JP5115029B2 - High thermal conductive insulation and paper, coil bobbin and electric motor - Google Patents

High thermal conductive insulation and paper, coil bobbin and electric motor Download PDF

Info

Publication number
JP5115029B2
JP5115029B2 JP2007140642A JP2007140642A JP5115029B2 JP 5115029 B2 JP5115029 B2 JP 5115029B2 JP 2007140642 A JP2007140642 A JP 2007140642A JP 2007140642 A JP2007140642 A JP 2007140642A JP 5115029 B2 JP5115029 B2 JP 5115029B2
Authority
JP
Japan
Prior art keywords
filler
insulating material
high thermal
conductive insulating
fillers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007140642A
Other languages
Japanese (ja)
Other versions
JP2008293911A (en
Inventor
孝博 濟藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007140642A priority Critical patent/JP5115029B2/en
Publication of JP2008293911A publication Critical patent/JP2008293911A/en
Application granted granted Critical
Publication of JP5115029B2 publication Critical patent/JP5115029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

本発明は、電気部品、電子部品、およびそれら装置等の発熱源からの放熱を促進するとともに絶縁性を確保するための高熱伝導絶縁材と、該高熱伝導絶縁材から成形される絶縁紙とコイルボビン、さらに該絶縁紙またはコイルボビンを有する電動機に関するものである。   The present invention relates to a high thermal conductivity insulating material for promoting heat dissipation from a heat source such as an electrical component, an electronic component, and an apparatus thereof and ensuring insulation, an insulating paper and a coil bobbin formed from the high thermal conductivity insulating material Further, the present invention relates to an electric motor having the insulating paper or coil bobbin.

近時、電気部品、電子部品やそれらの部品からなる装置の高密度化、小型化、高出力化の進展に伴って、これらの部品、装置内に内蔵されるコイルや半導体からの発熱量も大きくなっており、この熱の放散を如何におこなうかが大きな課題の一つとなっている。   Recently, along with the progress of high density, miniaturization, and high output of electrical parts, electronic parts and devices composed of those parts, the amount of heat generated from these parts, coils incorporated in the equipment and semiconductors has also increased. One of the major issues is how to dissipate this heat.

従来は、シリコンゴムやEPDM等のポリマー母材内に炭化ケイ素等の熱伝導性を有するフィラーを分散させた熱伝導材を製作し、これを上記する部品や装置等の発熱源に接触配置させたり、上記部品等が収容されたヒートシンクと該部品等との間に介在させることで発熱源からの放熱性を高めていた。   Conventionally, a heat conductive material in which a filler having thermal conductivity such as silicon carbide is dispersed in a polymer base material such as silicon rubber or EPDM is manufactured, and this is placed in contact with a heat source such as the above-mentioned parts or device. In addition, the heat dissipation from the heat source has been improved by interposing between the heat sink in which the above-described components are accommodated and the components.

しかし、上記するポリマー母材内にフィラーが分散された熱伝導材では、その製造過程においてフィラーを多充填し難いこと、および、多充填した場合でも成形性が悪くなり、成形品の機械的強度が低いことが課題であった。図3aにおいて、ポリマーa内に大径のフィラーb、…が多充填された熱伝導絶縁材を示している。   However, in the heat conductive material in which the filler is dispersed in the polymer matrix described above, it is difficult to fill the filler in the manufacturing process, and the moldability is deteriorated even when the filler is filled, and the mechanical strength of the molded product is reduced. It was a problem that was low. FIG. 3a shows a heat conductive insulating material in which a polymer a is filled with a large-diameter filler b.

また、特許文献1〜3に開示のように、ポリマー母材内に粒径の異なる2種類のフィラーを分散させることで熱伝導率が高められた熱伝導材が得られるといった技術もあるが、この熱伝導材ではその溶融時の粘度が大きくなってしまい、成形性が著しく低下する。これを図3bにて模式的に示しており、ポリマーa内に大径のフィラーb、…と小径のフィラーc、…が分散された熱伝導絶縁材となっている。   In addition, as disclosed in Patent Documents 1 to 3, there is a technique in which a thermal conductive material having an increased thermal conductivity can be obtained by dispersing two kinds of fillers having different particle sizes in the polymer base material. In this heat conductive material, the viscosity at the time of melting becomes large, and the moldability is remarkably lowered. This is schematically shown in FIG. 3b, and is a heat conductive insulating material in which a large-diameter filler b,... And a small-diameter filler c,.

さらには、図3cに示すように、ポリマー母材a内にフィラーb、…を分散させ、フィラーb、b同士を低溶融合金d(たとえばすず合金)にて繋ぐことで熱伝導パスを形成し、熱伝導率を高めるといった技術もあるが、この場合には、熱伝導材自体が電気を流すこととなり、したがって絶縁用途には適用できない。   Further, as shown in FIG. 3c, fillers b,... Are dispersed in polymer base material a, and fillers b, b are connected by a low melting alloy d (for example, a tin alloy) to form a heat conduction path. There is also a technique for increasing the thermal conductivity, but in this case, the thermal conductive material itself conducts electricity, and therefore cannot be applied to insulation applications.

特開2001−139733号公報JP 2001-139733 A 特開2001−339019号公報JP 2001-339019 A 特開2003−197833号公報JP 2003-197833 A

本発明は、上記する問題に鑑みてなされたものであり、絶縁性を確保しながら、放熱性能も高く、成形性にも優れた高熱伝導絶縁材を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a highly heat-conductive insulating material having high heat dissipation performance and excellent moldability while ensuring insulation.

前記目的を達成すべく、本発明による高熱伝導絶縁材は、相対的に大寸法のフィラーのまわりに相対的に小寸法のフィラーが凝集してなる凝集体が、ポリマー母材内に分散していることを特徴とするものである。   In order to achieve the above object, the high thermal conductive insulating material according to the present invention has an aggregate in which a relatively small sized filler is aggregated around a relatively large sized filler dispersed in the polymer base material. It is characterized by being.

ここで、フィラーは球状やその他多様な形状を呈しており、その形状に限定はない。また、相対的に大寸法のフィラー(粗大なフィラー)と相対的に小寸法のフィラー(微小なフィラー)からなる凝集体とは、大きさが異なる2種類のフィラー凝集体のほか、大きさが異なる3種類以上のフィラー凝集体であってもよい。たとえば、最も大きな寸法のフィラー外周側に2番目に大寸法のフィラーが複数凝集し、さらに最小寸法のフィラーが同様に最大寸法のフィラー外周側に複数凝集して凝集体が形成される形態である。なお、相対的に大寸法のフィラーが球状または略球状の場合に、その粒子径は1〜100μm程度に生成でき、小寸法のフィラーの粒子径は0.1〜10μm程度に生成することができる。   Here, the filler has a spherical shape or other various shapes, and the shape is not limited. In addition, aggregates composed of relatively large fillers (coarse fillers) and relatively small fillers (fine fillers) include two types of filler aggregates of different sizes, Three or more different filler aggregates may be used. For example, it is a form in which a plurality of second-largest fillers agglomerate on the outer periphery side of the largest-size filler, and a minimum-size filler agglomerates on the outer periphery side of the maximum-size filler to form an aggregate. . In addition, when the relatively large filler is spherical or substantially spherical, the particle size can be generated to about 1 to 100 μm, and the particle size of the small size filler can be generated to about 0.1 to 10 μm. .

寸法の異なるフィラーの生成方法は、一つには予め大きな寸法のフィラーを生成し、この一部を破砕して小寸法のフィラーを生成し、双方を分級する方法があり、他の方法として、核となる小寸法のフィラーをまず生成し、化学的に制御しながら大寸法のフィラーを生成する方法もある。   One method of producing fillers with different dimensions is to produce a filler with a large size in advance, crush a part of this to produce a small size filler, and classify both. As another method, There is also a method in which a small-sized filler serving as a core is first generated, and a large-sized filler is generated while being chemically controlled.

相対的に大寸法、小寸法のフィラーを生成後、これらを混ぜ合わせることで上記する凝集体を生成することができる。   After producing relatively large and small sized fillers, the above-mentioned aggregates can be produced by mixing them together.

