JP5119431B2 - Method for producing monodisperse nanodiamond particles - Google Patents

Method for producing monodisperse nanodiamond particles Download PDF

Info

Publication number
JP5119431B2
JP5119431B2 JP2006035684A JP2006035684A JP5119431B2 JP 5119431 B2 JP5119431 B2 JP 5119431B2 JP 2006035684 A JP2006035684 A JP 2006035684A JP 2006035684 A JP2006035684 A JP 2006035684A JP 5119431 B2 JP5119431 B2 JP 5119431B2
Authority
JP
Japan
Prior art keywords
laser light
liquid
nanodiamond particles
pulsed laser
carbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006035684A
Other languages
Japanese (ja)
Other versions
JP2007210869A (en
Inventor
俊一 佐藤
貴宏 中村
翼 清水
譲 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006035684A priority Critical patent/JP5119431B2/en
Publication of JP2007210869A publication Critical patent/JP2007210869A/en
Application granted granted Critical
Publication of JP5119431B2 publication Critical patent/JP5119431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭素を含む液体から、常温・常圧下で単分散ナノダイヤモンド粒子の製造方法に関する。   The present invention relates to a method for producing monodispersed nanodiamond particles from a liquid containing carbon at normal temperature and normal pressure.

従来、ダイヤモンド微粒子に代表される粒子径が数十nmオーダーの炭素微粒子は、精密さが要求される研磨加工において砥粒として用いられ、さらに微小な数nmオーダーの超微粒子は微小部品の潤滑剤として、ナノテクノロジー分野において極めて大きな需要が期待されている。応用の際にはこれらの微粒子が用途に応じた粒径であることに加え、その粒度が均一であることも必要不可欠である。現在市販されている合成ナノダイヤモンドは、グラファイト構造の原料物質に爆発などによって大きな衝撃を加え、生成された残渣物を酸処理することによって未変換成分を取り除いて製造されている。また、その他の合成法としてカーボンナノチューブを高温・高圧の安定状態に保持して合成する手法や、炭化水素と水素との混合ガスからナノダイヤモンド状薄膜を貴金属基板上に合成する化学蒸着法(CVD)も報告されている。   Conventionally, carbon fine particles with a particle size of the order of several tens of nanometers, represented by diamond fine particles, have been used as abrasive grains in polishing processes that require precision, and fine ultrafine particles of the order of several nanometers are lubricants for minute parts. As such, extremely large demands are expected in the nanotechnology field. In application, it is essential that these fine particles have a uniform particle size in addition to the particle size according to the application. Synthetic nanodiamonds currently on the market are manufactured by applying a large impact to a graphite-structured raw material by explosion or the like, and removing the unconverted components by acid treatment of the generated residue. Other synthesis methods include the synthesis of carbon nanotubes in a stable state at high temperature and high pressure, and the chemical vapor deposition method (CVD) that synthesizes a nanodiamond-like thin film on a noble metal substrate from a mixed gas of hydrocarbon and hydrogen. ) Has also been reported.

しかしながら、上述した衝撃法によるダイヤモンド合成技術は、残渣物からの回収による収率の低さに加え、作製された微粒子の粒度を制御するといったいわゆる『分級』が困難であるという問題がある。また、カーボンナノチューブによる高温高圧プロセス法や、炭化水素と水素との混合ガスを用いた化学蒸着法では、真空装置や加熱装置などの機器が必要であり製造プロセスが複雑であることに加え、作製条件や基板材料に制限があるといった問題がある。   However, the diamond synthesis technique by the impact method described above has a problem that so-called “classification” of controlling the particle size of the produced fine particles is difficult in addition to the low yield by recovery from the residue. In addition, the high-temperature and high-pressure process method using carbon nanotubes and the chemical vapor deposition method using a mixed gas of hydrocarbon and hydrogen require equipment such as a vacuum device and a heating device, and the manufacturing process is complicated. There is a problem that conditions and substrate materials are limited.

これまでの研究では、グラファイト構造の原料物質に爆発などによって大きな衝撃を加え、残渣物を酸処理し未変換成分を取り除いて製造される爆発法。カーボンナノチューブを高温・高圧の安定状態に保持して合成する方法(例えば、特許文献2)。炭化水素と水素との混合ガスからナノダイヤモンド状薄膜を貴金属基板上に合成する化学蒸着法(CVD)(例えば、特許文献2)、さらに、レーザーを用いたものでは水面付近でのメタンガスへの集光による炭素膜合成などが報告されている。   In the research so far, the explosion method is manufactured by applying a large impact to the graphite material by explosion, etc., and acid-treating the residue to remove unconverted components. A method of synthesizing carbon nanotubes while maintaining a stable state at high temperature and high pressure (for example, Patent Document 2). Chemical vapor deposition (CVD) for synthesizing nanodiamond-like thin films on a noble metal substrate from a mixed gas of hydrocarbons and hydrogen (for example, Patent Document 2). In addition, in the case of using a laser, the methane gas is collected near the water surface. Carbon film synthesis by light has been reported.

特開2002−066302号公報JP 2002-066302 A 特開2004−176132号公報JP 2004-176132 A

本発明の目的は、炭素を含む液体から常温・常圧の環境下で単分散ナノダイヤモンド粒子の製造方法を提供することにある。   An object of the present invention is to provide a method for producing monodispersed nanodiamond particles from a liquid containing carbon in an environment of normal temperature and normal pressure.

本発明によれば、ガラスセルなどのレーザー光を透過する透明な容器に常温・常圧で液体状の炭素化合物を装入し、前記容器外からパルスレーザー光を照射し、該パルスレーザー光を前記炭素化合物の液中で高密度に集光することを特徴とする単分散ナノダイヤモンド粒子の製造方法が得られる。   According to the present invention, a liquid container such as a glass cell that transmits laser light is charged with a liquid carbon compound at room temperature and pressure, irradiated with pulsed laser light from outside the container, and the pulsed laser light is irradiated. A method for producing monodisperse nanodiamond particles, characterized in that light is concentrated at high density in the liquid of the carbon compound, is obtained.

また、本発明によれば、前記炭素化合物液体中に照射するパルスレーザー光の波長は紫外・可視・赤外のいずれかの波長領域で、パルスレーザー光の強度は1010W/cm以上であることを特徴とする単分散ナノダイヤモンド粒子の製造方法得られる。 Further, according to the present invention, the wavelength of the pulsed laser beam irradiated into the carbon compound liquid is any one of ultraviolet, visible and infrared wavelength regions, and the intensity of the pulsed laser beam is 10 10 W / cm 2 or more. A method for producing monodisperse nanodiamond particles characterized in that is obtained.

また、本発明によれば、合成される炭素粒子は大きさが数〜数十nmの単分散微粒子であることを特徴とする単分散ナノダイヤモンド粒子の製造方法が得られる。   Further, according to the present invention, a method for producing monodispersed nanodiamond particles is obtained, wherein the synthesized carbon particles are monodispersed fine particles having a size of several to several tens of nm.

本発明により、常温・常圧下においてレーザー光と液体状炭素化合物から、粒径がナノメートルオーダーの単分散炭素微粒子を直接製造する方法を提供することにある。実験の配置はレーザー光源、集光レンズならびにレーザーを透過するガラスセル中に保持した炭化水素化合物液体のみで極めて単純な構成である。   An object of the present invention is to provide a method for directly producing monodisperse carbon fine particles having a particle size of the order of nanometers from a laser beam and a liquid carbon compound at normal temperature and normal pressure. The experimental arrangement is very simple with only a laser light source, a condenser lens, and a hydrocarbon compound liquid held in a glass cell that transmits the laser.

以下、本発明の実施の形態について図面を参照しながら説明する。ベンゼン(和光純薬工業株式会社製、∞Pure 99.7%)、シクロヘキサン(同仁化学研究所製、蛍光分析用純溶媒 99.0%以上)、エタノール(和光純薬工業株式会社製、∞Pure 99.8%)などといった常温・常圧において液体状態の炭化水素化合物を、レーザー光が透過するガラスセル中に2 ml保持し、波長780 nm、パルス幅約100 fsのフェムト秒チタンサファイアパルスレーザー(Clark-MXR,Inc.製)からの光を、レンズを用いて炭化水素化合物液体中に高密度で集光した。レーザー照射中には集光点近傍から気泡が発生し、一定時間照射後液中に黒色の沈殿物が確認された。発生したガスをガスクロマトグラフ(島津製作所製、GC-8A)で分析した結果、水素であることが確認された。照射後に生じた液体中の固形物を透過電子顕微鏡によって観察した結果、生成物は微粒子であり、制限視野回折像からその構造はダイヤモンドもしくはダイヤモンドライクカーボンといった炭素化合物であることが確認された(図2および3参照)。また、光子相関分光分析法を用いた粒度分布測定結果から、微粒子の粒径はナノメートルオーダーで単分散であることが確認された。さらに、原料となる炭化水素化合物液体の選択により作製される微粒子の粒径を制御することも可能である(図2および3参照)。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Benzene (Wako Pure Chemical Industries, ∞Pure 99.7%), Cyclohexane (Dojindo Laboratories, Pure solvent for fluorescence analysis 99.0% or more), Ethanol (Wako Pure Chemical Industries, ∞Pure 99.8%), etc. 2 ml of a liquid hydrocarbon compound at room temperature and pressure is held in a glass cell through which laser light passes, and a femtosecond titanium sapphire pulse laser with a wavelength of 780 nm and a pulse width of about 100 fs (Clark-MXR, Inc. The light from the product was condensed at high density in the hydrocarbon compound liquid using a lens. Bubbles were generated from the vicinity of the focal point during laser irradiation, and a black precipitate was confirmed in the liquid after irradiation for a certain period of time. As a result of analyzing the generated gas by a gas chromatograph (manufactured by Shimadzu Corporation, GC-8A), it was confirmed to be hydrogen. As a result of observing the solid matter in the liquid generated after irradiation with a transmission electron microscope, it was confirmed that the product was a fine particle, and the structure was a carbon compound such as diamond or diamond-like carbon from the limited field diffraction image (Fig. 2 and 3). In addition, from the particle size distribution measurement result using photon correlation spectroscopy, it was confirmed that the particle size of the fine particles was monodisperse in nanometer order. Furthermore, it is possible to control the particle size of the fine particles produced by selecting the hydrocarbon compound liquid as the raw material (see FIGS. 2 and 3).

炭素微粒子作製のための液中レーザーアブレーションシステム。Submerged laser ablation system for carbon fine particle production. ベンゼン中から得られた沈殿物の(a)明視野像ならびに(b)制限視野回折図形。(A) Bright field image and (b) restricted field diffraction pattern of precipitates obtained from benzene. シクロヘキサン中から得られた沈殿物の(a)明視野像ならびに(b)制限視野回折図形。(A) Bright field image and (b) limited field diffraction pattern of a precipitate obtained from cyclohexane.

符号の説明Explanation of symbols

1: ガラスセル(10×10×45 mm)
2: 炭化水素化合物液体(例えば、ベンゼン、シクロヘキサン、エタノール等)
3: 集光レンズ
4: フェムト秒チタンサファイアパルスレーザー光源
1: Glass cell (10 × 10 × 45 mm)
2: Hydrocarbon compound liquid (eg, benzene, cyclohexane, ethanol, etc.)
3: Condensing lens 4: Femtosecond titanium sapphire pulse laser light source

Claims (2)

レーザー光を透過する透明な容器に常温・常圧で液体状の炭素化合物を装入し、前記容器外からパルスレーザー光を照射し、該パルスレーザー光を前記炭素化合物の液中で高密度に集光することを特徴とする単分散ナノダイヤモンド粒子の製造方法。 A transparent carbon compound that is transparent to laser light is charged with a liquid carbon compound at room temperature and pressure, irradiated with pulsed laser light from outside the container, and the pulsed laser light is concentrated in the liquid of the carbon compound. A method for producing monodisperse nanodiamond particles characterized by focusing. 前記炭素化合物液体中に照射するパルスレーザー光の波長は紫外・可視・赤外のいずれかの波長領域で、パルスレーザー光の強度は、1010W/cm以上であることを特徴とする請求項1に記載の単分散ナノダイヤモンド粒子の製造方法。 The wavelength of the pulsed laser light applied to the carbon compound liquid is in any one of ultraviolet, visible, and infrared wavelength regions, and the intensity of the pulsed laser light is 10 10 W / cm 2 or more. Item 2. A method for producing monodispersed nanodiamond particles according to Item 1.
JP2006035684A 2006-02-13 2006-02-13 Method for producing monodisperse nanodiamond particles Active JP5119431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035684A JP5119431B2 (en) 2006-02-13 2006-02-13 Method for producing monodisperse nanodiamond particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035684A JP5119431B2 (en) 2006-02-13 2006-02-13 Method for producing monodisperse nanodiamond particles

Publications (2)

Publication Number Publication Date
JP2007210869A JP2007210869A (en) 2007-08-23
JP5119431B2 true JP5119431B2 (en) 2013-01-16

Family

ID=38489633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035684A Active JP5119431B2 (en) 2006-02-13 2006-02-13 Method for producing monodisperse nanodiamond particles

Country Status (1)

Country Link
JP (1) JP5119431B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001527A1 (en) * 2011-06-26 2013-01-03 Ray Techniques Ltd Method and system for controlled synthesis of nanodiamonds
CN103641112B (en) * 2013-12-24 2016-03-23 华南师范大学 A kind of method utilizing femtosecond laser to prepare Nano diamond
JP2021178747A (en) * 2020-05-12 2021-11-18 学校法人立命館 Method for producing diamond

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166376A (en) * 1989-11-24 1991-07-18 Sumitomo Electric Ind Ltd Laser cvd method
JPH04325407A (en) * 1991-04-25 1992-11-13 Sumitomo Electric Ind Ltd Manufacture of superhigh pressure stable phase substance
JP3062589B2 (en) * 1995-08-24 2000-07-10 名古屋大学長 Thin film formation method by radical control
JP4560606B2 (en) * 2004-02-23 2010-10-13 国立大学法人愛媛大学 Submerged plasma reactor and crystal synthesis method

Also Published As

Publication number Publication date
JP2007210869A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
US8580130B2 (en) Laser-assisted nanomaterial deposition, nanomanufacturing, in situ monitoring and associated apparatus
An et al. Exfoliation of transition metal dichalcogenides by a high-power femtosecond laser
Panagiotopoulos et al. Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting
RU2547009C2 (en) Method of producing cubic nanocrystals of diamond
Gorrini et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation
Mortazavi et al. Generation of various carbon nanostructures in water using IR/UV laser ablation
Palnichenko et al. Diamond formation by thermal activation of graphite
Singh et al. Nanoarchitectural evolution from laser-produced colloidal solution: growth of various complex cadmium hydroxide architectures from simple particles
JP5119431B2 (en) Method for producing monodisperse nanodiamond particles
Azam et al. Accelerated synthesis of atomically-thin 2D quantum materials by a novel laser-assisted synthesis technique
Boruah et al. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds
Heilmann et al. Spatially controlled epitaxial growth of 2D heterostructures via defect engineering using a focused He ion beam
Kim et al. Locally enhanced light–matter interaction of MoS2 monolayers at density-controllable nanogrooves of template-stripped Ag films
Rahaman et al. Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors
Terranova et al. Self-assembly of N-diamond nanocrystals into supercrystals
Rajendran et al. Nanotechnology for bioremediation of heavy metals
Salmistraro et al. Fabrication of gold nanoantennas on SiO2/TiO2 core/shell beads to study photon-driven surface reactions
Wang et al. Laser-assisted synthesis of two-dimensional transition metal dichalcogenides: a mini review
Kesarwani et al. Growth of single and bilayer graphene by filtered cathodic vacuum arc technique
Wang et al. Nature-like photosynthesis of water and carbon dioxide with femtosecond laser induced self-assembled metal nanostructures
Hossain et al. Preparation of Carbon Nanoparticles from Candle and Their Characterization by Advanced Spectroscopic Methods
IL159045A (en) Direct surface patterning of carbon
Khattak Top-Down Technique to Obtain Fluorescent Diamond Pillars
Jalili et al. Laser Ablation of the Flexible Graphite: A New Way to Create a Graphene‐Based Flexible Substrate
Nakamura et al. Synthesis of monodispersed DLC nanoparticles in intense optical field by femtosecond laser ablation of liquid benzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150