JP5118340B2 - Reciprocating compressor for refrigeration circuit - Google Patents

Reciprocating compressor for refrigeration circuit Download PDF

Info

Publication number
JP5118340B2
JP5118340B2 JP2006325544A JP2006325544A JP5118340B2 JP 5118340 B2 JP5118340 B2 JP 5118340B2 JP 2006325544 A JP2006325544 A JP 2006325544A JP 2006325544 A JP2006325544 A JP 2006325544A JP 5118340 B2 JP5118340 B2 JP 5118340B2
Authority
JP
Japan
Prior art keywords
refrigerant
chamber
compression
pressure
intermediate pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006325544A
Other languages
Japanese (ja)
Other versions
JP2008138589A (en
Inventor
清 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006325544A priority Critical patent/JP5118340B2/en
Priority to CNA2007800424327A priority patent/CN101535646A/en
Priority to PCT/JP2007/073169 priority patent/WO2008066156A1/en
Priority to US12/516,718 priority patent/US20100068085A1/en
Priority to EP07849947A priority patent/EP2088322A4/en
Publication of JP2008138589A publication Critical patent/JP2008138589A/en
Application granted granted Critical
Publication of JP5118340B2 publication Critical patent/JP5118340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/062Cooling by injecting a liquid in the gas to be compressed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Sliding Valves (AREA)
  • Compressor (AREA)

Description

本発明は、特に自動車用空調システムのための冷凍回路の往復動型圧縮機に関する。   The present invention relates to a reciprocating compressor of a refrigeration circuit, particularly for an automotive air conditioning system.

この種の往復動型圧縮機はそのシリンダブロック内に複数のシリンダボアを備え、これらシリンダボア内にはピストンが往復動自在に嵌合され、ピストンはそのシリンダボア内に圧縮室を形成する。各ピストンは主軸の回転に伴い、シリンダボア内を順次往復運動し、これにより、圧縮室毎に冷媒の吸引から圧縮を経て吐出に至る一連のプロセスが実行される(特許文献1)。
特開2001-027177号公報
This type of reciprocating compressor has a plurality of cylinder bores in its cylinder block, and pistons are reciprocally fitted in these cylinder bores, and the pistons form a compression chamber in the cylinder bores. Each piston sequentially reciprocates in the cylinder bore with the rotation of the main shaft, thereby executing a series of processes from suction of refrigerant to compression through discharge in each compression chamber (Patent Document 1).
JP 2001-027177

一般的に、自動車用空調システムのための圧縮機には冷媒としてR134aが使用されているが、この冷媒は地球温暖化指数(GWP)が約1300と非常に高い。このため、特許文献1の圧縮機は、冷媒として地球温暖指数が低い二酸化炭素を使用し、また、近年にあってはCF3Iを含んだ混合冷媒の使用をも提案されている。
前者の冷媒は圧縮時、その動作温度がR134aに比べて150℃を越える高温となり、圧縮機が受ける熱負荷は大きい。これに対して、後者の冷媒ではR134aでの場合と同程度の動作温度に抑えることができるものの、冷媒中含まれるCF3I中のC-I結合はその結合エネルギが低いために、冷媒自体がその動作温度にて分解し易い。
Generally, R134a is used as a refrigerant in a compressor for an air conditioning system for automobiles, and this refrigerant has a very high global warming index (GWP) of about 1300. For this reason, the compressor of Patent Document 1 uses carbon dioxide having a low global warming index as a refrigerant, and in recent years, the use of a mixed refrigerant containing CF 3 I has also been proposed.
When the former refrigerant is compressed, its operating temperature is higher than 150 ° C. compared to R134a, and the heat load received by the compressor is large. In contrast, with the latter refrigerant, the operating temperature can be suppressed to the same level as with R134a, but the CI bond in CF 3 I contained in the refrigerant has a low binding energy, so the refrigerant itself Easily decomposes at operating temperature.

本発明は上述の事情に基づいてなされたもので、その目的とするところは、冷媒の吐出温度の上昇を抑制し且つ冷媒の圧縮効率を高めることができる冷凍回路の往復動型圧縮機を提供することにある。   The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a reciprocating compressor of a refrigeration circuit capable of suppressing an increase in refrigerant discharge temperature and enhancing refrigerant compression efficiency. There is to do.

上記の目的を達成するため、本発明は、弁板とシリンダヘッドとの間に形成され、それぞれ環状をなす吐出室及び吸入室と、複数のシリンダボア内にそれぞれ往復動自在に嵌合され、対応するシリンダボア内に圧縮室を形成し且つ主軸の回転を受けて往復動可能なピストンを含み、ピストンの往復運動により、対応する圧縮室への冷媒の吸入から圧縮を経て吐出に至る一連のプロセスが実行される冷凍回路の往復動型圧縮機において、シリンダヘッド内に吐出室及び吸入室よりもシリンダヘッドの中央に位置して形成され、冷凍回路から冷媒の吐出圧よりも低く且つ圧縮室内に圧縮過程にある冷媒の過渡圧より高い中間圧の冷媒の供給を受ける中間圧室と、中間圧室と圧縮室とを接続する接続通路と、接続通路に設けられ、冷媒の圧縮過程にて、圧縮室内の冷媒の圧力が過渡圧と中間圧との間に達しているとき、中間圧室に対し各圧縮室を接続通路を通じて順次連通させるべく回転する回転弁とを具備し、この回転弁は、主軸と中間圧室との間には配置され、主軸に一体的に連結された一端を有する(請求項1)。 To achieve the above object, the present invention is formed between the valve plate and the cylinder head, a discharge chamber and the suction chamber forming a circular respectively fitted freely respectively reciprocate in a plurality of cylinder bores, corresponding to and a reciprocable piston receiving the rotation of the formed and spindle compression chamber into the cylinder bore, the reciprocation of the piston, a set of leading to discharge through the compression from the suction of the refrigerant into the corresponding compression chamber process in There reciprocating compressor of the refrigeration circuit to be performed, than the discharge chamber and the suction chamber in the cylinder head is formed located in the center of the cylinder head, and the compressed lower than the discharge pressure of the refrigeration circuit or al refrigerant an intermediate pressure chamber for receiving a supply of refrigerant higher intermediate pressure than transient pressure of the refrigerant in the indoor hand compression process, a connecting passage connecting the intermediate pressure chamber compression chamber, provided in the connecting passage, the compression of the refrigerant At extent, when the pressure of the refrigerant in each compression chamber has reached between the transient pressure and intermediate pressure, it comprises a rotary valve that rotates in order to sequentially communicated via the connecting passage to the compression chambers to the intermediate-pressure chamber The rotary valve is disposed between the main shaft and the intermediate pressure chamber, and has one end integrally connected to the main shaft .

