JPH04325407A - Manufacture of superhigh pressure stable phase substance - Google Patents

Manufacture of superhigh pressure stable phase substance

Info

Publication number
JPH04325407A
JPH04325407A JP3095026A JP9502691A JPH04325407A JP H04325407 A JPH04325407 A JP H04325407A JP 3095026 A JP3095026 A JP 3095026A JP 9502691 A JP9502691 A JP 9502691A JP H04325407 A JPH04325407 A JP H04325407A
Authority
JP
Japan
Prior art keywords
stable phase
pressure stable
target
ultra
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095026A
Other languages
Japanese (ja)
Inventor
Akira Nakayama
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3095026A priority Critical patent/JPH04325407A/en
Publication of JPH04325407A publication Critical patent/JPH04325407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To manufacture a superhigh pressure stable phase substance of quality at a low cost by non oxide ceramics such as cubic system boron nitride and diamond. CONSTITUTION:A target contg. atoms capable of forming a superhigh pressure stable phase substance (in the case of cBN, B and N are used, and in the case of diamond, C is used) is set in liquid nitrogen, and the above target is irradiated with laser beams hard to absorb energy by liquid nitrogen by condensing light by condenser lens, by which the objective substance is formed, and simultaneously, powder and/or particles are released from the target and are recovered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非酸化物セラミックス
であり、砥粒等に用いられる立方晶窒化ホウ素、ダイヤ
モンドで代表される超高圧安定相物質の粉末および/ま
たは粒の製造方法に関するものである。
[Field of Industrial Application] The present invention relates to a method for producing powder and/or grains of ultra-high pressure stable phase materials such as cubic boron nitride and diamond, which are non-oxide ceramics and are used as abrasive grains. It is.

【0002】0002

【従来の技術】従来、窒化ホウ素の合成法として、種々
の方法で提案されている。その代表的なものとしては、
酸化物をアンモニアや含窒素有機物を使って還元窒化す
る方法と、酸化物、水素化物等をアンモニアで窒化する
方法等がある。また、特公昭62−132709号公報
に示されるような金属ホウ化物を窒素気流中で電磁誘導
加熱により加熱分解して、粉末状の窒化ホウ素を合成す
る方法が提案されている。
BACKGROUND OF THE INVENTION Various methods have been proposed to synthesize boron nitride. Representative examples include:
There is a method of reducing and nitriding oxides using ammonia or a nitrogen-containing organic substance, and a method of nitriding oxides, hydrides, etc. with ammonia. Furthermore, a method has been proposed in which powdered boron nitride is synthesized by thermally decomposing a metal boride by electromagnetic induction heating in a nitrogen stream, as disclosed in Japanese Patent Publication No. 132709/1982.

【0003】しかし、いずれの方法においても六方晶窒
化ホウ素(h−BN)やX線回折でJCPDSのNo.
 18−251に示されるような種々の結晶構造を有す
る窒化ホウ素の混合物しか得られていない。高圧合成に
よる立方晶窒化ホウ素粒の作成は、ダイヤモンド以上の
超高温・高圧を必要とするため、合成コストが高価にな
るために、その使用範囲も限られたものとなる。ダイヤ
モンド粉末/粒についても高圧合成法によるため、合成
コストが高価となり使用範囲が限定されている。
However, in both methods, JCPDS No.
Only mixtures of boron nitride with various crystal structures such as those shown in No. 18-251 have been obtained. Creating cubic boron nitride grains by high-pressure synthesis requires extremely high temperatures and pressures higher than that of diamond, which increases the synthesis cost and limits the scope of its use. Diamond powder/granules are also synthesized using a high-pressure method, resulting in high synthesis costs and a limited range of use.

【0004】0004

【発明が解決しようとする課題】上記いずれの方法にお
いても、結晶性に優れた立方晶窒化ホウ素(c−BN)
は得られていない。また、上記の大部分の方法では反応
温度が高温のために補助発熱体として用いるモリブデン
やタングステン等の不純物が混入し、高純度の窒化ホウ
素が得られない問題点があった。高圧合成においては、
非常にコストがかかることが問題となり、溶媒等の不純
物混入が避けられない。ダイヤモンドにおいても、高圧
合成てはコストがかかりすぎること、さらに高圧合成の
際に溶媒として用いられる金属(Ni等)が不純物とし
て混入し、高品質なダイヤモンドは生成されない。
[Problems to be Solved by the Invention] In any of the above methods, cubic boron nitride (c-BN) having excellent crystallinity is used.
has not been obtained. Furthermore, most of the above methods have the problem that impurities such as molybdenum and tungsten used as auxiliary heating elements are mixed in due to the high reaction temperature, making it impossible to obtain highly pure boron nitride. In high pressure synthesis,
The problem is that it is extremely costly, and contamination with impurities such as solvents is unavoidable. Even for diamonds, high-pressure synthesis is too expensive, and metals (such as Ni) used as solvents during high-pressure synthesis are mixed in as impurities, making it impossible to produce high-quality diamonds.

【0005】本発明は、従来法の欠点を解消し、安価で
高純度の立方晶窒化ホウ素、ダイヤモンド等の超高圧安
定相物質を容易に得ることができる新規かつ優れた製造
方法を提供するものである。
[0005] The present invention provides a new and excellent manufacturing method that overcomes the drawbacks of conventional methods and can easily obtain ultra-high pressure stable phase materials such as inexpensive and highly pure cubic boron nitride and diamond. It is.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明では、液体窒素中において、超高
圧安定相物質を形成しうる原子を含むターゲット表面に
対して液体窒素にエネルギーを吸収されにくい波長を有
するレーザー光を照射することにより、超高圧安定相物
質を合成することを特徴とするものである。本発明の特
に好ましい実施態様として、前記ターゲットがホウ素ま
たは窒化ホウ素から成り、且つ前記超高圧安定相物質が
立方晶窒化ホウ素である前記方法、さらに前記ターゲッ
トが炭素から成り、且つ前記超高圧安定相物質がダイヤ
モンドである前記方法を挙げることができる。
[Means for Solving the Problems] As a means for solving the above problems, in the present invention, energy is applied to a target surface containing atoms capable of forming an ultra-high pressure stable phase substance in liquid nitrogen. This method is characterized by synthesizing an ultra-high pressure stable phase material by irradiating it with laser light having a wavelength that is difficult to absorb. In a particularly preferred embodiment of the present invention, the target comprises boron or boron nitride, and the ultra-high pressure stable phase material is cubic boron nitride, and the target comprises carbon, and the ultra-high pressure stable phase material Mention may be made of said method in which the substance is diamond.

【0007】[0007]

【作用】本発明では、例えばホウ素原子、炭素原子等の
超高圧安定相物質を形成しうる原子を含むターゲット表
面に、レーザー光をレンズ等により集光させ、この集光
したレーザー光の当たっている局部的な部分のエネルギ
ー密度を高めることにより、超高圧安定相物質、例えば
立方晶窒化ホウ素やダイヤモンドが安定に存在しうる高
温・高圧状態を実現させ、該ターゲット表面から当該超
高圧安定相物質を放出させて粉末および粒を合成する。 合成された該分粉末および/または粒は反応室に設けた
回収皿等で受けて回収される。
[Operation] In the present invention, a laser beam is focused by a lens or the like on a target surface containing atoms capable of forming an ultra-high pressure stable phase substance such as boron atoms or carbon atoms, and the focused laser beam is struck by a lens or the like. By increasing the energy density of the localized portion of the target, a high-temperature and high-pressure state in which ultra-high-pressure stable phase materials such as cubic boron nitride and diamond can stably exist can be realized, and the ultra-high-pressure stable phase materials can be removed from the target surface. is released to synthesize powders and granules. The synthesized powder and/or grains are received and collected in a collection tray or the like provided in the reaction chamber.

【0008】液体窒素中でターゲットにレーザー光を照
射するのは、■ターゲットを冷却することにより、レー
ザー照射による急速加熱によるターゲットの溶融現象を
防ぎ、レーザー照射部の急速加熱による熱膨張から起因
する圧力上昇の有効利用を可能にし、c−BNが安定に
存在し得る高温・高圧状態を実現させること、■c−B
N,ダイヤモンドが安定に存在し得る状態である高温・
高圧状態から急冷されることにより、c−BNやダイヤ
モンド等がクエンチされ、ターゲット表面から液体窒素
中に放出されること、さらには■立方晶窒化ホウ素等の
窒化物においては、窒化物ターゲットを用いた場合、タ
ーゲット表面および立方晶窒化ホウ素のホウ素と窒素の
比率を1:1に保持すること、等■〜■の作用・効果が
あると、本発明者は考えている。
Irradiating the target with laser light in liquid nitrogen is done because: (1) By cooling the target, the melting phenomenon of the target due to rapid heating due to laser irradiation is prevented, which is caused by thermal expansion due to rapid heating of the laser irradiated part. To make effective use of pressure increase and realize a high temperature and high pressure state in which c-BN can exist stably, ■c-B
N, at high temperatures and conditions in which diamond can exist stably.
By rapidly cooling from a high pressure state, c-BN, diamond, etc. are quenched and released from the target surface into liquid nitrogen. In this case, the present inventor believes that there are the following effects and effects, such as maintaining the boron:nitrogen ratio of the target surface and the cubic boron nitride at 1:1.

【0009】本発明において使用可能なレーザーは、液
体窒素にエネルギーを吸収されにくい波長を有するもの
であればよい。具体的には波長125〜180nmを除
く波長を有するものであればよい。但し、波長によって
高温・高圧状態が実現される機構が異なってくる。Ar
F等に代表される紫外域のエキシマレーザー(波長:1
93nm)においては、光子(フォトン)エネルギーが
直接的に高温・高圧状態に寄与する割合が大きいが、C
O2 レーザー(波長:10.6nm)においては、熱
的エネルギーのみが高温・高圧状態に寄与していると考
えられる。
[0009] The laser usable in the present invention may be any laser having a wavelength whose energy is not easily absorbed by liquid nitrogen. Specifically, any material having a wavelength other than 125 to 180 nm may be used. However, the mechanism by which high temperature and high pressure conditions are achieved differs depending on the wavelength. Ar
Excimer laser in the ultraviolet region (wavelength: 1
93 nm), photon energy directly contributes to high temperature and high pressure conditions, but C
In O2 laser (wavelength: 10.6 nm), only thermal energy is considered to contribute to the high temperature and high pressure state.

【0010】本発明に使用する、超高圧安定相物質を形
成しうる原子を含むターゲットとして具体的には、例え
ばc−BN合成の場合にはホウ素の単体、六方晶窒化ホ
ウ素、バイロリティックBN(p−BN)、c−BNの
単結晶または多結晶体等が挙げられる。ダイヤモンド合
成の場合には、例えばグラファイト、パイロリティック
カーボン等である。
Specifically, the targets used in the present invention containing atoms capable of forming an ultra-high pressure stable phase material include, for example, in the case of c-BN synthesis, elemental boron, hexagonal boron nitride, birolytic BN ( p-BN), c-BN single crystals or polycrystals, and the like. In the case of diamond synthesis, for example, graphite, pyrolytic carbon, etc.

【0011】図1は本発明の1具体例の説明図である。 ターゲットホルダー4上に設置されたターゲット3と合
成された立方晶窒化ホウ素粉末および/または粒を集め
るための回収皿5が容器1内に配置されている。ターゲ
ット3には前記した超高圧安定相物質を形成しうる原子
を含む材質が使用されている。容器1内は液体窒素2で
満たされている。容器1に隣接して真空室9がある。容
器1に直接レーザー透過窓を設けてレーザー光を容器1
内に照射しようとすると、レーザー透過窓8表面が液体
窒素により冷却されているため大気中の水蒸気がレーザ
ー透過窓8表面に結露し、レーザー光を吸収したり、レ
ーザー光の集光の妨げになるため、この方法は不可能で
ある。これを回避するために真空室9を設けている。真
空室9は初期に一度数Torr程度に真空排気しておけ
ば、長期間問題なく使用が可能である。
FIG. 1 is an explanatory diagram of one specific example of the present invention. A collection pan 5 is arranged in the container 1 for collecting the cubic boron nitride powder and/or grains synthesized with the target 3 placed on the target holder 4 . The target 3 is made of a material containing atoms capable of forming the above-mentioned ultra-high pressure stable phase substance. The inside of the container 1 is filled with liquid nitrogen 2. Adjacent to the container 1 is a vacuum chamber 9. A laser transmission window is provided directly on the container 1 to transmit the laser light to the container 1.
If you try to irradiate the inside of the laser, water vapor in the atmosphere will condense on the surface of the laser transmission window 8 because the surface of the laser transmission window 8 is cooled by liquid nitrogen, which may absorb the laser light or interfere with the focusing of the laser light. Therefore, this method is not possible. To avoid this, a vacuum chamber 9 is provided. The vacuum chamber 9 can be used for a long period of time without any problem if it is evacuated to several Torr at the beginning.

【0012】レーザー装置6より発光させたレーザー光
を集光しレンズ7により集光してレーザーパワーを高め
、両側にレーザー透過窓8を有する真空室9を通し、容
器1内のターゲット3表面に照射させる。ターゲット表
面におけるレーザーパワー密度としては20J/cm2
 〜80MJ/cm2 の範囲とする。パワー密度が低
いとc−BNが安定に存在し得る局部的な高温・高圧状
態まで到達することができない。また、パワー密度があ
まりにも高いと、液体窒素の冷却能力か追いつかず、ク
ラスター状あるいは溶融粒子となってターゲットから放
出され、低温安定相であるh−BNやアモルファス状の
BNが生成されることになる。
The laser beam emitted from the laser device 6 is focused by a lens 7 to increase the laser power, and is passed through a vacuum chamber 9 having laser transmission windows 8 on both sides to the surface of the target 3 in the container 1. irradiate. Laser power density on target surface is 20J/cm2
The range is 80 MJ/cm2. If the power density is low, it is impossible to reach a local high temperature and high pressure state where c-BN can stably exist. In addition, if the power density is too high, the cooling capacity of liquid nitrogen cannot keep up with it, and it becomes clusters or molten particles that are released from the target, producing h-BN, which is a low-temperature stable phase, and amorphous BN. become.

【0013】[0013]

【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明はこれに限定されるものではない。
[Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto.

【0014】実施例1 本実施例では図1の構成において、ターゲット3として
p−BNを用い、レーザーパワー密度として2kJ/c
m2 と10MJ/cm2 で行った。レーザー光源と
しては、ArF(波長193nm)エキシマレーザーを
用いた。 合成された粉末および/または粒の粒径は、レ−ザーパ
ワー密度2kJ/cm2 のとき〜0.05μm径のも
のが得られ、10MJ/cm2 のときは〜0.1μm
径のものが得られた。
Example 1 In this example, p-BN is used as the target 3 in the configuration shown in FIG. 1, and the laser power density is 2 kJ/c.
m2 and 10 MJ/cm2. As a laser light source, an ArF (wavelength: 193 nm) excimer laser was used. The particle size of the synthesized powder and/or particles is ~0.05 μm when the laser power density is 2 kJ/cm2, and ~0.1 μm when the laser power density is 10 MJ/cm2.
diameter was obtained.

【0015】以上で得られた粉末をX線回折により結晶
構造を同定すると、両方ともにJCPDSのNo. 3
5−1365(立方晶窒化ホウ素)とよく一致した。ま
た、111面での半値幅も、それぞれ0.42°および
0.36°と結晶性も良好なものが得られた。
When the crystal structures of the powders obtained above were identified by X-ray diffraction, both were found to be No. 1 in JCPDS. 3
5-1365 (cubic boron nitride). Further, the half-width at the 111 plane was 0.42° and 0.36°, respectively, and good crystallinity was obtained.

【0016】実施例2 図1の構成において、ターゲット3としてグラファイト
を用い、レーザーパワー密度を20MJ/cm2 とし
て、ダイヤモンドを合成した。レーザー光源としては、
実施例1と同様にArF(波長193nm)エキシマレ
ーザーを用いた。得られた粉末の粒径は、〜0.2μm
であった。この粉末をX線回折により評価した結果、結
晶性が良いことが確認された。
Example 2 In the configuration shown in FIG. 1, diamond was synthesized using graphite as the target 3 and a laser power density of 20 MJ/cm2. As a laser light source,
As in Example 1, an ArF (wavelength: 193 nm) excimer laser was used. The particle size of the obtained powder is ~0.2 μm
Met. As a result of evaluating this powder by X-ray diffraction, it was confirmed that it had good crystallinity.

【0017】[0017]

【発明の効果】以上のように本発明は非常に安価な装置
で、高品質なc−BN、ダイヤモンド等の超高圧安定相
物質の粉末および/または粒を製造できる方法を提供す
るものである。
[Effects of the Invention] As described above, the present invention provides a method for producing powder and/or grains of high-quality ultra-high pressure stable phase materials such as c-BN and diamond using extremely inexpensive equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一具体例により示す概略説明図である
FIG. 1 is a schematic explanatory diagram showing a specific example of the present invention.

【符号の説明】[Explanation of symbols]

1  容器 2  液体窒素 3  ターゲット 4  ターゲットホルダ 5  回収皿 6  レーザー 7  集光用レンズ 8  レーザー透過窓 9  真空室 1 Container 2. Liquid nitrogen 3 Target 4 Target holder 5 Collection plate 6 Laser 7. Focusing lens 8 Laser transmission window 9 Vacuum chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  液体窒素中において、超高圧安定相物
質を形成しうる原子を含むターゲット表面に対して液体
窒素にエネルギーを吸収されにくい波長を有するレーザ
ー光を照射することにより、超高圧安定相物質を合成す
ることを特徴とする超高圧安定相物質の製造方法。
1. In liquid nitrogen, by irradiating a target surface containing atoms capable of forming an ultra-high-pressure stable phase substance with a laser beam having a wavelength at which energy is difficult to be absorbed by liquid nitrogen, an ultra-high-pressure stable phase substance is formed. A method for producing an ultra-high pressure stable phase material, the method comprising synthesizing the material.
【請求項2】  前記ターゲットがホウ素または窒化ホ
ウ素から成り、且つ前記超高圧安定相物質が立方晶窒化
ホウ素であることを特徴とする請求項1の超高圧安定相
物質の製造方法。
2. The method for producing an ultra-high pressure stable phase material according to claim 1, wherein the target is made of boron or boron nitride, and the ultra-high pressure stable phase material is cubic boron nitride.
【請求項3】  前記ターゲットが炭素から成り、且つ
前記超高圧安定相物質がダイヤモンドであることを特徴
とする請求項1の超高圧安定相物質の製造方法。
3. The method for producing an ultra-high pressure stable phase material according to claim 1, wherein the target is made of carbon, and the ultra-high pressure stable phase material is diamond.
JP3095026A 1991-04-25 1991-04-25 Manufacture of superhigh pressure stable phase substance Pending JPH04325407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095026A JPH04325407A (en) 1991-04-25 1991-04-25 Manufacture of superhigh pressure stable phase substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095026A JPH04325407A (en) 1991-04-25 1991-04-25 Manufacture of superhigh pressure stable phase substance

Publications (1)

Publication Number Publication Date
JPH04325407A true JPH04325407A (en) 1992-11-13

Family

ID=14126584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095026A Pending JPH04325407A (en) 1991-04-25 1991-04-25 Manufacture of superhigh pressure stable phase substance

Country Status (1)

Country Link
JP (1) JPH04325407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210869A (en) * 2006-02-13 2007-08-23 Tohoku Univ Manufacturing method of monodisperse nano-diamond particle
CN103657564A (en) * 2013-10-12 2014-03-26 江苏大学 Device and method for preparing nano diamonds by high-energy lamp pumping solid laser
JP2015506887A (en) * 2011-06-26 2015-03-05 レイ テクニクス リミテッド Methods and systems for controlled synthesis of nanodiamonds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210869A (en) * 2006-02-13 2007-08-23 Tohoku Univ Manufacturing method of monodisperse nano-diamond particle
JP2015506887A (en) * 2011-06-26 2015-03-05 レイ テクニクス リミテッド Methods and systems for controlled synthesis of nanodiamonds
US9636650B2 (en) 2011-06-26 2017-05-02 Ray Techniques Ltd. Method and system for controlled synthesis of nanodiamonds
CN103657564A (en) * 2013-10-12 2014-03-26 江苏大学 Device and method for preparing nano diamonds by high-energy lamp pumping solid laser

Similar Documents

Publication Publication Date Title
Wang et al. Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction
El-Shall et al. Synthesis and characterization of nanoscale zinc oxide particles: I. laser vaporization/condensation technique
CA2059185C (en) Process and apparatus for production of diamond like films
EP1803840B1 (en) Method for growing single crystal of silicon carbide
JPH11189472A (en) Synthesis of carbon nitride
US4289952A (en) Process for controlling powder size with optical energy
JPH04325407A (en) Manufacture of superhigh pressure stable phase substance
US5605759A (en) Physical vapor deposition of diamond-like carbon films
JPH0524988B2 (en)
Subramanian et al. A novel technique for synthesis of silver nanoparticles by laser-liquid interaction
US5398639A (en) Solid state conversion of hexagonal to cubic-like boron nitride
JP2913796B2 (en) Vapor phase synthetic diamond
JPS6320573B2 (en)
Kawakami et al. Characteristics of ultrafine tungsten particles produced by Nd: YAG laser irradiation
US4913887A (en) Production of boron nitride
Kikuchi et al. Diamond synthesis by CO2 laser irradiation
JP2505375B2 (en) Method and apparatus for forming compound film
Sokołowska et al. Photon assisted chemical synthesis of E-BN
JP3099539B2 (en) Manufacturing method of artificial diamond powder
JPS58150427A (en) Preparation of fine powder of metal compound
JP2505376B2 (en) Film forming method and apparatus
JP2020176040A (en) Method for manufacturing silicon carbide film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
WO2019030890A1 (en) Member and method for manufacturing carbon nano-horn aggregate
Genqing et al. Formation of nanocrystalline TiN film by ion-beam-enhanced deposition