JP5117612B2 - Carbon dioxide recovery device - Google Patents

Carbon dioxide recovery device Download PDF

Info

Publication number
JP5117612B2
JP5117612B2 JP2011262343A JP2011262343A JP5117612B2 JP 5117612 B2 JP5117612 B2 JP 5117612B2 JP 2011262343 A JP2011262343 A JP 2011262343A JP 2011262343 A JP2011262343 A JP 2011262343A JP 5117612 B2 JP5117612 B2 JP 5117612B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorption liquid
filter
absorbent
dioxide recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011262343A
Other languages
Japanese (ja)
Other versions
JP2012086216A (en
Inventor
忍 茂庭
伸行 足利
泰彦 永森
寛幸 時本
聡美 海老原
真人 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011262343A priority Critical patent/JP5117612B2/en
Publication of JP2012086216A publication Critical patent/JP2012086216A/en
Application granted granted Critical
Publication of JP5117612B2 publication Critical patent/JP5117612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

本発明は、発電システム等での化石燃料(例えば、石炭等)の燃焼排ガスに含まれる二酸化炭素を回収する二酸化炭素回収装置に関する。   The present invention relates to a carbon dioxide recovery device that recovers carbon dioxide contained in combustion exhaust gas of fossil fuel (for example, coal) in a power generation system or the like.

現在、地球温暖化の観点から、温室効果ガス排出を抑制することが世界的に取り組まれている。そのひとつに温室効果ガスである二酸化炭素の排出抑制がある。二酸化炭素の排出抑制のために、自然エネルギー利用や、原子力発電の推進、省エネルギー、発電効率高効率化などの発電システムに関する取組みが積極的に執り行われている。   Currently, from the viewpoint of global warming, efforts are being made worldwide to reduce greenhouse gas emissions. One of these is the suppression of emissions of carbon dioxide, a greenhouse gas. In order to control carbon dioxide emissions, efforts are being actively made on power generation systems such as the use of natural energy, promotion of nuclear power generation, energy saving, and high efficiency of power generation.

また、現行の発電技術の改良改善による二酸化炭素排出方法として、発電量の大部分を占める化石燃料を用いる燃焼排ガスから二酸化炭素を回収する技術が開発されている。この燃焼排ガスに含まれる二酸化炭素を回収するガスの分離精製技術には、固体吸着剤を用いる吸着法およびその派生技術である圧力スイング吸着法や温度スイング吸着法、アルカリ金属塩液を用いる熱アルカリ法、微細な孔径を有する有機高分子や無機素材を用いる膜分離法などが存在する。その中でも、世界的に最も注力されているものとして、アルカノールアミンを主剤とした吸収液の化学吸収作用を用いるアミン法がある。   In addition, as a method for discharging carbon dioxide by improving and improving the current power generation technology, a technology for recovering carbon dioxide from combustion exhaust gas using fossil fuel that accounts for the majority of power generation has been developed. The separation and purification technology of the gas that recovers carbon dioxide contained in the combustion exhaust gas includes an adsorption method using a solid adsorbent and its derivative technologies such as a pressure swing adsorption method and a temperature swing adsorption method, and a hot alkali using an alkali metal salt solution. And a membrane separation method using an organic polymer or an inorganic material having a fine pore size. Among them, the amine method using the chemical absorption action of an absorption liquid mainly composed of alkanolamine is one of the most focused in the world.

アミン法とは、アルカノールアミンを主剤とした吸収液(以下、吸収液)に二酸化炭素を吸収させる吸収操作と、二酸化炭素を吸収した吸収液を昇温操作することにより、吸収液中に保持される二酸化炭素を放出させ吸収液の再生操作とを行うものである。この吸収液の再生操作には、系外から熱を供給する必要がある。   The amine method is held in the absorption liquid by absorbing the carbon dioxide in the absorption liquid (hereinafter referred to as the absorption liquid) containing alkanolamine as the main component and by heating the absorption liquid that has absorbed the carbon dioxide. The carbon dioxide is released to regenerate the absorbent. It is necessary to supply heat from outside the system for the regeneration operation of the absorbent.

アミン法における二酸化炭素回収に必要なエネルギーは、主に再生操作のための熱である。化石燃料の燃焼排ガスを二酸化炭素回収の処理対象とした場合、吸収液の再生操作のための熱源として化石燃料の燃焼熱を用いるケースが多い。このため、二酸化炭素回収の処理に必要な熱量が小さい装置構成が求められる。   The energy required for carbon dioxide recovery in the amine method is mainly heat for regeneration operation. When fossil fuel combustion exhaust gas is a target for carbon dioxide recovery, the fossil fuel combustion heat is often used as a heat source for the regeneration operation of the absorbent. For this reason, an apparatus configuration with a small amount of heat required for the carbon dioxide recovery process is required.

また、石炭等を燃料に用いた場合、燃焼排ガス中には、硫黄酸化物、煤塵等が混入している。これら硫黄酸化物、煤塵等は、通常、除去プロセスにより除去されるが、微量に残存するこれら硫黄酸化物、煤塵等の微量成分が吸収液に蓄積し、熱交換器や輸送機器の汚損、吸収液特性の変化などの影響を及ぼす可能性がある。また、吸収液の劣化生成物や構造材の腐食生成物も同様の影響を及ぼす可能がある。このため、上述した吸収液に蓄積する不純物(微量成分)は、速やかな除去が必要である。また、除去に伴う吸収液の損失や、熱損失が少ない技術の確立が必要となっている。   Moreover, when coal etc. are used for fuel, sulfur oxide, soot, etc. are mixed in combustion exhaust gas. These sulfur oxides, dust, etc. are usually removed by a removal process. However, trace amounts of these sulfur oxides, dust, etc. are accumulated in the absorption liquid, and heat exchangers and transportation equipment are contaminated and absorbed. There is a possibility of effects such as changes in liquid properties. Further, the deterioration product of the absorbing liquid and the corrosion product of the structural material may have the same influence. For this reason, the impurities (trace components) accumulated in the absorption liquid described above need to be promptly removed. In addition, it is necessary to establish a technique with little loss of absorption liquid and heat loss due to removal.

上記の問題を解決するために、二酸化炭素回収装置内にろ過膜装置を設け、ろ過膜装置回収の不純物含有液を加熱濃縮する蒸発器を配し、二酸化炭素回収装置の吸収液中に蓄積する固形分を除去する方法(特許文献1)や、二酸化炭素回収装置内に陰イオン交換樹脂塔を設け、その前段に小液分離器を配し、吸収液中の固形分と陰イオン不純物を除去する方法(特許文献2)が提案されている。   In order to solve the above problem, a filtration membrane device is provided in the carbon dioxide recovery device, and an evaporator for heating and concentrating the impurity-containing liquid recovered from the filtration membrane device is disposed and accumulated in the absorption liquid of the carbon dioxide recovery device. A method for removing solids (Patent Document 1) and an anion exchange resin tower in a carbon dioxide recovery unit, and a small liquid separator in the previous stage to remove solids and anion impurities in the absorbent. A method (Patent Document 2) is proposed.

特開2008−207123号公報JP 2008-207123 A 特開2008−238113号公報JP 2008-238113 A

特許文献1には、ろ過膜装置における運用が明示されておらず、100℃以上の高温になる再生塔から排出される吸収液のもつ熱エネルギーを損失するという課題がある。また、前記高温環境下において、使用するろ過膜素材に関する明示が無く、選定する素材によっては、膜素材からの溶出物によって、吸収液中に不純物を溶出させるという課題がある。   In Patent Document 1, the operation in the filtration membrane device is not clearly described, and there is a problem that the thermal energy of the absorbing liquid discharged from the regeneration tower that becomes a high temperature of 100 ° C. or higher is lost. Moreover, in the said high temperature environment, there is no description regarding the filtration membrane raw material to be used, and depending on the material to be selected, there is a problem that impurities are eluted in the absorbing solution by the eluate from the membrane raw material.

特許文献2では、イオン性の不純物を陰イオン交換樹脂によって除去する方法が記載されている。しかし、イオン交換樹脂のイオン交換基は、劣化によりアミノ基を有する陰イオン交換基に由来する陽イオン不純物が溶出することが知られている。このため、通常陰イオン交換樹脂の後段には陽イオン交換樹脂等による陽イオン不純物対策が施されるが、高濃度のアルカノールアミンを含有するアルカリ環境となる吸収液下におけるその運用方法に課題がある。   Patent Document 2 describes a method of removing ionic impurities with an anion exchange resin. However, it is known that cation impurities derived from anion exchange groups having amino groups are eluted from the ion exchange groups of the ion exchange resin due to deterioration. For this reason, cation impurity countermeasures such as cation exchange resin are usually provided after the anion exchange resin, but there is a problem in its operation method under an absorbing solution that becomes an alkaline environment containing a high concentration of alkanolamine. is there.

更に、特許文献2では、アルカノールアミンの酸化劣化生成物に起因する有機酸除去のために陰イオン交換樹脂塔が設けられているが、陰イオン交換樹脂がもつイオン交換基は、熱や酸化劣化耐性が低いことが知られている。このため、アルカノールアミンが酸化劣化する環境下における陰イオン交換樹脂の利用には、アミノ基を有する陰イオン交換基に由来する陽イオンの溶出が起こり、吸収液中に不純物を増加されるという課題がある。また、上記不純物により吸収液の循環経路上に配置されている熱交換器等の機器が汚損され、熱損失が発生する可能性がある。   Further, in Patent Document 2, an anion exchange resin tower is provided for removing an organic acid caused by an oxidative degradation product of an alkanolamine. However, the ion exchange group of the anion exchange resin is heat or oxidative degradation. It is known to have low tolerance. For this reason, the use of an anion exchange resin in an environment where alkanolamines are oxidatively deteriorated causes elution of cations derived from anion exchange groups having an amino group, which increases impurities in the absorbing solution. There is. In addition, there is a possibility that a device such as a heat exchanger arranged on the absorption liquid circulation path is contaminated by the impurities and heat loss occurs.

本発明は、熱損失を抑制した二酸化炭素回収装置を提供することを目的とする。   An object of this invention is to provide the carbon dioxide recovery apparatus which suppressed the heat loss.

本発明に係る二酸化炭素回収装置は、二酸化炭素を含む排ガスと、所定の温度を挟んで可逆的に二酸化炭素を吸収又は放出する吸収液とを接触させ、排ガス中の二酸化炭素を吸収液に吸収させる吸収器と、吸収器で二酸化炭素を吸収した吸収液を加熱して吸収液中の二酸化炭素を放出させる再生器と、再生器で再生された吸収液を、吸収器に還流させる還流配管系と、吸収液の少なくとも一部を導入して、この導入した吸収液に蓄積する固形分を除去し、この固形分を除去した後の吸収液を吸収液の導入箇所近傍へ返送するろ過器と、再生器の底部から吸収液を導入して加熱し、加熱後の吸収液を再生器へ戻す再加熱器と、を具備し、ろ過器は、再生器から再加熱器への排出経路上に配置されていることを特徴とする。   The carbon dioxide recovery device according to the present invention contacts an exhaust gas containing carbon dioxide with an absorption liquid that reversibly absorbs or releases carbon dioxide across a predetermined temperature, and absorbs the carbon dioxide in the exhaust gas into the absorption liquid. An absorber, a regenerator that heats the absorption liquid that has absorbed carbon dioxide in the absorber and releases carbon dioxide in the absorption liquid, and a reflux piping system that recirculates the absorption liquid regenerated in the regenerator to the absorber And a filter that introduces at least a part of the absorption liquid, removes the solid content accumulated in the introduced absorption liquid, and returns the absorption liquid after the removal of the solid content to the vicinity of the introduction position of the absorption liquid. A reheater that introduces and heats the absorption liquid from the bottom of the regenerator and returns the heated absorption liquid to the regenerator, and the filter is on the discharge path from the regenerator to the reheater. It is arranged.

前記ろ過器は、微粒子状のろ材をメッシュで保持したもので構成することができる。   The said filter can be comprised with what hold | maintained the particulate filter medium with the mesh.

微粒子状のろ材やメッシュは、ニッケル基合金からなるものが適している。   A fine particle filter medium or mesh is preferably made of a nickel-based alloy.

微粒子状のろ材をメッシュで保持したろ過器を、ニッケル基合金で構成した場合、吸収液から補足される固形分より比重が重くなるため、逆洗した場合、ろ材と補足された固形分を比重差により分離し、ろ材を回収し、再度ろ過器に導入して繰り返し使用することができる。   When the filter that holds the particulate filter medium with a mesh is made of a nickel-based alloy, the specific gravity is heavier than the solid content captured from the absorption liquid. It can be separated by the difference, the filter medium can be recovered, introduced again into the filter and used repeatedly.

本発明によれば、熱損失を抑制した二酸化炭素回収装置を提供できる。   According to the present invention, it is possible to provide a carbon dioxide recovery device that suppresses heat loss.

第1の実施形態に係る二酸化炭素回収装置の構成を示した図である。It is a figure showing the composition of the carbon dioxide recovery device concerning a 1st embodiment. 第2の実施形態に係る二酸化炭素回収装置の構成を示した図である。It is the figure which showed the structure of the carbon dioxide collection apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る二酸化炭素回収装置の構成を示した図である。It is the figure which showed the structure of the carbon dioxide collection apparatus which concerns on 3rd Embodiment.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
(第1の実施形態)
図1に示すように、第1の実施形態に係る二酸化炭素回収装置1は、吸収器101、排ガス冷却器102、熱交換器103、再生器104、リボイラ105(再加熱器)、吸収液冷却器106、ろ過器107、熱交換器108、ポンプ109、ポンプ110および排ガス冷却器111を具備する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
As shown in FIG. 1, a carbon dioxide recovery apparatus 1 according to the first embodiment includes an absorber 101, an exhaust gas cooler 102, a heat exchanger 103, a regenerator 104, a reboiler 105 (reheater), and an absorption liquid cooling. A filter 106, a filter 107, a heat exchanger 108, a pump 109, a pump 110, and an exhaust gas cooler 111.

吸収器101には、図示しない発電装置での石炭燃焼プロセスに由来する二酸化炭素を含有する排ガス(被処理ガス)が排ガス導入経路201から導入される。この排ガスは、脱硝、除塵、脱硫、冷却等の処理が施された後、排ガス導入経路201を介して、吸収器101の下部へ導入される。吸収器101は、導入される排ガスと、二酸化炭素を吸収する吸収液とを接触させ、排ガスに含有する二酸化炭素を吸収液に吸収させる。   Exhaust gas (treated gas) containing carbon dioxide derived from a coal combustion process in a power generation device (not shown) is introduced into the absorber 101 from the exhaust gas introduction path 201. The exhaust gas is subjected to treatments such as denitration, dust removal, desulfurization, and cooling, and is then introduced into the lower portion of the absorber 101 through the exhaust gas introduction path 201. The absorber 101 brings the exhaust gas to be introduced into contact with an absorption liquid that absorbs carbon dioxide, and causes the absorption liquid to absorb the carbon dioxide contained in the exhaust gas.

吸収液は、吸収器101の上部から供給され、吸収器101の下部から導入される排ガスと向流接触させる。吸収液に二酸化炭素を吸収された後の排ガスは、吸収器101上部の排ガス導出経路202から排出される。排ガス冷却器102は、排ガス導出経路202から排出される排ガスを冷却する。排ガス冷却器102には、公知の技術を用いればよい。   The absorbing liquid is supplied from the upper part of the absorber 101 and is brought into countercurrent contact with the exhaust gas introduced from the lower part of the absorber 101. The exhaust gas after carbon dioxide is absorbed by the absorption liquid is discharged from the exhaust gas outlet path 202 above the absorber 101. The exhaust gas cooler 102 cools the exhaust gas discharged from the exhaust gas outlet path 202. A known technique may be used for the exhaust gas cooler 102.

吸収液は、例えば、アルカノールアミンを含有する水溶液が使用でき、その組成や種類等は特に限定されない。吸収器101の運用温度は、吸収液の組成や種類および吸収液の再生度合いによって任意に設定すればよく、例えば、内部の吸収液の温度が30℃から70℃程度の範囲となるように運用する。吸収器101で排ガスに含まれる二酸化炭素を吸収した吸収液は、吸収液排出経路203から排出され、ポンプ110により再生器104の上部へ導入される。   As the absorbing liquid, for example, an aqueous solution containing alkanolamine can be used, and the composition and type thereof are not particularly limited. The operating temperature of the absorber 101 may be arbitrarily set depending on the composition and type of the absorbing liquid and the degree of regeneration of the absorbing liquid. For example, the operating temperature of the internal absorbing liquid is in a range of about 30 ° C. to 70 ° C. To do. The absorbing liquid that has absorbed carbon dioxide contained in the exhaust gas by the absorber 101 is discharged from the absorbing liquid discharge path 203 and introduced into the upper part of the regenerator 104 by the pump 110.

再生器104では、吸収器101から導入される二酸化炭素吸収後の吸収液を加熱して吸収液から二酸化炭素を放出させ、吸収液を再生する。吸収液の加熱には、リボイラ105が用いられる。リボイラ105は、再生器104に底部から吸収液導入経路206を介して導入される吸収液を加熱する。加熱後の吸収液は、吸収液排出経路207を介して再生器104へ戻される。   In the regenerator 104, the absorption liquid after carbon dioxide absorption introduced from the absorber 101 is heated to release carbon dioxide from the absorption liquid, thereby regenerating the absorption liquid. A reboiler 105 is used for heating the absorbent. The reboiler 105 heats the absorbent introduced into the regenerator 104 from the bottom through the absorbent introduction path 206. The absorption liquid after heating is returned to the regenerator 104 via the absorption liquid discharge path 207.

再生器104の運用温度は、吸収液の種類や組成、吸収液の二酸化炭素保持量などから、任意に設定すればよく、例えば、吸収液の温度が100℃から200℃の範囲となるように運用する。加熱により吸収液より放出された二酸化炭素を含むガス(二酸化炭素含有ガス)は、再生器104上部の二酸化炭素含有ガス排出経路205から排出される。排ガス冷却器111は、二酸化炭素含有ガス排出経路205から排出される二酸化炭素含有ガスを冷却する。排ガス冷却器111には、公知の技術を用いればよい。   The operating temperature of the regenerator 104 may be arbitrarily set based on the type and composition of the absorbing liquid, the amount of carbon dioxide retained in the absorbing liquid, etc., for example, so that the temperature of the absorbing liquid is in the range of 100 ° C. to 200 ° C. operate. A gas containing carbon dioxide (carbon dioxide-containing gas) released from the absorbing solution by heating is discharged from a carbon dioxide-containing gas discharge path 205 above the regenerator 104. The exhaust gas cooler 111 cools the carbon dioxide-containing gas discharged from the carbon dioxide-containing gas discharge path 205. A known technique may be used for the exhaust gas cooler 111.

再生器104で二酸化炭素を放出した吸収液は、吸収液排出経路204から排出され、ポンプ109により吸収器101の上部へ導入される。吸収液冷却器106は、吸収液排出経路204を介して吸収器101へ導入される吸収液を任意に設定された温度まで冷却する。吸収器101へ導入された吸収液は、吸収器101における二酸化炭素吸収媒体として再利用される。   The absorbing liquid from which carbon dioxide has been released by the regenerator 104 is discharged from the absorbing liquid discharge path 204 and introduced into the upper portion of the absorber 101 by the pump 109. The absorption liquid cooler 106 cools the absorption liquid introduced into the absorber 101 via the absorption liquid discharge path 204 to an arbitrarily set temperature. The absorbing liquid introduced into the absorber 101 is reused as a carbon dioxide absorbing medium in the absorber 101.

熱交換器103は、吸収液排出経路203を流れる吸収液(低温)と、吸収液排出経路204を流れる吸収液(高温)との間で熱交換を行う。すなわち、熱交換器103は、吸収器101へ導入される吸収液を冷却し、再生器104へ導入される吸収液を加熱する。   The heat exchanger 103 performs heat exchange between the absorbing liquid (low temperature) flowing through the absorbing liquid discharge path 203 and the absorbing liquid (high temperature) flowing through the absorbing liquid discharge path 204. That is, the heat exchanger 103 cools the absorbing liquid introduced into the absorber 101 and heats the absorbing liquid introduced into the regenerator 104.

吸収液導入経路206を流れる吸収液の少なくとも一部は、吸収液導入経路209を介して被ろ過液としてろ過器107へ導入される。排ガス導入経路201を介して吸収器101へ導入される排ガスは、吸収器101へ導入される前に電気集塵器等の処理による除塵や、硫黄酸化物の除去のため、脱硫処理が施されている。しかし、これらの処理で残存する微量の除塵や、硫黄酸化物成分(微量成分)が排ガスに混入し、その一部は吸収液内に蓄積する。また、吸収液の酸化劣化生成物や構造材からの溶出物など、様々な不純物が吸収液内に蓄積する。これらの吸収液に蓄積した微量成分や不純物うち、固形分は、熱交換器や輸送機器の汚損や、吸収液特性の変化などの影響を及ぼす可能性があるため、速やかに除去する必要がある。   At least a part of the absorption liquid flowing through the absorption liquid introduction path 206 is introduced into the filter 107 as a liquid to be filtered through the absorption liquid introduction path 209. The exhaust gas introduced into the absorber 101 through the exhaust gas introduction path 201 is subjected to desulfurization treatment for dust removal by treatment of an electric dust collector or the like and removal of sulfur oxides before being introduced into the absorber 101. ing. However, a trace amount of dust removal and sulfur oxide components (trace components) remaining in these treatments are mixed in the exhaust gas, and a part of them accumulates in the absorption liquid. Further, various impurities such as oxidative degradation products of the absorbing solution and eluates from the structural material accumulate in the absorbing solution. Of the trace components and impurities accumulated in these absorbents, solids must be removed quickly because they may affect the heat exchangers and transportation equipment and change the properties of the absorbent. .

ろ過器107は、100℃から200℃で運用されている高温の吸収液に蓄積する固形分をろ過により除去する。ろ過器107により固形分がろ過された吸収液は、吸収液排出経路208を介して、吸収液導入経路206へ戻される。ろ過器107は、フッ素樹脂製の中空糸膜(分離膜)を備えている。この中空糸膜により吸収液中に蓄積する固形分が除去される。フッ素樹脂製の中空糸膜は、例えば、PTFE製のMF膜など、高温(当該温度域)のアルカリ環境下でも使用可能な素材である。   The filter 107 removes solid content accumulated in the high-temperature absorption liquid operated at 100 ° C. to 200 ° C. by filtration. The absorption liquid whose solid content is filtered by the filter 107 is returned to the absorption liquid introduction path 206 via the absorption liquid discharge path 208. The filter 107 includes a hollow fiber membrane (separation membrane) made of a fluororesin. This hollow fiber membrane removes solids accumulated in the absorbent. The hollow fiber membrane made of a fluororesin is a material that can be used even in a high-temperature (in the temperature range) alkaline environment, such as a PTFE MF membrane.

ろ過器107の温度は、再生器104での吸収液の温度に併せて運用をする。ろ過器107から排出されるろ過後の吸収液は、吸収液導入経路209を介して導入される吸収液と、温度および二酸化炭素含有量が略同一もしくは近い箇所へ返送することが望ましい。   The temperature of the filter 107 is operated in accordance with the temperature of the absorbing liquid in the regenerator 104. It is desirable that the filtered absorbent discharged from the filter 107 is returned to a place where the temperature and carbon dioxide content are substantially the same as or close to those of the absorbent introduced via the absorbent introduction path 209.

熱交換器108は、熱交換器108を洗浄する逆洗液が導入される逆洗水導入経路210を流れる逆洗水と、逆洗水排出経路211を流れる逆洗水との間で熱交換を行う。すなわち、熱交換器108は、ろ過器107へ導入される逆洗水を加熱し、ろ過器107から排出される逆洗水を冷却する。   The heat exchanger 108 exchanges heat between backwash water flowing through the backwash water introduction path 210 into which backwash liquid for washing the heat exchanger 108 is introduced and backwash water flowing through the backwash water discharge path 211. I do. That is, the heat exchanger 108 heats the backwash water introduced into the filter 107 and cools the backwash water discharged from the filter 107.

熱交換器108を具備することにより、吸収液導入経路209からろ過器107へ導入される吸収液の熱損失を抑制できる。ろ過器107は、2以上を並列配置し、逆洗水をろ過器107へ導入する際は、導入経路を切り替えて使用することが望ましい。   By providing the heat exchanger 108, it is possible to suppress heat loss of the absorbing liquid introduced from the absorbing liquid introduction path 209 into the filter 107. Two or more filter 107 are arranged in parallel, and when introducing backwash water into the filter 107, it is desirable to switch the introduction route.

上述したように、吸収液に蓄積した微量成分や不純物うち、固形分は、熱交換器や輸送機器の汚損や、吸収液特性の変化などの影響を及ぼす可能性があるため、速やかに除去する必要がある。この第1の実施形態に係る二酸化炭素回収装置1は、この固形分を除去するろ過器107を具備し、固形分を除去しているので、熱交換器103や吸収液の導入・排出経路や、これら経路上に配置された吸収液冷却器106、ポンプ109、110等の機器の汚損を抑制できる。また、機器の汚損を抑制できるので、熱交換器103やリボイラ105等における熱交換効率の低下を抑制できる。   As described above, solid components out of trace components and impurities accumulated in the absorption liquid can be removed quickly because they may affect the heat exchanger and transportation equipment, change the absorption liquid characteristics, etc. There is a need. Since the carbon dioxide recovery device 1 according to the first embodiment includes the filter 107 that removes the solid content and removes the solid content, the heat exchanger 103 and the absorption liquid introduction / discharge route, Further, it is possible to suppress the contamination of the devices such as the absorption liquid cooler 106 and the pumps 109 and 110 arranged on these paths. Moreover, since contamination of an apparatus can be suppressed, the fall of the heat exchange efficiency in the heat exchanger 103, the reboiler 105, etc. can be suppressed.

ろ過器107の温度を再生器104の吸収液の温度に併せて運用し、ろ過器107から排出されるろ過後の吸収液を、吸収液導入経路209を介して導入される吸収液と、温度が略同一もしくは近い箇所へ返送している。このため、吸収液の温度低下を抑制した状態で固形物を除去でき、熱損失を抑制できる。   The temperature of the filter 107 is operated in accordance with the temperature of the absorption liquid in the regenerator 104, and the absorption liquid after filtration discharged from the filter 107 is absorbed into the absorption liquid introduced through the absorption liquid introduction path 209, and the temperature. Are returned to almost the same or close locations. For this reason, a solid substance can be removed in the state which suppressed the temperature fall of the absorption liquid, and a heat loss can be suppressed.

熱交換器108を洗浄する逆洗液が導入される逆洗水導入経路210を流れる逆洗水と、逆洗水排出経路211を流れる逆洗水との間で熱交換を行う熱交換器108を具備するので、ろ過後の逆洗工程において、ろ過器107が保有する熱量の損失を抑制できる。   The heat exchanger 108 performs heat exchange between the backwash water flowing through the backwash water introduction path 210 into which the backwash liquid for washing the heat exchanger 108 is introduced and the backwash water flowing through the backwash water discharge path 211. Therefore, in the backwashing process after filtration, the loss of the heat quantity possessed by the filter 107 can be suppressed.

以上のように、この第1の実施形態に係る二酸化炭素回収装置1によれば、吸収液に蓄積する固形分を、熱損失を抑制して除去することができる。このため、熱エネルギーの消費を抑制して効率よく適切に排ガスに含まれる二酸化炭素を回収できる。   As described above, according to the carbon dioxide recovery device 1 according to the first embodiment, the solid content accumulated in the absorption liquid can be removed while suppressing heat loss. For this reason, it is possible to efficiently and appropriately recover carbon dioxide contained in the exhaust gas while suppressing the consumption of heat energy.

(第2の実施形態)
図2は、第2の実施形態に係る二酸化炭素回収装置2の構成を示した図である。以下、図2を参照して、二酸化炭素回収装置2の構成について説明する。図1で説明した構成要素と同一の構成要素については、同一の符号を付して重複した説明を省略する。
(Second Embodiment)
FIG. 2 is a diagram illustrating a configuration of the carbon dioxide recovery device 2 according to the second embodiment. Hereinafter, the configuration of the carbon dioxide recovery device 2 will be described with reference to FIG. The same components as those described in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

二酸化炭素回収装置2は、吸収器101、排ガス冷却器102、熱交換器103、再生器104、リボイラ105(再加熱器)、吸収液冷却器106、ろ過器107A、熱交換器108、ポンプ109、ポンプ110、排ガス冷却器111および分離器112を具備する。   The carbon dioxide recovery device 2 includes an absorber 101, an exhaust gas cooler 102, a heat exchanger 103, a regenerator 104, a reboiler 105 (reheater), an absorption liquid cooler 106, a filter 107A, a heat exchanger 108, and a pump 109. , A pump 110, an exhaust gas cooler 111, and a separator 112.

ろ過器107Aは、吸収液に蓄積される固形分を除去する微粒子状のろ材と、このろ材を囲むメッシュとを備える。ろ材およびメッシュの材質は、耐熱、耐アルカリ性に優れるニッケル基合金である。この第2の実施形態では、吸収液導入経路209および逆洗水導入経路210を、吸収液排出経路203上に配している。この際も、ろ過器107Aから排出されるろ過後の吸収液は、吸収液導入経路209を介して導入される吸収液と、温度および二酸化炭素含有量が略同一もしくは近い箇所へ返送することが望ましい。   The filter 107A includes a particulate filter medium that removes the solid content accumulated in the absorption liquid, and a mesh that surrounds the filter medium. The material of the filter medium and the mesh is a nickel-based alloy having excellent heat resistance and alkali resistance. In the second embodiment, the absorption liquid introduction path 209 and the backwash water introduction path 210 are arranged on the absorption liquid discharge path 203. Also in this case, the filtered absorbent discharged from the filter 107A can be returned to a place where the temperature and carbon dioxide content are substantially the same as or close to those of the absorbent introduced via the absorbent introduction path 209. desirable.

分離器112は、ろ過器107Aの逆洗時に、逆洗水排出経路211を介して導入される逆洗水に含まれる固形物と微粒子状のろ材とを分離する。ニッケル基合金で構成されるろ材は、固形分に比べて比重が大きいため固液分離装置である分離器112により分離される。この分離器112で分離されたろ材は回収され、ろ材循環経路212を介してろ過器107Aにおいて再びろ過器107Aを構成して繰り返し用いられる。   The separator 112 separates the solid matter and the particulate filter medium contained in the backwash water introduced via the backwash water discharge path 211 when the filter 107A is backwashed. A filter medium made of a nickel-based alloy has a higher specific gravity than a solid content, and therefore is separated by a separator 112 that is a solid-liquid separator. The filter medium separated by the separator 112 is recovered, and the filter 107A is configured again in the filter 107A via the filter medium circulation path 212 and repeatedly used.

上述のように、この第2の実施形態では、吸収液導入経路209および逆洗水導入経路210を吸収液排出経路203上に配している。このように、ろ過器107Aでのろ過対象を二酸化炭素吸収済みの吸収液とし、排ガスから吸収液に蓄積される固形分を速やかに除去している。このため、吸収液排出経路203、熱交換器103や吸収液排出経路203上に配置されたポンプ110などの機器の汚損を抑制できる。   As described above, in the second embodiment, the absorption liquid introduction path 209 and the backwash water introduction path 210 are arranged on the absorption liquid discharge path 203. In this way, the filtration target in the filter 107A is the absorption liquid that has absorbed carbon dioxide, and the solid content accumulated in the absorption liquid is quickly removed from the exhaust gas. For this reason, it is possible to suppress the fouling of devices such as the pump 110 disposed on the absorption liquid discharge path 203, the heat exchanger 103, and the absorption liquid discharge path 203.

ろ過器107Aから排出される逆洗液に含まれるろ材を分離器112により分離回収する。このため、分離器112により分離回収したろ材を再利用でき、廃棄物発生量を抑制できる。   The filter medium contained in the backwash liquid discharged from the filter 107A is separated and recovered by the separator 112. For this reason, the filter medium separated and recovered by the separator 112 can be reused, and the amount of waste generated can be suppressed.

以上のように、この第2の実施形態に係る二酸化炭素回収装置2によれば、排ガスに含まれる固形分を速やかに除去することで、不純物である固形分が二酸化炭素回収装置2全体に拡散することを抑制して機器の汚損を抑制できる。このため、熱エネルギーの消費を抑制して効率よく適切に排ガスに含まれる二酸化炭素を回収できる。さらに、固形分の除去に使用したろ材を再利用することで、廃棄物発生量を抑制できる。   As described above, according to the carbon dioxide recovery device 2 according to the second embodiment, the solid content, which is an impurity, diffuses throughout the carbon dioxide recovery device 2 by quickly removing the solid content contained in the exhaust gas. It is possible to suppress the contamination of the equipment by suppressing. For this reason, it is possible to efficiently and appropriately recover carbon dioxide contained in the exhaust gas while suppressing the consumption of heat energy. Furthermore, the amount of waste generated can be suppressed by reusing the filter medium used for removing the solid content.

(第3の実施形態)
図3は、第3の実施形態に係る二酸化炭素回収装置3の構成を示した図である。以下、図3を参照して、二酸化炭素回収装置3の構成について説明する。図1で説明した構成要素と同一の構成要素については、同一の符号を付して重複した説明を省略する。
(Third embodiment)
FIG. 3 is a diagram illustrating a configuration of the carbon dioxide recovery device 3 according to the third embodiment. Hereinafter, the configuration of the carbon dioxide recovery device 3 will be described with reference to FIG. 3. The same components as those described in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

第3の実施形態に係る二酸化炭素回収装置3は、吸収器101、排ガス冷却器102、熱交換器103、再生器104、リボイラ105(再加熱器)、吸収液冷却器106、ろ過器107、熱交換器108、ポンプ109、ポンプ110、排ガス冷却器111、酸素供給部113および脱酸素部114を具備する。   The carbon dioxide recovery device 3 according to the third embodiment includes an absorber 101, an exhaust gas cooler 102, a heat exchanger 103, a regenerator 104, a reboiler 105 (reheater), an absorption liquid cooler 106, a filter 107, A heat exchanger 108, a pump 109, a pump 110, an exhaust gas cooler 111, an oxygen supply unit 113, and a deoxygenation unit 114 are provided.

酸素供給部113は、吸収液導入経路209を流れる吸収液へ酸素を含有するガス(酸素含有ガス)を、酸素含有ガス供給経路214を介して供給する。酸素供給部113による吸収液への酸素の供給には、ラインミキサーや微細な気泡(例えば、マイクロバブル発生器等)などの、ガス溶解を促進させる技術を用いればよい。   The oxygen supply unit 113 supplies oxygen-containing gas (oxygen-containing gas) to the absorption liquid flowing through the absorption liquid introduction path 209 via the oxygen-containing gas supply path 214. For the oxygen supply to the absorbing solution by the oxygen supply unit 113, a technique for promoting gas dissolution, such as a line mixer or fine bubbles (for example, a microbubble generator) may be used.

脱酸素部114は、ろ過器107の後段に配置され、ろ過器107から排出されるろ過後の吸収液中に含まれる酸素を除去する。脱酸素部114における酸素の除去には、不活性ガスによる置換処理や槽内の減圧操作やガス分離膜等の吸収液組成への影響が小さい公知の脱酸素技術を用いればよい。脱酸素部114で含有する酸素を除去された吸収液は、脱酸素ろ液排出経路215を介して吸収液排出経路204に戻される。   The deoxygenation unit 114 is disposed downstream of the filter 107 and removes oxygen contained in the filtered absorbent discharged from the filter 107. For removal of oxygen in the deoxygenation unit 114, a known deoxygenation technique that has a small influence on the absorption liquid composition, such as a replacement treatment with an inert gas, a decompression operation in the tank, or a gas separation membrane, may be used. The absorption liquid from which oxygen contained in the deoxygenation unit 114 has been removed is returned to the absorption liquid discharge path 204 via the deoxygen filtrate discharge path 215.

吸収液に蓄積する不純物には、排ガス導入経路201から導入される排ガスに含まれる微量の除塵や、硫黄酸化物成分の他、吸収液を用いた二酸化炭素回収装置3の運用により生成する有機酸や構造材からの溶出物がある。この有機酸は、排ガスに含まれる酸素および構造材から溶出する鉄イオンを主とする金属イオンにより、吸収液が酸化分解されることで生成される。   The impurities accumulated in the absorption liquid include a small amount of dust contained in the exhaust gas introduced from the exhaust gas introduction path 201, a sulfur oxide component, and an organic acid generated by the operation of the carbon dioxide recovery device 3 using the absorption liquid. And eluate from structural materials. This organic acid is produced by oxidative decomposition of the absorbing solution by metal ions mainly composed of oxygen contained in the exhaust gas and iron ions eluted from the structural material.

鉄イオンは、酸素の存在下、吸収液の酸化分解を加速させることが知られている。この鉄イオンを、速やかに除去することにより、吸収液の酸化分解により生成される劣化生成物および吸収液の消費量増加の抑制、および吸収液組成の維持が期待できる。このため、この第3の実施形態に係る二酸化炭素回収装置3は、酸素供給部113から吸収液中に酸素含有ガスを供給し、系内の酸素分圧を向上させることによって、鉄イオンの酸化鉄形成を促進させ、形成された酸化鉄を後段のろ過器107で除去している。   It is known that iron ions accelerate the oxidative decomposition of the absorbing solution in the presence of oxygen. By quickly removing the iron ions, it is possible to expect the degradation product produced by the oxidative decomposition of the absorption liquid and the increase in the consumption of the absorption liquid, and the maintenance of the absorption liquid composition. For this reason, the carbon dioxide recovery device 3 according to the third embodiment supplies oxygen-containing gas into the absorption liquid from the oxygen supply unit 113, and improves the oxygen partial pressure in the system, thereby oxidizing iron ions. Iron formation is promoted, and the formed iron oxide is removed by a subsequent filter 107.

酸素供給によって酸化鉄(固形物)となった鉄イオン由来の不純物は、ろ過器107にて除去され、吸収液内の鉄イオン濃度が低減する。このため、吸収液の酸化による劣化を抑制できる。   Impurities derived from iron ions that have become iron oxide (solid matter) by supplying oxygen are removed by the filter 107, and the iron ion concentration in the absorbing solution is reduced. For this reason, deterioration due to oxidation of the absorbent can be suppressed.

また、この第3の実施形態では、吸収液導入経路209および脱酸素ろ液排出経路215を、熱交換器103の後段の吸収液排出経路204に配している。熱交換器103の後段を流れる吸収液の温度は、再生器104内の吸収液の温度に比べて低いため、酸素含有ガスを溶解するのに適している。また、二酸化炭素吸収済み吸収液や、再生器104内を循環する経路上に配置する場合に比べ、再生器104から二酸化炭素含有ガス排出経路205を介して排出される二酸化炭素含有ガスに混入する酸素量を抑制できる。   Further, in the third embodiment, the absorption liquid introduction path 209 and the deoxygen filtrate discharge path 215 are arranged in the absorption liquid discharge path 204 downstream of the heat exchanger 103. Since the temperature of the absorbent flowing in the subsequent stage of the heat exchanger 103 is lower than the temperature of the absorbent in the regenerator 104, it is suitable for dissolving the oxygen-containing gas. Further, the carbon dioxide-containing gas discharged from the regenerator 104 through the carbon dioxide-containing gas discharge path 205 is mixed with the carbon dioxide-absorbed absorbing liquid or the case where the absorbent is disposed on the path circulating in the regenerator 104. The amount of oxygen can be suppressed.

なお、第1の実施形態と同様に、ろ過器107から排出されるろ過後の吸収液は、吸収液導入経路209を介して導入される吸収液と、温度および二酸化炭素含有量が略同一もしくは近い箇所へ返送することが望ましい。   As in the first embodiment, the absorption liquid after filtration discharged from the filter 107 has substantially the same temperature and carbon dioxide content as the absorption liquid introduced via the absorption liquid introduction path 209. It is desirable to return it to a nearby location.

以上のように、この第3の実施形態に係る二酸化炭素回収装置3によれば、排ガスに含まれる固形分を除去するとともに、系内に生成する鉄イオン分を除去することにより、吸収液の劣化とそれに伴う不純物の生成、および吸収液の消費量を抑制できる。また、排ガスに含まれる固形分および鉄イオンを速やかに除去することで、不純物が二酸化炭素回収装置3全体に拡散することを抑制して機器の汚損を抑制できる。このため、熱エネルギーの消費を抑制して効率よく適切に排ガスに含まれる二酸化炭素を回収できる。   As described above, according to the carbon dioxide recovery device 3 according to the third embodiment, the solid content contained in the exhaust gas is removed and the iron ion content generated in the system is removed, thereby Deterioration, generation of impurities accompanying it, and consumption of absorbing liquid can be suppressed. Moreover, by removing solid content and iron ions contained in the exhaust gas promptly, it is possible to suppress impurities from diffusing throughout the carbon dioxide recovery device 3 and to suppress the contamination of the equipment. For this reason, it is possible to efficiently and appropriately recover carbon dioxide contained in the exhaust gas while suppressing the consumption of heat energy.

(その他の実施形態)
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
(Other embodiments)
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

具体的には、第1の実施形態に係る二酸化炭素回収装置1または第3の実施形態に係る二酸化炭素回収装置3が具備するろ過器107を、第2の実施形態が具備するろ過器107Aに変更してもよい。この際、酸素供給部113をろ過器107Aの後段に配置してもよい。また、第1ないし第3の実施形態に係る二酸化炭素回収装置1ないし二酸化炭素回収装置3が具備するろ過器107またはろ過器107の配置位置を他の実施形態における配置位置に変更してもよい。   Specifically, the filter 107 included in the carbon dioxide recovery device 1 according to the first embodiment or the carbon dioxide recovery device 3 according to the third embodiment is replaced with the filter 107A included in the second embodiment. It may be changed. At this time, the oxygen supply unit 113 may be arranged at the rear stage of the filter 107A. Moreover, you may change the arrangement position of the filter 107 or the filter 107 which the carbon dioxide collection apparatus 1 thru | or the carbon dioxide collection apparatus 3 which concern on the 1st thru | or 3rd embodiment comprises in the arrangement position in other embodiment. .

1〜3…二酸化炭素回収装置、101…吸収器、102,111…排ガス冷却器、103…熱交換器、104…再生器、105…リボイラ(再加熱器)、106…吸収液冷却器、107…ろ過器、108…熱交換器、109,110…ポンプ、112…分離器、113…酸素供給部、114…脱酸素部、201…排ガス導入経路、202…排ガス導出経路、203…吸収液排出経路、204…吸収液排出経路、205…二酸化炭素含有ガス排出経路、206…吸収液導入経路、207…吸収液排出経路、208…吸収液排出経路、209…吸収液導入経路、210…逆洗水導入経路、211…逆洗水排出経路、212…ろ材循環経路、213…固形分排出経路、214…酸素含有ガス供給経路、215…脱酸素ろ液排出経路。   DESCRIPTION OF SYMBOLS 1-3 ... Carbon dioxide recovery apparatus, 101 ... Absorber, 102, 111 ... Exhaust gas cooler, 103 ... Heat exchanger, 104 ... Regenerator, 105 ... Reboiler (reheater), 106 ... Absorbent liquid cooler, 107 DESCRIPTION OF SYMBOLS ... Filter, 108 ... Heat exchanger, 109, 110 ... Pump, 112 ... Separator, 113 ... Oxygen supply part, 114 ... Deoxygenation part, 201 ... Exhaust gas introduction path, 202 ... Exhaust gas extraction path, 203 ... Absorption liquid discharge 204, Absorption liquid discharge path, 205 ... Carbon dioxide containing gas discharge path, 206 ... Absorption liquid introduction path, 207 ... Absorption liquid discharge path, 208 ... Absorption liquid discharge path, 209 ... Absorption liquid introduction path, 210 ... Backwash Water introduction path, 211 ... backwash water discharge path, 212 ... filter medium circulation path, 213 ... solid content discharge path, 214 ... oxygen-containing gas supply path, 215 ... deoxygenated filtrate discharge path.

Claims (8)

二酸化炭素を含む排ガスと、所定の温度を挟んで可逆的に二酸化炭素を吸収又は放出する吸収液とを接触させ、前記排ガス中の二酸化炭素を前記吸収液に吸収させる吸収器と、
前記吸収器で二酸化炭素を吸収した前記吸収液を加熱して前記吸収液中の二酸化炭素を放出させる再生器と、
前記再生器で再生された吸収液を、前記吸収器に還流させる還流配管系と、
前記吸収液の少なくとも一部を導入して、この導入した前記吸収液に蓄積する固形分を除去し、この固形分を除去した後の吸収液を前記吸収液の導入箇所近傍へ返送するろ過器と、
前記再生器の底部から前記吸収液を導入して加熱し、加熱後の吸収液を前記再生器へ戻す再加熱器と、
を具備し、
前記ろ過器は、前記再生器から前記再加熱器への排出経路上に配置されていることを特徴とする二酸化炭素回収装置。
An absorber that makes the absorption liquid absorb carbon dioxide in the exhaust gas by contacting an exhaust gas containing carbon dioxide with an absorption liquid that reversibly absorbs or releases carbon dioxide across a predetermined temperature;
A regenerator that heats the absorption liquid that has absorbed carbon dioxide in the absorber to release carbon dioxide in the absorption liquid;
A reflux piping system for refluxing the absorbent regenerated by the regenerator to the absorber;
A filter that introduces at least a part of the absorbent, removes solids accumulated in the introduced absorbent, and returns the absorbent after removal of the solids to the vicinity of the place where the absorbent is introduced. When,
A reheater that introduces and heats the absorbent from the bottom of the regenerator and returns the heated absorbent to the regenerator;
Comprising
The carbon dioxide recovery device, wherein the filter is disposed on a discharge path from the regenerator to the reheater.
前記ろ過器は、微粒子状のろ材をメッシュで保持したものからなることを特徴とする請求項1に記載の二酸化炭素回収装置。   The carbon dioxide recovery device according to claim 1, wherein the filter is formed by holding a particulate filter medium with a mesh. 前記ろ材及び前記メッシュは、ニッケル基合金であることを特徴とする請求項2に記載の二酸化炭素回収装置。   The carbon dioxide recovery device according to claim 2, wherein the filter medium and the mesh are nickel-based alloys. 前記固形分と前記ろ材とを分離する分離器をさらに具備し、前記分離器により分離された前記ろ材を再利用することを特徴とする請求項2又は請求項3に記載の二酸化炭素回収装置。   The carbon dioxide recovery apparatus according to claim 2 or 3, further comprising a separator for separating the solid content and the filter medium, and reusing the filter medium separated by the separator. 前記ろ過器を洗浄する逆洗液の導入経路および排出経路を流れるそれぞれの逆洗液との間で熱交換を行う熱交換器をさらに具備することを特徴とする請求項1ないし請求項4のいずれか1項に記載の二酸化炭素回収装置。   5. The heat exchanger according to claim 1, further comprising a heat exchanger for exchanging heat with each of the backwashing liquids flowing through the backwashing liquid introduction path and the discharge path for washing the filter. The carbon dioxide recovery device according to any one of claims. 前記ろ過器への導入される前記吸収液へ酸素を含有するガスを供給する酸素供給部をさらに具備することを特徴とする請求項1ないし請求項5のいずれか1項に記載の二酸化炭素回収装置。   The carbon dioxide recovery according to any one of claims 1 to 5, further comprising an oxygen supply unit that supplies a gas containing oxygen to the absorption liquid introduced into the filter. apparatus. 前記ろ過器から排出される前記吸収液に含まれる酸素を取り除く脱酸素部をさらに具備することを特徴とする請求項1ないし請求項6のいずれか1項に記載の二酸化炭素回収装置。   The carbon dioxide recovery apparatus according to any one of claims 1 to 6, further comprising a deoxygenation unit that removes oxygen contained in the absorption liquid discharged from the filter. 少なくとも2以上の前記ろ過器を並列に配置したことを特徴とする請求項1ないし請求項7のいずれか1項に記載の二酸化炭素回収装置。   The carbon dioxide recovery device according to any one of claims 1 to 7, wherein at least two or more of the filters are arranged in parallel.
JP2011262343A 2011-11-30 2011-11-30 Carbon dioxide recovery device Expired - Fee Related JP5117612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262343A JP5117612B2 (en) 2011-11-30 2011-11-30 Carbon dioxide recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262343A JP5117612B2 (en) 2011-11-30 2011-11-30 Carbon dioxide recovery device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009208839A Division JP4881412B2 (en) 2009-09-10 2009-09-10 Carbon dioxide recovery device

Publications (2)

Publication Number Publication Date
JP2012086216A JP2012086216A (en) 2012-05-10
JP5117612B2 true JP5117612B2 (en) 2013-01-16

Family

ID=46258437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262343A Expired - Fee Related JP5117612B2 (en) 2011-11-30 2011-11-30 Carbon dioxide recovery device

Country Status (1)

Country Link
JP (1) JP5117612B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623366B2 (en) 2013-03-04 2017-04-18 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and CO2 recovery method
JP7134618B2 (en) * 2017-10-31 2022-09-12 三菱重工エンジニアリング株式会社 Acid gas recovery method and system
JP7273758B2 (en) * 2020-03-18 2023-05-15 株式会社東芝 Acid gas absorbent, method for removing acid gas, and apparatus for removing acid gas

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124470A (en) * 1976-04-13 1977-10-19 Fuji Sekiyu Kk Removal of acidic gas
US4180548A (en) * 1978-12-22 1979-12-25 Exxon Research & Engineering Co. Process for selective removal of cyclic urea from hindered amine gas treating solution
JPH0785797B2 (en) * 1987-06-25 1995-09-20 オルガノ株式会社 Condensate filter
JP3237113B2 (en) * 1989-11-06 2001-12-10 栗田工業株式会社 Gas absorption liquid treatment method
JPH0411921A (en) * 1990-05-01 1992-01-16 Idemitsu Eng Co Ltd Method for removing deteriorated material from refining liquid adsorbent
JP4004345B2 (en) * 2002-07-30 2007-11-07 富士フイルム株式会社 Filtration device
JP4402969B2 (en) * 2004-01-30 2010-01-20 株式会社東芝 Filter
JP2006239614A (en) * 2005-03-04 2006-09-14 Saitama Prefecture Liquid filtering method and filtering apparatus
JP4185509B2 (en) * 2005-06-27 2008-11-26 住友電工ファインポリマー株式会社 Method for producing porous multilayer hollow fiber
JP4795991B2 (en) * 2007-02-27 2011-10-19 三菱重工業株式会社 CO2 recovery device and solid content extraction method in CO2 recovery device
JP5072627B2 (en) * 2008-02-01 2012-11-14 三菱重工業株式会社 CO2 recovery device and filtration membrane device cleaning method

Also Published As

Publication number Publication date
JP2012086216A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4881412B2 (en) Carbon dioxide recovery device
CA2619369C (en) Co2 recovery system and solid-particles removing method for use in the same
JP4875522B2 (en) CO2 recovery device and waste extraction method
JP6101783B2 (en) CO2 recovery system and CO2 recovery method
CN107915227B (en) Gas recovery and concentration device
WO2013073662A1 (en) Direct-reduced iron production system
JP2011177685A (en) Purification device and carbon dioxide recovery system
WO2011068007A1 (en) Device for separating and recovering carbon dioxide
CA2857293C (en) An ammonia stripper for a carbon capture system for reduction of energy consumption
JP5917190B2 (en) Mercury recovery equipment in exhaust gas
JP6016513B2 (en) CO2 recovery apparatus and CO2 recovery method
WO2013073663A1 (en) Direct-reduced iron production system
JP5117612B2 (en) Carbon dioxide recovery device
JP2015134334A (en) Reclaiming device and method and recovery device for co2, h2s or both
JP6077730B2 (en) Dewatering system and method for improving combined cycle efficiency of coal power plant
JP2008238113A (en) Co2 recovery apparatus and waste treatment method
CN203866136U (en) Amine liquid purification and recycling system of system for capturing CO2 in flue gas of coal-fired power plant
JP2015000372A (en) Acid gas recovery system
KR20150004562A (en) Carbon dioxide capture device
US10537846B2 (en) Method and device for separating carbon dioxide from a gas stream and for removing degradation products in the washing medium by photolytic decomposition
JP5606469B2 (en) Carbon dioxide recovery apparatus and method
KR102246862B1 (en) Device for purification of coke oven gas and method for purification of coke oven gas using the same
JP2009269003A (en) Apparatus for removing mercury
JP2014100623A (en) Amine recovery method, amine separation apparatus and acid gas separation and recovery apparatus
Tsujiuchi et al. CO 2 recovery system and CO 2 recovery method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees