JP5118804B2 - Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles - Google Patents

Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles Download PDF

Info

Publication number
JP5118804B2
JP5118804B2 JP2005073927A JP2005073927A JP5118804B2 JP 5118804 B2 JP5118804 B2 JP 5118804B2 JP 2005073927 A JP2005073927 A JP 2005073927A JP 2005073927 A JP2005073927 A JP 2005073927A JP 5118804 B2 JP5118804 B2 JP 5118804B2
Authority
JP
Japan
Prior art keywords
metal
porous silica
fine particles
metal fine
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005073927A
Other languages
Japanese (ja)
Other versions
JP2006257465A (en
Inventor
美尚 中野
正明 平川
尚希 塚原
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005073927A priority Critical patent/JP5118804B2/en
Publication of JP2006257465A publication Critical patent/JP2006257465A/en
Application granted granted Critical
Publication of JP5118804B2 publication Critical patent/JP5118804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、ナノスケール程度の金属微粒子金属微粒子作製方法に関し、さらにナノスケール程度の金属微粒子を担持した金属微粒子内包ポーラス材及びナノスケール程度の金属微粒子が基板上に分散した金属微粒子付基板作製方法に関する。 The present invention relates to a method for producing metal fine particles of nano-scale metal fine particles, and further includes a metal fine particle-containing porous material carrying nano-scale metal fine particles and a substrate with metal fine particles in which nano-scale metal fine particles are dispersed on a substrate. Regarding the method.

従来、金属の微粒子を作製する方法は、液相や気相中での化学反応、レーザー蒸発などの蒸発法及び溶融金属にガスを吹き付ける方法など種々の方法がある。
また、基板表面に金属微粒子を付けるには、通常、基板上に金属薄膜を形成した後、加熱して粒子を形成する方法が知られている。また、金属徹粒子を直接基板上に塗布する方法もある。
Conventionally, there are various methods for producing fine metal particles, such as a chemical reaction in a liquid phase or a gas phase, an evaporation method such as laser evaporation, and a method of blowing a gas onto a molten metal.
In order to attach metal fine particles to the substrate surface, a method is generally known in which a metal thin film is formed on a substrate and then heated to form particles. There is also a method in which the metal penetrating particles are directly applied onto the substrate.

化学反応を利用して金属微粒子を形成する場合、化学的な知識が必要である上、微少な反応条件の違いによって粒子サイズが異なってしまったり、ぱらつきが生じてしまい、反応条件の調整が難しく、粒径を制御することが困難である。
蒸発法や金属を溶解させる方法においても、粒子径の制御や微粒子化が難しく、高温を必要とするため生産設備等でコスト高となってしまう。
When forming fine metal particles using chemical reactions, chemical knowledge is required, and the particle size may vary due to slight differences in reaction conditions, causing flickering, making it difficult to adjust the reaction conditions. It is difficult to control the particle size.
Even in the evaporation method or the method of dissolving a metal, it is difficult to control the particle size or to make fine particles, and high temperatures are required, resulting in high costs in production facilities.

また、従来の金属薄膜付基板を加熱して金属微粒子付き基板を作製する場合、金属粒子のサイズは、加熱温度、昇温速度、ガス雰囲気及び金属の膜厚など多くのパラメーターに依存し、粒径の制御が難しい。
また、金属微粒子を直接基板上に塗布する場合、加熱によりシンクリングしてしまう可能性が高い。
In addition, when a conventional substrate with a metal thin film is heated to produce a substrate with metal fine particles, the size of the metal particles depends on many parameters such as the heating temperature, the heating rate, the gas atmosphere, and the metal film thickness. It is difficult to control the diameter.
In addition, when the metal fine particles are applied directly on the substrate, there is a high possibility that sinking will occur due to heating.

このような状況下で、金属微粒子作製方法等として以下の提案がある。
特開平11−246901号公報に示す例では、金属塩を多価アルコールに溶解させ、得られた溶液を多孔質担体に含浸させ、この担体を100℃〜250℃で加熱し、担体の細孔内で金属微粒子生成する金属微粒子の製造方法及び金属微粒子の多孔質担体への担持方法が開示され、粒径5nm程度の微粒子が得られることが示されている(特許文献1、例えば[0023]、[0027]参照)。
Under such circumstances, there are the following proposals as a method for producing metal fine particles.
In the example shown in JP-A-11-246901, a metal salt is dissolved in a polyhydric alcohol, the resulting solution is impregnated into a porous carrier, and the carrier is heated at 100 ° C. to 250 ° C. In particular, a method for producing metal fine particles to produce metal fine particles and a method for supporting metal fine particles on a porous carrier have been disclosed, and it has been shown that fine particles having a particle size of about 5 nm can be obtained (Patent Document 1, for example, [0023] , [0027]).

また、特開2003−181288号公報に示す例では、中空の炭素材料の細孔内に貴金属を導入し、貴金属が導入された炭素材料を酸化物担体に固定した後、焼成して炭素材料を燃焼除去し、数原子がまとまった貴金属のクラスターを酸化物担体に担持する貴金属触媒の製造方法が開示されており、貴金属を酸化物担体に直接担持するのではなく、貴金属を所望のサイズのクラスターになるように中空の炭素材料に導入し、貴金属のクラスターサイズを制御することが示されている(特許文献2、[0007]、[0008]、[0016]参照)。   Further, in the example shown in Japanese Patent Application Laid-Open No. 2003-181288, a noble metal is introduced into the pores of a hollow carbon material, the carbon material into which the noble metal is introduced is fixed to an oxide carrier, and then the carbon material is baked by firing. Disclosed is a method for producing a noble metal catalyst in which a cluster of noble metals that are burned and removed and is supported on an oxide support is disclosed. It is shown that it is introduced into a hollow carbon material so that the cluster size of the noble metal is controlled (see Patent Document 2, [0007], [0008], and [0016]).

なお、本発明者らは、有機シランを用いる反応系に界面活性剤を添加することにより、比誘電率が低く、膜形成後の半導体プロセスにおいて積層膜を形成しても比誘電率に変化のない多孔質SiO2膜(ポーラスシリカ)の作製方法を開示している(特許文献3、[0005]参照)。   The inventors of the present invention added a surfactant to a reaction system using organosilane, so that the relative dielectric constant is low, and the relative dielectric constant does not change even when a laminated film is formed in a semiconductor process after film formation. Discloses a method for producing a porous SiO 2 film (porous silica) that is not present (see Patent Document 3, [0005]).

特開平11−246901号公報Japanese Patent Laid-Open No. 11-246901 特開2003−181288号公報JP 2003-181288 A 特開2001−351911号公報JP 2001-351911 A

しかしながら、上記特開平11−246901号公報に示す例では、数nm程度の微粒子を得ることができ、また好ましい水素イオン濃度の凝集防止液中で浸漬することにより、金属微粒子の凝集を防止しているが(特許文献1、[0027]参照)、微粒子粒径の制御の点で改善の余地がある。   However, in the example shown in the above Japanese Patent Application Laid-Open No. 11-246901, fine particles of about several nm can be obtained, and the metal fine particles are prevented from agglomerating by being immersed in an agglomeration preventing liquid having a preferable hydrogen ion concentration. However, there is room for improvement in terms of control of the particle size of the fine particles (see Patent Document 1, [0027]).

また、特開2003−181288号公報に示す例では、中空の炭素材料の細孔径により、製造する貴金属クラスターサイズを制御しているが、中空の炭素材料の細孔径や層数は、中空の炭素材料を成長させる際の触媒として作用する金属微粒子の粒径に依存しており、このような触媒金属微粒子の作製にあたっては解決すべき課題がある。   In addition, in the example shown in Japanese Patent Application Laid-Open No. 2003-181288, the size of the noble metal cluster to be manufactured is controlled by the pore diameter of the hollow carbon material. Depending on the particle size of the metal fine particles that act as a catalyst when the material is grown, there is a problem to be solved in the production of such catalyst metal fine particles.

本発明は、このような課題に鑑みてなされたものであり、ナノスケール程度の種々の金属微粒子が作製可能で、粒径が制御されて略均一な粒径の揃った金属微粒子、金属微粒子の粒径とポーラスシリカ材の細孔径とが制御された金属微粒子内包ポーラスシリカ材及び粒径が制御されて略均一な粒径の金属微粒子が基板上に分散された金属微粒子付基板作製方法を提供することを目的とする。 The present invention has been made in view of such a problem, and various kinds of metal fine particles of nano-scale can be produced. the particle size and a manufacturing method of a metal fine particle coated substrate dispersed in a substantially uniform particle size of fine metal particles on a substrate pore size and is controlled fine metal particles containing porous silica material and particle size is controlled in porous silica material The purpose is to provide.

上記目的を達成するために、本発明の金属微粒子内包ポーラスシリカ材の作製方法は、有機シランと、水と、ポーラスシリカ材の細孔の大きさを制御する元となる界面活性剤とを少なくとも含むポーラスシリカ溶液を作製する過程と、このポーラスシリカ溶液に金属、合金及び金属塩のいずれか、或いは種類の異なる金属、合金及び金属塩のいずれかの組み合わせを添加し溶解させ所定金属イオン濃度に調整して金属添加ポーラスシリカ溶液を作製する過程と、これら何れかの過程で加水分解のための酸またはアルカリを加える過程と、この金属添加ポーラスシリカ溶液を焼成する過程とを備え、焼成する過程で、界面活性剤の種類に基づいて大きさを制御して形成した細孔内に、この細孔に対応する大きさの金属微粒子を析出した金属微粒子内包ポーラスシリカ材を作製する構成を有している。 In order to achieve the above object, the method for producing a metal fine particle-containing porous silica material of the present invention comprises at least an organic silane , water , and a surfactant that controls the pore size of the porous silica material. A process of preparing a porous silica solution containing the solution, and any one of a metal, an alloy and a metal salt, or a combination of different kinds of metals, alloys and metal salts is added to the porous silica solution and dissolved to obtain a predetermined metal ion concentration. comprising the steps of producing a metal additive porous silica solution adjusted to the steps of adding an acid or alkali for hydrolysis at any of these processes, and a step of firing the metal additive porous silica solution, the process of firing Then, metal fine particles in which fine metal particles having a size corresponding to the pores are deposited in the fine pores formed by controlling the size based on the type of the surfactant. It has a configuration for making the encapsulated porous silica material.

また本発明の金属微粒子の作製方法は、有機シランと、水と、ポーラスシリカ材の細孔の大きさを制御する元となる界面活性剤とを少なくとも含むポーラスシリカ溶液を作製する過程と、このポーラスシリカ溶液に金属、合金及び金属塩のいずれか、或いは種類の異なる金属、合金及び金属塩のいずれかの組み合わせを添加し溶解させ所定金属イオン濃度に調整して金属添加ポーラスシリカ溶液を作製する過程と、これら何れかの過程で加水分解のための酸またはアルカリを加える過程と、この金属添加ポーラスシリカ溶液を焼成する過程と、この焼成する過程で得られた金属微粒子内包ポーラスシリカ材をさらに焼成する過程とを備え、金属微粒子内包ポーラスシリカ材のポーラスシリカ材を燃焼除去して金属微粒子を作製する構成を有している。 The method for producing fine metal particles according to the present invention includes a process of producing a porous silica solution containing at least an organic silane , water , and a surfactant that controls the pore size of the porous silica material. A metal-added porous silica solution is prepared by adding and dissolving one of metals, alloys and metal salts, or any combination of different types of metals, alloys and metal salts to a porous silica solution, and adjusting the concentration to a predetermined metal ion concentration. A process of adding an acid or alkali for hydrolysis in any of these processes, a process of firing the metal-added porous silica solution, and a metal fine particle-containing porous silica material obtained in the process of firing. A process of firing, and having a configuration for producing metal fine particles by burning and removing the porous silica material containing the metal fine particles There.

さらに本発明の金属微粒子付基板の作製方法は、有機シランと、水と、ポーラスシリカ材の細孔の大きさを制御する元となる界面活性剤とを少なくとも含むポーラスシリカ溶液を作製する過程と、このポーラスシリカ溶液に金属、合金及び金属塩のいずれか、或いは種類の異なる金属、合金及び金属塩のいずれかの組み合わせを添加し溶解させ所定金属イオン濃度に調整して金属添加ポーラスシリカ溶液を作製する過程と、これら何れかの過程で加水分解のための酸またはアルカリを加える過程と、この金属添加ポーラスシリカ溶液を基板上に塗布及びスピンコートのいずれかの後に焼成する過程とを備え、焼成する過程で、界面活性剤の種類に基づいて大きさを制御して形成した細孔内に、この細孔に対応する大きさの金属微粒子を析出したポーラスシリカ膜を基板上に形成する構成を有している。 Further, the method for producing a substrate with metal fine particles of the present invention is a process for producing a porous silica solution containing at least organosilane , water , and a surfactant that controls the pore size of the porous silica material. The metal-added porous silica solution is prepared by adding and dissolving any one of metals, alloys and metal salts, or any combination of different types of metals, alloys and metal salts to the porous silica solution, and adjusting to a predetermined metal ion concentration. A process of producing, a process of adding an acid or alkali for hydrolysis in any of these processes, and a process of firing this metal-added porous silica solution on a substrate and either after spin coating, During the firing process, fine metal particles of a size corresponding to the pores are deposited in the pores formed by controlling the size based on the type of surfactant. The porous silica film has a structure formed on a substrate.

また本発明の金属微粒子内包ポーラスシリカ材の作製方法、金属微粒子の作製方法及び金属微粒子付基板の作製方法は、上記構成に加え、金属がFe、Ni、Co及びPtのいずれか、合金がFe、Ni、Co及びPtの合金のいずれか、金属塩がFe、Ni、Co及びPtの金属塩のいずれかである構成を有している。   In addition to the above-described structure, the method for producing the metal fine particle-containing porous silica material, the method for producing the metal fine particle, and the method for producing the substrate with the metal fine particle of the present invention include any one of Fe, Ni, Co and Pt, Any of the alloys of Ni, Co and Pt, the metal salt is any of the metal salts of Fe, Ni, Co and Pt.

本発明の金属微粒子内包ポーラスシリカ材の作製方法では、ポーラスシリカ材に界面活性剤の種類に基づいて大きさを制御して形成した細孔に、この細孔に対応する大きさの金属微粒子を細孔内に析出するので、粒径の制御された金属微粒子を内部に分散して含む金属微粒子内包ポーラスシリカ材を作製することができるという効果を有する。   In the method for producing a porous silica material encapsulating metal fine particles of the present invention, fine metal particles having a size corresponding to the pores are formed in pores formed by controlling the size of the porous silica material based on the type of surfactant. Since it precipitates in the pores, it has an effect that a metal fine particle-containing porous silica material containing metal fine particles having a controlled particle diameter dispersed therein can be produced.

また本発明の金属微粒子の作製方法では、ポーラスシリカ材に大きさを制御して形成した細孔に、この細孔に対応する大きさの金属粒子を細孔内に析出した金属微粒子内包ポーラスシリカ材のポーラスシリカ材を燃焼除去するので、ナノスケールの大きさの所定の粒径に制御した金属微粒子を作製できるという効果を有する。   Further, in the method for producing metal fine particles of the present invention, the metal fine particle-containing porous silica in which metal particles having a size corresponding to the pores are deposited in the pores in the pores formed by controlling the size of the porous silica material. Since the porous silica material is burned and removed, the metal fine particles controlled to have a predetermined particle size of nanoscale size can be produced.

さらに本発明の金属微粒子付基板の作製方法では、基板上に形成したポーラスシリカ膜に界面活性剤の種類に基づいて大きさを制御して形成した細孔に、この細孔に対応する大きさの金属微粒子を細孔内に析出するので、粒径の制御された金属微粒子を内部に分散して含む金属微粒子付基板を作製することができるという効果を有する。   Furthermore, in the method for producing a substrate with metal fine particles of the present invention, the pores formed on the porous silica film formed on the substrate by controlling the size based on the type of the surfactant have a size corresponding to the pores. Since the metal fine particles are deposited in the pores, it is possible to produce a substrate with metal fine particles containing metal fine particles having a controlled particle size dispersed therein.

本発明の金属微粒子は、基本的に有機シランと界面活性剤を少なくとも含むポーラスシリカ溶液に作製対象の金属を溶解させてから焼成する際に、焼成されたポーラスシリカ材の細孔内に作製対象の金属を析出させ、このポーラスシリカ材を燃焼除去して得られるものである。   The metal fine particles of the present invention are basically produced in the pores of the fired porous silica material when the metal to be produced is dissolved in a porous silica solution containing at least organosilane and a surfactant and then fired. This metal is deposited, and this porous silica material is burned and removed.

ポーラスシリカ溶液に溶解している金属は焼成した際に、ポーラスシリカ材の細孔内に析出し、細孔サイズと同じ大きさの粒子となる。そのため、金属微粒子径はポーラスシリカ材の細孔のサイズにのみ依存し、ナノスケール程度の小さく略均一な粒径の揃った金属微粒子が容易に作製できる。   When the metal dissolved in the porous silica solution is baked, it precipitates in the pores of the porous silica material and becomes particles having the same size as the pore size. Therefore, the metal fine particle diameter depends only on the pore size of the porous silica material, and it is possible to easily produce metal fine particles having a small and substantially uniform particle size on the order of nanoscale.

また本発明の手法では高温にする必要がないため手軽に使用することが出来る。
さらに基板表面に金属微粒子を作製する場合、金属を溶解させたポーラスシリカ溶液を基板に滴下、又はスピンコートした後に焼成することで基板表面にポーラスシリカの薄膜を形成する。
In the method of the present invention, since it is not necessary to raise the temperature, it can be used easily.
Furthermore, when producing metal fine particles on the substrate surface, a porous silica solution in which a metal is dissolved is dropped on the substrate or spin-coated and then fired to form a porous silica thin film on the substrate surface.

基板表面に出ている細孔に金属が析出することで、金属微粒子付きの基板を得ることが出来る。
また、ポーラスシリカ膜を形成した後に表面に金属薄膜を形成する場合など、薄膜形成後の加熱処理によって金属微粒子を得る場合にも、細孔にトラップさせることで金属粒子のシンクリングを防ぎ、微粒子を作製することが容易になる。
A metal is deposited on the surface of the substrate, so that a substrate with metal fine particles can be obtained.
In addition, when metal fine particles are obtained by heat treatment after thin film formation, such as when forming a metal thin film on the surface after forming a porous silica film, the fine particles are trapped in the pores to prevent metal particles from sinking It becomes easy to produce.

ポーラスシリカ材の細孔は界面活性剤が焼結の際に抜け出た跡であると考えられるため、この細孔径は界面活性剤の大きさによって決定される。
したがって、ポーラスシリカ材の細孔径は原料に使用する界面活性剤で制御でき、炭素鎖の大きな界面活性剤を使用すれば、析出する金属微粒子も大きくなり、炭素鎖の小さな界面活性剤を使用すれば金属粒子径も小さくなる。
Since the pores of the porous silica material are thought to be traces of the surfactants that have escaped during sintering, the pore diameter is determined by the size of the surfactant.
Therefore, the pore size of the porous silica material can be controlled by the surfactant used as the raw material, and if a surfactant with a large carbon chain is used, the deposited metal fine particles will also increase, and a surfactant with a small carbon chain should be used. If so, the metal particle size is also reduced.

以下、図1から図6に基づき、実質的に同一又は対応する部材には同一符号を用いて、本発明による金属微粒子作製方法及び金属微粒子付基板作製方法の好適な実施の形態を詳細に説明する。 Hereinafter, based on FIGS. 1 to 6, the same reference numerals are used for substantially the same or corresponding members, and the preferred embodiments of the method for producing metal fine particles and the method for producing a substrate with metal fine particles according to the present invention will be described in detail. To do.

本発明に係る実施形態1の金属微粒子作製方法を詳細に説明する。
図1は実施形態1に係る金属微粒子の作製工程を示す工程図である。
図2は実施形態1に係るFe添加ポーラスシリカ溶液を焼結する工程を示す概念図である。
The metal fine particle production method of Embodiment 1 according to the present invention will be described in detail.
FIG. 1 is a process diagram showing a process for producing metal fine particles according to the first embodiment.
FIG. 2 is a conceptual diagram showing a step of sintering the Fe-added porous silica solution according to the first embodiment.

図1を参照して、金属微粒子作製方法は、先ず、所定の径の細孔を有するポーラスシリカ材を得るためのポーラスシリカ溶液1を作製する。   With reference to FIG. 1, the metal fine particle preparation method first prepares a porous silica solution 1 for obtaining a porous silica material having pores of a predetermined diameter.

ポーラスシリカ溶液1は、有機シランと、水と、アルコールと、界面活性剤とを混合した溶液であり、有機シラン1モルに対して、水8〜15モル、酸加水分解又はアルカリ加水分解のための酸やアルカリ0.5モル〜1.5モル、界面活性剤0.1〜0.4モルとする。   The porous silica solution 1 is a solution in which an organic silane, water, alcohol, and a surfactant are mixed. For 1 mol of the organic silane, 8 to 15 mol of water is used for acid hydrolysis or alkali hydrolysis. The acid and alkali are 0.5 mol to 1.5 mol, and the surfactant is 0.1 to 0.4 mol.

このようなポーラスシリカ溶液1については、本発明者等により特許文献3に開示されている(特許文献3、例えば、[0010]を参照のこと)。   Such a porous silica solution 1 is disclosed in Patent Document 3 by the present inventors (see Patent Document 3, for example, [0010]).

また有機シランは、添加される界面活性剤の大きさに基づいて細孔の大きさがきまるものであるならば種類を問わない。   The organic silane may be of any type as long as the pore size is determined based on the size of the surfactant to be added.

本実施形態では界面活性剤として、炭素鎖16のものと、炭素鎖8のものとを使用し、炭素鎖の大小により界面活性剤の大きさが異なるものを使用するが、これに限らず、界面活性剤の大きさにより細孔径を制御可能なものであればよい。   In the present embodiment, as the surfactant, those having carbon chain 16 and those having carbon chain 8 are used, and those having different sizes of the surfactant depending on the size of the carbon chain are used. What is necessary is just to be able to control the pore diameter by the size of the surfactant.

ポーラスシリカ溶液1を使用して金属微粒子を作製する場合、例えば炭素鎖16のものとしては、化学式がCH3(CH215N(CH33Clの界面活性剤を、炭素鎖8のものとしては、化学式がCH3(CH27N(CH33Clの界面活性剤を使用することができる。
ここに掲げた炭素鎖16の界面活性剤では、粒径が5〜10nmの金属微粒子を、また炭素鎖8の界面活性剤では、粒径が2〜5nmの金属微粒子を作製できる(後述する)。
In the case of producing metal fine particles using the porous silica solution 1, for example, a carbon chain 16 having a chemical formula of CH 3 (CH 2 ) 15 N (CH 3 ) 3 Cl and a carbon chain 8 For example, a surfactant having a chemical formula of CH 3 (CH 2 ) 7 N (CH 3 ) 3 Cl can be used.
With the surfactant of carbon chain 16 listed here, metal fine particles having a particle size of 5 to 10 nm can be produced, and with the surfactant of carbon chain 8, metal fine particles having a particle size of 2 to 5 nm can be produced (described later). .

次に、ポーラスシリカ溶液1に作製対象の金属を溶解して、金属添加ポーラスシリカ溶液2を作製する。
溶解させる金属は、ポーラスシリカ溶液1に溶解させることが可能ならば、種類、単体、合金を問わず、また各種の金属片を混合して使用することもできる。
ポーラスシリカ溶液1が酸性の場合は、金属片などを直接入れて撹拌するだけで溶解する。
また、硝酸塩などをポーラスシリカ溶液1に溶解させるか、硝酸などの酸に金属を溶解させて混合するようにしてもよい。
Next, the metal to be produced is dissolved in the porous silica solution 1 to produce a metal-added porous silica solution 2.
As long as the metal to be dissolved can be dissolved in the porous silica solution 1, regardless of the type, simple substance, or alloy, various metal pieces can be mixed and used.
When the porous silica solution 1 is acidic, it dissolves by simply putting a metal piece or the like and stirring it.
Further, nitrates or the like may be dissolved in the porous silica solution 1, or a metal may be dissolved in an acid such as nitric acid and mixed.

例えば、Fe、Ni、Co及びPtなどの金属、金属塩及びこれらの合金等の金属微粒子が作製可能である。   For example, metal fine particles such as metals such as Fe, Ni, Co, and Pt, metal salts, and alloys thereof can be produced.

ここで、Feを例にあげると、ポーラスシリカ溶液1は酸性であるが、Feは溶解しにくいため、微量の硝酸に溶かした溶液3をポーラスシリカ溶液1と混合し、Fe添加ポーラスシリカ溶液2を作製する。   Here, when Fe is taken as an example, the porous silica solution 1 is acidic, but since Fe is difficult to dissolve, the solution 3 dissolved in a small amount of nitric acid is mixed with the porous silica solution 1 to obtain the Fe-added porous silica solution 2. Is made.

なお、Feを例に挙げたのは、作製したFeの微粒子の粒径を確認する方法の一つとして、Fe微粒子を触媒金属としてカーボンナノチューブを成長させ、このカーボンナノチューブの口径が成長の際の触媒金属微粒子の粒径に依存することから、カーボンナノチューブの口径をSEMなどで観察することにより、Feの微粒子の粒径を特定するためである。   As an example of the method of confirming the particle diameter of the produced Fe fine particles, carbon nanotubes are grown using Fe fine particles as a catalyst metal, and the diameter of the carbon nanotubes is the same as that of the growth. This is because the particle diameter of the fine particles of Fe is determined by observing the diameter of the carbon nanotube with an SEM or the like because it depends on the particle diameter of the catalytic metal fine particles.

そして、図2を参照して、作製した金属添加ポーラスシリカ溶液2を焼成すると、ポーラスシリカ材の細孔13内に金属微粒子15が析出し、金属微粒子内包ポーラスシリカ材10を得る。
さらに焼成することにより金属微粒子内包ポーラスシリカ材が燃焼し、ポーラスシリカ材を除去すると粒径のそろった金属微粒子ができる。
なお、金属微粒子は酸化するので焼結を水素中(13Pa程度)で行うのが望ましい。
Then, referring to FIG. 2, when the produced metal-added porous silica solution 2 is fired, metal fine particles 15 are precipitated in the pores 13 of the porous silica material, and the metal fine particle-containing porous silica material 10 is obtained.
Furthermore, by firing, the metal fine particle-containing porous silica material burns, and when the porous silica material is removed, metal fine particles having a uniform particle diameter are formed.
Since the metal fine particles are oxidized, it is desirable to perform sintering in hydrogen (about 13 Pa).

このように、実施形態1の金属微粒子作製方法では、ナノスケール程度の粒子径が小さく、均一な金属微粒子を得ることができる。   As described above, in the metal fine particle manufacturing method of Embodiment 1, uniform metal fine particles having a small nanoscale particle diameter can be obtained.

図3は金属粒子内包ポーラスシリカ材の細孔に鉄が析出した様子を示す概念図であり、(a)〜(e)は添加Fe濃度によるFe析出状態を示す。
図3を参照して、金属微粒子、ここではFe微粒子の粒子サイズはポーラスシリカ材の細孔径に依存するが、溶解させる金属量が少ない場合は金属微粒子(Fe微粒子)が小さくなりすぎてしまい、細孔よりも小さな微粒子が混合し、粒子サイズが不均一になる。
溶解させる金属量が多い場合は、金属薄膜としてポーラスシリカ材の表面に析出するが、ポーラスシリカ材内部の細孔内に存在する粒子径は均一になる。
FIG. 3 is a conceptual diagram showing a state in which iron is precipitated in the pores of the metal particle-containing porous silica material, and (a) to (e) show Fe precipitation states depending on the added Fe concentration.
With reference to FIG. 3, the particle size of the metal fine particles, here Fe fine particles depends on the pore diameter of the porous silica material, but if the amount of metal to be dissolved is small, the metal fine particles (Fe fine particles) become too small, Fine particles smaller than the pores are mixed, and the particle size becomes non-uniform.
When the amount of the metal to be dissolved is large, it is deposited on the surface of the porous silica material as a metal thin film, but the particle diameter present in the pores inside the porous silica material becomes uniform.

次に実施形態2に係る金属微粒子付基板の作製方法について説明する。
図4は実施形態2に係る金属微粒子付基板の作製方法を示す工程図である。
金属添加ポーラスシリカ溶液2を作製するところまでは実施形態1と同様である。
Next, a method for manufacturing the substrate with metal fine particles according to the second embodiment will be described.
FIG. 4 is a process diagram illustrating a method for producing a substrate with metal fine particles according to the second embodiment.
The process up to the production of the metal-added porous silica solution 2 is the same as in the first embodiment.

図4を参照して、実施形態2では、さらに、金属添加ポーラスシリカ溶液を基板5上に塗布又はスピンコート後、焼成する。この焼成の際に、形成したポーラスシリカ材の細孔内に金属微粒子が析出して、ナノスケール程度の金属微粒子が分散したポーラスシリカ膜20が基板上に成膜し、金属微粒子付基板になる。   With reference to FIG. 4, in the second embodiment, the metal-added porous silica solution is further baked after being applied or spin-coated on the substrate 5. At the time of firing, metal fine particles are deposited in the pores of the formed porous silica material, and a porous silica film 20 in which metal fine particles of a nanoscale degree are dispersed is formed on the substrate to be a substrate with metal fine particles. .

なお、このように基板表面に金属微粒子を析出させる場合は、溶解させる金属の濃度を最適化する必要があり、金属添加ポーラスシリカ溶液をアルコールで希釈し、全体の濃度を調整しておく。
また、金属添加ポーラスシリカ溶液の粘性に応じて、塗布しやすいようにアルコールの量を調節しておくのがよい。
When metal fine particles are deposited on the surface of the substrate in this way, it is necessary to optimize the concentration of the metal to be dissolved, and the metal-added porous silica solution is diluted with alcohol to adjust the overall concentration.
Moreover, it is good to adjust the quantity of alcohol so that it may apply easily according to the viscosity of a metal addition porous silica solution.

なお、ここで使用される基板は、半導体ウエハ、ガラス、セラミックス、テープ状フィルムなど焼成可能なものであれば種類を問わない。   In addition, the board | substrate used here will not be ask | required if it can be baked, such as a semiconductor wafer, glass, ceramics, and a tape-shaped film.

このような金属微粒子付基板作製方法では、ナノスケール程度の所定粒径の揃った金属微粒子が表面に分散した基板を作製することができる。   In such a method for producing a substrate with metal fine particles, a substrate in which metal fine particles having a predetermined particle size on the order of nanoscale are dispersed can be produced.

金属微粒子付基板は、次の実施形態3のようにして作製してもよい。
実施形態3にかかる金属微粒子付基板作製方法では、ポーラスシリカ溶液を作製する点は実施形態1と同様である。
The substrate with metal fine particles may be manufactured as in the following Embodiment 3.
In the method for producing a substrate with metal fine particles according to the third embodiment, the point of producing a porous silica solution is the same as in the first embodiment.

図4を参照して、実施形態3に係る金属微粒子付基板の作製方法は、先ず、ポーラスシリカ溶液を基板5上に塗布又はスピンコート後、焼成して基板上にポーラスシリカ膜を形成する。   Referring to FIG. 4, in the method for manufacturing the substrate with metal fine particles according to the third embodiment, first, a porous silica solution is applied or spin coated on substrate 5 and then baked to form a porous silica film on the substrate.

次に、金属蒸着法によりポーラスシリカ膜表面に金属薄膜を生成し、加熱処理するとポーラスシリカ膜中の細孔内に蒸着した金属が析出し、金属微粒子付基板ができる。   Next, a metal thin film is formed on the surface of the porous silica film by a metal vapor deposition method, and when heat-treated, the deposited metal is deposited in the pores in the porous silica film, and a substrate with metal fine particles is formed.

このようにポーラスシリカ膜上に金属薄膜が形成された基板を加熱処理して金属微粒子とする場合には、ポーラスシリカ膜中の細孔に金属微粒子がトラップされ、加熱した際にシンタリングし難く、かつ、ポーラスシリカ膜内のナノスケール程度の細孔径に対応して粒径の揃った金属微粒子の形成ができる。   When the substrate on which the metal thin film is formed on the porous silica film as described above is heat-treated to form metal fine particles, the metal fine particles are trapped in the pores in the porous silica film and are difficult to sinter when heated. Moreover, it is possible to form fine metal particles having a uniform particle size corresponding to the nanoscale pore size in the porous silica film.

以下に本発明を具体的な実施例を挙げて詳細に説明する。
本実施例では、有機シランとしてアルバック社製ポーラスシリカ材料ISM−2.0を使用した。
この有機シランと、水と、界面活性剤とにより、ポーラスシリカ溶液、即ち、ISM−2.0溶液を作製した。
Hereinafter, the present invention will be described in detail with reference to specific examples.
In this example, ULVAC porous silica material ISM-2.0 was used as the organic silane.
A porous silica solution, that is, an ISM-2.0 solution was prepared from the organosilane, water, and a surfactant.

界面活性剤としては、炭素鎖が16のものは塩化セチルトリメチルアンモニウムを使用し、化学式は次の通りである。
CH3(CH215N(CH33Cl(関東化学(株)製、商品名:CTACL)
また炭素鎖が8のものは化学式が次のものを使用した。
CH3(CH27N(CH33Cl(関東化学(株)製、呼び名:C8TACL)
As the surfactant, those having 16 carbon chains use cetyltrimethylammonium chloride, and the chemical formula is as follows.
CH 3 (CH 2 ) 15 N (CH 3 ) 3 Cl (trade name: CTACL, manufactured by Kanto Chemical Co., Inc.)
For those having 8 carbon chains, the following chemical formula was used.
CH 3 (CH 2 ) 7 N (CH 3 ) 3 Cl (manufactured by Kanto Chemical Co., Ltd., name: C8TACL)

析出させる金属としてはFeとした。
ISM−2.0溶液は酸性であるがFeは溶解しにくいため、微量の硝酸に溶かしてから、ISM−2.0溶液と混合した。
ISM−2.0溶液1.0mlに対して、Feをそれぞれ0.1gと0.01g溶解させた。その後、エタノールで4倍に希釈して使用した。
The metal to be deposited was Fe.
Since the ISM-2.0 solution is acidic but Fe is difficult to dissolve, it was dissolved in a small amount of nitric acid and then mixed with the ISM-2.0 solution.
0.1 g and 0.01 g of Fe were dissolved in 1.0 ml of the ISM-2.0 solution, respectively. Thereafter, it was diluted 4 times with ethanol and used.

これらの金属を溶解させたポーラスシリカ溶液を、シリコン基板上に滴下し、スピンコートした後、400℃で15分間、真空焼成(0.5Pa程度)した。
得られた金属微粒子付基板では、Fe濃度が高い場合、即ち、Feを0.1g溶解させた場合、表面に導電性がみられたことから、表面にFe薄膜が形成されていた。
バルク内部の細孔には、細孔と同じサイズの微粒子が形成されていた。
Feを0.01g溶解させた濃度が低い方は、細孔内部及び表面に細孔サイズと同じサイズのFe微粒子が存在した。
A porous silica solution in which these metals were dissolved was dropped onto a silicon substrate, spin-coated, and then vacuum fired (about 0.5 Pa) at 400 ° C. for 15 minutes.
In the obtained substrate with metal fine particles, when the Fe concentration was high, that is, when 0.1 g of Fe was dissolved, conductivity was observed on the surface, and thus an Fe thin film was formed on the surface.
Fine particles having the same size as the pores were formed in the pores inside the bulk.
When the concentration of 0.01 g Fe dissolved was lower, Fe fine particles having the same size as the pore size were present in the pores and on the surface.

炭素鎖が16の界面活性剤を使用した場合、細孔径及び金属微粒子径は、STEM(走査透過電子顕微鏡)により約2nmであった。これを図5のSTEM写真に示す。
写真は基板の断面を横から観察した結果であり、下側がシリコン基板である。
写真中の白く見える部分がFeの微粒子であり、黒く見える部分が細孔である。
金属はEDX(エネルギー分散X線分光)分析によりFeであることを確認した。
When a surfactant having 16 carbon chains was used, the pore diameter and metal fine particle diameter were about 2 nm by STEM (scanning transmission electron microscope). This is shown in the STEM photograph of FIG.
The photograph is a result of observing a cross section of the substrate from the side, and the lower side is a silicon substrate.
The part that appears white in the photograph is Fe fine particles, and the part that appears black is pores.
The metal was confirmed to be Fe by EDX (energy dispersive X-ray spectroscopy) analysis.

またX線散乱の結果から細孔径及び金属微粒子は2nm程度であり、X線散乱の結果からも2nm程度のFeが細孔内に析出していることを確認した。
一方、炭素鎖が8の界面活性剤を使用した場合、細孔径及び金属微粒子径は1.5nm程度であった。
Further, from the result of X-ray scattering, the pore diameter and the metal fine particles were about 2 nm, and from the result of X-ray scattering, it was confirmed that about 2 nm of Fe was precipitated in the pores.
On the other hand, when a surfactant having 8 carbon chains was used, the pore diameter and metal fine particle diameter were about 1.5 nm.

これらの基板を用いてカーボンナノチューブを成長させると、炭素鎖が16のものはカーボンナノチューブの直径が5〜10nmであり、平均して約7.5nm程度であった。
また、炭素鎖が8のものは、SEMの分解能が悪いため推測ではあるが、直径が2〜5nmのカーボンナノチューブが成長し、平均して約3.5nm程度であった。
以上の結果を図6にまとめた。
When carbon nanotubes were grown using these substrates, those having 16 carbon chains had a carbon nanotube diameter of 5 to 10 nm, and averaged about 7.5 nm.
Further, carbon nanotubes having 8 carbon chains were estimated because the resolution of SEM was poor, but carbon nanotubes having a diameter of 2 to 5 nm grew, and the average was about 3.5 nm.
The above results are summarized in FIG.

このように炭素鎖が小さな界面活性剤を使用した場合の方が、直径の小さなカーボンナノチューブを得ることができることを確認できた。   Thus, it was confirmed that carbon nanotubes having a small diameter can be obtained when a surfactant having a small carbon chain is used.

参考例Reference example

実施例1と同様にして作製したポーラスシリカ溶液、即ち、ISM−2.0溶液をシリコン基板上に滴下後、スピンコートして、400℃で15分間、真空焼成を行った。
その後、室温で電子ビーム蒸着によりFeを5Å成膜した。
そして、水素気流下で700℃まで昇温することで、直径5〜10nmのFe微粒子を得た。
A porous silica solution prepared in the same manner as in Example 1, that is, an ISM-2.0 solution, was dropped on a silicon substrate, spin-coated, and vacuum baked at 400 ° C. for 15 minutes.
Thereafter, 5 nm of Fe was deposited by electron beam evaporation at room temperature.
And it heated up to 700 degreeC under hydrogen stream, and obtained 5-10 nm diameter Fe microparticles | fine-particles.

比較例として、熱酸化させたSiO2膜付Si基板上に、室温で電子ビーム蒸着により5ÅのFeを成膜した後、700℃の加熱で微粒子を得た。
このとき、粒子径は10〜50nmであった。
本発明により、Fe粒子のサイズが小さく均一化できることが分かった。
As a comparative example, 5 μm of Fe was deposited on a thermally oxidized Si 2 substrate with an SiO 2 film by electron beam evaporation at room temperature, and fine particles were obtained by heating at 700 ° C.
At this time, the particle diameter was 10 to 50 nm.
According to the present invention, it has been found that the size of the Fe particles can be made small and uniform.

以上のように、本発明に係る、ポーラスシリカ材の細孔径及び金属微粒子の粒径を制御する界面活性剤を含むポーラスシリカ溶液は、ナノスケール程度の金属微粒子、金属微粒子内包ポーラスシリカ材及び金属微粒子付基板を作製する上で極めて有用である。   As described above, according to the present invention, the porous silica solution containing the surfactant for controlling the pore diameter of the porous silica material and the particle diameter of the metal fine particles is composed of nano-scale metal fine particles, metal fine particle-containing porous silica material, and metal. This is extremely useful for producing a substrate with fine particles.

実施形態1に係る金属微粒子の作製工程を示す工程図である。FIG. 3 is a process diagram showing a process for producing metal fine particles according to Embodiment 1. 実施形態1に係るFe添加ポーラスシリカ溶液を焼結する工程を示す概念図である。FIG. 3 is a conceptual diagram illustrating a step of sintering the Fe-added porous silica solution according to the first embodiment. 実施形態1に係る金属粒子内包ポーラスシリカ材の細孔に鉄が析出した様子を示す概念図である。FIG. 3 is a conceptual diagram illustrating a state in which iron is precipitated in pores of a metal particle-containing porous silica material according to Embodiment 1. 実施形態2に係る金属微粒子付基板の作製方法を示す工程図である。FIG. 5 is a process diagram showing a method for producing a substrate with metal fine particles according to Embodiment 2. 金属微粒子付基板のSTEM写真である。It is a STEM photograph of a substrate with metal fine particles. 界面活性剤の炭素数、金属微粒子の直径及びカーボンナノチューブの直径の関係を示す図である。It is a figure which shows the relationship between the carbon number of surfactant, the diameter of a metal microparticle, and the diameter of a carbon nanotube.

1 ポーラスシリカ溶液
2 金属添加ポーラスシリカ溶液、Fe添加ポーラスシリカ溶液
3 Fe溶液
5 基板
10 金属微粒子内包ポーラスシリカ材、Fe微粒子内包ポーラスシリカ
11 シリカウオール
13 細孔
15、17 金属微粒子、Fe微粒子
19 Fe膜
20 ポーラスシリカ膜
DESCRIPTION OF SYMBOLS 1 Porous silica solution 2 Metal addition porous silica solution, Fe addition porous silica solution 3 Fe solution 5 Substrate 10 Metal fine particle inclusion porous silica material, Fe fine particle inclusion porous silica 11 Silica wall 13 Pore 15, 17 Metal fine particle, Fe fine particle 19 Fe Membrane 20 Porous silica membrane

Claims (6)

有機シランと、水と、ポーラスシリカ材の細孔の大きさを制御する元となる界面活性剤とを少なくとも含むポーラスシリカ溶液を作製する過程と、このポーラスシリカ溶液に金属、合金及び金属塩のいずれか、或いは種類の異なる金属、合金及び金属塩のいずれかの組み合わせを添加し溶解させ所定金属イオン濃度に調整して金属添加ポーラスシリカ溶液を作製する過程と、前記何れかの過程で加水分解のための酸またはアルカリを加える過程と、この金属添加ポーラスシリカ溶液を焼成する過程とを備え、
上記焼成する過程で、上記界面活性剤の種類に基づいて大きさを制御して形成した細孔内に、この細孔に対応する大きさの金属微粒子を析出した金属微粒子内包ポーラスシリカ材を作製する金属微粒子内包ポーラスシリカ材の作製方法。
A process for preparing a porous silica solution containing at least an organic silane , water , and a surfactant that controls the pore size of the porous silica material, and a metal, an alloy, and a metal salt of the porous silica solution. A process of preparing a metal-added porous silica solution by adding and dissolving any or a combination of different kinds of metals, alloys and metal salts to adjust to a predetermined metal ion concentration, and hydrolysis in any of the above processes A step of adding an acid or an alkali for calcination, and a step of firing the metal-added porous silica solution,
In the process of firing, a metal fine particle-containing porous silica material in which metal fine particles of a size corresponding to the pores are formed in pores formed by controlling the size based on the type of the surfactant is produced. A method for producing a porous silica material containing metal fine particles.
前記金属がFe、Ni、Co及びPtのいずれか、前記合金がFe、Ni、Co及びPtの合金のいずれか、前記金属塩がFe、Ni、Co及びPtの金属塩のいずれかである請求項1記載の金属微粒子内包ポーラスシリカ材の作製方法。   The metal is any one of Fe, Ni, Co, and Pt, the alloy is any alloy of Fe, Ni, Co, and Pt, and the metal salt is any one of metal salts of Fe, Ni, Co, and Pt. Item 2. A method for producing a metal fine particle-containing porous silica material according to Item 1. 有機シランと、水と、ポーラスシリカ材の細孔の大きさを制御する元となる界面活性剤とを少なくとも含むポーラスシリカ溶液を作製する過程と、このポーラスシリカ溶液に金属、合金及び金属塩のいずれか、或いは種類の異なる金属、合金及び金属塩のいずれかの組み合わせを添加し溶解させ所定金属イオン濃度に調整して金属添加ポーラスシリカ溶液を作製する過程と、前記何れかの過程で加水分解のための酸またはアルカリを加える過程と、この金属添加ポーラスシリカ溶液を焼成する過程と、この焼成する過程で得られた金属微粒子内包ポーラスシリカ材をさらに焼成する過程とを備え、
金属微粒子内包ポーラスシリカ材のポーラスシリカ材を燃焼除去して金属微粒子を作製する金属微粒子の作製方法。
A process for preparing a porous silica solution containing at least an organic silane , water , and a surfactant that controls the pore size of the porous silica material, and a metal, an alloy, and a metal salt of the porous silica solution. A process of preparing a metal-added porous silica solution by adding and dissolving any or a combination of different kinds of metals, alloys and metal salts to adjust to a predetermined metal ion concentration, and hydrolysis in any of the above processes A process of adding an acid or an alkali for, a process of firing the metal-added porous silica solution, and a process of further firing the metal fine particle-containing porous silica material obtained in the process of firing,
A method for producing metal fine particles, wherein metal fine particles are produced by burning and removing a porous silica material in a metal fine particle-containing porous silica material.
前記金属がFe、Ni、Co及びPtのいずれか、前記合金がFe、Ni、Co及びPtの合金のいずれか、前記金属塩がFe、Ni、Co及びPtの金属塩のいずれかである請求項3記載の金属微粒子の作製方法。   The metal is any one of Fe, Ni, Co, and Pt, the alloy is any alloy of Fe, Ni, Co, and Pt, and the metal salt is any one of metal salts of Fe, Ni, Co, and Pt. Item 4. A method for producing metal fine particles according to Item 3. 有機シランと、水と、ポーラスシリカ材の細孔の大きさを制御する元となる界面活性剤とを少なくとも含むポーラスシリカ溶液を作製する過程と、このポーラスシリカ溶液に金属、合金及び金属塩のいずれか、或いは種類の異なる金属、合金及び金属塩のいずれかの組み合わせを添加し溶解させ所定金属イオン濃度に調整して金属添加ポーラスシリカ溶液を作製する過程と、前記何れかの過程で加水分解のための酸またはアルカリを加える過程と、この金属添加ポーラスシリカ溶液を基板上に塗布及びスピンコートのいずれかの後に焼成する過程とを備え、
上記焼成する過程で、上記界面活性剤の種類に基づいて大きさを制御して形成した細孔内に、この細孔に対応する大きさの金属微粒子を析出したポーラスシリカ膜を基板上に形成する金属微粒子付基板の作製方法。
A process for preparing a porous silica solution containing at least an organic silane , water , and a surfactant that controls the pore size of the porous silica material, and a metal, an alloy, and a metal salt of the porous silica solution. A process of preparing a metal-added porous silica solution by adding and dissolving any or a combination of different kinds of metals, alloys and metal salts to adjust to a predetermined metal ion concentration, and hydrolysis in any of the above processes A step of adding an acid or an alkali for the step, and a step of baking the metal-added porous silica solution on the substrate after either coating and spin coating,
In the firing process, a porous silica film is formed on the substrate in which fine metal particles of a size corresponding to the pores are deposited in the pores formed by controlling the size based on the type of the surfactant. A method for manufacturing a substrate with metal fine particles.
前記金属がFe、Ni、Co及びPtのいずれか、前記金属塩がFe、Ni、Co及びPtの金属塩のいずれか、前記合金がFe、Ni、Co及びPtの合金のいずれかである請求項5記載の金属微粒子付基板の作製方法。   The metal is any of Fe, Ni, Co, and Pt, the metal salt is any of metal salts of Fe, Ni, Co, and Pt, and the alloy is any of an alloy of Fe, Ni, Co, and Pt. Item 6. A method for producing a substrate with metal fine particles according to Item 5.
JP2005073927A 2005-03-15 2005-03-15 Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles Expired - Fee Related JP5118804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073927A JP5118804B2 (en) 2005-03-15 2005-03-15 Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073927A JP5118804B2 (en) 2005-03-15 2005-03-15 Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles

Publications (2)

Publication Number Publication Date
JP2006257465A JP2006257465A (en) 2006-09-28
JP5118804B2 true JP5118804B2 (en) 2013-01-16

Family

ID=37097047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073927A Expired - Fee Related JP5118804B2 (en) 2005-03-15 2005-03-15 Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles

Country Status (1)

Country Link
JP (1) JP5118804B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305001A (en) * 1989-08-23 1992-10-28 Fraunhofer Ges Manufacture of composite material containing metallic small grain or metallic oxide small grain in oxide matrix
US5240493A (en) * 1992-01-16 1993-08-31 Institute Of Gas Technology Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam
US5338334A (en) * 1992-01-16 1994-08-16 Institute Of Gas Technology Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam
JP3128593B2 (en) * 1999-06-18 2001-01-29 工業技術院長 Method for producing spherical silica-containing porous material and spherical silica-containing porous material
JP2004099381A (en) * 2002-09-10 2004-04-02 Toyota Central Res & Dev Lab Inc Highly acid-resistant mesoporous silica thin film, cluster-including thin film using the same, and their forming processes
JP4461352B2 (en) * 2002-09-10 2010-05-12 株式会社豊田中央研究所 High crystalline mesoporous silica thin film and method for producing the same, cluster inclusion thin film using the mesoporous silica thin film and method for producing the same

Also Published As

Publication number Publication date
JP2006257465A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
Ang et al. Decoration of activated carbon nanotubes with copper and nickel
EP2736837B1 (en) Method for producing silicon nanowires
JP4730707B2 (en) Catalyst for carbon nanotube synthesis and method for producing the same, catalyst dispersion, and method for producing carbon nanotube
Sun et al. Roughness-controlled copper nanowires and Cu nanowires–Ag heterostructures: synthesis and their enhanced catalysis
WO2019165958A1 (en) Method for preparing nano-quantum dot, nano-quantum dot material, application and quantum dot article
KR20140053136A (en) A substrate surface structured with thermally stable metal alloy nanoparticles, a method for preparing the same, and uses thereof, in particular as a catalyst
JP5412848B2 (en) Manufacturing method of microstructure material
CN109937091A (en) The method of catalyst of the production comprising intermetallic compound and the catalyst made of this method
US9000416B2 (en) Nanoparticle synthesis
Hu et al. Mesoporous Colloidal Superparticles of Platinum‐Group Nanocrystals with Surfactant‐Free Surfaces and Enhanced Heterogeneous Catalysis
KR100583610B1 (en) Febrication method of transition metal oxide/carbon nanotube composite
KR101067408B1 (en) Fabrication of Ultralong ZnO nanowire arrays with tunable density
JP5118804B2 (en) Method for producing porous metal material encapsulating metal fine particles, method for producing metal fine particles, and method for producing a substrate with metal fine particles
JP4967120B2 (en) Method for producing ZnO-based nanotube
JP5145968B2 (en) Method for producing mesoporous material
JP3402032B2 (en) Carbon tube containing foreign substance and method for producing the same
Gruber et al. Molecular and supramolecular templating of silica‐based nanotubes and introduction of metal nanowires
KR20160136045A (en) Aligned Carbon nanotube struscture having wall form, method for manufacturing the same and electric device using the same
Pan et al. Straight single-crystalline germanium nanowires and their patterns grown on sol–gel prepared gold/silica substrates
JP2017128458A (en) Oxynitride fine particle, photocatalyst for water decomposition, photocatalyst electrode for generating hydrogen and oxygen, photocatalyst module for generating hydrogen and oxygen and manufacturing method of oxynitride fine particle
Choi et al. Platinum nanoparticle-functionalized tin dioxide nanowires via radiolysis and their sensing capability
Ren et al. The Selective Growth of Silicon Nanowires and Their Optical Activation
JP7214944B2 (en) Fuel cell electrode catalyst and method for producing the same
KR101070870B1 (en) Metal nanoparticle catalyst supported on Silicon oxide nanowire and a fabrication method thereof
JP4801334B2 (en) Method for producing carbon nanofiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110318

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5118804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees