発明が限定されるものではない。
この図において1は、流量計測対象の気体(以下、ガスと称する)が充填されて、所定の工程(ガス負荷)にガスを供給するガス供給源となる気密された容器(例えばボンベ。以下同じ)である。このボンベ1には、充填工場等にてガス2が充填される。ボンベ1に充填されたガス2は、ガス配管路3を介して図示しない下流側の工程(ガス負荷)へ供給される。
Hereinafter, a flow meter according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an example of an embodiment for carrying out the present invention, and the present invention is not limited to this figure.
In this figure, reference numeral 1 denotes an airtight container (for example, a cylinder, which is a gas supply source for supplying a gas to a predetermined process (gas load), which is filled with a gas (hereinafter referred to as a gas) for flow rate measurement. ). The cylinder 1 is filled with a gas 2 at a filling factory or the like. The gas 2 filled in the cylinder 1 is supplied to a downstream process (gas load) (not shown) via the gas piping 3.

一方、ガス配管路3には、このガス配管路3内を流れるガスの流量を計測する流量計10が介挿されている。この流量計10は、ガス配管路3に流れる前記ガスの質量流量を計測する質量流量計測部11、ボンベ1に充填されたガス2の基準温度情報、基準圧力情報、体積情報および密度情報を含むガス特性情報を入力する入力部12、この入力部12に入力されたガス2の基準温度情報、基準圧力情報および密度情報から標準状態における体積値にガス2の体積情報を換算する標準状態体積変換部13、質量流量計測部11が計測したガス2の質量流量を入力部12から入力されたガス2の基準温度および基準圧力における体積流量に換算する流量換算部14、この流量換算部14が換算したガス2の質量流量とガス2がガス負荷に供給された時間との積からガス2の積算流量を求める積算流量演算部15、標準状態体積変換部13によって変換されたガス2の体積情報と積算流量演算部15が求めたガス2の積算流量との差分、すなわちガス負荷に供給されたガス2の供給量との差分からボンベ1内のガス2の残量を求める残量演算部16、流量換算部14により換算されたガス2の体積流量や積算流量演算部15が求めたガス2の積算流量を出力する出力部17を備えて構成される。ちなみに質量流量計測部11は、例えば前述した特許文献1に示された流量計測装置のフローセンサ等が適用される。   On the other hand, a flow meter 10 for measuring the flow rate of the gas flowing through the gas piping 3 is inserted in the gas piping 3. The flow meter 10 includes a mass flow rate measuring unit 11 that measures the mass flow rate of the gas flowing through the gas piping 3, reference temperature information, reference pressure information, volume information, and density information of the gas 2 filled in the cylinder 1. An input unit 12 for inputting gas characteristic information, and a standard state volume conversion for converting the volume information of the gas 2 into the volume value in the standard state from the reference temperature information, reference pressure information and density information of the gas 2 input to the input unit 12 Unit 13, the flow rate conversion unit 14 that converts the mass flow rate of the gas 2 measured by the mass flow rate measurement unit 11 into the volume flow rate at the reference temperature and reference pressure of the gas 2 input from the input unit 12, and the flow rate conversion unit 14 converts The integrated flow rate calculation unit 15 for obtaining the integrated flow rate of the gas 2 from the product of the mass flow rate of the gas 2 and the time when the gas 2 is supplied to the gas load is converted by the standard state volume conversion unit 13. From the difference between the volume information of the gas 2 and the integrated flow rate of the gas 2 obtained by the integrated flow rate calculation unit 15, that is, the difference between the supply amount of the gas 2 supplied to the gas load, the remaining amount of the gas 2 in the cylinder 1 is determined. A remaining amount calculation unit 16 to be obtained and an output unit 17 that outputs the volumetric flow rate of the gas 2 converted by the flow rate conversion unit 14 and the integrated flow rate of the gas 2 calculated by the integrated flow rate calculation unit 15 are configured. Incidentally, for example, the flow sensor of the flow rate measuring device disclosed in Patent Document 1 described above is applied to the mass flow rate measuring unit 11.

尚、上記ガス特性情報は、例えば所定のコード(例えば、バーコード)化されて、このガス2が充填されたボンベ1にラベル(特性情報保持手段18)として貼付または取り付けられて掲示されるとともに、コードを読み取り可能な入力部12(例えば特に図示しないバーコードリーダ:特性情報読み取り手段)で読み取るように構成するとよい。このように本発明の流量計またはガス流量計測システムを構成すれば、特に複数のボンベ1を備えるプラント等のガス残量管理を容易に行うことができ好ましい。   The gas characteristic information is, for example, converted into a predetermined code (for example, a bar code) and posted and attached as a label (characteristic information holding means 18) to the cylinder 1 filled with the gas 2. The code may be read by an input unit 12 that can read the code (for example, a bar code reader (not shown): characteristic information reading means). If the flow meter or the gas flow rate measurement system of the present invention is configured in this way, it is preferable because the remaining gas management of a plant or the like having a plurality of cylinders 1 can be easily performed.

概略的には、上述したように構成された本発明の流量計が特徴とするところは、標準状態体積変換部13によってガス2の基準温度情報、基準圧力情報および密度情報から標準状態における体積値にガス2の体積情報を換算する点、質量流量計測部11にて計測されたガスの流量を流量換算部14にてガス2の基準温度および基準圧力における体積流量に換算する点、この換算した流量とガス負荷に供給された時間との積からガス2の積算流量を求める積算流量演算部15を備え、残量演算部16にて標準状態体積変換部13が換算したガス2の体積値と積算流量演算部15が求めた積算流量との差分からボンベ1に充填されたガス2の残量を求める点にある。   Schematically, the flow meter of the present invention configured as described above is characterized in that the volume value in the standard state is obtained from the reference temperature information, the reference pressure information, and the density information of the gas 2 by the standard state volume conversion unit 13. The point where the volume information of the gas 2 is converted, the point where the gas flow rate measured by the mass flow rate measuring unit 11 is converted into the volume flow rate at the reference temperature and the reference pressure of the gas 2 by the flow rate converting unit 14, The integrated flow rate calculation unit 15 for obtaining the integrated flow rate of the gas 2 from the product of the flow rate and the time supplied to the gas load is provided, and the volume value of the gas 2 converted by the standard state volume conversion unit 13 in the remaining amount calculation unit 16 The remaining amount of the gas 2 filled in the cylinder 1 is obtained from the difference from the accumulated flow obtained by the accumulated flow calculation unit 15.

このような特徴ある流量計についてより詳細に説明する。まず、ガス2の取引単位がガス質量[kg/s]であり、質量流量計測部11の出力値が気体の標準状態における体積[Nm3/h]の場合を説明する。入力部12は、ボンベ1に充填されたガス2の質量情報および密度情報を取得する。次いで標準状態体積変換部13は、ボンベ1に充填されたガス2の質量情報を密度情報で除してガス2の標準状態における体積に換算する。尚、このガス密度情報が標準状態(0℃、1気圧)と異なる場合は、入力部12から入力されたガス2の基準温度情報、基準圧力情報を用いて標準状態体積変換部13によって標準状態における体積に換算するか、ガス供給会社が提供するガス密度情報を用いて換算する。 Such a characteristic flowmeter will be described in more detail. First, the case where the transaction unit of the gas 2 is the gas mass [kg / s] and the output value of the mass flow measurement unit 11 is the volume [Nm 3 / h] in the standard state of the gas will be described. The input unit 12 acquires mass information and density information of the gas 2 filled in the cylinder 1. Next, the standard state volume conversion unit 13 divides the mass information of the gas 2 filled in the cylinder 1 by the density information and converts it into the volume of the gas 2 in the standard state. When the gas density information is different from the standard state (0 ° C., 1 atm), the standard state volume conversion unit 13 uses the standard temperature information and the reference pressure information of the gas 2 input from the input unit 12 to perform the standard state. Or volume using gas density information provided by the gas supply company.

また流量計10は、このようにして換算された流量を用いて、ガス負荷にガス2が供給された時間tとの積を求めて、積算流量演算部15が積算流量すなわちガス負荷に供給された供給量V[m]を求める。
具体的に積算流量演算部15は、
V=∫Qdt (1)
なる演算を施して供給量V[m]を求める。そして、残量演算部16は、前述した標準状態体積変換部13によって求められたボンベ1に充填されたガス2の標準状態における体積V[m]から積算流量演算部15が求めた供給量V[m]を差し引いてボンベ1内のガス残量を求め、その結果を出力部17から出力する。
The flow meter 10 obtains the product of the time t when the gas 2 is supplied to the gas load by using the flow rate thus converted, and the integrated flow rate calculation unit 15 supplies the integrated flow rate, that is, the gas load. Supply amount V [m 3 ] is obtained.
Specifically, the integrated flow rate calculation unit 15
V = ∫Qdt (1)
To calculate the supply amount V [m 3 ]. The remaining amount calculation unit 16 supplies the flow calculated by the integrated flow rate calculation unit 15 from the volume V 0 [m 3 ] in the standard state of the gas 2 filled in the cylinder 1 obtained by the standard state volume conversion unit 13 described above. The amount of gas V in the cylinder 1 is determined by subtracting the amount V [m 3 ], and the result is output from the output unit 17.

このようにして換算されたボンベ体積から、積算流量演算部15が上述した演算を施してガス負荷に対する供給量を求め、残量演算部16がボンベ体積と供給量との差分を求めることでボンベ1のガス残量を導く。
次にガス2の取引単位が体積[L]で、質量流量計測部11の計測値が気体の標準状態における体積[Nm/h]であり、ボンベ1に充填されたガス2の基準温度がTn[℃]、基準圧力が1気圧であり、標準状態のガス温度をT[℃]とし、質量流量計測部11が計測した流量がQ[Nm/h]であるとすれば、質量流量計測部11が計測した流量Qを基準温度における流量Qn換算した値は、ボイル・シャルルの法則を用いて次式で求めることができる。
From the cylinder volume thus converted, the integrated flow rate calculation unit 15 performs the above-described calculation to determine the supply amount for the gas load, and the remaining amount calculation unit 16 determines the difference between the cylinder volume and the supply amount. 1 gas remaining amount is led.
Next, the transaction unit of the gas 2 is the volume [L], the measured value of the mass flow measuring unit 11 is the volume [Nm 3 / h] in the standard state of the gas, and the reference temperature of the gas 2 filled in the cylinder 1 is If Tn [° C.], the reference pressure is 1 atm, the gas temperature in the standard state is T [° C.], and the flow rate measured by the mass flow rate measuring unit 11 is Q [Nm 3 / h], then the mass flow rate A value obtained by converting the flow rate Q measured by the measuring unit 11 into the flow rate Qn at the reference temperature can be obtained by the following equation using Boyle-Charles' law.

Q=Qn×{(273+Tn)/(273+T)}
=Qn×(273+Tn)/273[Nm/h]
一方、基準温度Tn[℃]におけるガス使用量の積算値Vは、上述した(1)式の演算を積算流量演算部15が行うことで求めることができる。したがって、ボンベ1のガス残量は、取引時のボンベ1のガス体積から積算流量演算部15が求めたガス使用量の積算値Vを残量演算部16が差し引くことで求めることができる。そして求めたガス残量は、出力部17から出力される。
Q = Qn × {(273 + Tn) / (273 + T)}
= Qn × (273 + Tn) / 273 [Nm 3 / h]
On the other hand, the integrated value V of the amount of gas used at the reference temperature Tn [° C.] can be obtained by the integrated flow rate calculation unit 15 performing the calculation of the above-described equation (1). Therefore, the remaining amount of gas in the cylinder 1 can be obtained by subtracting the accumulated value V of the amount of gas used obtained by the integrated flow rate calculation unit 15 from the gas volume of the cylinder 1 at the time of transaction, by the remaining amount calculation unit 16. The obtained remaining gas amount is output from the output unit 17.

尚、質量流量計測部11の計測値が質量表示[kg/s]である場合、取引上の条件であるガス基準状態を鑑みて換算すればよい。また、上述した実施形態は、一つのボンベ1に充填されたガス2の残量を求める場合を説明したが、複数のボンベ1にそれぞれ異なる種類のガス2が充填されていたとしても、それぞれのガス特性情報を用いることで正確な積算流量を求めることができ、引いてはボンベ1のガス残量を精度良く求めることができる。   In addition, what is necessary is just to convert in view of the gas reference | standard condition which is the conditions on transaction, when the measured value of the mass flow measurement part 11 is mass display [kg / s]. Moreover, although embodiment mentioned above demonstrated the case where the residual amount of the gas 2 with which one cylinder 1 was filled was obtained, even if it was filled with the gas 2 of a different kind in each of the several cylinders 1, By using the gas characteristic information, an accurate integrated flow rate can be obtained, and by pulling, the remaining gas amount in the cylinder 1 can be obtained with high accuracy.

かくして本発明の流量計は、質量流量計測部11が計測したガス配管路3を流れるガス2の質量流量を入力部12から入力されたガス2の基準温度および基準圧力における体積流量に変換しているので、基準温度の異なるガス種毎の正しい流量を求めることができる。また、本発明の流量計は、更に流量換算部14が換算したガス2の質量流量と、このガス2がガス負荷に供給された時間との積からガス2の積算流量を求める積算流量演算部15を備えているので、異なる基準温度で充填されたガス2ごとの正しい積算流量、すなわちガス負荷に供給されたガス2の使用容量を求めることができる。更に、本発明の流量計は、ボンベ1に充填されたガス2の容量と積算流量演算部が求めた積算流量との差分からボンベ1のガス残量を求める残量演算部を備えているので、ボンベ1内のガス残量を正確に把握することができ、引いてはボンベ1に対するガス2の補充時期を最適化することができる。   Thus, the flowmeter of the present invention converts the mass flow rate of the gas 2 flowing through the gas pipe 3 measured by the mass flow rate measurement unit 11 into the volume flow rate at the reference temperature and reference pressure of the gas 2 input from the input unit 12. Therefore, it is possible to obtain a correct flow rate for each gas type having a different reference temperature. Further, the flow meter of the present invention further includes an integrated flow rate calculation unit for obtaining an integrated flow rate of the gas 2 from the product of the mass flow rate of the gas 2 converted by the flow rate conversion unit 14 and the time when the gas 2 is supplied to the gas load. 15, the correct integrated flow rate for each gas 2 filled at different reference temperatures, that is, the use capacity of the gas 2 supplied to the gas load can be obtained. Furthermore, the flow meter of the present invention includes a remaining amount calculation unit that obtains the remaining amount of gas in the cylinder 1 from the difference between the capacity of the gas 2 filled in the cylinder 1 and the integrated flow rate calculated by the integrated flow rate calculation unit. Thus, the remaining amount of gas in the cylinder 1 can be accurately grasped, so that the replenishment timing of the gas 2 to the cylinder 1 can be optimized.

或いは本発明の流量計は、流量換算部14により換算されたガス2の質量流量、積算流量演算部15もしくは残量演算部16が求めたガスの積算使用量およびボンベ1のガス残量を出力する出力部17を備えているので、この出力部17により所定の使用状況下あるいは所定の環境条件下の温度に換算されたガス2の質量流量、使用容量およびボンベ1のガス残量を確認することができる等の実用上多大なる効果を奏する。   Alternatively, the flow meter of the present invention outputs the mass flow rate of the gas 2 converted by the flow rate conversion unit 14, the integrated usage amount of the gas obtained by the integrated flow rate calculation unit 15 or the remaining amount calculation unit 16, and the remaining gas amount of the cylinder 1. Since the output unit 17 is provided, the output unit 17 confirms the mass flow rate of the gas 2 converted into the temperature under a predetermined use condition or a predetermined environmental condition, the used capacity, and the gas remaining amount of the cylinder 1. It is possible to achieve a great practical effect.

また本発明の流量計またはガス流量計測システムによれば、特性情報保持手段18は、ガス2の特性情報を例えばバーコード等にコード化されたデータラベルとして用意される一方、入力部12は、このコード化されたガス特性情報を取り込んでいるので、ガス特性情報を容易にして、しかも入力ミスをすることなく流量計10に取り込むことができる。このため本発明の流量計またはガス流量計測システムは、特に多数のボンベ1を有するプラント等のガス残量管理に最適である。   Further, according to the flow meter or the gas flow rate measurement system of the present invention, the characteristic information holding means 18 is prepared as a data label in which the characteristic information of the gas 2 is encoded in, for example, a barcode or the like, Since the coded gas characteristic information is taken in, the gas characteristic information can be easily taken into the flowmeter 10 without making an input error. For this reason, the flow meter or the gas flow rate measurement system of the present invention is most suitable for the management of the remaining amount of gas in a plant having a large number of cylinders 1 in particular.

尚、上述したガス2の質量流量、積算流量およびボンベ1内のガス残量は、特に図示しないが所定の伝送路(有線伝送路または無線伝送路)を介して、パソコン等の機器が取り込むように構成してもかまわない。このようにすることで、複数のボンベ1内のガス2の残量を現場に設置された流量計10の出力部17にて確認しなくてもパソコン等が備える表示装置にて確認することができる。   Note that the mass flow rate of the gas 2, the integrated flow rate, and the gas remaining amount in the cylinder 1 are taken in by a device such as a personal computer via a predetermined transmission path (wired transmission path or wireless transmission path), although not particularly shown. It may be configured as follows. By doing in this way, even if it does not confirm with the output part 17 of the flow meter 10 installed in the field the residual amount of the gas 2 in a some cylinder 1, it can confirm with the display apparatus with which a personal computer etc. are equipped. it can.

逆にパソコンから有線伝送路または無線伝送路を介してボンベ1に充填されたガス2の基準温度等の情報を入力部12に入力できるように構成してもよい。この場合は、現場に配設された流量計10からガス2の基準温度等の情報等(性状情報)を入力することなく、パソコン等からガス2の性状情報を入力することができるので、極めて少ない手間で設定が完了するという利便性がある。   Conversely, information such as a reference temperature of the gas 2 filled in the cylinder 1 may be input to the input unit 12 from a personal computer via a wired transmission path or a wireless transmission path. In this case, the property information of the gas 2 can be input from a personal computer or the like without inputting information such as the reference temperature of the gas 2 (property information) from the flow meter 10 installed at the site. There is convenience that setting is completed with little effort.

また、上述した本発明の流量計またはガス流量計測システムにおいて、上述したようにして求められたガス残量またはガス質量が所定の量を下回ったとき、或いは特に図示しないがボンベ1の内圧を検出する圧力センサの圧力値が所定の値を下回ったとき出力部17から警報を出力するようにしてもよい。このように構成することによって、例えばガス管理者がボンベ1内のガス残量、ガス質量或いは内圧が低下したとき速やかにボンベ1内にガス2を充填する処理を行うことができる。   Further, in the above-described flow meter or gas flow measurement system of the present invention, the internal pressure of the cylinder 1 is detected when the remaining gas amount or gas mass obtained as described above falls below a predetermined amount, or although not particularly shown. An alarm may be output from the output unit 17 when the pressure value of the pressure sensor to be performed falls below a predetermined value. By configuring in this way, for example, the gas administrator can quickly perform the process of filling the gas 2 in the cylinder 1 when the remaining gas amount, gas mass, or internal pressure in the cylinder 1 decreases.

尚、ガス使用の用途によっては、1日或いは1ヶ月の期間中に、ガス使用量が大きく変動する使い方がなされる場合がある。ある施設では、1日の間でガス使用量の最小1%に対して最大100%の割合で変動する使い方がなされている。このようなガス使用量の変動を捉えるためには、流量レンジが広い質量流量計測部が望ましい。
しかしながら、このような流量レンジを確保することが困難である場合、測定レンジの異なる複数の質量流量計測部を組み合わせて、幅広い測定レンジを確保すればよい。具体的には、測定レンジがガス使用量の最小1%に対して最大100%の割合で変動するガス負荷に供給する場合、例えば図3に示すように計測可能な第1の測定範囲が1%(好ましくは、1%以下の質量流量)から50%程度(低流量)を計測する第1の質量流量計測部11aおよび計測可能な第2の測定範囲が40%から100%程度(高流量)を計測する第2の質量流量計測部11bを直列にガス配管路3に介挿すればよい。
In addition, depending on the usage of the gas, there is a case where the usage of the gas usage varies greatly during a period of one day or one month. In a certain facility, the usage is changed at a rate of a maximum of 100% with respect to a minimum of 1% of the gas usage during a day. In order to capture such fluctuations in gas usage, a mass flow rate measuring unit with a wide flow rate range is desirable.
However, when it is difficult to secure such a flow rate range, a wide measurement range may be secured by combining a plurality of mass flow rate measuring units having different measurement ranges. Specifically, when the measurement range is supplied to a gas load that fluctuates at a rate of 100% at the maximum with respect to 1% of the minimum amount of gas used, for example, the first measurement range that can be measured is 1 as shown in FIG. % (Preferably, a mass flow rate of 1% or less) to about 50% (low flow rate), the first mass flow measurement unit 11a measuring the second measurable second measurement range is about 40% to 100% (high flow rate) The second mass flow rate measuring unit 11b that measures the above may be inserted in the gas pipe line 3 in series.

この場合、ガス配管路3に流れるガスの質量流量が第1の質量流量計測部11aの計測範囲を超えたとき、第1の質量流量計測部11aは、フルスケールを出力する一方、第2の質量流量計測部11bは、ガス配管路3に流れるガスの質量流量を計測して出力する。したがって、第2の質量流量計測部11bの計測値を用いればよい。
一方、第2の質量流量計測部11bが測定可能な第2の測定範囲よりも少ないガス流量の場合、第2の質量流量計測部11bの計測値は、零となり、このとき第1の質量流量計測部11aは、ガス配管路3に流れるガスの質量流量を計測して出力する。したがって、第1の質量流量計測部11aの計測値を用いればよい。
In this case, when the mass flow rate of the gas flowing through the gas pipeline 3 exceeds the measurement range of the first mass flow measurement unit 11a, the first mass flow measurement unit 11a outputs the full scale, while the second mass flow measurement unit 11a outputs the full scale. The mass flow rate measuring unit 11b measures and outputs the mass flow rate of the gas flowing through the gas piping 3. Therefore, what is necessary is just to use the measured value of the 2nd mass flow measurement part 11b.
On the other hand, when the gas flow rate is smaller than the second measurement range that can be measured by the second mass flow measurement unit 11b, the measurement value of the second mass flow measurement unit 11b becomes zero, and at this time, the first mass flow measurement unit 11b The measuring unit 11a measures and outputs the mass flow rate of the gas flowing through the gas piping 3. Therefore, what is necessary is just to use the measured value of the 1st mass flow measurement part 11a.

また、ガス配管路3に流れるガスの流量が第1の質量流量計測部11aが測定可能な第1の計測範囲および第2の質量流量計測部11bが計測可能な第2の測定範囲が重複する測定範囲の場合、それぞれの質量流量計測部11a,11bが同一の質量流量を出力する。したがって、第1の質量流量計測部11aまたは第2の質量流量計測部11bのいずれかの計測値を用いればよい。   In addition, the first measurement range in which the flow rate of the gas flowing through the gas pipeline 3 can be measured by the first mass flow measurement unit 11a and the second measurement range in which the second mass flow measurement unit 11b can be measured overlap. In the case of the measurement range, the respective mass flow rate measuring units 11a and 11b output the same mass flow rate. Therefore, the measurement value of either the first mass flow measurement unit 11a or the second mass flow measurement unit 11b may be used.

尚、上述した流量計は、二つの質量流量計測部11a,11bを組み合わせたものであるが、上述した測定範囲以外であっても勿論かまわない。また複数の質量流量計測部を組み合わせて幅広い測定レンジを確保する場合、複数の質量流量計測部がそれぞれ計測可能な測定範囲の一部が重複するようにして構成すれば流量計の測定範囲を拡大することができる。もちろん、二つ以上の質量流量計測部を組み合わせて構成してもかまわない。   The above-described flow meter is a combination of the two mass flow measurement units 11a and 11b, but may be outside the measurement range described above. Also, when combining multiple mass flow measurement units to ensure a wide measurement range, the measurement range of the flow meter can be expanded by configuring the measurement ranges that can be measured by multiple mass flow measurement units. can do. Of course, you may comprise combining two or more mass flow measurement parts.

ちなみに質量流量計の方式としては、コリオリ式質量流量計、熱式質量流量計等があり、これらのうち、ガス使用量の変動に応じた流量レンジをもつ質量流量計測部であることが好ましい。
尚、本発明の流量計は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論可能である。
Incidentally, as a method of the mass flow meter, there are a Coriolis type mass flow meter, a thermal type mass flow meter, and the like, and among these, a mass flow rate measuring unit having a flow rate range corresponding to a change in the amount of gas used is preferable.
The flowmeter of the present invention is not limited to the above-described embodiment, and various changes can of course be made without departing from the scope of the present invention.

本発明の一実施形態に係る流量計の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the flowmeter which concerns on one Embodiment of this invention. ガスが充填されたボンベ内の気体の分子状態と体積流量計および質量流量計の指示値との関係を模式的に示した図である。It is the figure which showed typically the relationship between the molecular state of the gas in the cylinder filled with gas, and the instruction | indication value of a volume flowmeter and a mass flowmeter. 熱式流量検出装置(フローセンサ)の基本構造とその計測概念を説明するための図である。It is a figure for demonstrating the basic structure of a thermal type flow rate detection apparatus (flow sensor), and its measurement concept. 複数のボンベにそれぞれ充填された複数種のガスを混合してガス負荷に供給するガス供給システムの構成例を示す図である。It is a figure which shows the structural example of the gas supply system which mixes the multiple types of gas each filled with the some cylinder and supplies it to gas load. 計測可能な測定範囲が異なる二つの質量流量計を組み合わせて測定可能な流量レンジを拡張する構成例を示す図である。It is a figure which shows the structural example which expands the measurable flow range by combining the two mass flowmeters from which the measurable measuring range differs.

符号の説明Explanation of symbols

1 ボンベ
2 ガス
3 ガス配管路
10 流量計
11 質量流量計測部
12 入力部
14 流量換算部
15 積算流量演算部
16 残量演算部
17 出力部
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Gas 3 Gas piping 10 Flowmeter 11 Mass flow measurement part 12 Input part 14 Flow rate conversion part 15 Accumulated flow calculation part 16 Remaining quantity calculation part 17 Output part

Claims (6)

気密された容器に充填されたガスを所定の工程に導くガス配管路に介挿されて、前記ガス配管路に流れるガスの質量流量を計測する質量流量計測部と、
前記容器にガスが充填されたときの基準温度および基準圧力情報並びに前記容器に充填されたガスの体積値の情報を含むガス特性情報を入力する入力部と
前記質量流量計測部が計測した質量流量を前記容器にガスが充填されたときの基準温度および基準圧力における体積流量に換算する流量換算部と、
前記流量換算部が換算した体積流量と前記容器から前記所定の工程へガスが供給された時間との積から前記ガス配管路に流れるガスの積算流量を求める積算流量演算部と、
前記容器に充填されたガスの体積値と前記積算流量演算部が求めた積算流量との差分から前記容器に充填されたガスの残量を求める残量演算部と、を備える流量計。
Is interposed gas pipe path for guiding the filled airtight containers gas to a predetermined process, and the mass flow rate measurement unit that measures the mass flow rate of flow Ruga scan in the gas distribution line,
An input unit for inputting a gas characteristic information including information of a reference temperature Contact and reference pressure information and the volume value of the gas filled in the container when the gas is filled into the container,
A flow rate conversion unit which translated into a volume flow rate at the reference temperature and reference pressure at which the gas mass flow the mass flow measuring unit is measured into the container is filled,
And accumulated flow rate computation unit for determining the integrated flow rate of the gas flowing from the product of the flow rate conversion unit time gas is supplied from the container with the body volume flow rate converted is to the predetermined process in the gas distribution line,
Flowmeter and a remaining amount calculating unit for obtaining the remaining amount of the filled gas to the container from a difference between the integrated flow the accumulated flow rate computation unit and the volume value of the gas filled in the container is determined.
前記容器は、前記ガス特性情報を保持する特性情報保持手段を備え、
前記入力部は、前記特性情報保持手段に保持された前記ガス特性情報を読み込む特性情報読み取り手段を備えることを特徴とする請求項1に記載の流量計。
The container is provided with a characteristic information holding means for holding the gas characteristic information,
Wherein the input unit, the flow meter according to claim 1, characterized in that it comprises a characteristic information reading means for reading the gas characteristic information stored in the characteristic information storage unit.
前記特性情報保持手段は、所定のコードに前記ガス特性情報をコード化して印刷したデータラベルであることを特徴とする請求項2に記載の流量計。 3. The flowmeter according to claim 2, wherein the characteristic information holding means is a data label obtained by encoding the gas characteristic information into a predetermined code and printing it . 複数の気密された容器に充填されたガスを所定の工程に導く複数のガス配管路にそれぞれ介挿されて、前記ガス配管路に流れガスの質量流量を計測する複数の質量流量計測手段と、
複数の前記容器のそれぞれについて、前記容器にガスが充填されたときの基準温度および基準圧力情報並びに前記容器に充填されたガスの体積値の情報を含むガス特性情報を入力する入力手段と
複数の前記ガス配管路のそれぞれについて、前記質量流量計測手段が計測した質量流量を前記容器にガスが充填されたときの基準温度および基準圧力における体積流量に換算する流量換算手段と、
複数の前記ガス配管路のそれぞれについて、前記流量換算手段が換算した体積流量と前記容器から前記所定の工程へガスが供給された時間との積からガスの積算流量を求める積算流量演算手段と、
複数の前記容器のそれぞれについて、前記容器に充填されたガスの体積値と前記積算流量演算部が求めた積算流量との差分から前記容器に充填されたガスの残量を求める残量演算手段と、を備えるガス流量計測システム。
Interposed respectively a plurality of airtight been Filling been gas in the container into a plurality of gas pipe path for guiding to a predetermined process, a plurality of mass flow to measure the mass flow rate of flow Ru gas meter to the gas distribution line Measuring means;
For each of a plurality of said containers, input means for inputting gas characteristic information including information of a reference temperature Contact and reference pressure information and the volume value of the gas filled in the container when the gas is filled into the container and,
For each of a plurality of said gas distribution line, and a flow rate conversion means for translated into volume flow at the reference temperature and reference pressure at which the gas mass flow the mass flow measuring means has measured the container has been filled,
For each of a plurality of said gas distribution line, integrated flow for obtaining the cumulative flow of the product or Laga scan of the flow rate conversion means time gas is supplied to the predetermined step from the container with the body volume flow rate converted is Computing means;
For each of a plurality of said containers, determined Mel the remaining amount of filled gas in which the accumulated flow rate computation unit and the volume value of the gas is Hama charged to the difference or et previous SL container between the integrated flow rate calculated on the container A gas flow rate measuring system comprising: a remaining amount calculating means.
記容器は、前記ガス特性情報を保持する特性情報保持手段を備え、
前記入力手段は、前記特性情報保持手段に保持された前記ガス特性情報を読み込むデータ読み取り手段を備えることを特徴とする請求項4に記載のガス流量計測システム。
Before SL container, the gas characteristic information includes a characteristic information holding means that holds,
It said input means, a gas flow rate measuring system according to claim 4, characterized in that it comprises a data reading means for reading the Kiga scan characteristic information before held in the characteristic information storage unit.
前記特性情報保持手段は、所定のコードに前記特性情報をコード化して印刷したデータラベルであることを特徴とする請求項5に記載のガス流量計測システム。 The characteristic information storage means, a gas flow rate measuring system according to claim 5, characterized in that the data labels printed by encoding the characteristic information to the predetermined code.
JP2006138904A 2006-05-18 2006-05-18 Flow meter and gas flow measurement system Active JP5121166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138904A JP5121166B2 (en) 2006-05-18 2006-05-18 Flow meter and gas flow measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138904A JP5121166B2 (en) 2006-05-18 2006-05-18 Flow meter and gas flow measurement system

Publications (2)

Publication Number Publication Date
JP2007309778A JP2007309778A (en) 2007-11-29
JP5121166B2 true JP5121166B2 (en) 2013-01-16

Family

ID=38842765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138904A Active JP5121166B2 (en) 2006-05-18 2006-05-18 Flow meter and gas flow measurement system

Country Status (1)

Country Link
JP (1) JP5121166B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174912A (en) * 2009-01-27 2010-08-12 Neriki:Kk Method and device for measuring residual pressure in gas container
TWI533155B (en) * 2009-12-25 2016-05-11 Asia Pacific Fuel Cell Tech Application of tag information to detect hydrogen residue in hydrogen storage tank
JP6105156B2 (en) * 2013-04-30 2017-03-29 マイクロ モーション インコーポレイテッド Volume flow sensor system with mass flow meter and density meter
EP2848901B1 (en) 2013-09-13 2021-08-18 Air Products And Chemicals, Inc. Method of, and apparatus for, monitoring the available resources of a gas cylinder
NZ738355A (en) * 2015-06-18 2022-09-30 Pringle Beleski And Associates Ltd System and method for gas management
JP6350880B2 (en) * 2015-09-28 2018-07-04 株式会社タツノ Calibration device
JP6981909B2 (en) * 2018-03-30 2021-12-17 東京瓦斯株式会社 Gas data conversion system, gas data conversion program, gas meter and gas data conversion method
WO2022060686A1 (en) * 2020-09-18 2022-03-24 Parker-Hannifin Corporation Method for determining and providing remaining capacity of gas supply in gas machine for anesthesia and analgesia

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261926A (en) * 1986-05-08 1987-11-14 Matsushita Electric Ind Co Ltd Monitoring device for gas container
JPH08171690A (en) * 1994-12-20 1996-07-02 Ricoh Seiki Co Ltd Gas cylinder management method
JP4261797B2 (en) * 2001-10-01 2009-04-30 矢崎総業株式会社 Gas flow meter

Also Published As

Publication number Publication date
JP2007309778A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5121166B2 (en) Flow meter and gas flow measurement system
US6708573B1 (en) Process for filling compressed gas fuel dispensers which utilizes volume and density calculations
CN201925716U (en) Metering calibration standard device for liquefied natural gas (LNG) dispenser
CN102483344B (en) Upstream volume mass flow verification system and method
JP4798774B2 (en) Mixed gas supply system
US6739205B2 (en) Controller for monitoring fluid flow volume
JP2011209289A (en) Propane measurement using coriolis flowmeter
CN101600944A (en) The checking of process variable transmitter
CA2982732C (en) Detecting an inaccurate flow rate measurement by a vibratory meter
KR101785434B1 (en) Temperature-pressure compensation device for gas meter
CN109073152A (en) The transportation system of cryogenic liquid
JP6674646B2 (en) Calibration device and calibration method
CN202349602U (en) Calibrating device for high-precision LNG (liquefied natural gas) dispenser
US20230266154A1 (en) Flow Meter Assembly
Suresh et al. Metrological Controls and Performance Studies on a Liquefied Natural Gas Dispenser
Hermeling Sensor Technology in an LNG Plant
Ogwo The Shortcomings and Challenges of Metering–System Automation in the Petroleum Industry
Turkowski et al. Metrology for Pipelines Transporting Gaseous and Liquid Fuels
CN117405201A (en) LNG air entrainment machine on-line verification system based on LNG mass flowmeter
Iwegbu et al. Crude Oil Metering Experience in the Niger-Delta
Danir Malaysian custody transfer metering philosophy
Jaeschke et al. Using densitometers in gas metering
JP2007248154A (en) Device for measuring flow rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250