上述した請求項1の往復動型圧縮機によれば、1つの圧縮室内にて冷媒が圧縮過程にあって、その圧縮室内の冷媒の圧力が過渡圧と中間圧との間に達しているとき、回転弁はその圧縮室と中間圧室とを接続通路を介して連通させる。それ故、中間圧室内の冷媒は中間圧と圧縮室内の圧力との間の差に基づき、その圧縮室内に噴射される。ここで、中間室内の冷媒は圧縮室内の冷媒温度よりも低いので、圧縮室内にて圧縮過程にある冷媒は中間圧室からの冷媒と混合されることで冷却される。 According to the above claims 1 reciprocating compressor, in the refrigerant at one compression chamber compression process, when the pressure of the refrigerant in the compression chamber has reached between the transient pressure and intermediate pressure The rotary valve causes the compression chamber and the intermediate pressure chamber to communicate with each other through a connection passage. Therefore, the refrigerant in the intermediate pressure chamber is injected into the compression chamber based on the difference between the intermediate pressure and the pressure in the compression chamber. Here, the refrigerant of the intermediate pressure chamber is lower than the refrigerant temperature in the compression chamber, the refrigerant in the compression process in the compression chamber is cooled by being mixed with refrigerant from the intermediate pressure chamber.

また、上述の目的は、シリンダボア内に往復動自在に嵌合されてシリンダボア内に圧縮室を形成し且つ主軸の回転を受けて往復動可能なピストンを含み、ピストンの往復運動により、圧縮室への冷媒の吸入から圧縮を経て吐出に至る一連のプロセスが実行される冷凍回路の往復動型圧縮機を前提としたとき、冷凍回路から冷媒の吐出圧よりも低く且つ圧縮室内に圧縮過程にある冷媒の過渡圧よりも高い中間圧の冷媒の供給を受ける中間圧室と、中間圧室と圧縮室とを接続する接続通路と、接続通路に設けられ、冷媒の圧縮過程にて、圧縮室内の冷媒の圧力が過渡圧と中間圧との間にあるとき、接続通路を開く回転弁であって、主軸とは独立したモータにより回転される回転弁とを具備した往復動型圧縮機(請求項2)や、請求項2の回転弁を電磁弁に置換した往復動型圧縮機(請求項3)によっても達成可能である。
更にまた本発明の往復動型圧縮機は、斜板を備えた容量可変機構を更に含むことができ(請求項)、そして、冷媒は二酸化炭素(請求項)であるか又はC-I結合を有する化合物を含むことができる(請求項)。
The above-described object includes a piston that is reciprocally fitted in a cylinder bore to form a compression chamber in the cylinder bore and that can be reciprocated by the rotation of the main shaft. Assuming a reciprocating compressor of a refrigeration circuit in which a series of processes from suction of refrigerant to discharge through compression is executed, the refrigerant is under compression from the refrigerant discharge pressure and in the compression chamber An intermediate pressure chamber that receives supply of refrigerant having an intermediate pressure higher than the transient pressure of the refrigerant, a connection passage that connects the intermediate pressure chamber and the compression chamber, and a connection passage are provided in the compression chamber. A reciprocating compressor comprising a rotary valve that opens a connection passage when the refrigerant pressure is between a transient pressure and an intermediate pressure, and that is rotated by a motor independent of the main shaft. 2) and a rotary valve according to claim 2 It can also be achieved by substituted reciprocating compressor to solenoid valve (claim 3).
Furthermore, the reciprocating compressor of the present invention can further include a variable capacity mechanism having a swash plate (Claim 4 ), and the refrigerant is carbon dioxide (Claim 5 ) or has a CI coupling. It can contain the compound which has (claim 6 ).

請求項1〜の冷凍回路の往復動型圧縮機は、冷媒の圧縮過程にて、圧縮室に中間圧室〜低温の冷媒が噴射されるので、圧縮機からの吐出冷媒の温度上昇が抑制され、冷媒に二酸化炭素やC-I結合を有する化合物を含むことができ、地球温暖化防止に大きく貢献する。また、圧縮過程での圧縮室への冷媒の噴射は、冷媒の圧縮効率を高め、冷凍回路のエネルギ効率向上に大きく寄与する。 In the reciprocating compressor of the refrigeration circuit according to any one of claims 1 to 6 , since the intermediate-pressure chamber to the low-temperature refrigerant are injected into the compression chamber during the refrigerant compression process, an increase in the temperature of the refrigerant discharged from the compressor is suppressed. In addition, the refrigerant can contain carbon dioxide or a compound having a CI bond, which greatly contributes to the prevention of global warming. Moreover, the injection of the refrigerant into the compression chamber during the compression process increases the compression efficiency of the refrigerant and greatly contributes to the improvement of the energy efficiency of the refrigeration circuit.

図1は、自動車用空調システムの冷凍回路を概略的に示す。
冷凍回路は冷媒の循環経路2を備え、この循環経路2に圧縮機4、凝縮器6、第1膨脹弁8、気液分離器10、第2膨脹弁12及び蒸発器14が順次介挿されている。圧縮機4は冷媒を凝縮器6に向けて吐出し、吐出された冷媒は循環経路2を通じて循環する。ここで、循環経路2は、圧縮機4の吐出ポートから凝縮器6を経て第1膨脹弁8に至る高圧域2と、第1膨脹弁8から気液分離器10、第2膨脹弁12及び蒸発器14を経て圧縮機4の吸入ポートに至る低圧域2とを有し、図1中、吸入ポート及び吐出ポートは参照符号4a,4bで示されている。
FIG. 1 schematically shows a refrigeration circuit of an automotive air conditioning system.
The refrigeration circuit includes a refrigerant circulation path 2, and a compressor 4, a condenser 6, a first expansion valve 8, a gas-liquid separator 10, a second expansion valve 12, and an evaporator 14 are sequentially inserted in the circulation path 2. ing. The compressor 4 discharges the refrigerant toward the condenser 6, and the discharged refrigerant circulates through the circulation path 2. Here, the circulation path 2 includes a high pressure region 2 H extending from the discharge port of the compressor 4 through the condenser 6 to the first expansion valve 8, and the gas-liquid separator 10 and the second expansion valve 12 from the first expansion valve 8. And a low pressure region 2 L that reaches the suction port of the compressor 4 through the evaporator 14. In FIG. 1, the suction port and the discharge port are denoted by reference numerals 4 a and 4 b.

図2は圧縮機4の詳細を示す。
圧縮機4は可変容量式の往復動型であって、そのハウジング16は図2でみて左側からエンドプレート18、センタケーシング20及びシリンダヘッド22を含み、これらは一体的に結合されている。
センタケーシング20はその内部にエンドプレート18に隣接したクランク室24を有し、一方、センタケーシング20のシリンダヘッド22側の部位はシリンダブロック26として形成されている。
FIG. 2 shows details of the compressor 4.
The compressor 4 is a variable capacity reciprocating type, and its housing 16 includes an end plate 18, a center casing 20, and a cylinder head 22 from the left side as viewed in FIG. 2, and these are integrally coupled.
The center casing 20 has a crank chamber 24 adjacent to the end plate 18 in the interior thereof, while a portion of the center casing 20 on the cylinder head 22 side is formed as a cylinder block 26.

センタケーシング2内には圧縮ユニット28が配置され、この圧縮ユニット28はシリンダブロック26内に形成された複数のシリンダボア30を備え、これらシリンダボア30はシリンダブロック26の軸線回りに等間隔を存して配置され、シリンダブロック26を貫通している。各シリンダボア30内にはピストン32が摺動自在に嵌合され、このピストン32はシリンダボア30内に圧縮室33を形成する。なお、図2には、シリンダボア30及びピストン32が1個ずつのみ示されている。 The center casing 2 within 0 compression unit 28 is arranged, the compression unit 28 is provided with a plurality of cylinder bores 30 formed in the cylinder block 26, these bores 30 resides equidistant around the axis of the cylinder block 26 And penetrates the cylinder block 26. A piston 32 is slidably fitted in each cylinder bore 30, and the piston 32 forms a compression chamber 33 in the cylinder bore 30. In FIG. 2, only one cylinder bore 30 and one piston 32 are shown.

一方、クランク室24内にはシリンダブロック26の軸線と同軸にして主軸34が配置され、この主軸34はシリンダブロック26に軸受36を介して回転自在に支持された内端と、エンドプレート18から軸受38及びシールユニット40を介してハウジング16の外側に延出する外端とを有する。主軸34の外端は自動車のエンジンから駆動力を受け、主軸34は回転駆動可能である。 On the other hand, the crank chamber 24 is disposed the main shaft 34 and coaxially with the axis of the cylinder block 26, and the inner end the main shaft 34 is rotatably supported via a bearing 36 to the cylinder block 26, from the end plate 18 It has an outer end that extends to the outside of the housing 16 via a bearing 38 and a seal unit 40. The outer end of the main shaft 34 receives a driving force from the engine of the automobile, and the main shaft 34 can be rotationally driven.

クランク室24内にて、主軸34にはロータ42が取り付けられており、このロータ42は主軸34と一体に回転し、エンドプレート18にスラスト軸受44を介して回転自在に支持されている。
また、クランク室24内には主軸34を囲むようにして斜板46が配置され、この斜板46はロータ42にリンク48を介して連結されている。リンク48は主軸34に対する斜板46の傾動を許容し、これにより、斜板46の傾斜角が可変されるようになっている。
In the crank chamber 24, a rotor 42 is attached to the main shaft 34, and the rotor 42 rotates integrally with the main shaft 34 and is rotatably supported by the end plate 18 via a thrust bearing 44.
A swash plate 46 is disposed in the crank chamber 24 so as to surround the main shaft 34, and the swash plate 46 is connected to the rotor 42 via a link 48. The link 48 allows the swash plate 46 to tilt with respect to the main shaft 34, and thereby the tilt angle of the swash plate 46 can be varied.

更に、斜板46にはラジアル軸受50及びスラスト軸受52を介して揺動板54が支持され、揺動板54の自転は自転阻止機構(図示しない)により阻止されている。このような揺動板54と前述した各ピストン32とはピストンロッド56の両端にそれぞれ連結され、これらピストンロッド56の両端は玉継手として構成されている。
上述したように主軸34が回転されると、この回転力はロータ42、斜板46、揺動板54及びピストンロッド56を介し、公知の如くピストン32の往復運動に変換される。
Further, the swash plate 46 supports a swing plate 54 via a radial bearing 50 and a thrust bearing 52, and the rotation of the swing plate 54 is blocked by a rotation blocking mechanism (not shown). Such a swing plate 54 and each of the pistons 32 described above are respectively connected to both ends of a piston rod 56, and both ends of the piston rod 56 are configured as ball joints.
As described above, when the main shaft 34 is rotated, this rotational force is converted into a reciprocating motion of the piston 32 through the rotor 42, the swash plate 46, the swing plate 54 and the piston rod 56 as is well known.

一方、図2から明らかなようにシリンダブロック26とシリンダヘッド22との間には弁板58がガスケット(図示しない)を介して挟み込まれ、この弁板58にはシリンダボア30毎、つまり、圧縮室33毎に割り当てられた吸入孔60及び吐出孔62を有する。
弁板58とシリンダヘッド22との間には吸入室64、吐出室66及び中間圧室68が互いに独立して形成されている。
On the other hand, as is apparent from FIG. 2, a valve plate 58 is sandwiched between the cylinder block 26 and the cylinder head 22 via a gasket (not shown), and the valve plate 58 is provided for each cylinder bore 30, that is, in the compression chamber. It has a suction hole 60 and a discharge hole 62 assigned to each 33.
Between the valve plate 58 and the cylinder head 22, a suction chamber 64, a discharge chamber 66 and an intermediate pressure chamber 68 are formed independently of each other.

ここで、中間圧室68はシリンダヘッド22の中央に位置付けられ、吐出室66及び吸入室64は中間圧室68を順次囲む環状をなしている。
吸入室64は吸入孔60にそれぞれ連通する一方、前述した吸入ポート4aを通じて循環経路2の低圧域2に接続されている。なお、吸入ポート4aはシリンダヘッド22に形成されている。
Here, the intermediate pressure chamber 68 is positioned at the center of the cylinder head 22, and the discharge chamber 66 and the suction chamber 64 have an annular shape that sequentially surrounds the intermediate pressure chamber 68.
Suction chamber 64 while each communicating with the suction hole 60 is connected to a low pressure area 2 L of the circulation path 2 through the suction port 4a described above. The suction port 4a is formed in the cylinder head 22.

一方、吐出室66は吐出孔62にそれぞれ連通する一方、前述した吐出ポート4bを通じて循環経路2の高圧域2Hに接続され、吐出ポート4bもまたシリンダヘッド22に形成されている。
前述した吸入孔60及び吐出孔62は吸入弁70及び吐出弁72により開閉可能となっている。これら吸入弁70及び吐出弁72は何れもリード弁からなり、弁板58の両面に分けて配置されている。なお、参照符号7は吐出弁72のためのバルブリテーナをそれぞれ示す。
On the other hand, the discharge chamber 66 while respectively communicating with the discharge hole 62, is connected to the high pressure zone 2 H of the circulation path 2 through the discharge port 4b described above, the discharge port 4b are also formed in the cylinder head 22.
The suction hole 60 and the discharge hole 62 described above can be opened and closed by a suction valve 70 and a discharge valve 72. Each of the intake valve 70 and the discharge valve 72 is a reed valve, and is arranged separately on both surfaces of the valve plate 58. Reference numeral 7 3 denotes a valve retainer for the discharge valve 72.

更に、前述した中間圧室68は導入ポート74を介して導入経路76に接続されており、この導入経路76は前述した気液分離器10に接続されている(図1)。導入経路76は気液分離器10から気相状態の冷媒を導き、導入ポート74を通じて中間圧室68に導入させる。
一方、中間圧室68と主軸34との間には円筒状の回転弁78が配置されており、この回転弁78は弁板58を気密に貫通し、そして、シリンダブロック26内に回転自在に嵌合されている。回転弁78は主軸34と同軸上に位置付けられ、主軸34側の一端は主軸34に一体的に結合されている。従って、回転弁78は主軸34と一体に回転する。
Further, the intermediate pressure chamber 68 described above is connected to the introduction path 76 via the introduction port 74, and this introduction path 76 is connected to the gas-liquid separator 10 described above (FIG. 1). The introduction path 76 guides the gas-phase refrigerant from the gas-liquid separator 10 and introduces it into the intermediate pressure chamber 68 through the introduction port 74.
On the other hand, a cylindrical rotary valve 78 is disposed between the intermediate pressure chamber 68 and the main shaft 34, and the rotary valve 78 passes through the valve plate 58 in an airtight manner and is rotatable in the cylinder block 26. It is mated. The rotary valve 78 is positioned coaxially with the main shaft 34, and one end on the main shaft 34 side is integrally coupled to the main shaft 34. Therefore, the rotary valve 78 rotates integrally with the main shaft 34.

具体的には、主軸34からは回転弁78に嵌合する駆動ピン80が突設され、この駆動ピン80がキー82を介して回転弁78に連結されている。また、回転弁78の他端はシリンダヘッド22に対してリング状のスラスト軸受84を介して回転自在に支持されている。
更に、回転弁78内には内部通路86が形成され、この内部通路86は回転弁78の外周面に開口する一端と、中間圧室68に連通した他端とを有する。図2から明らかなように内部通路86の一端は弁板58の近傍に位置付けられている。
Specifically, a drive pin 80 that fits into the rotary valve 78 protrudes from the main shaft 34, and the drive pin 80 is connected to the rotary valve 78 via a key 82. The other end of the rotary valve 78 is rotatably supported by the cylinder head 22 via a ring-shaped thrust bearing 84.
Further, an internal passage 86 is formed in the rotary valve 78, and this internal passage 86 has one end that opens to the outer peripheral surface of the rotary valve 78 and the other end that communicates with the intermediate pressure chamber 68. As is clear from FIG. 2, one end of the internal passage 86 is positioned in the vicinity of the valve plate 58.

そして、シリンダブロック26内には、圧縮室33毎に接続通路としての弁孔88が形成されている。これら弁孔88は弁板58側のシリンダボア30の上端部にて、対応する圧縮室33に開口する一端と、回転弁78の外周面に臨んで開口する他端とを有する。これら弁孔88の他端は回転弁78の周方向に等間隔を存し、且つ、回転弁78が回転されたとき、内部通路86の一端開口が形成する回転軌跡上に位置付けられている。   In the cylinder block 26, a valve hole 88 is formed as a connection passage for each compression chamber 33. These valve holes 88 have one end that opens to the corresponding compression chamber 33 and the other end that opens toward the outer peripheral surface of the rotary valve 78 at the upper end of the cylinder bore 30 on the valve plate 58 side. The other ends of these valve holes 88 are equally spaced in the circumferential direction of the rotary valve 78, and are positioned on a rotation locus formed by one end opening of the internal passage 86 when the rotary valve 78 is rotated.

従って、回転弁78が主軸34とともに回転されたとき、内部通路88の一端開口、即ち、前述した中間圧室68は各圧縮室33にその弁孔88を通じて順次に連通する。即ち、回転弁78は主軸34の回転に伴い、各圧縮室33と組みをなす弁孔88を順次開閉することができる。
前述したように主軸34の回転を受けて、シリンダボア30内にて、そのピストン32が順次往復運動するとき、各圧縮室33では循環経路2の低圧域2に連なる吸入室64から吸入孔60及び吸入弁70を通じて冷媒が吸入され、そして、吸入冷媒は圧縮され、高圧の冷媒が圧縮室33から吐出孔62及び吐出弁72を通じて吐出室66に吐出される。この結果、圧縮機4から循環経路2の高圧域2を通じ、凝縮器6に向けて供給される。
Accordingly, when the rotary valve 78 is rotated together with the main shaft 34, one end opening of the internal passage 88, that is, the above-described intermediate pressure chamber 68 communicates sequentially with each compression chamber 33 through the valve hole 88. That is, the rotary valve 78 can sequentially open and close the valve holes 88 that form a pair with the compression chambers 33 as the main shaft 34 rotates.
In response to rotation of the main shaft 34 as described above, in the cylinder bore 30, when the piston 32 is sequentially reciprocated, the suction holes from the suction chamber 64 communicating with the low pressure area 2 L of each of the compression chambers 33 in the circulation path 2 60 Then, the refrigerant is sucked through the suction valve 70, and the sucked refrigerant is compressed, and the high-pressure refrigerant is discharged from the compression chamber 33 to the discharge chamber 66 through the discharge hole 62 and the discharge valve 72. As a result, the refrigerant is supplied from the compressor 4 to the condenser 6 through the high pressure region 2 H of the circulation path 2.

一方、回転弁78は主軸34と一体に回転しているので、回転弁78の内部通路86の一端開口は圧縮室33内での冷媒の圧縮過程にて、その圧縮室33と組みをなす弁孔88に連通し、この弁孔88を所定の開弁期間だけ開く。ここでの連通タイミング及び開弁期間は、圧縮室33内にて圧縮過程にある冷媒の過渡圧が前述した中間圧室68内の冷媒圧に達するまでの間でそれぞれ設定されている。   On the other hand, since the rotary valve 78 rotates integrally with the main shaft 34, one end opening of the internal passage 86 of the rotary valve 78 is a valve that forms a pair with the compression chamber 33 in the compression process of the refrigerant in the compression chamber 33. The valve hole 88 communicates with the hole 88 and is opened for a predetermined valve opening period. Here, the communication timing and the valve opening period are set until the transient pressure of the refrigerant in the compression process in the compression chamber 33 reaches the refrigerant pressure in the intermediate pressure chamber 68 described above.

従って、冷媒の圧縮過程にて回転弁78が開弁されると、中間圧室68内の冷媒が回転弁78及び弁孔88を通じて圧縮室33内に噴射される。ここで、中間圧室68には、前述した気液分離器10からの気相の冷媒が導入され、この導入冷媒は圧縮機4から吐出された冷媒の吐出温度よりも十分に低い。それ故、圧縮室33内に中間圧室68内の低温の冷媒が噴射されれば、圧縮室33内にて、噴射された低温の冷媒と圧縮過程にある高温の冷媒とが混合され、圧縮室33内での圧縮冷媒の温度、即ち、圧縮機4からの吐出冷媒の温度上昇を抑制できる。   Therefore, when the rotary valve 78 is opened during the refrigerant compression process, the refrigerant in the intermediate pressure chamber 68 is injected into the compression chamber 33 through the rotary valve 78 and the valve hole 88. Here, the gas-phase refrigerant from the gas-liquid separator 10 described above is introduced into the intermediate pressure chamber 68, and this introduced refrigerant is sufficiently lower than the discharge temperature of the refrigerant discharged from the compressor 4. Therefore, if the low-temperature refrigerant in the intermediate pressure chamber 68 is injected into the compression chamber 33, the injected low-temperature refrigerant and the high-temperature refrigerant in the compression process are mixed in the compression chamber 33 and compressed. The temperature of the compressed refrigerant in the chamber 33, that is, the temperature increase of the refrigerant discharged from the compressor 4 can be suppressed.

この結果、地球の温暖化を防止するために、冷媒に高圧に圧縮される二酸化炭素や、CF3Iを含む化合物が使用されても、圧縮機4が受ける熱負荷を大幅に低減でき、また、CF3I中のC-I結合が分解されてしまうこともない。
また、圧縮室33内への低温冷媒の噴射は、圧縮室33内での冷媒の圧縮効率を高めることから、冷凍回路のエネルギ効率を効果的に向上させる多効サイクルを容易に実現可能となる。
As a result, in order to prevent global warming, the heat load received by the compressor 4 can be greatly reduced even when carbon dioxide compressed to a high pressure or a compound containing CF 3 I is used as the refrigerant. In addition, the CI bond in CF 3 I is not broken down.
Moreover, since the injection of the low-temperature refrigerant into the compression chamber 33 increases the compression efficiency of the refrigerant in the compression chamber 33, a multi-effect cycle that effectively improves the energy efficiency of the refrigeration circuit can be easily realized. .

一方、前述したクランク室24は吸入室64及び吐出室66の双方に、弁板58及びシリンダブロック26を貫通する接続通路(図示しない)を介して接続され、そして、クランク室24と吸入室64とを接続する接続通路には絞りが介挿され、クランク室24と吐出室66とを接続する接続通路には電磁制御弁が介挿されている。この電磁制御弁は吐出室66からクランク室24に流入する高圧冷媒の流入量を制御し、クランク室24内の圧力を調整する。   On the other hand, the crank chamber 24 described above is connected to both the suction chamber 64 and the discharge chamber 66 via a connection passage (not shown) that penetrates the valve plate 58 and the cylinder block 26, and the crank chamber 24 and the suction chamber 64. Is connected to the connecting passage connecting the crank chamber 24 and the discharge chamber 66, and an electromagnetic control valve is inserted into the connecting passage connecting the crank chamber 24 and the discharge chamber 66. This electromagnetic control valve controls the amount of high-pressure refrigerant flowing from the discharge chamber 66 into the crank chamber 24 and adjusts the pressure in the crank chamber 24.

公知のようにクランク室24の斜板46の傾斜角は、各ピストン32からの圧縮反力と斜板46の背面に加わるクランク室24内の圧力、即ち、背圧とが釣り合う角度に保持されるので、クランク室24内の圧力(背圧)が調整されることで、斜板46の傾斜角、即ち、各ピストン32のストロークが調整され、この結果、圧縮機4の冷媒吐出量が可変されることになる。   As is well known, the inclination angle of the swash plate 46 in the crank chamber 24 is maintained at an angle that balances the compression reaction force from each piston 32 and the pressure in the crank chamber 24 applied to the back surface of the swash plate 46, that is, the back pressure. Therefore, by adjusting the pressure (back pressure) in the crank chamber 24, the inclination angle of the swash plate 46, that is, the stroke of each piston 32 is adjusted, and as a result, the refrigerant discharge amount of the compressor 4 is variable. Will be.

ここで、ピストン32のストロークが可変されても、各圧縮室33に対する回転弁78の開弁タイミング及び開弁期間は変化しないので、圧縮機4の冷媒吐出圧と中間圧室68の冷媒圧との関係は略一定に保たれ、冷媒の圧縮過程での圧縮室33内への低温冷媒の噴射は安定して実施可能である。
本発明は上述した一実施例に制約されるものではなく、種々の変形が可能である。
Here, even if the stroke of the piston 32 is varied, the valve opening timing and the valve opening period of the rotary valve 78 with respect to each compression chamber 33 do not change, so that the refrigerant discharge pressure of the compressor 4 and the refrigerant pressure of the intermediate pressure chamber 68 This relationship is maintained substantially constant, and the low temperature refrigerant can be stably injected into the compression chamber 33 during the refrigerant compression process.
The present invention is not limited to the above-described embodiment, and various modifications can be made.

例えば、図3は、主軸34とは独立して回転される回転弁78を示す。この場合、回転弁78は電動モータ90の出力軸92に同軸にして連結されており、電動モータ90はシリンダヘッド22の外面に取り付けられている。通常、電動モータ90は主軸34の回転と同期して回転弁78を回転させるが、必要に応じて回転弁78の開弁タイミング(連通タイミング)及び開弁期間を調整することができる。   For example, FIG. 3 shows a rotary valve 78 that is rotated independently of the main shaft 34. In this case, the rotary valve 78 is coaxially connected to the output shaft 92 of the electric motor 90, and the electric motor 90 is attached to the outer surface of the cylinder head 22. Normally, the electric motor 90 rotates the rotary valve 78 in synchronization with the rotation of the main shaft 34, but the valve opening timing (communication timing) and valve opening period of the rotary valve 78 can be adjusted as necessary.

また、図4は、回転弁78に代えて電磁開閉弁94が使用された変形例を示す。電磁開閉弁94は各圧縮室33に割り当てられ、前述した回転弁78と同様な機能を発揮する。
更に、本発明の往復動型圧縮機は、固定容量式であってもよいし、その駆動源もまたエンジンに代えて電動機を使用可能である。また、往復動の形式もまた、図示の揺動板式に限らず、片斜板式や他のアキシャルピストン方式であってよい。
FIG. 4 shows a modification in which an electromagnetic on-off valve 94 is used in place of the rotary valve 78. The electromagnetic on-off valve 94 is assigned to each compression chamber 33 and exhibits the same function as the rotary valve 78 described above.
Furthermore, the reciprocating compressor of the present invention may be of a fixed capacity type, and its drive source can also use an electric motor instead of the engine. Further, the type of reciprocating motion is not limited to the illustrated swing plate type, but may be a swash plate type or other axial piston type.

冷凍回路の構成を示した概略図である。It is the schematic which showed the structure of the freezing circuit. 図1の圧縮機の詳細を示した断面図である。It is sectional drawing which showed the detail of the compressor of FIG. 変形例の回転弁を示した図である。It is the figure which showed the rotary valve of the modification. 回転弁の代わりに使用される電磁開閉弁を示した図である。It is the figure which showed the electromagnetic on-off valve used instead of a rotary valve.

符号の説明Explanation of symbols

2 循環経路
10 気液分離器
16 ハウジング
24 クランク室
30 シリンダボア
32 ピストン
34 主軸
33 圧縮室
46 斜板
68 中間圧室
70 吸入弁
72 吐出弁
74 導入ポート
76 導入経路
78 回転弁(開閉弁)
86 内部通路(接続通路)
88 弁孔(接続通路)
90 電動モータ
94 電磁開閉弁
2 Circulation path 10 Gas-liquid separator 16 Housing 24 Crank chamber 30 Cylinder bore 32 Piston 34 Main shaft 33 Compression chamber 46 Swash plate 68 Intermediate pressure chamber 70 Suction valve 72 Discharge valve 74 Introduction port 76 Introduction path 78 Rotary valve (open / close valve)
86 Internal passage (connection passage)
88 Valve hole (connection passage)
90 Electric motor 94 Electromagnetic on-off valve

Claims (6)

弁板とシリンダヘッドとの間に形成され、それぞれ環状をなす吐出室及び吸入室と、複数のシリンダボア内にそれぞれ往復動自在に嵌合され、対応するシリンダボア内に圧縮室を形成し且つ主軸の回転を受けて往復動可能なピストンを含み、前記ピストンの往復運動により、対応するシリンダボア内にて前記圧縮室への冷媒の吸入から圧縮を経て吐出に至る一連のプロセスが実行される冷凍回路の往復動型圧縮機において、
前記シリンダヘッド内に前記吐出室及び前記吸入室よりも前記シリンダヘッドの中央に位置して形成され、前記冷凍回路から前記冷媒の吐出圧よりも低く且つ前記圧縮室内に圧縮過程にある冷媒の過渡圧より高い中間圧の冷媒の供給を受ける中間圧室と、
前記中間圧室と前記圧縮室とを接続する接続通路と、
前記接続通路に設けられ、前記冷媒の圧縮過程にて、前記圧縮室内の前記冷媒の圧力が前記過渡圧と前記中間圧との間に達しているとき、前記中間圧室に対し前記各圧縮室を前記接続通路を通じて順次連通させるべく回転する回転弁
を具備し
前記回転弁は、前記主軸と前記中間圧室との間に配置され、前記主軸に一体的に連結された一端を有することを特徴とする冷凍回路の往復動型圧縮機。
Formed between the valve plate and the cylinder head, a discharge chamber and the suction chamber forming a circular respectively fitted freely respectively reciprocate in a plurality of cylinder bores, the corresponding formed and spindle compression chamber into the cylinder bore A refrigerating circuit that includes a piston that can reciprocate under rotation, and a reciprocating motion of the piston executes a series of processes from suction of refrigerant into the compression chamber through compression to discharge within the corresponding cylinder bore In the reciprocating compressor of
Wherein in the cylinder head discharge chamber and than the suction chamber is formed located in the center of the cylinder head, in the hands compression process and the compression chamber lower than the discharge pressure of the refrigeration circuit or found before Symbol refrigerant an intermediate pressure chamber for receiving a supply of refrigerant higher intermediate pressure than transient pressure of the refrigerant,
A connecting passage for connecting the respective compression chambers and the intermediate pressure chamber,
When the pressure of the refrigerant in each compression chamber reaches between the transient pressure and the intermediate pressure in the compression process of the refrigerant provided in the connection passage, the compression is performed on the intermediate pressure chamber. A rotary valve that rotates to sequentially communicate the chamber through the connection passage ,
The reciprocating compressor of a refrigeration circuit, wherein the rotary valve has one end that is disposed between the main shaft and the intermediate pressure chamber and is integrally connected to the main shaft .
シリンダボア内に往復動自在に嵌合されて前記シリンダボア内に圧縮室を形成し且つ主軸の回転を受けて往復動可能なピストンを含み、前記ピストンの往復運動により、前記圧縮室への冷媒の吸入から圧縮を経て吐出に至る一連のプロセスが実行される冷凍回路の往復動型圧縮機において、
前記冷凍回路から前記冷媒の吐出圧よりも低く且つ前記圧縮室内に圧縮過程にある冷媒の過渡圧よりも高い中間圧の冷媒の供給を受ける中間圧室と、
前記中間圧室と前記圧縮室とを接続する接続通路と、
前記接続通路に設けられ、前記冷媒の圧縮過程にて、前記圧縮室内の前記冷媒の圧力が前記過渡圧と前記中間圧との間にあるとき、前記接続通路を開く回転弁であって、前記主軸とは独立したモータにより回転される回転弁と具備したことを特徴とする冷凍回路の往復動型圧縮機。
A piston that is reciprocally fitted in a cylinder bore to form a compression chamber in the cylinder bore and that can reciprocate in response to the rotation of the main shaft, and sucks refrigerant into the compression chamber by the reciprocating motion of the piston. In a reciprocating compressor of a refrigeration circuit in which a series of processes from compression to discharge is performed,
An intermediate pressure chamber that receives supply of refrigerant having an intermediate pressure lower than the refrigerant discharge pressure from the refrigeration circuit and higher than the transient pressure of the refrigerant in the compression process in the compression chamber;
A connection passage connecting the intermediate pressure chamber and the compression chamber;
A rotary valve that is provided in the connection passage and opens the connection passage when the pressure of the refrigerant in the compression chamber is between the transient pressure and the intermediate pressure in the compression process of the refrigerant, independent reciprocating compressor of refrigeration circuit you characterized by comprising a rotary valve which is rotated by the motor to the main shaft.
シリンダボア内に往復動自在に嵌合されて前記シリンダボア内に圧縮室を形成し且つ主軸の回転を受けて往復動可能なピストンを含み、前記ピストンの往復運動により、前記圧縮室への冷媒の吸入から圧縮を経て吐出に至る一連のプロセスが実行される冷凍回路の往復動型圧縮機において、
前記冷凍回路から前記冷媒の吐出圧よりも低く且つ前記圧縮室内に圧縮過程にある冷媒の過渡圧よりも高い中間圧の冷媒の供給を受ける中間圧室と、
前記中間圧室と前記圧縮室とを接続する接続通路と、
前記接続通路に設けられ、前記冷媒の圧縮過程にて、前記圧縮室内の前記冷媒の圧力が前記過渡圧と前記中間圧との間にあるとき、前記接続通路を開く電磁弁
を具備したことを特徴とする冷凍回路の往復動型圧縮機。
A piston that is reciprocally fitted in a cylinder bore to form a compression chamber in the cylinder bore and that can reciprocate in response to the rotation of the main shaft, and sucks refrigerant into the compression chamber by the reciprocating motion of the piston. In a reciprocating compressor of a refrigeration circuit in which a series of processes from compression to discharge is performed,
An intermediate pressure chamber that receives supply of refrigerant having an intermediate pressure lower than the refrigerant discharge pressure from the refrigeration circuit and higher than the transient pressure of the refrigerant in the compression process in the compression chamber;
A connection passage connecting the intermediate pressure chamber and the compression chamber;
An electromagnetic valve that is provided in the connection passage and opens the connection passage when the pressure of the refrigerant in the compression chamber is between the transient pressure and the intermediate pressure in the compression process of the refrigerant ;
Reciprocating compressor of refrigeration circuit characterized by comprising a.
斜板を備えた容量可変機構を更に含むことを特徴とする請求項1〜の何れかに記載の冷凍回路の往復動型圧縮機。 The reciprocating compressor for a refrigeration circuit according to any one of claims 1 to 3 , further comprising a variable capacity mechanism including a swash plate. 冷媒は二酸化炭素であることを特徴とする請求項1〜の何れかに記載の冷凍回路の往復動型圧縮機。 The reciprocating compressor of the refrigeration circuit according to any one of claims 1 to 4 , wherein the refrigerant is carbon dioxide. 冷媒はC-I結合を有する化合物を含むことを特徴とする請求項1〜の何れかに記載の冷凍回路の往復動型圧縮機。 The reciprocating compressor for a refrigeration circuit according to any one of claims 1 to 4 , wherein the refrigerant includes a compound having a CI bond.
JP2006325544A 2006-12-01 2006-12-01 Reciprocating compressor for refrigeration circuit Expired - Fee Related JP5118340B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006325544A JP5118340B2 (en) 2006-12-01 2006-12-01 Reciprocating compressor for refrigeration circuit
CNA2007800424327A CN101535646A (en) 2006-12-01 2007-11-30 Reciprocating compressor of refrigerating machine
PCT/JP2007/073169 WO2008066156A1 (en) 2006-12-01 2007-11-30 Reciprocating compressor of refrigerating machine
US12/516,718 US20100068085A1 (en) 2006-12-01 2007-11-30 Reciprocating Compressor for Refrigerator
EP07849947A EP2088322A4 (en) 2006-12-01 2007-11-30 Reciprocating compressor of refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325544A JP5118340B2 (en) 2006-12-01 2006-12-01 Reciprocating compressor for refrigeration circuit

Publications (2)

Publication Number Publication Date
JP2008138589A JP2008138589A (en) 2008-06-19
JP5118340B2 true JP5118340B2 (en) 2013-01-16

Family

ID=39467942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325544A Expired - Fee Related JP5118340B2 (en) 2006-12-01 2006-12-01 Reciprocating compressor for refrigeration circuit

Country Status (5)

Country Link
US (1) US20100068085A1 (en)
EP (1) EP2088322A4 (en)
JP (1) JP5118340B2 (en)
CN (1) CN101535646A (en)
WO (1) WO2008066156A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154151A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Scroll compressor
JP5294719B2 (en) * 2008-06-17 2013-09-18 三菱電機株式会社 Rotary compressor
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
JP2010019457A (en) * 2008-07-09 2010-01-28 Sanden Corp Refrigerating circuit
JP5062160B2 (en) * 2008-12-19 2012-10-31 株式会社デンソー Refrigeration cycle and compressor
KR101192346B1 (en) * 2010-04-22 2012-10-18 엘지전자 주식회사 Heat pump type speed heating apparatus
KR101155497B1 (en) 2010-04-23 2012-06-15 엘지전자 주식회사 Heat pump type speed heating apparatus
WO2015140882A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration device
JP6367164B2 (en) * 2015-07-17 2018-08-01 株式会社鷺宮製作所 Pressure operated valve and refrigeration cycle
JP6977651B2 (en) * 2018-03-30 2021-12-08 株式会社豊田自動織機 Piston compressor
WO2020049844A1 (en) * 2018-09-06 2020-03-12 日立ジョンソンコントロールズ空調株式会社 Compressor and refrigeration cycle device provided with same
CN109958597B (en) * 2019-03-12 2021-04-23 复盛实业(上海)有限公司 Air compression equipment and heat exchange system thereof
CN112443679B (en) * 2019-06-24 2024-02-13 杭州三花研究院有限公司 thermal management system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749083A (en) * 1980-09-10 1982-03-20 Hitachi Ltd Reciprocating compressor
JPS5815776A (en) * 1981-07-21 1983-01-29 Toshiba Corp Injection device of reciprocating compressor
JPS59131984U (en) * 1983-02-25 1984-09-04 三菱重工業株式会社 compressor
JP2616295B2 (en) * 1991-09-02 1997-06-04 株式会社豊田自動織機製作所 Swash plate compressor for refrigeration equipment
JP2000145641A (en) * 1998-11-06 2000-05-26 Sanden Corp Reciprocating compressor
JP2001027177A (en) 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp Variable displacement swash plate type compressor
JP4385516B2 (en) * 2000-11-07 2009-12-16 株式会社豊田自動織機 Piston compressor
JP2002228289A (en) * 2000-11-30 2002-08-14 Aisin Seiki Co Ltd Rotary valve unit and pulse pipe refrigerating machine
JP2004176543A (en) * 2002-11-22 2004-06-24 Sanden Corp Compressor
JP2004183605A (en) * 2002-12-05 2004-07-02 Sanden Corp Electric compressor
JP3789898B2 (en) * 2003-03-17 2006-06-28 東芝キヤリア株式会社 Refrigerant, refrigerant compressor and refrigeration apparatus
WO2006124776A2 (en) * 2005-05-18 2006-11-23 E.I. Du Pont De Nemours And Company Hybrid vapor compression-absorption cycle

Also Published As

Publication number Publication date
US20100068085A1 (en) 2010-03-18
CN101535646A (en) 2009-09-16
JP2008138589A (en) 2008-06-19
EP2088322A1 (en) 2009-08-12
WO2008066156A1 (en) 2008-06-05
EP2088322A4 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
JP5118340B2 (en) Reciprocating compressor for refrigeration circuit
AU2005240929B2 (en) Rotary compressor
US7618245B2 (en) Fluid machine
JPH06117366A (en) Reciprocating compressor
KR101165947B1 (en) Variable capacity type swash plate type compressor
JP4934921B2 (en) Piston type variable capacity fluid machine
US20090097999A1 (en) Suction structure in double-headed piston type compressor
JP2004183534A (en) Compressor
KR101599547B1 (en) Swash plate type compressor
US6347927B1 (en) Piston-type compressor with bolted separating wall
KR101463266B1 (en) Compressor
KR101166286B1 (en) Swash plate type compressor
JP4118413B2 (en) Variable displacement swash plate compressor
KR101491160B1 (en) Compressor
JP2001165046A (en) Compressor
US20070134102A1 (en) Piston compressor
JP2016191361A (en) Variable displacement type swash plate compressor
JP2000297745A (en) Compressor
JP2008138588A (en) Reciprocating type compressor of refrigerating circuit
JP2002021717A (en) Single head piston type compressor
KR20140106412A (en) Swash plate compressor
KR101463259B1 (en) Compressor
JP2021032200A (en) Piston type compressor
JP2010127082A (en) Variable displacement reciprocating compressor
JP2003214342A (en) Reciprocating closed type electric compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5118340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees