JP2010174912A - Method and device for measuring residual pressure in gas container - Google Patents

Method and device for measuring residual pressure in gas container Download PDF

Info

Publication number
JP2010174912A
JP2010174912A JP2009015044A JP2009015044A JP2010174912A JP 2010174912 A JP2010174912 A JP 2010174912A JP 2009015044 A JP2009015044 A JP 2009015044A JP 2009015044 A JP2009015044 A JP 2009015044A JP 2010174912 A JP2010174912 A JP 2010174912A
Authority
JP
Japan
Prior art keywords
pressure
gas
initial
container
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009015044A
Other languages
Japanese (ja)
Inventor
Masaru Takeda
勝 竹田
Suiryo Oi
彗良 尾井
Mitsumasa Kagomoto
光正 籠本
Kazuyuki Miyata
和幸 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neriki KK
Original Assignee
Neriki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neriki KK filed Critical Neriki KK
Priority to JP2009015044A priority Critical patent/JP2010174912A/en
Publication of JP2010174912A publication Critical patent/JP2010174912A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively execute accurate calculation of residual gas pressure in a gas container without installation of an electric pressure sensor to a container valve, or while maintaining a small size of the container valve and reducing the necessary number of pressure sensors in the whole system. <P>SOLUTION: A storage gas pressure in the gas container (2) in connection to a gas supply passage (6) is stored as an initial cylinder pressure (P<SB>0</SB>). The ratio of pressure reduction (Δp) of secondary pressure (p) of a pressure reducing valve (4) to pressure reduction (ΔP) of primary pressure (P) thereof is stored as pressure reducing characteristic coefficient (α) of the pressure reducing valve (4). A standard initial secondary pressure (p<SB>0S</SB>) set relative to the initial cylinder pressure (P<SB>0</SB>) is stored. The secondary pressure (p) fluctuated by consumption of gas is measured by a secondary pressure measuring means (25), and the residual gas pressure in the gas container (2) having the primary pressure (P) is calculated according to the relational expression of P=P<SB>0</SB>-(p<SB>0S</SB>-p)÷α from this secondary pressure (p), the initial cylinder pressure (P<SB>0</SB>), the standard initial secondary pressure (p<SB>0S</SB>), and the pressure reducing characteristic coefficient (α). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、減圧弁を有する容器弁が付設されたガス容器内の残圧を測定する方法と装置に関し、さらに詳しくは、ガス容器内の残留ガス圧を正確に算出でき、しかも容器弁に電気的な圧力センサを装着する必要がなく、容器弁を小形に維持できるうえ、システム全体での圧力センサの必要個数を少なくして安価に実施できるようにした、ガス容器内の残圧測定方法と残圧測定装置に関する。   The present invention relates to a method and an apparatus for measuring a residual pressure in a gas container provided with a container valve having a pressure reducing valve. More specifically, the present invention can accurately calculate the residual gas pressure in the gas container, A method for measuring the residual pressure in a gas container, which can be implemented at low cost by reducing the number of pressure sensors in the entire system, while maintaining a small container valve without the need to install a typical pressure sensor. The present invention relates to a residual pressure measuring device.

例えば、水素ガスを燃料とする車載用燃料電池システムにあっては、水素ガス容器を、ガス消費機器である燃料電池に着脱可能に接続するものがある。この場合、水素ガス容器は小形・大容量化するため、例えば35MPaなど高圧化が望まれており、この水素ガス容器の容器弁に減圧弁を備えたものがある(例えば、特許文献1参照)。   For example, in-vehicle fuel cell systems using hydrogen gas as fuel, there is one that removably connects a hydrogen gas container to a fuel cell that is a gas consuming device. In this case, in order to increase the size and capacity of the hydrogen gas container, it is desired to increase the pressure, for example, 35 MPa, and there is a hydrogen gas container having a pressure reducing valve (see, for example, Patent Document 1). .

上記のガス容器内の貯蔵ガスは、ガスの消費により所定の残留ガス圧以下に低下するとガス消費機器で使用できなくなるので、フレッシュガスが充填された新しいガス容器と交換される。このため上記のガス容器は、交換時期を確認するためにガス容器内の残留ガス圧を測定する必要があり、その測定値は、例えば燃料電池搭載車両の運転席など、容易に確認できる位置に表示される。   When the stored gas in the gas container is reduced to a predetermined residual gas pressure or lower due to gas consumption, it cannot be used in the gas consuming device, and is therefore replaced with a new gas container filled with fresh gas. For this reason, the above gas container needs to measure the residual gas pressure in the gas container in order to confirm the replacement time, and the measured value is at a position where it can be easily confirmed, such as the driver's seat of a fuel cell vehicle. Is displayed.

従来、上記のガス容器内の残圧測定システムとしては、電気的な圧力センサを容器弁等に付設し、この圧力センサからの出力をコントローラ等の演算装置に入力し、その演算結果を燃料計などの表示装置に表示させるものがある(例えば、特許文献2参照、以下、従来技術1という。)。   Conventionally, as a residual pressure measurement system in the above gas container, an electrical pressure sensor is attached to a container valve or the like, an output from the pressure sensor is input to an arithmetic device such as a controller, and the calculation result is output to a fuel gauge (For example, refer to Patent Document 2, hereinafter referred to as Prior Art 1).

この従来技術1では、圧力センサによりガス容器内の残留ガス圧を測定でき、貯蔵ガスの消費状況やガス容器の交換時期を正確に把握できる利点がある。しかしながらこの従来技術1では、圧力センサを容器弁等に装着するため、次の問題点がある。
(1)この圧力センサと、上記の演算装置や表示装置とを電気的に接続するコネクタが必要となるため、ガス容器の交換時にコネクタを着脱しなければならず、交換作業が煩雑である。
(2)容器弁には圧力センサとこれに接続したコネクタが付設されるため、容器弁が大形化し、ガス容器の搬送が容易でない。
(3)このコネクタはガス容器の交換時に着脱されるため、その着脱の際に破損される虞があり、また、ガス容器を搬送する際にはこのコネクタや上記の圧力センサを破損する虞がある。
(4)上記の圧力センサは、ガス消費機器に接続されるガス容器だけでなく、空になったガス容器や、在庫中のガス容器を含む全てのガス容器に付設する必要があり、システム全体として多数の圧力センサを必要とするため、安価に実施できない。
This prior art 1 has an advantage that the residual gas pressure in the gas container can be measured by the pressure sensor, and the consumption state of the stored gas and the replacement timing of the gas container can be accurately grasped. However, this prior art 1 has the following problems because the pressure sensor is mounted on a container valve or the like.
(1) Since a connector for electrically connecting the pressure sensor and the arithmetic unit and the display device is required, the connector must be attached and detached when replacing the gas container, and the replacement work is complicated.
(2) Since a pressure sensor and a connector connected to the pressure sensor are attached to the container valve, the container valve becomes large and it is not easy to transport the gas container.
(3) Since this connector is attached / detached when the gas container is replaced, there is a possibility that the connector will be damaged when attaching / detaching the gas container, and when the gas container is transported, there is a possibility that the connector or the pressure sensor will be damaged. is there.
(4) The above pressure sensor must be attached not only to gas containers connected to gas consuming equipment, but also to all gas containers including empty gas containers and gas containers in stock. Since a large number of pressure sensors are required, it cannot be implemented inexpensively.

上記の問題点を解消するため、例えばガス消費機器で消費されるガス量や、ガス供給路を流通するガス流量を計測してガス消費量を算出し、これをガス容器の貯蔵ガス量から差し引くことで残留ガス量を算出する方法が提案されている(例えば、特許文献3参照、以下、従来技術2という。)。   In order to solve the above problems, for example, the gas consumption is calculated by measuring the amount of gas consumed by the gas consuming device and the gas flow rate through the gas supply path, and this is subtracted from the amount of gas stored in the gas container. Thus, a method of calculating the residual gas amount has been proposed (see, for example, Patent Document 3, hereinafter referred to as Conventional Technology 2).

しかしながら、例えば水素ガスを燃料とする車載用燃料電池システムにあっては、水分を水素ガスでパージするシステムや、未反応水素ガスを回収して循環させるシステム等、ガス消費機器である燃料電池システムが多岐にわたるため、この従来技術2では、ガス消費機器ごとに設定すべき項目が多く、これらの設定操作が煩雑であり、しかもガス消費量からでは正確な残留ガス量を算出することが容易でない。また、長期に亘って使用する場合、ガス容器から微量ガスがリークしていると、この従来技術2ではガス容器内の残量ガスを正確に測定できない問題もある。   However, for example, in an in-vehicle fuel cell system using hydrogen gas as a fuel, a fuel cell system that is a gas consuming device, such as a system that purges moisture with hydrogen gas or a system that collects and circulates unreacted hydrogen gas Therefore, in this conventional technique 2, there are many items to be set for each gas consuming device, these setting operations are complicated, and it is not easy to calculate an accurate residual gas amount from the gas consumption amount. . In addition, when the gas is leaked from the gas container when used for a long period of time, the conventional technique 2 has a problem that the remaining gas in the gas container cannot be measured accurately.

特開2006−048981号公報JP 2006-048881 A 特開2005−240854号公報JP-A-2005-240854 特開平07−197858号公報Japanese Patent Laid-Open No. 07-197858

本発明の技術的課題は、上記の問題点を解消し、ガス容器内の残留ガス圧を正確に算出でき、しかも容器弁に電気的な圧力センサを装着する必要がなく、容器弁を小形に維持できるうえ、システム全体での圧力センサの必要個数を少なくして安価に実施できるようにした、ガス容器内の残圧測定方法と残圧測定装置を提供することにある。   The technical problem of the present invention is to eliminate the above-mentioned problems, accurately calculate the residual gas pressure in the gas container, and further eliminate the need to attach an electrical pressure sensor to the container valve, and reduce the container valve to a smaller size. Another object of the present invention is to provide a residual pressure measuring method and a residual pressure measuring device in a gas container that can be maintained at a low cost by reducing the required number of pressure sensors in the entire system.

一般に減圧弁には、一次圧が低下すると二次圧が上昇する形式のものと、二次圧が低下する形式のものとがある。しかしいずれの形式の減圧弁であっても、特定の二次圧に対応する一次圧は、各部品の加工誤差や組付誤差などによりバラツキがあって、一定しない。しかしながら、本発明者等は様々な減圧弁の減圧特性を測定して観察したところ、一次圧の低下幅に対する二次圧の変動幅が、減圧弁の構造や形式に応じて略一定していることを見出し、これに着目して本発明を完成した。   Generally, the pressure reducing valve includes a type in which the secondary pressure increases when the primary pressure decreases and a type in which the secondary pressure decreases. However, in any type of pressure reducing valve, the primary pressure corresponding to a specific secondary pressure varies due to processing errors and assembly errors of each component, and is not constant. However, the present inventors have measured and observed the pressure reducing characteristics of various pressure reducing valves, and the fluctuation range of the secondary pressure with respect to the reduction range of the primary pressure is substantially constant according to the structure and type of the pressure reducing valve. The present invention was completed focusing on this fact.

本発明は上記の課題を解決するために、例えば、本発明の実施の形態を示す図1から図5に基づいて説明すると、次のように構成したものである。
すなわち本発明1はガス容器内の残圧測定方法に関し、ガス容器(2)には減圧弁(4)を有する容器弁(3)が付設してあり、この減圧弁(4)のガス出口(5)がガス消費機器(1)のガス供給路(6)と着脱可能に接続されており、このガス容器(2)内の残留ガス圧を測定する残圧測定方法であって、上記のガス供給路(6)との接続の際の、上記のガス容器(2)内の貯蔵ガス圧力を初期容器圧(P)として記憶し、上記減圧弁(4)の一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率を、この減圧弁(4)の減圧特性係数(α)として記憶し、上記の初期容器圧(P)に対して設定された標準的な初期二次圧(p0S)を記憶し、ガスの消費により変動した上記の二次圧(p)を計測し、この計測した二次圧(p)と、上記の初期容器圧(P)と標準的初期二次圧(p0S)と減圧特性係数(α)とから、次式(i)
P=P−(p0S−p)÷α …(i)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出することを特徴とする。
In order to solve the above problems, the present invention is configured as follows, for example, based on FIGS. 1 to 5 showing an embodiment of the present invention.
That is, the present invention 1 relates to a method for measuring a residual pressure in a gas container. A gas valve (3) having a pressure reducing valve (4) is attached to the gas container (2), and a gas outlet ( 5) is a residual pressure measuring method for measuring the residual gas pressure in the gas container (2), which is detachably connected to the gas supply path (6) of the gas consuming device (1), and includes the above gas The stored gas pressure in the gas container (2) at the time of connection to the supply path (6) is stored as the initial container pressure (P 0 ), and the pressure of the primary pressure (P) of the pressure reducing valve (4) The ratio of the pressure drop (Δp) of the secondary pressure (p) to the drop (ΔP) is stored as the pressure reduction characteristic coefficient (α) of the pressure reducing valve (4), and the ratio to the initial container pressure (P 0 ) is stored. The set standard initial secondary pressure (p 0S ) is stored, the secondary pressure (p) fluctuated due to gas consumption is measured, the measured secondary pressure (p), and the initial pressure vessel pressure (P 0) and standard Year secondary pressure because (p 0S) and decompression characteristic coefficient (alpha), the following equation (i)
P = P 0 − (p 0S −p) ÷ α (i)
Thus, the residual gas pressure in the gas container (2), which is the primary pressure (P), is calculated.

また本発明2はガス容器内の残圧測定装置に関し、ガス容器(2)には減圧弁(4)を有する容器弁(3)が付設してあり、この減圧弁(4)のガス出口(5)がガス消費機器(1)のガス供給路(6)と着脱可能に接続されており、このガス容器(2)内の残留ガス圧を測定する残圧測定装置であって、上記のガス供給路(6)に付設され上記の減圧弁(4)により減圧された二次圧(p)を計測する二次圧計測手段(25)と、この二次圧計測手段(25)からの出力に基づき上記のガス容器(2)内の残留ガス圧を演算する演算手段(29)と、この演算手段(29)による演算結果を表示する残圧表示手段(30)とを備え、上記の演算手段(29)は演算部(31)と記憶部(32)とを備え、この記憶部(32)は、上記のガス供給路(6)との接続の際の上記のガス容器(2)内の貯蔵ガス圧力である初期容器圧(P)と、この初期容器圧(P)に対して設定された上記の減圧弁(4)による標準的な初期二次圧(p0S)と、この一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率である減圧特性係数(α)とを記憶し、上記の演算部(31)は、上記の二次圧計測手段(25)により計測された二次圧(p)と、上記の初期容器圧(P)と標準的初期二次圧(p0S)と減圧特性係数(α)とから、次式(i)
P=P−(p0S−p)÷α …(i)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出することを特徴とする。
Further, the present invention 2 relates to a device for measuring the residual pressure in a gas container. The gas container (2) is provided with a container valve (3) having a pressure reducing valve (4), and a gas outlet ( 5) is a residual pressure measuring device, which is detachably connected to the gas supply path (6) of the gas consuming device (1) and measures the residual gas pressure in the gas container (2). Secondary pressure measuring means (25) attached to the supply passage (6) for measuring the secondary pressure (p) reduced by the pressure reducing valve (4), and output from the secondary pressure measuring means (25) Calculation means (29) for calculating the residual gas pressure in the gas container (2) based on the above, and residual pressure display means (30) for displaying the calculation result by the calculation means (29). The means (29) includes a calculation unit (31) and a storage unit (32), and the storage unit (32) is provided in the gas container (2) when connected to the gas supply path (6). initial vessel pressure is stored gas pressure (P 0) , Two for the initial container pressure (P 0) said pressure reducing valve set for a (4) standard initial secondary pressure by (p 0S), pressure drop in the primary pressure (P) ([Delta] P) The pressure reduction characteristic coefficient (α), which is the ratio of the pressure drop (Δp) of the secondary pressure (p), is stored, and the calculation unit (31) calculates the second pressure measured by the secondary pressure measuring means (25). From the secondary pressure (p), the initial vessel pressure (P 0 ), the standard initial secondary pressure (p 0S ) and the pressure reduction characteristic coefficient (α), the following equation (i)
P = P 0 − (p 0S −p) ÷ α (i)
Thus, the residual gas pressure in the gas container (2), which is the primary pressure (P), is calculated.

上記の初期容器圧(P)は、ガス容器にフレッシュガスを満タンに充填した際の設定ガス圧力であり、ガス容器に応じて一定している。また、このガス容器に付設された容器弁が備える減圧弁は、その減圧特性として、上記の初期容器圧(P)に対する標準的な初期二次圧(p0S)が設定してある。そしてこの減圧弁については、一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率である減圧特性係数(α)(即ち、α=Δp÷ΔPである。)も、略一定していることが判明した。この結果、上記の初期容器圧(P)と標準的初期二次圧(p0S)と減圧特性係数(α)を定数として扱い、任意の時点で測定した二次圧(p)をこれらの定数とともに上記の(i)式に代入することで、その時点での一次圧(P)が算出される。 The initial container pressure (P 0 ) is a set gas pressure when the gas container is fully filled with fresh gas, and is constant according to the gas container. In addition, the pressure reducing valve provided in the container valve attached to the gas container has a standard initial secondary pressure (p 0S ) with respect to the initial container pressure (P 0 ) as the pressure reducing characteristic. For this pressure reducing valve, the pressure reducing characteristic coefficient (α) which is the ratio of the pressure drop (Δp) of the secondary pressure (p) to the pressure drop (ΔP) of the primary pressure (P) (ie, α = Δp ÷ ΔP Is also found to be substantially constant. As a result, the initial vessel pressure (P 0 ), the standard initial secondary pressure (p 0S ), and the pressure reduction characteristic coefficient (α) are treated as constants, and the secondary pressure (p) measured at an arbitrary time point is expressed as these. By substituting it into the above equation (i) together with the constant, the primary pressure (P) at that time is calculated.

この場合、減圧弁の減圧特性としては、上記の標準的初期二次圧(p0S)に代えて、上記の初期容器圧(P)に対するこの標準的初期二次圧(p0S)の比率を、この減圧弁の標準的な減圧比(r)として設定する場合がある(即ちr=p0S÷Pである。)。この場合は、この標準的減圧比(r)を記憶しておき、この標準的減圧比(r)と上記の初期容器圧(P)との積を上記の(i)式の標準的初期二次圧(p0S)に代入して、上記のガス容器内の残留ガス圧を算出することができる。 In this case, the pressure reducing characteristic of the pressure reducing valve is the ratio of the standard initial secondary pressure (p 0S ) to the initial vessel pressure (P 0 ) instead of the standard initial secondary pressure (p 0S ). May be set as the standard pressure reduction ratio (r S ) of this pressure reducing valve (ie, r S = p 0S ÷ P 0 ). In this case, the standard pressure reduction ratio (r S ) is stored, and the product of the standard pressure reduction ratio (r S ) and the initial vessel pressure (P 0 ) is the standard of the above formula (i). The residual gas pressure in the gas container can be calculated by substituting the initial initial secondary pressure (p 0S ).

なお、減圧弁の初期容器圧(P)に対する実際の二次圧(p)の比率は、前記の加工誤差や組付誤差などによりバラツキがあるため、上記の標準的初期二次圧(p0S)や標準的減圧比(r)を用いて算出した一次圧には、誤差を生じる虞がある。しかし、その誤差を生じた場合も、その大きさは一次圧の変動にかかわらず一定している。従って、加工精度などを高めて上記のバラツキを十分に小さくすることで、上記の算出した一次圧に生じる誤差を十分に小さくすることができる。 Note that the ratio of the actual secondary pressure (p) to the initial vessel pressure (P 0 ) of the pressure reducing valve varies due to the processing error, the assembly error, etc., and therefore the standard initial secondary pressure (p The primary pressure calculated using 0S ) or the standard pressure reduction ratio (r S ) may cause an error. However, even if the error occurs, the magnitude is constant regardless of the fluctuation of the primary pressure. Therefore, the error generated in the calculated primary pressure can be sufficiently reduced by increasing the machining accuracy and sufficiently reducing the variation.

一方、上記の初期二次圧(p0S)を用いて上記の(i)式により残留ガス圧を算出することに代えて、上記のガス容器とガス供給路との接続の際に、上記の減圧弁から取り出された二次圧(p)を初期二次圧(p)として記憶し、上記の計測した二次圧(p)と、上記の初期容器圧(P)と初期二次圧(p)と減圧特性係数(α)とから、次式(ii)
P=P−(p−p)÷α …(ii)
により一次圧(P)である上記のガス容器内の残留ガス圧を算出した場合には、前記の加工誤差や組付誤差などがあっても、算出した一次圧に生じる誤差を大幅に小さくすることができ、一層正確に一次圧を算出することができる。
On the other hand, instead of calculating the residual gas pressure by the above equation (i) using the initial secondary pressure (p 0S ), when connecting the gas container and the gas supply path, The secondary pressure (p) taken out from the pressure reducing valve is stored as the initial secondary pressure (p 0 ), and the measured secondary pressure (p), the initial container pressure (P 0 ), and the initial secondary pressure are stored. From the pressure (p 0 ) and the pressure reduction characteristic coefficient (α), the following equation (ii)
P = P 0 − (p 0 −p) ÷ α (ii)
When the residual gas pressure in the gas container, which is the primary pressure (P), is calculated by the above, the error generated in the calculated primary pressure is greatly reduced even if there is a processing error or an assembly error. And the primary pressure can be calculated more accurately.

なおこの式(ii)を用いる場合においても、上記の初期二次圧(p)に代えて、上記の初期容器圧(P)に対するこの初期二次圧(p)の比率を、上記の減圧弁の減圧比(r)として記憶し(即ちr=p÷Pである。)、この減圧比(r)と上記の初期容器圧(P)との積を上記の(ii)式の初期二次圧(p)に代入して、上記のガス容器内の残留ガス圧を算出することができる。 Even when this equation (ii) is used, instead of the initial secondary pressure (p 0 ), the ratio of the initial secondary pressure (p 0 ) to the initial container pressure (P 0 ) stored as vacuum ratio of the pressure reducing valve (r) (i.e., r = p 0 ÷ P 0. ), the reduced pressure ratio (r) of the initial container pressure (P 0) product of the above (ii The residual gas pressure in the gas container can be calculated by substituting into the initial secondary pressure (p 0 ) in the equation ( 1 ).

上記の減圧弁は、一次圧が低下すると二次圧が上昇する形式のもの、即ち上記の減圧特性係数が0よりも小さい減圧弁であってもよく、或いは、一次圧が低下すると二次圧が低下する形式のもの、即ち上記の減圧特性係数が0よりも大きい減圧弁であってもよい。但し、減圧特性係数が0よりも小さい減圧弁にあっては、一次圧が使用限界圧力近傍の低い圧力になると、二次圧が上昇から下降に反転する。このため、この二次圧が反転したのちは上記の(i)式や(ii)式を使用することができず、より低圧までガス容器内の貯蔵ガスを消費する場合には、例えば、二次圧が下降に転じたのちの減圧値でガス容器の交換時期を判定しなければならない場合がある。   The pressure reducing valve may be of a type in which the secondary pressure increases when the primary pressure decreases, i.e., the pressure reducing characteristic coefficient is smaller than 0, or the secondary pressure decreases when the primary pressure decreases. In other words, the pressure reducing valve may have a pressure reducing characteristic coefficient larger than zero. However, in a pressure reducing valve having a pressure reducing characteristic coefficient smaller than 0, when the primary pressure becomes a low pressure near the use limit pressure, the secondary pressure is reversed from rising to falling. Therefore, after the secondary pressure is reversed, the above equations (i) and (ii) cannot be used, and when the stored gas in the gas container is consumed to a lower pressure, for example, In some cases, it is necessary to determine the replacement timing of the gas container based on the reduced pressure value after the next pressure has started to decrease.

これに対し、上記の減圧特性係数が0よりも大きい減圧弁を用いた場合は、二次圧は一次圧が低圧になっても常に1対1で特定の一次圧と対応するため、この二次圧から、一次圧(P)であるガス容器内の残留ガス圧を算出することができ、好ましい。   On the other hand, when a pressure reducing valve having a pressure reducing characteristic coefficient larger than 0 is used, the secondary pressure always corresponds to a specific primary pressure even when the primary pressure becomes low. The residual gas pressure in the gas container, which is the primary pressure (P), can be calculated from the secondary pressure, which is preferable.

上記の初期容器圧(P)は、ガス容器により設定されているため、予め上記の記憶部へ記憶させておくことができる。しかしながら、ガス容器が圧力計を備えている場合等は、上記の演算手段に入力手段を設けて、この入力手段により上記の圧力計から読み取った初期容器圧(P)を上記の記憶部へ入力するように構成してもよい。
さらに上記の入力手段は、上記の減圧弁の型式などに応じて、上記の減圧特性係数(α)や標準的初期二次圧(p0S)、標準的減圧比(r)などを記憶部へ入力することも可能である。
Since the initial container pressure (P 0 ) is set by the gas container, it can be stored in advance in the storage unit. However, when the gas container is provided with a pressure gauge, the calculation means is provided with an input means, and the initial container pressure (P 0 ) read from the pressure gauge by the input means is stored in the storage unit. You may comprise so that it may input.
Further, the input means stores the pressure reduction characteristic coefficient (α), the standard initial secondary pressure (p 0S ), the standard pressure reduction ratio (r S ), etc. according to the type of the pressure reducing valve. It is also possible to input to.

本発明は上記のように構成され作用することから、次の効果を奏する。   Since the present invention is configured and operates as described above, the following effects can be obtained.

(1)上記の初期容器圧(P)と標準的初期二次圧(p0S)や標準的減圧比(r)と減圧特性係数(α)は、いずれも定数として扱われるので、二次圧(p)を計測するだけでガス容器内の残留ガス圧を算出することができる。このため、電気的な圧力センサなどの二次圧計測手段は、例えば燃料電池システム搭載車両など、ガス消費機器側に付設すればよく、容器弁やガス容器側に付設する必要がない。 (1) Since the initial vessel pressure (P 0 ), standard initial secondary pressure (p 0S ), standard pressure reduction ratio (r S ), and pressure reduction characteristic coefficient (α) are all treated as constants, The residual gas pressure in the gas container can be calculated simply by measuring the next pressure (p). For this reason, the secondary pressure measuring means such as an electric pressure sensor may be attached to the gas consuming device side such as a vehicle equipped with a fuel cell system, and does not need to be attached to the container valve or the gas container side.

(2)二次圧計測手段を容器弁やガス容器側に付設する必要がないので、ガス容器の交換時に二次圧計測手段の電気的なコネクタを着脱する必要がなく、交換作業を簡略にすることができる。
(3)容器弁には二次圧計測手段やこれに接続したコネクタが付設されないので、容器弁を小形に維持することができ、ガス容器を容易に搬送することができる。
(4)ガス容器の交換時に、二次圧計測手段の電気的なコネクタを着脱する必要がないことから、この着脱によるコネクタの破損の虞を低減できる。また、ガス容器や容器弁に二次圧計測手段や上記のコネクタが付設されていないので、搬送の際にこれらを破損する虞がない。
(5)上記の二次圧計測手段は、ガス消費機器側に付設しておけばよく、全てのガス容器に付設する必要がないので、前記の従来技術1に比べてシステム全体として圧力センサの必要個数を低減でき、安価に実施することができる。
(2) Since there is no need to attach secondary pressure measuring means to the container valve or gas container side, it is not necessary to attach or detach the electrical connector of the secondary pressure measuring means when replacing the gas container, thus simplifying the replacement work. can do.
(3) Since the secondary pressure measuring means and the connector connected thereto are not attached to the container valve, the container valve can be kept small and the gas container can be easily transported.
(4) Since it is not necessary to attach or detach the electrical connector of the secondary pressure measuring means when replacing the gas container, the risk of damage to the connector due to this attachment and detachment can be reduced. Further, since the secondary pressure measuring means and the connector are not attached to the gas container or the container valve, there is no possibility of damaging them during transportation.
(5) The above secondary pressure measuring means only needs to be attached to the gas consuming device side, and it is not necessary to attach it to all gas containers. The required number can be reduced, and it can be implemented at low cost.

本発明の第1実施形態を示す、ガス容器の残圧測定装置を備えた車載用燃料電池システムの概略回路図である。1 is a schematic circuit diagram of an in-vehicle fuel cell system including a gas container residual pressure measuring device according to a first embodiment of the present invention. 第1実施形態の、容器弁が備える減圧弁の減圧特性を示す一次圧と二次圧の対比表である。It is a comparison table | surface of the primary pressure and secondary pressure which show the pressure reduction characteristic of the pressure reducing valve with which a container valve of 1st Embodiment is provided. 第1実施形態の、減圧弁の減圧特性を示す対比グラフである。It is a contrast graph which shows the pressure reduction characteristic of the pressure-reduction valve of 1st Embodiment. 第2実施形態の、容器弁が備える減圧弁の減圧特性を示す一次圧と二次圧の対比表である。It is a comparison table of the primary pressure and the secondary pressure showing the pressure reduction characteristics of the pressure reducing valve provided in the container valve of the second embodiment. 第2実施形態の、この型式の減圧弁の減圧特性を示す対比グラフである。It is a contrast graph which shows the pressure-reduction characteristic of this type pressure reducing valve of 2nd Embodiment.

以下、本発明の実施の形態を図面に基づき説明する。
図1から図3は本発明の第1実施形態を示し、図1はガス容器の残圧測定装置を備えた、車載用燃料電池システムの概略回路図、図2は上記のガス容器に付設された容器弁が備える減圧弁の減圧特性を示す一次圧と二次圧の対比表、図3はこの減圧特性を示す対比グラフである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of the present invention. FIG. 1 is a schematic circuit diagram of an in-vehicle fuel cell system equipped with a gas container residual pressure measuring device, and FIG. 2 is attached to the gas container. A comparison table of primary pressure and secondary pressure showing the pressure reduction characteristics of the pressure reducing valve provided in the container valve, and FIG. 3 is a comparison graph showing the pressure reduction characteristics.

図1に示すように、ガス消費機器である車載用燃料電池システム(1)は、高圧水素ガスを充填した複数のガス容器(2…)と、各ガス容器(2)に付設された容器弁(3)とこの容器弁(3)が備える減圧弁(4)のガス出口(5)に一端が接続されたガス供給路(6)と、このガス供給路(6)の中間部に付設された電磁弁マニホールド(7)と、上記のガス供給路(6)の他端に接続された燃料電池(8)とを備える。   As shown in FIG. 1, an in-vehicle fuel cell system (1), which is a gas consuming device, includes a plurality of gas containers (2 ...) filled with high-pressure hydrogen gas, and container valves attached to the gas containers (2). (3) and a gas supply path (6) having one end connected to a gas outlet (5) of a pressure reducing valve (4) provided in the container valve (3), and an intermediate portion of the gas supply path (6). A solenoid valve manifold (7) and a fuel cell (8) connected to the other end of the gas supply path (6).

上記の容器弁(3)は、ハウジング(9)の外面に容器接続口(10)と上記のガス出口(5)とが形成してあり、この容器接続口(10)とガス出口(5)との間にガス取出路(11)が形成してある。このガス取出路(11)には過流防止弁(12)と容器元弁(13)と上記の減圧弁(4)とが順に設けてある。このガス取出路(11)の、上記の容器元弁(13)と減圧弁(4)との中間には圧力計(14)が付設してあり、ハウジング(9)の外面に設けたガス充填口(15)との間に、逆止弁(16)を備えた充填路(17)が形成してある。上記のハウジング(9)には、上記のガス容器(2)の内部空間に連通する容器安全弁(18)が設けてあり、また、上記の減圧弁(4)よりも下流側のガス取出路(11)に、二次安全弁(19)を備えたガス逃し路(20)が接続してある。
なお、上記のガス出口(5)は、例えば急速継手(21)により上記のガス供給路(6)と着脱可能に接続される。
The container valve (3) has a container connection port (10) and the gas outlet (5) formed on the outer surface of the housing (9), and the container connection port (10) and the gas outlet (5). A gas extraction path (11) is formed between the two. The gas extraction passage (11) is provided with an overflow prevention valve (12), a container base valve (13), and the pressure reducing valve (4). A pressure gauge (14) is provided in the middle of the gas outlet (11) between the container main valve (13) and the pressure reducing valve (4), and the gas filling provided on the outer surface of the housing (9). A filling passage (17) having a check valve (16) is formed between the opening (15). The housing (9) is provided with a container safety valve (18) communicating with the internal space of the gas container (2), and a gas extraction path (downstream of the pressure reducing valve (4) ( 11) is connected to a gas escape path (20) equipped with a secondary safety valve (19).
The gas outlet (5) is detachably connected to the gas supply path (6) by, for example, a quick joint (21).

上記の電磁弁マニホールド(7)には、この内部を通過する状態に上記のガス供給路(6)が設けてあり、このガス供給路(6)に逆止弁(22)と電磁弁(23)と二次減圧弁(24)とが、上流側から順に設けてある。なお、各ガス容器(2)に接続されたそれぞれのガス供給路(6)は、この電磁弁マニホールド(7)内の上記の電磁弁(23)の下流側で合流してある。
上記の電磁弁(23)よりも上流側のガス供給路(6)には、二次圧計測手段として第1圧力センサ(25)が付設してある。また、上記の二次減圧弁(24)の下流側の1本に合流されたガス供給路(6)には、第2圧力センサ(26)と安全弁(27)とが付設してある。
The solenoid valve manifold (7) is provided with the gas supply path (6) in a state of passing through the interior, and a check valve (22) and a solenoid valve (23 are provided in the gas supply path (6). ) And a secondary pressure reducing valve (24) are provided in order from the upstream side. In addition, each gas supply path (6) connected to each gas container (2) is merged on the downstream side of the electromagnetic valve (23) in the electromagnetic valve manifold (7).
A first pressure sensor (25) is attached as a secondary pressure measuring means to the gas supply path (6) on the upstream side of the electromagnetic valve (23). Further, a second pressure sensor (26) and a safety valve (27) are attached to the gas supply path (6) joined to one downstream side of the secondary pressure reducing valve (24).

上記の燃料電池(8)が塔載された車両側には、上記のガス容器(2)内の残留ガス圧を測定する残圧測定装置(28)が付設してある。この残圧測定装置(28)は、上記の第1圧力センサ(25)と、この第1圧力センサ(25)に電気的に接続された演算装置(29)と、この演算装置(29)からの出力を表示する残圧表示装置(30)とを備える。   A residual pressure measuring device (28) for measuring the residual gas pressure in the gas container (2) is attached to the vehicle side on which the fuel cell (8) is mounted. The residual pressure measuring device (28) includes the first pressure sensor (25), an arithmetic device (29) electrically connected to the first pressure sensor (25), and the arithmetic device (29). A residual pressure display device (30) for displaying the output of

上記の第1圧力センサ(25)は、前記の減圧弁(4)により減圧された二次圧(p)を計測して、その計測結果を上記の演算装置(29)へ出力する。この演算装置(29)は、演算部(31)と記憶部(32)とを備える。この記憶部(32)には、上記のガス供給路(6)との接続の際の上記のガス容器(2)内の貯蔵ガス圧力、すなわち満タンにされたガス容器(2)の設定充填圧力である初期容器圧(P)と、この減圧弁(4)の一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率である減圧特性係数(α)とが記憶してある。 The first pressure sensor (25) measures the secondary pressure (p) reduced by the pressure reducing valve (4), and outputs the measurement result to the arithmetic unit (29). The calculation device (29) includes a calculation unit (31) and a storage unit (32). In this storage unit (32), the stored gas pressure in the gas container (2) when connected to the gas supply path (6), that is, the set filling of the gas container (2) filled up The pressure reduction characteristic coefficient which is the ratio of the pressure drop (Δp) of the secondary pressure (p) to the pressure drop (ΔP) of the primary pressure (P) of the pressure reducing valve (4) and the initial container pressure (P 0 ) (α) is stored.

上記の第1圧力センサ(25)は、上記のガス容器(2)が装着されて上記のガス出口(5)がガス供給路(6)に接続された際、上記の減圧弁(4)で減圧された初期二次圧(p)を計測して上記の演算装置(29)へ出力する。上記の記憶部(32)は、この初期二次圧(p)をも記憶してある。 The first pressure sensor (25) is connected to the pressure reducing valve (4) when the gas container (2) is mounted and the gas outlet (5) is connected to the gas supply path (6). The reduced initial secondary pressure (p 0 ) is measured and output to the arithmetic unit (29). The storage unit (32) also stores the initial secondary pressure (p 0 ).

上記の演算部(31)は、上記の第1圧力センサ(25)から送られてきた二次圧(p)の計測結果と、上記の初期容器圧(P)と初期二次圧(p)と減圧特性係数(α)とから、次式(ii)
P=P−(p−p)÷α …(ii)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出する。この算出結果は、上記の残圧表示装置(30)へ出力され、この残圧表示装置(30)に表示される。
The calculation unit (31) includes the measurement result of the secondary pressure (p) sent from the first pressure sensor (25), the initial container pressure (P 0 ), and the initial secondary pressure (p 0 ) and the decompression characteristic coefficient (α), the following equation (ii)
P = P 0 − (p 0 −p) ÷ α (ii)
Thus, the residual gas pressure in the gas container (2), which is the primary pressure (P), is calculated. The calculation result is output to the residual pressure display device (30) and displayed on the residual pressure display device (30).

なお、上記の残量表示装置(30)は、ガス容器(2)内の残留ガス圧を直接表示してもよいが、これに代えて、例えばガス容器(2)の満タン状態を1とし、残圧が使用限界圧力である状態を0として、その間を棒グラフ状に表示してもよく、或いは、残圧が使用限界圧力近傍に達したときに、ガス容器(2)の交換時期が近づいた旨を警告するように表示するものであってもよい。   The remaining amount display device (30) may directly display the residual gas pressure in the gas container (2), but instead of this, for example, the full tank state of the gas container (2) is set to 1. The state where the residual pressure is the use limit pressure may be set to 0, and the interval between them may be displayed as a bar graph. Alternatively, when the residual pressure reaches the use limit pressure, the replacement time of the gas container (2) approaches. You may display so that it may warn.

次に、上記の車載用燃料電池システムと残圧測定装置の作動について説明する。
最初に、水素ガスを充填したガス容器(2)が上記の車載用燃料電池システム(1)に装着される。このガス容器(2)には水素ガスが、例えば35MPaの設定充填圧力で充填されており、上記の記憶部(32)にはこの35MPaを定数の初期容器圧(P)として予め記憶してある。
Next, the operation of the on-vehicle fuel cell system and the residual pressure measuring device will be described.
First, a gas container (2) filled with hydrogen gas is mounted on the above-described on-vehicle fuel cell system (1). The gas container (2) is filled with hydrogen gas, for example, at a set filling pressure of 35 MPa, and the storage unit (32) stores this 35 MPa in advance as a constant initial container pressure (P 0 ). is there.

上記のガス容器(2)が装着されると、上記の減圧弁(4)のガス出口(5)が上記のガス供給路(6)に接続される。この減圧弁(4)は、この第1実施形態では一次圧が低下すると二次圧が低下する形式のものが用いられている。この減圧弁(4)の具体的な減圧特性は、例えば図2の対比表に示す一次圧と二次圧の関係になっている。この減圧特性をグラフ化すると、図3に示すように右上がりに傾斜した直線状となっている。   When the gas container (2) is mounted, the gas outlet (5) of the pressure reducing valve (4) is connected to the gas supply path (6). In this first embodiment, the pressure reducing valve (4) is of a type in which the secondary pressure decreases when the primary pressure decreases. The specific pressure reducing characteristics of the pressure reducing valve (4) are, for example, the relationship between the primary pressure and the secondary pressure shown in the comparison table of FIG. When this decompression characteristic is graphed, it is a straight line inclined upward as shown in FIG.

この図2に示す対比表によれば、例えば一次圧(P)が35MPaから5MPa低下したときに、二次圧(p)は0.897MPaから0.075MPa低下している。従って、一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率、即ち、この減圧弁(4)の減圧特性係数(α)は、0.075÷5=0.015となっている。上記の記憶部(32)は、この0.015を定数の減圧特性係数(α)として予め記憶してある。   According to the comparison table shown in FIG. 2, for example, when the primary pressure (P) is reduced from 35 MPa to 5 MPa, the secondary pressure (p) is reduced from 0.897 MPa to 0.075 MPa. Therefore, the ratio of the pressure drop (Δp) of the secondary pressure (p) to the pressure drop (ΔP) of the primary pressure (P), that is, the pressure reducing characteristic coefficient (α) of the pressure reducing valve (4) is 0.075 ÷ 5 = 0.015. The storage unit (32) previously stores 0.015 as a constant decompression characteristic coefficient (α).

なお、この実施形態では上記の減圧特性係数(α)を算出するため、一次圧(P)が初期容器圧(P)から5MPa低下したときの二次圧(p)の圧力低下の比率を算出した。しかし本発明では、例えば一次圧(P)が初期容器圧(P)から30MPa低下したときの二次圧(p)の圧力低下の比率など、他の範囲において比率を算出してもよい。 In this embodiment, in order to calculate the pressure reduction characteristic coefficient (α), the ratio of the pressure drop of the secondary pressure (p) when the primary pressure (P) is reduced by 5 MPa from the initial vessel pressure (P 0 ) is calculated. Calculated. However, in the present invention, the ratio may be calculated in other ranges, for example, the ratio of the pressure drop of the secondary pressure (p) when the primary pressure (P) is reduced by 30 MPa from the initial vessel pressure (P 0 ).

次に、上記の容器弁(2)の上記の容器元弁(13)が開かれ、ガス容器(2)内の貯蔵ガスが減圧弁(4)で減圧されてガス供給路(6)に流出する。上記の第1圧力センサ(25)は、このガス供給路(6)に最初に流出した二次圧(p)を計測し、これを初期二次圧(p)として上記の演算装置(29)に出力し、上記の記憶部(32)がこの初期二次圧(p)を定数として記憶する。 Next, the container main valve (13) of the container valve (2) is opened, and the stored gas in the gas container (2) is depressurized by the pressure reducing valve (4) and flows into the gas supply path (6). To do. The first pressure sensor (25) measures the secondary pressure (p) that first flows out into the gas supply path (6), and uses this as the initial secondary pressure (p 0 ) to calculate the arithmetic unit (29 ) And the storage unit (32) stores the initial secondary pressure (p 0 ) as a constant.

次いで、上記の燃料電池システム(1)を運転する際に、上記の電磁弁(23)が開弁され、これにより上記のガス供給路(6)に流出した水素ガスが、上記の二次減圧弁(24)でさらに減圧されて燃料電池(8)に送られ、この水素ガスが発電のために消費される。このガス消費により、上記のガス容器(2)内の貯蔵ガスが減少して、残留ガス圧が徐々に低下していく。これとともに、上記の減圧弁(4)で減圧された二次圧(p)も徐々に低下する。上記の第1圧力センサ(25)はこの二次圧(p)を随時計測し、その計測結果が上記の演算装置(29)へ出力される。   Next, when the fuel cell system (1) is operated, the electromagnetic valve (23) is opened, and the hydrogen gas flowing out to the gas supply path (6) is then converted into the secondary decompression pressure. The pressure is further reduced by the valve (24) and sent to the fuel cell (8), and this hydrogen gas is consumed for power generation. Due to this gas consumption, the stored gas in the gas container (2) decreases, and the residual gas pressure gradually decreases. At the same time, the secondary pressure (p) reduced by the pressure reducing valve (4) also gradually decreases. The first pressure sensor (25) measures the secondary pressure (p) as needed, and the measurement result is output to the arithmetic unit (29).

上記の計測結果が上記の演算装置(29)に出力されると、上記の演算部(31)はこの二次圧(p)と上記の初期容器圧(P)と初期二次圧(p)と減圧特性係数(α)とから、次式(ii)
P=P−(p−p)÷α …(ii)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出する。
具体的には、例えば、上記の二次圧(p)が0.5MPaであった場合、一次圧(P)は
P=35−(0.897−0.5)÷0.015≒8.53
となり、この値は、図3に示す対比グラフから略正しい値であることがわかる。そしてこの算出結果が、上記の残圧表示装置(30)へ出力されて表示される。
When the measurement result is output to the arithmetic unit (29), the arithmetic unit (31) outputs the secondary pressure (p), the initial container pressure (P 0 ), and the initial secondary pressure (p 0 ) and the decompression characteristic coefficient (α), the following equation (ii)
P = P 0 − (p 0 −p) ÷ α (ii)
Thus, the residual gas pressure in the gas container (2), which is the primary pressure (P), is calculated.
Specifically, for example, when the secondary pressure (p) is 0.5 MPa, the primary pressure (P) is P = 35− (0.897−0.5) ÷ 0.015≈8. 53
Thus, it can be seen from the comparison graph shown in FIG. 3 that this value is substantially correct. Then, the calculation result is output to the residual pressure display device (30) and displayed.

なお、上記の電磁弁(23)が開いて上記の燃料電池(8)が稼動している間は、上記のガス供給路(6)内の二次圧(p)が安定しない。このため、上記の二次圧(p)は、燃料電池(8)の稼動が停止しているときに計測される。一方、燃料電池(8)の稼動中は、直前に算出された容器残圧を表示し続けてもよい。或いはこれに代えて、水素ガスの消費量を稼動時間等から算出し、これを直前に計測されたガス残量から差引くことで、残留ガス圧を推定し表示してもよい。この場合、この表示される残留ガス圧は、次回に燃料電池(8)の稼動が停止した際、上記の二次圧(p)を計測することで正確に算出して更新される。   The secondary pressure (p) in the gas supply path (6) is not stable while the solenoid valve (23) is open and the fuel cell (8) is operating. Therefore, the secondary pressure (p) is measured when the operation of the fuel cell (8) is stopped. On the other hand, while the fuel cell (8) is in operation, the container residual pressure calculated immediately before may be continuously displayed. Alternatively, the residual gas pressure may be estimated and displayed by calculating the consumption amount of hydrogen gas from the operating time or the like and subtracting this from the remaining gas amount measured immediately before. In this case, the displayed residual gas pressure is accurately calculated and updated by measuring the secondary pressure (p) when the operation of the fuel cell (8) is stopped next time.

上記のガス消費が進み、上記のガス容器(2)内の残留ガス圧が所定の限界圧力にまで低下すると、上記の残圧表示装置(30)がこれを表示して容器交換時期であることを報知する。これにより、上記のガス容器(2)が車載用燃料電池システム(1)から取外され、水素ガスを満タンに充填した新しいガス容器(2)がこの燃料電池システム(1)に装着される。この新しいガス容器(2)やこれに付設されている容器弁(3)の減圧弁(4)は、上記の取外されたガス容器(2)や減圧弁(4)と同じ型式であり、上記の初期容器圧(P)と減圧特性係数(α)は同じ値が定数として用いられる。また、この新しいガス容器(2)の装着時に、前記と同様、初期二次圧(p)が計測されて上記の記憶部(32)に記憶され、その後は前記のガス容器と同様に使用される。 When the gas consumption progresses and the residual gas pressure in the gas container (2) decreases to a predetermined limit pressure, the residual pressure display device (30) displays this and it is time to replace the container. Is notified. As a result, the gas container (2) is removed from the on-vehicle fuel cell system (1), and a new gas container (2) filled with hydrogen gas is installed in the fuel cell system (1). . The new gas container (2) and the pressure reducing valve (4) of the container valve (3) attached thereto are of the same type as the removed gas container (2) and pressure reducing valve (4). The same value is used as a constant for the initial vessel pressure (P 0 ) and the pressure reduction characteristic coefficient (α). In addition, when the new gas container (2) is installed, the initial secondary pressure (p 0 ) is measured and stored in the storage unit (32) as described above, and thereafter used in the same manner as the gas container. Is done.

上記の実施形態では、第1圧力センサ(25)が計測した初期二次圧(p)を用いて、上記の式(ii)により一次圧(P)を算出した。しかしながら本発明ではこれに代えて、初期容器圧(P)に対するこの初期二次圧(p)の比率を、上記の減圧弁(4)の減圧比(r)として記憶部(32)に記憶し、この減圧比(r)を用いて次式(iii)
P=P−(P×r−p)÷α …(iii)
により一次圧(P)を算出してもよい。即ち、r=p÷Pであり、この式(iii)は、上記の式(ii)の初期二次圧(p)に、上記の初期容器圧(P)と減圧比(r)との積を代入したものである。
In the above embodiment, the primary pressure (P) is calculated by the above equation (ii) using the initial secondary pressure (p 0 ) measured by the first pressure sensor (25). However, in the present invention, instead of this, the ratio of the initial secondary pressure (p 0 ) to the initial vessel pressure (P 0 ) is stored in the storage unit (32) as the pressure reducing ratio (r) of the pressure reducing valve (4). Using this reduced pressure ratio (r), the following formula (iii)
P = P 0 − (P 0 × r−p) ÷ α (iii)
The primary pressure (P) may be calculated by That is, r = p 0 ÷ P 0 , and this formula (iii) is obtained by adding the initial secondary pressure (p 0 ) of the above formula (ii) to the initial vessel pressure (P 0 ) and the pressure reduction ratio (r ) And the product.

また本発明では、初期容器圧(P)に対する標準的初期二次圧(p0S)を記憶部(32)に記憶しておき、この標準的初期二次圧(p0S)を用いて次式(i)
P=P−(p0S−p)÷α …(i)
により一次圧を算出してもよい。
In the present invention, the standard initial secondary pressure (p 0S ) with respect to the initial container pressure (P 0 ) is stored in the storage unit (32), and the standard initial secondary pressure (p 0S ) is used to Formula (i)
P = P 0 − (p 0S −p) ÷ α (i)
The primary pressure may be calculated by

さらに本発明では、上記の標準的初期二次圧(p0S)に代えて、初期容器圧(P)に対するこの標準的初期二次圧(p0S)の比率を、上記の減圧弁(4)の標準的な減圧比(r)として記憶部(32)に記憶し、この標準的減圧比(r)を用いて次式(iv)
P=P−(P×r−p)÷α …(iv)
により一次圧(P)を算出してもよい。即ち、r=p0S÷Pであり、この式(iv)は、上記の式(i)の標準的初期二次圧(p0S)に、上記の初期容器圧(P)と標準的減圧比(r)との積を代入したものである。
Furthermore, in the present invention, instead of the standard initial secondary pressure (p 0S ), the ratio of the standard initial secondary pressure (p 0S ) to the initial vessel pressure (P 0 ) is changed to the pressure reducing valve (4 standard vacuum ratio) (r S) as the storage unit stores (32), the following equation using the standard vacuum ratio (r S) (iv)
P = P 0 − (P 0 × r S −p) ÷ α (iv)
The primary pressure (P) may be calculated by That is, r S = p 0S ÷ P 0 , and this equation (iv) is obtained by adding the above-mentioned initial vessel pressure (P 0 ) and standard to the standard initial secondary pressure (p 0S ) in the above equation (i). This is a product obtained by substituting the product with the static pressure reduction ratio (r S ).

上記の式(i)における標準的初期二次圧(p0S)や、式(iv)における初期容器圧(P)と標準的減圧比(r)との積は、個別の減圧弁(4)に組付誤差などがあると、実際の初期二次圧(p)とバラツキを生じる。しかしその組付誤差などが充分に小さい場合は、そのバラツキも小さく、上記の標準的初期二次圧(p0S)などを用いても、一次圧(P)であるガス容器(2)内の残圧が略正確に算出される。 The product of the standard initial secondary pressure (p 0S ) in the above formula (i) and the initial vessel pressure (P 0 ) in the formula (iv) and the standard pressure reduction ratio (r S ) If there is an assembly error etc. in 4), the actual initial secondary pressure (p 0 ) and variation will occur. However, when the assembly error is sufficiently small, the variation is small, and even if the standard initial secondary pressure (p 0S ) is used, the primary pressure (P) in the gas container (2) The residual pressure is calculated almost accurately.

図4と図5は本発明の第2実施形態を示し、図4は減圧弁の減圧特性を示す一次圧と二次圧の対比表であり、図5はこの型式の減圧弁の、減圧特性のバラツキを示す一次圧と二次圧の対比グラフである。   4 and 5 show a second embodiment of the present invention, FIG. 4 is a comparison table of primary pressure and secondary pressure showing the pressure reducing characteristics of the pressure reducing valve, and FIG. 5 shows the pressure reducing characteristics of this type of pressure reducing valve. It is a contrast graph of the primary pressure and secondary pressure which shows the variation of this.

この第2実施形態では、上記の第1実施形態と同様の燃料電池システム(1)が用いられており、新しいガス容器(2)が装着されて減圧弁(4)のガス出口(5)がガス供給路(6)に接続される。またこのガス供給路(6)には電磁弁マニホールド(7)が付設してあり、第1実施形態と同様の、ガス容器(2)内の残圧測定装置(28)が設けてある。
しかしこの第2実施形態では、前記の第1実施形態とは異なり、一次圧(P)が低下すると二次圧(p)が上昇する形式の減圧弁(4)が用いられている。この減圧弁(4)の具体的な減圧特性は、例えば図4の対比表に示す一次圧(P)と二次圧(p)の関係になっている。この型式の複数台の減圧弁(4)の減圧特性をグラフ化すると、図5に示すように、いずれも右下がりに傾斜した直線状となっており、その傾斜角度はほぼ等しい。
In the second embodiment, a fuel cell system (1) similar to that in the first embodiment is used, and a new gas container (2) is mounted and a gas outlet (5) of the pressure reducing valve (4) is provided. Connected to the gas supply path (6). The gas supply passage (6) is provided with a solenoid valve manifold (7), and a residual pressure measuring device (28) in the gas container (2) is provided as in the first embodiment.
However, in the second embodiment, unlike the first embodiment, a pressure reducing valve (4) in which the secondary pressure (p) increases when the primary pressure (P) decreases is used. The specific pressure reducing characteristics of the pressure reducing valve (4) are, for example, the relationship between the primary pressure (P) and the secondary pressure (p) shown in the comparison table of FIG. When the pressure-reducing characteristics of a plurality of pressure-reducing valves (4) of this type are graphed, as shown in FIG. 5, all of them are linearly inclined to the lower right, and their inclination angles are substantially equal.

上記の図5から、この型式の減圧弁(4)では、例えば平均値を標準とすると、初期容器圧(P)である35MPaに対し、標準的な初期二次圧(p0S)は0.48MPaに設定されている。また、一次圧(P)が30MPaのときの平均値は0.535MPaである。従って一次圧(P)が35MPaから5MPa低下したとき、二次圧(p)は0.055MPa上昇しており、一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率である減圧特性係数(α)は、−0.011となっている。上記の記憶部(32)は、この減圧特性係数(α)と上記の初期容器圧(P)と標準的初期二次圧(p0S)とを、それぞれ定数として予め記憶してある。 From FIG. 5 above, in this type of pressure reducing valve (4), for example, when the average value is standard, the standard initial secondary pressure (p 0S ) is 0 with respect to 35 MPa which is the initial vessel pressure (P 0 ). It is set to .48 MPa. The average value when the primary pressure (P) is 30 MPa is 0.535 MPa. Therefore, when the primary pressure (P) is reduced from 35 MPa to 5 MPa, the secondary pressure (p) is increased by 0.055 MPa, and the pressure drop of the secondary pressure (p) with respect to the pressure drop (ΔP) of the primary pressure (P). The pressure reduction characteristic coefficient (α) which is the ratio of (Δp) is −0.011. The storage unit (32) stores the decompression characteristic coefficient (α), the initial container pressure (P 0 ), and the standard initial secondary pressure (p 0S ) in advance as constants.

ここで、図4に示す減圧特性の減圧弁(4)を備えたガス容器(2)が、上記の燃料電池システム(1)に装着された場合に、例えば上記の第1圧力センサ(25)が0.6MPaの二次圧(p)を計測すると、上記の演算部(31)は次式(i)により、
P=35−(0.48−0.6)÷(−0.011)≒24.1(MPa)
を算出する。これに対し、図4に示す対比表から算出すると、この減圧弁(4)の減圧特性によれば、二次圧(p)が0.6MPaのとき、一次圧(P)は約23.3MPaであるので、0.8MPaの僅かな誤差を生じている。
Here, when the gas container (2) having the pressure reducing valve (4) having the pressure reducing characteristic shown in FIG. 4 is mounted on the fuel cell system (1), for example, the first pressure sensor (25) described above. When measuring the secondary pressure (p) of 0.6 MPa, the above calculation unit (31) is expressed by the following equation (i):
P = 35− (0.48−0.6) ÷ (−0.011) ≈24.1 (MPa)
Is calculated. On the other hand, when calculated from the comparison table shown in FIG. 4, according to the pressure reducing characteristic of the pressure reducing valve (4), when the secondary pressure (p) is 0.6 MPa, the primary pressure (P) is about 23.3 MPa. Therefore, a slight error of 0.8 MPa is generated.

次に、上記の標準的初期二次圧(p0S)に代えて、ガス容器(2)を装着した際の実際の初期二次圧(p)を計測し、これを記憶部(32)に記憶して上記の式(ii)により一次圧を算出する場合について説明する。図4から初期二次圧(p)は0.47MPaであるので、例えば二次圧(p)が0.6MPaであると、上記の演算部(31)は次式(ii)により、
P=35−(0.47−0.6)÷(−0.011)≒23.2(MPa)
を算出する。上記のように、この減圧弁(4)の減圧特性によれば、二次圧(p)が0.6MPaのとき、一次圧(P)は約23.3MPaであるから、この式(ii)により算出した場合は、0.1MPa程度のきわめて僅かな誤差におさまり、上記の式(i)での算出よりも正確に一次圧(P)が算出される。
Next, instead of the standard initial secondary pressure (p 0S ), the actual initial secondary pressure (p 0 ) when the gas container (2) is mounted is measured, and this is stored in the storage unit (32). A case where the primary pressure is stored in accordance with the above equation (ii) will be described. Since the initial secondary pressure (p 0 ) is 0.47 MPa from FIG. 4, for example, when the secondary pressure (p) is 0.6 MPa, the calculation unit (31) is expressed by the following equation (ii):
P = 35− (0.47−0.6) ÷ (−0.011) ≈23.2 (MPa)
Is calculated. As described above, according to the pressure reducing characteristic of the pressure reducing valve (4), when the secondary pressure (p) is 0.6 MPa, the primary pressure (P) is about 23.3 MPa. In this case, the error falls within a very slight error of about 0.1 MPa, and the primary pressure (P) is calculated more accurately than the calculation by the above equation (i).

上記の実施形態で説明したガス容器内の残圧測定方法と残圧測定装置は、本発明の技術的思想を具体化するために例示したものであり、各部材の構造や配置、操作手順などをこの実施形態のものに限定するものではなく、本発明の特許請求の範囲内において種々の変更を加え得るものである。   The residual pressure measuring method and residual pressure measuring device in the gas container described in the above embodiment are illustrated in order to embody the technical idea of the present invention, and the structure and arrangement of each member, the operating procedure, etc. However, the present invention is not limited to this embodiment, and various modifications can be made within the scope of the claims of the present invention.

例えば、上記の実施形態では、燃料電池システムに2つのガス容器を装着する場合について説明した。しかし本発明では1つのガス容器を備えるものであってもよく、3以上のガス容器を備えるものであってもよい。また、複数のガス容器を使用する場合、各ガス容器からのガスの取り出しは、1つずつ順に使用してもよく、複数のガス容器から同時にガスを取り出して使用してもよい。この場合、各ガス容器に接続されるそれぞれのガス供給路に、前記の第1圧力センサが配置され、それぞれのガス容器から減圧して供給されるガスの二次圧が計測され、各ガス容器内の残留ガス圧が算出される。さらに上記の実施形態では、減圧弁が容器弁のハウジング内に設けてある場合について説明した。しかし本発明では、この減圧弁を容器弁とは別体に形成して、例えば容器弁のガス取出路の下流側に接続したものであってもよい。   For example, in the above embodiment, the case where two gas containers are attached to the fuel cell system has been described. However, in the present invention, one gas container may be provided, or three or more gas containers may be provided. Moreover, when using a some gas container, taking out the gas from each gas container may be used one by one in order, and you may take out and use gas from a some gas container simultaneously. In this case, the first pressure sensor is disposed in each gas supply path connected to each gas container, and the secondary pressure of the gas supplied by reducing the pressure from each gas container is measured. The residual gas pressure inside is calculated. Further, in the above-described embodiment, the case where the pressure reducing valve is provided in the housing of the container valve has been described. However, in the present invention, this pressure reducing valve may be formed separately from the container valve and connected to the downstream side of the gas extraction path of the container valve, for example.

また、上記の各実施形態では、初期容器圧を予め記憶部に記憶させた。しかし本発明では、例えば図1に示す仮想線のように、演算装置(29)に入力手段(33)を設けて、ガス容器(2)を装着する際にそのガス容器(2)の貯蔵ガス圧力を初期容器圧(P)として上記の記憶部(32)へ入力させてもよい。また、この入力手段(33)は、上記の減圧弁(4)の減圧特性係数(α)などを入力することも可能である。 In each of the above embodiments, the initial container pressure is stored in advance in the storage unit. However, in the present invention, for example, as shown by the phantom line shown in FIG. 1, when the input device (33) is provided in the arithmetic unit (29) and the gas container (2) is attached, the stored gas in the gas container (2) is stored. The pressure may be input to the storage unit (32) as the initial container pressure (P 0 ). The input means (33) can also input the pressure reducing characteristic coefficient (α) of the pressure reducing valve (4).

また上記の実施形態では、ガス消費機器が車載用燃料電池システムである場合について説明したが、本発明の残圧測定方法と残圧測定装置は、ガス容器が着脱可能に装着される他のガス消費機器へも適用することができ、さらに、ガス容器の貯蔵ガスが水素ガスに限定されないことはいうまでもない。   In the above-described embodiment, the case where the gas consuming device is an in-vehicle fuel cell system has been described. However, the residual pressure measuring method and the residual pressure measuring device of the present invention are other gases to which a gas container is detachably attached. Needless to say, the present invention can be applied to consumer devices, and the gas stored in the gas container is not limited to hydrogen gas.

本発明のガス容器内の残圧測定方法と残圧測定装置は、ガス容器内の残留ガス圧を正確に算出でき、しかも容器弁に電気的な圧力センサを装着する必要がなく、容器弁を小形に維持できるうえ、システム全体での圧力センサの必要個数を少なくして安価に実施できるので、車載用燃料電池システムに特に好適であるが、定置式燃料電池システムを初め、ガス容器が着脱可能に装着される他のガス消費機器にも好適である。   The residual pressure measuring method and residual pressure measuring device in the gas container of the present invention can accurately calculate the residual gas pressure in the gas container, and it is not necessary to attach an electrical pressure sensor to the container valve. It can be kept small and can be implemented at low cost by reducing the required number of pressure sensors in the entire system, so it is particularly suitable for in-vehicle fuel cell systems, but gas containers can be attached and detached, including stationary fuel cell systems. It is also suitable for other gas consuming equipment to be mounted on.

1…ガス消費機器(燃料電池システム)
2…ガス容器
3…容器弁
4…減圧弁
5…ガス出口
6…ガス供給路
25…二次圧計測手段(第1圧力センサ)
28…残圧測定装置
29…演算手段(演算装置)
30…残圧表示手段(残圧表示装置)
31…演算部
32…記憶部
33…入力手段
P…一次圧
…初期容器圧
ΔP…一次圧(P)の圧力低下
p…二次圧
…初期二次圧
0S…標準的初期二次圧
Δp…二次圧(p)の圧力低下
r…減圧比
…標準的減圧比
α…減圧特性係数
1. Gas consumption equipment (fuel cell system)
2 ... Gas container 3 ... Container valve 4 ... Pressure reducing valve 5 ... Gas outlet 6 ... Gas supply path
25 ... Secondary pressure measuring means (first pressure sensor)
28 ... Residual pressure measuring device
29 ... Calculation means (arithmetic unit)
30. Residual pressure display means (residual pressure display device)
31 ... Calculation unit
32… Memory unit
33 ... Input means P ... Primary pressure P 0 ... Initial vessel pressure ΔP ... Pressure drop of primary pressure (P) p ... Secondary pressure p 0 ... Initial secondary pressure p 0S ... Standard initial secondary pressure Δp ... Secondary pressure pressure drop r ... decompression ratio r S ... standard vacuum ratio alpha ... decompression characteristic coefficient of (p)

Claims (11)

ガス容器(2)には減圧弁(4)を有する容器弁(3)が付設してあり、この減圧弁(4)のガス出口(5)がガス消費機器(1)のガス供給路(6)と着脱可能に接続されており、このガス容器(2)内の残留ガス圧を測定する残圧測定方法であって、
上記のガス供給路(6)との接続の際の、上記のガス容器(2)内の貯蔵ガス圧力を初期容器圧(P)として記憶し、
上記減圧弁(4)の一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率を、この減圧弁(4)の減圧特性係数(α)として記憶し、
上記の初期容器圧(P)に対して設定された標準的な初期二次圧(p0S)を記憶し、
ガスの消費により変動した上記の二次圧(p)を計測し、この計測した二次圧(p)と、上記の初期容器圧(P)と標準的初期二次圧(p0S)と減圧特性係数(α)とから、次式(i)
P=P−(p0S−p)÷α …(i)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出することを特徴とする、ガス容器内の残圧測定方法。
A container valve (3) having a pressure reducing valve (4) is attached to the gas container (2), and a gas outlet (5) of the pressure reducing valve (4) is connected to a gas supply path (6) of the gas consuming device (1). ) Is detachably connected, and a residual pressure measuring method for measuring the residual gas pressure in the gas container (2),
The stored gas pressure in the gas container (2) when connected to the gas supply path (6) is stored as an initial container pressure (P 0 ),
The ratio of the pressure drop (Δp) of the secondary pressure (p) to the pressure drop (ΔP) of the primary pressure (P) of the pressure reducing valve (4) is stored as the pressure reducing characteristic coefficient (α) of the pressure reducing valve (4). And
Store the standard initial secondary pressure (p 0S ) set for the initial vessel pressure (P 0 ) above,
The secondary pressure (p) fluctuated due to gas consumption is measured, the measured secondary pressure (p), the initial vessel pressure (P 0 ), and the standard initial secondary pressure (p 0S ) From the pressure reduction characteristic coefficient (α), the following equation (i)
P = P 0 − (p 0S −p) ÷ α (i)
The residual pressure in the gas container is calculated by calculating the residual gas pressure in the gas container (2), which is the primary pressure (P).
上記の標準的初期二次圧(p0S)に代えて、上記の初期容器圧(P)に対するこの標準的初期二次圧(p0S)の比率を、上記の減圧弁(4)の標準的な減圧比(r)として記憶し、
この標準的減圧比(r)と上記の初期容器圧(P)との積を上記の(i)式の標準的初期二次圧(p0S)に代入して、上記のガス容器(2)内の残留ガス圧を算出する、請求項1に記載のガス容器内の残圧測定方法。
Instead of the standard initial secondary pressure (p 0S ), the ratio of the standard initial secondary pressure (p 0S ) to the initial vessel pressure (P 0 ) is defined as the standard of the pressure reducing valve (4). Stored as a typical pressure reduction ratio (r S ),
The product of the standard pressure reduction ratio (r S ) and the initial container pressure (P 0 ) is substituted into the standard initial secondary pressure (p 0S ) of the above equation (i), and the gas container ( The method for measuring a residual pressure in a gas container according to claim 1, wherein the residual gas pressure in 2) is calculated.
上記の標準的二次圧(p0S)を用いて上記の(i)式により残留ガス圧を算出することに代えて、
上記のガス容器(2)とガス供給路(6)との接続の際に、上記の減圧弁(4)から取り出された二次圧(p)を初期二次圧(p)として記憶し、
上記の計測した二次圧(p)と、上記の初期容器圧(P)と初期二次圧(p)と減圧特性係数(α)とから、次式(ii)
P=P−(p−p)÷α …(ii)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出する、請求項1に記載のガス容器内の残圧測定方法。
Instead of calculating the residual gas pressure by the above equation (i) using the above standard secondary pressure (p 0S ),
When the gas container (2) and the gas supply path (6) are connected, the secondary pressure (p) taken out from the pressure reducing valve (4) is stored as the initial secondary pressure (p 0 ). ,
From the measured secondary pressure (p), the initial vessel pressure (P 0 ), the initial secondary pressure (p 0 ), and the pressure reduction characteristic coefficient (α), the following equation (ii)
P = P 0 − (p 0 −p) ÷ α (ii)
The residual pressure measurement method in the gas container according to claim 1, wherein the residual gas pressure in the gas container (2), which is the primary pressure (P), is calculated by:
上記の初期二次圧(p)に代えて、上記の初期容器圧(P)に対するこの初期二次圧(p)の比率を、上記の減圧弁(4)の減圧比(r)として記憶し、
この減圧比(r)と上記の初期容器圧(P)との積を上記の(ii)式の初期二次圧(p)に代入して、上記のガス容器(2)内の残留ガス圧を算出する、請求項3に記載のガス容器内の残圧測定方法。
Instead of the initial secondary pressure (p 0 ), the ratio of the initial secondary pressure (p 0 ) to the initial container pressure (P 0 ) is defined as the pressure reduction ratio (r) of the pressure reducing valve (4). Remember as
Substituting the product of the pressure reduction ratio (r) and the initial vessel pressure (P 0 ) into the initial secondary pressure (p 0 ) in the above equation (ii), the residual in the gas vessel (2) The method for measuring a residual pressure in a gas container according to claim 3, wherein the gas pressure is calculated.
上記の減圧弁(4)の減圧特性係数(α)は0よりも大きく設定してある、請求項1から4のいずれか1項に記載のガス容器内の残圧測定方法。   The method for measuring a residual pressure in a gas container according to any one of claims 1 to 4, wherein the pressure reducing characteristic coefficient (α) of the pressure reducing valve (4) is set to be larger than zero. ガス容器(2)には減圧弁(4)を有する容器弁(3)が付設してあり、この減圧弁(4)のガス出口(5)がガス消費機器(1)のガス供給路(6)と着脱可能に接続されており、このガス容器(2)内の残留ガス圧を測定する残圧測定装置であって、
上記のガス供給路(6)に付設され上記の減圧弁(4)により減圧された二次圧(p)を計測する二次圧計測手段(25)と、この二次圧計測手段(25)からの出力に基づき上記のガス容器(2)内の残留ガス圧を演算する演算手段(29)と、この演算手段(29)による演算結果を表示する残圧表示手段(30)とを備え、
上記の演算手段(29)は演算部(31)と記憶部(32)とを備え、
この記憶部(32)は、上記のガス供給路(6)との接続の際の上記のガス容器(2)内の貯蔵ガス圧力である初期容器圧(P)と、この初期容器圧(P)に対して設定された上記の減圧弁(4)による標準的な初期二次圧(p0S)と、この一次圧(P)の圧力低下(ΔP)に対する二次圧(p)の圧力低下(Δp)の比率である減圧特性係数(α)とを記憶し、
上記の演算部(31)は、上記の二次圧計測手段(25)により計測された二次圧(p)と、上記の初期容器圧(P)と標準的初期二次圧(p0S)と減圧特性係数(α)とから、次式(i)
P=P−(p0S−p)÷α …(i)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出することを特徴とする、ガス容器内の残圧測定装置。
A container valve (3) having a pressure reducing valve (4) is attached to the gas container (2), and a gas outlet (5) of the pressure reducing valve (4) is connected to a gas supply path (6) of the gas consuming device (1). ) And is detachably connected to the residual pressure measuring device for measuring the residual gas pressure in the gas container (2),
A secondary pressure measuring means (25) attached to the gas supply path (6) for measuring the secondary pressure (p) decompressed by the pressure reducing valve (4), and the secondary pressure measuring means (25) A calculation means (29) for calculating the residual gas pressure in the gas container (2) based on the output from the above, and a residual pressure display means (30) for displaying the calculation result by the calculation means (29),
The calculation means (29) includes a calculation unit (31) and a storage unit (32),
The storage unit (32) includes an initial container pressure (P 0 ) that is a stored gas pressure in the gas container (2) when connected to the gas supply path (6), and an initial container pressure ( The standard initial secondary pressure (p 0S ) by the pressure reducing valve (4) set for P 0 ) and the secondary pressure (p) relative to the pressure drop (ΔP) of this primary pressure (P) The pressure reduction characteristic coefficient (α) that is the ratio of the pressure drop (Δp) is stored,
The calculation unit (31) includes the secondary pressure (p) measured by the secondary pressure measuring means (25), the initial container pressure (P 0 ), and the standard initial secondary pressure (p 0S ) And decompression characteristic coefficient (α), the following equation (i)
P = P 0 − (p 0S −p) ÷ α (i)
The residual pressure in the gas container is calculated by calculating the residual gas pressure in the gas container (2), which is the primary pressure (P).
上記の記憶部(32)は、上記の標準的初期二次圧(p0S)に代えて、上記の初期容器圧(P)に対するこの標準的初期二次圧(p0S)の比率を、上記の減圧弁(4)の標準的な減圧比(r)として記憶し、
上記の演算部(31)は、この標準的減圧比(r)と上記の初期容器圧(P)との積を上記の(i)式の標準的初期二次圧(p0S)に代入して、上記のガス容器(2)内の残留ガス圧を算出する、請求項6に記載のガス容器内の残圧測定装置。
The storage unit (32) replaces the standard initial secondary pressure (p 0S ) with the ratio of the standard initial secondary pressure (p 0S ) to the initial vessel pressure (P 0 ). Stored as the standard pressure reduction ratio (r S ) of the pressure reducing valve (4) above,
The calculation unit (31) calculates the product of the standard pressure reduction ratio (r S ) and the initial vessel pressure (P 0 ) as the standard initial secondary pressure (p 0S ) in the above equation (i). The residual pressure measuring device in a gas container according to claim 6, wherein the residual gas pressure in the gas container (2) is calculated by substitution.
上記の二次圧計測手段(25)は、上記のガス容器(2)とガス供給路(6)とが接続された際の初期二次圧(p)を計測し、
上記の記憶部(32)は、上記の標準的初期二次圧(p0S)に代えてこの初期二次圧(p)を記憶し、
上記の演算部(31)は、上記の二次圧(p)と上記の初期容器圧(P)と初期二次圧(p)と減圧特性係数(α)とから、次式(ii)
P=P−(p−p)÷α …(ii)
により、一次圧(P)である上記のガス容器(2)内の残留ガス圧を算出する、請求項6に記載のガス容器内の残圧測定装置。
The secondary pressure measuring means (25) measures the initial secondary pressure (p 0 ) when the gas container (2) and the gas supply path (6) are connected,
It said storage unit (32), instead of the standard initial secondary pressure of the (p 0S) stores the initial secondary pressure (p 0),
The calculation unit (31) calculates the following equation (ii) from the secondary pressure (p), the initial container pressure (P 0 ), the initial secondary pressure (p 0 ), and the pressure reduction characteristic coefficient (α). )
P = P 0 − (p 0 −p) ÷ α (ii)
The residual pressure measuring device in the gas container according to claim 6, wherein the residual gas pressure in the gas container (2), which is the primary pressure (P), is calculated by the following.
上記の記憶部(32)は、上記の初期二次圧(p)に代えて、上記の初期容器圧(P)に対するこの初期二次圧(p)の比率を上記の減圧弁の減圧比(r)として記憶し、
上記の演算部(31)は、この減圧比(r)と上記の初期容器圧(P)との積を上記の(ii)式の初期二次圧(p)に代入して、上記のガス容器(2)内の残留ガス圧を算出する、請求項8に記載のガス容器内の残圧測定装置。
The storage unit (32) replaces the initial secondary pressure (p 0 ) with the ratio of the initial secondary pressure (p 0 ) to the initial container pressure (P 0 ). Memorize it as decompression ratio
The calculation unit (31) substitutes the product of the pressure reduction ratio (r) and the initial container pressure (P 0 ) for the initial secondary pressure (p 0 ) in the above equation (ii), and The residual pressure measuring device in a gas container according to claim 8, wherein the residual gas pressure in the gas container (2) is calculated.
上記の減圧弁(4)の減圧特性係数(α)は0よりも大きく設定してある、請求項6から9のいずれか1項に記載のガス容器内の残圧測定装置。   The residual pressure measuring device in a gas container according to any one of claims 6 to 9, wherein the pressure reducing characteristic coefficient (α) of the pressure reducing valve (4) is set to be larger than zero. 上記の演算手段(29)は、少なくとも上記の初期容器圧(P)を上記の記憶部(32)へ入力する入力手段(33)を備える、請求項6から10のいずれか1項に記載のガス容器内の残圧測定装置。 Said computing means (29) comprises at least the initial container pressure (P 0) input means for inputting the storage section (32) (33), according to any one of claims 6 10 For measuring the residual pressure in the gas container.
JP2009015044A 2009-01-27 2009-01-27 Method and device for measuring residual pressure in gas container Pending JP2010174912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015044A JP2010174912A (en) 2009-01-27 2009-01-27 Method and device for measuring residual pressure in gas container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015044A JP2010174912A (en) 2009-01-27 2009-01-27 Method and device for measuring residual pressure in gas container

Publications (1)

Publication Number Publication Date
JP2010174912A true JP2010174912A (en) 2010-08-12

Family

ID=42706090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015044A Pending JP2010174912A (en) 2009-01-27 2009-01-27 Method and device for measuring residual pressure in gas container

Country Status (1)

Country Link
JP (1) JP2010174912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060584A1 (en) * 2010-09-14 2012-03-15 Gm Global Technology Operations, Inc. Calibration of all pressure transducers in a hydrogen storage system
JP2013191369A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Fuel gas supply device
JP2015089389A (en) * 2013-11-05 2015-05-11 株式会社リード Compressed gas regulator and carbon-dioxide-mist facial beauty device with regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229798A (en) * 1996-02-22 1997-09-05 Nagano Keiki Seisakusho Ltd Detection method for residual quantity of gas cylinder
JP2004019855A (en) * 2002-06-19 2004-01-22 Tatsuno Corp Data collecting system in charging high-pressure gas
JP2006048981A (en) * 2004-08-02 2006-02-16 Neriki:Kk Fuel cell system, and valve device for hydrogen gas envelope used for it
JP2007309778A (en) * 2006-05-18 2007-11-29 Yamatake Corp Flow meter and gas flow measuring system
JP2009002432A (en) * 2007-06-21 2009-01-08 Yamaha Motor Co Ltd Remaining gas amount calculation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229798A (en) * 1996-02-22 1997-09-05 Nagano Keiki Seisakusho Ltd Detection method for residual quantity of gas cylinder
JP2004019855A (en) * 2002-06-19 2004-01-22 Tatsuno Corp Data collecting system in charging high-pressure gas
JP2006048981A (en) * 2004-08-02 2006-02-16 Neriki:Kk Fuel cell system, and valve device for hydrogen gas envelope used for it
JP2007309778A (en) * 2006-05-18 2007-11-29 Yamatake Corp Flow meter and gas flow measuring system
JP2009002432A (en) * 2007-06-21 2009-01-08 Yamaha Motor Co Ltd Remaining gas amount calculation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060584A1 (en) * 2010-09-14 2012-03-15 Gm Global Technology Operations, Inc. Calibration of all pressure transducers in a hydrogen storage system
US8561453B2 (en) * 2010-09-14 2013-10-22 GM Global Technology Operations LLC Calibration of all pressure transducers in a hydrogen storage system
DE102011111610B4 (en) 2010-09-14 2022-12-15 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Calibration of all pressure transducers in a hydrogen storage system
JP2013191369A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Fuel gas supply device
JP2015089389A (en) * 2013-11-05 2015-05-11 株式会社リード Compressed gas regulator and carbon-dioxide-mist facial beauty device with regulator

Similar Documents

Publication Publication Date Title
US10107454B2 (en) Gas supply system and correction method
KR102551697B1 (en) Flowmeter failure diagnosis method and hydrogen charging device of meter
KR101388162B1 (en) Gas charging apparatus and gas charging method
CA2787670C (en) Fuel gas station, fuel gas filling system, and fuel gas supplying method
US11285446B2 (en) Mixed gas supply device
US10060781B2 (en) Methods and systems for direct fuel quantity measurement
US20070051423A1 (en) Pressure Differential System for Controlling High Pressure Refill Gas Flow Into On Board Vehicle Fuel Tanks
CN103748722A (en) Method for checking the gas tightness of a fuel cell system
JP2009520912A (en) Aircraft auxiliary fuel tank system and method
US20090277531A1 (en) Method for filling at least one compressed gas tank with at least one gas, connector for connecting to an opening of a compressed gas tank, and compressed gas cylinder valve
CN105591124A (en) Fuel Cell System and a Method for Controlling a Fuel Cell System
US8636040B2 (en) Installation for packaging NO using mass flow meters
US8190354B2 (en) Fuel efficiency measurement system and method for fuel cell vehicle
JP2010174912A (en) Method and device for measuring residual pressure in gas container
KR20100001224A (en) Lng fuel supply system
TW201541106A (en) Fuel source, fuel cell system and associated method
CN109563970A (en) Method and apparatus for the detection gas amount in a manner of adjustable
CN111463454A (en) High-pressure vessel system and fuel cell vehicle
JP4139311B2 (en) Shutoff valve open / close state determination system and shutoff valve open / close state determination method
JP2005240854A (en) Gaseous fuel residual quantity indicating display
US20020043488A1 (en) Method and apparatus for the distribution of treatment liquids
US20230026657A1 (en) Pressure Vessel System and Energy Supply Arrangement
JP2547710Y2 (en) Low temperature liquefied gas truck
JP2006105307A (en) Gas supply device
JPH07189731A (en) Residual fuel display device for gas fueled vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402