ここで、ポリマー母材はシリコン、ナイロン(登録商標)、PP(ポリプロピレン)、PPS(ポリフェニレンスルファイド)、LCP(液晶ポリマー)のいずれか一種から選定でき、フィラーは炭化ケイ素、窒化ケイ素、窒化ホウ素、シリカ、酸化アルミニウム、窒化アルミニウム、酸化マグネシウムのいずれか一種またはそれらの混合物から選定できる。これらの材料は比較的安価で入手が容易であることから本発明の高熱伝導絶縁材には好適である。 Here, the polymer base material can be selected from any one of silicon, nylon (registered trademark) , PP (polypropylene), PPS (polyphenylene sulfide), and LCP (liquid crystal polymer), and the filler is silicon carbide, silicon nitride, boron nitride. , Silica, aluminum oxide, aluminum nitride, magnesium oxide, or a mixture thereof. Since these materials are relatively inexpensive and easily available, they are suitable for the high thermal conductive insulating material of the present invention.

本発明の高熱伝導絶縁材によれば、相対的に大寸法のフィラーのまわりに相対的に小寸法のフィラーが凝集してなる凝集体がポリマー母材内に分散していることで、次のような効果が得られる。   According to the high thermal conductive insulating material of the present invention, the aggregate formed by agglomerating relatively small sized fillers around the relatively large sized fillers is dispersed in the polymer base material, so that Such an effect is obtained.

一つ目の効果は、フィラーの充填量を多くしたり、フィラーの大きさを大きくすることなく、ポリマーとフィラー間の伝熱効率を高めることができることである。これは本発明者等による解析の結果特定されたものであり、従来の一様な粗大フィラーがポリマー内に分散された絶縁材と比較した場合に、等しい伝熱量を得るために必要なフィラー間距離を長くすることができ、これはフィラー充填量を低減できることを意味するものである。フィラー充填量を低減できることから、その成形性を高めることができ、多充填によって凝集体がポリマー内に偏在し易くなり、この偏在箇所が部材強度の弱部となるといった課題も同時に解消することができる。   The first effect is that the heat transfer efficiency between the polymer and the filler can be increased without increasing the filling amount of the filler or increasing the size of the filler. This is specified as a result of the analysis by the present inventors, and when compared with an insulating material in which a conventional uniform coarse filler is dispersed in a polymer, it is necessary to obtain an equal amount of heat transfer between fillers. The distance can be increased, which means that the filler loading can be reduced. Since the filler filling amount can be reduced, the moldability can be enhanced, and the multiple filling makes it easy for the aggregate to be unevenly distributed in the polymer, and the problem that this unevenly distributed portion becomes a weak part of the member strength can be solved at the same time. it can.

二つ目の効果は、凝集体が大寸法のフィラー外周から小寸法のフィラーがランダムに突出した粒構造を呈していることで、伝熱方向が任意の一方向(異方性)を有することなく多様な方向となる(等方性)。従来の繊維状フィラーを有する絶縁材では、その配向方向と伝熱方向が異なった場合に所望の熱伝導率が得られ難かった。   The second effect is that the aggregate has a grain structure in which small-sized fillers protrude randomly from the outer periphery of large-sized fillers, so that the heat transfer direction has any one direction (anisotropic). There are many different directions (isotropic). In the insulating material having a conventional fibrous filler, it is difficult to obtain a desired thermal conductivity when the orientation direction and the heat transfer direction are different.

三つ目の効果として、上記する構造の凝集体であることで、小寸法のフィラーがポリマー内に埋め込まれてアンカー効果を発揮でき、その結果としてポリマーとフィラー凝集体との界面強度が高められることで絶縁材の機械的強度を高めることができる。   The third effect is that the aggregate has the above-described structure, so that a small-sized filler can be embedded in the polymer to exert an anchor effect, and as a result, the interfacial strength between the polymer and the filler aggregate is increased. Thus, the mechanical strength of the insulating material can be increased.

上記する本発明の高熱伝導絶縁材は、高絶縁性、高放熱性に加えて高い成形性を有するものである。その用途としては、電動機のステータコアにおけるスロット絶縁紙や相間絶縁紙、またはコイルを巻装した姿勢でステータのティースに装着されるコイルボビンなどに好適であり、近時その量産が盛んで搭載される電動機の高性能化が叫ばれているハイブリッド自動車や電気自動車の駆動用電動機に特に好適である。   The high thermal conductive insulating material of the present invention described above has high formability in addition to high insulation and high heat dissipation. As its application, it is suitable for slot insulation paper and interphase insulation paper in a stator core of an electric motor, or a coil bobbin mounted on a stator tooth in a posture in which a coil is wound. It is particularly suitable for a drive motor for a hybrid vehicle and an electric vehicle that are demanding higher performance.

以上の説明から理解できるように、本発明によれば、高絶縁性、高放熱性を有し、高い機械的強度と優れた成形性を有する熱伝導絶縁材が得られる。   As can be understood from the above description, according to the present invention, a heat conductive insulating material having high insulation and high heat dissipation, high mechanical strength and excellent moldability can be obtained.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明の高熱伝導絶縁材の内部構造を拡大した模式図であり、図2はフィラー間の最小離間を算定する解析で用いた簡易伝熱モデルであって、図3aは実施例モデルであり、図3b、cはそれぞれ比較例モデルである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged schematic diagram of the internal structure of the high thermal conductive insulating material of the present invention. FIG. 2 is a simplified heat transfer model used in the analysis for calculating the minimum separation between fillers, and FIG. 3b and 3c are comparative example models, respectively.

図1は高熱伝導絶縁材の内部構造を模式的に示した図である。高熱伝導絶縁材は、ポリマー母材1の内部に多数の凝集体4,…が分散された構造を呈しており、この凝集体4は任意形状の粗大フィラー2の外周面に複数の任意形状の微小フィラー3,…が凝集して生成されている。   FIG. 1 is a diagram schematically showing the internal structure of a high thermal conductive insulating material. The high thermal conductive insulating material has a structure in which a large number of aggregates 4,... Are dispersed inside the polymer base material 1, and the aggregate 4 has a plurality of arbitrary shapes on the outer peripheral surface of the coarse filler 2 having an arbitrary shape. The fine fillers 3,...

ここで、ポリマー母材1は、シリコン、ナイロン、PP(ポリプロピレン)、PPS(ポリフェニレンスルファイド)、LCP(液晶ポリマー)のいずれか一種から形成され、凝集体4を構成する粗大フィラー2および微小フィラー3は、炭化ケイ素、窒化ケイ素、窒化ホウ素、シリカ、酸化アルミニウム、窒化アルミニウム、酸化マグネシウムのいずれか一種またはそれらの混合物から生成される。   Here, the polymer base material 1 is formed of any one of silicon, nylon, PP (polypropylene), PPS (polyphenylene sulfide), and LCP (liquid crystal polymer), and the coarse filler 2 and the fine filler constituting the aggregate 4 3 is produced from any one of silicon carbide, silicon nitride, boron nitride, silica, aluminum oxide, aluminum nitride, magnesium oxide, or a mixture thereof.

粗大フィラー2と微小フィラー3は、まず、粗大フィラー2を生成後、その一部を粉砕して細分化し、分級するなどして所定寸法の微小フィラー3を生成する。これら粗大フィラー2と微小フィラー3を混連することにより凝集体4を生成することができる。   The coarse filler 2 and the fine filler 3 are first produced after the coarse filler 2 is produced, and a part of the coarse filler 2 is crushed and subdivided and classified to produce the fine filler 3 having a predetermined size. Aggregates 4 can be produced by mixing these coarse fillers 2 and fine fillers 3 together.

[フィラー間の最小離間を算定するための解析とその結果]
本発明者等は、図1で示す構造を呈する本発明の熱伝導絶縁材と、図3bで示す従来の熱伝導絶縁材、および図3cで示す従来の熱伝導絶縁材をそれぞれ簡易的にモデル化し(順に実施例、比較例1、比較例2)、等しい伝熱量を得るために必要となる最小離間を解析にて求めた。最小離間が長くなれば、必要な充填フィラー量が少なくて済むこととなり、その成形性を高めることができることとなる。また、充填フィラー量が少ないことで、より高い放熱性が要求される場合により多くのフィラーを充填できる余裕があることをも意味する。解析は、定常伝熱状態で一次元方向の簡易伝熱モデルとし、粗大フィラー、微小フィラーともに球状として実行した。さらに、熱源側を150℃、放熱側を50℃に設定している。
[Analysis and results for calculating minimum spacing between fillers]
The inventors of the present invention simply modeled the heat conductive insulating material of the present invention having the structure shown in FIG. 1, the conventional heat conductive insulating material shown in FIG. 3b, and the conventional heat conductive insulating material shown in FIG. 3c, respectively. (In order, Example, Comparative Example 1, Comparative Example 2), the minimum separation required to obtain an equal amount of heat transfer was determined by analysis. If the minimum separation is long, the amount of filling filler required is small, and the moldability can be improved. Moreover, it means that there is room to be able to be filled with more fillers when higher heat dissipation is required because the amount of fillers is small. The analysis was performed with a simple heat transfer model in a one-dimensional direction in a steady heat transfer state, and both coarse filler and fine filler were spherical. Furthermore, the heat source side is set to 150 ° C. and the heat dissipation side is set to 50 ° C.

実施例、比較例1,2の各解析モデルを図2a,b,cに、その解析条件と結果の一覧を以下の表1にそれぞれ示す。   The analysis models of Examples and Comparative Examples 1 and 2 are shown in FIGS.

Figure 0005115029
Figure 0005115029

表中、Xはフィラー間の離間であり、Lは粗大フィラー間の離間であり、Q(=ΔT/ΣR)は伝熱量であり、ΔTは熱源側と放熱側の温度差であり、Rは伝熱距離/(熱伝導率×伝熱面積)である。さらに、ポリマーの熱伝導率を0.3(W/mK)、電熱面積を1(μm)、ΔTを100(K)(150−50(K))と設定している。 In the table, X is the spacing between fillers, L is the spacing between coarse fillers, Q (= ΔT / ΣR) is the amount of heat transfer, ΔT is the temperature difference between the heat source side and the heat dissipation side, and R is Heat transfer distance / (heat conductivity × heat transfer area). Furthermore, the thermal conductivity of the polymer is set to 0.3 (W / mK), the electrothermal area is set to 1 (μm 2 ), and ΔT is set to 100 (K) (150-50 (K)).

表1より、等しい伝熱量を得るための粗大フィラーの最小離間は実施例が最も長くなり(L=60μm)、したがって、比較例1,2に比して充填フィラー量を少なくできることが特定された。   From Table 1, it was specified that the minimum spacing of the coarse filler to obtain an equal amount of heat transfer was the longest in the example (L = 60 μm), and therefore, the amount of filler could be reduced as compared with Comparative Examples 1 and 2. .

また、この解析結果より、実施例における粗大フィラーの最小離間が最も長くなることから、フィラー充填の際の立体障害の可能性が最も低く、粘度障害に起因する成形不良の可能性が最も低いことが特定された。また、ポリマー内に埋設された微小フィラーによるアンカー効果が期待でき、比較例に比して機械的強度に優れた熱伝導絶縁材が得られることは明らかである。   Also, from this analysis result, since the minimum separation of the coarse filler in the example is the longest, the possibility of steric hindrance during filler filling is the lowest, and the possibility of molding failure due to viscosity hindrance is the lowest Was identified. In addition, it is obvious that an anchor effect by the fine filler embedded in the polymer can be expected, and a heat conductive insulating material having excellent mechanical strength as compared with the comparative example can be obtained.

上記する本発明の高熱伝導絶縁材は、絶縁性、放熱性と機械的強度に優れ、さらには成形性に優れた熱伝導絶縁材を得ることができる。   The above-described highly heat-conductive insulating material of the present invention can provide a heat-conductive insulating material that is excellent in insulation, heat dissipation and mechanical strength, and further excellent in moldability.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

本発明の高熱伝導絶縁材の内部構造を拡大した模式図である。It is the schematic diagram which expanded the internal structure of the high heat conductive insulating material of this invention. フィラー間の最小離間を算定する解析で用いた簡易伝熱モデルであり、(a)は実施例モデルであり、(b)、(c)はそれぞれ比較例モデルである。It is the simple heat transfer model used in the analysis which calculates the minimum separation between fillers, (a) is an example model, (b), (c) is a comparative example model, respectively. (a)、(b)、(c)はともに、従来の熱伝導絶縁材の内部構造を拡大した模式図である。(A), (b), (c) is the schematic diagram which expanded the internal structure of the conventional heat conductive insulating material.

符号の説明Explanation of symbols

1…ポリマー母材、2…粗大フィラー(相対的に大寸法のフィラー)、3…微小フィラー(相対的に小寸法のフィラー)、4…凝集体   DESCRIPTION OF SYMBOLS 1 ... Polymer base material, 2 ... Coarse filler (relatively large filler), 3 ... Fine filler (relatively small filler), 4 ... Aggregate

Claims (6)

相対的に大寸法のフィラーのまわりに相対的に小寸法のフィラーが凝集してなる凝集体が、ポリマー母材内に分散していることを特徴とする高熱伝導絶縁材。   A highly heat-conductive insulating material, characterized in that aggregates formed by agglomerating relatively small-sized fillers around relatively large-sized fillers are dispersed in a polymer base material. 前記ポリマー母材はシリコン、ナイロン(登録商標)、PP(ポリプロピレン)、PPS(ポリフェニレンスルファイド)、LCP(液晶ポリマー)のいずれか一種からなり、前記フィラーは炭化ケイ素、窒化ケイ素、窒化ホウ素、シリカ、酸化アルミニウム、窒化アルミニウム、酸化マグネシウムのいずれか一種またはそれらの混合物からなる、請求項1に記載の高熱伝導絶縁材。 The polymer base material is made of any one of silicon, nylon (registered trademark) , PP (polypropylene), PPS (polyphenylene sulfide), and LCP (liquid crystal polymer), and the filler is silicon carbide, silicon nitride, boron nitride, silica. The high heat conductive insulating material according to claim 1, comprising any one of aluminum oxide, aluminum nitride, and magnesium oxide, or a mixture thereof. 請求項1または2に記載の高熱伝導絶縁材で成形されてなる絶縁紙。   Insulating paper formed by the high thermal conductive insulating material according to claim 1. 請求項1または2に記載の高熱伝導絶縁材で成形されてなるコイルボビン。   A coil bobbin formed of the high thermal conductive insulating material according to claim 1. 請求項3に記載の絶縁紙がスロット絶縁紙または相間絶縁紙として適用されてなる電動機。   An electric motor to which the insulating paper according to claim 3 is applied as slot insulating paper or interphase insulating paper. 請求項4に記載のコイルボビンにコイルが巻装され、これがステータのティースに装着されてなる電動機。   An electric motor in which a coil is wound around the coil bobbin according to claim 4 and mounted on a stator tooth.
JP2007140642A 2007-05-28 2007-05-28 High thermal conductive insulation and paper, coil bobbin and electric motor Active JP5115029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140642A JP5115029B2 (en) 2007-05-28 2007-05-28 High thermal conductive insulation and paper, coil bobbin and electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140642A JP5115029B2 (en) 2007-05-28 2007-05-28 High thermal conductive insulation and paper, coil bobbin and electric motor

Publications (2)

Publication Number Publication Date
JP2008293911A JP2008293911A (en) 2008-12-04
JP5115029B2 true JP5115029B2 (en) 2013-01-09

Family

ID=40168417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140642A Active JP5115029B2 (en) 2007-05-28 2007-05-28 High thermal conductive insulation and paper, coil bobbin and electric motor

Country Status (1)

Country Link
JP (1) JP5115029B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057151A (en) 2010-08-09 2012-03-22 Toyota Central R&D Labs Inc Resin composition and electrically insulating part obtained from the same
WO2019031458A1 (en) 2017-08-10 2019-02-14 デンカ株式会社 Low-dielectric-constant thermally-conductive heat dissipation member
JP7189879B2 (en) 2017-09-06 2022-12-14 デンカ株式会社 thermally conductive sheet
JP6950028B2 (en) 2020-03-26 2021-10-13 日本アエロジル株式会社 Insulating filler and its manufacturing method, insulating material containing the insulating filler and its manufacturing method.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118991A (en) * 2000-10-02 2002-04-19 Fuji Electric Co Ltd Core varnish of rotating electric machine and stacked core applied with the varnish
JP2005281467A (en) * 2004-03-29 2005-10-13 Toshiba Corp Resin and member having high thermal conductivity, and electrical equipment and semiconductor device produced by using the same
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation

Also Published As

Publication number Publication date
JP2008293911A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5184543B2 (en) Thermally conductive sheet and power module
JP5036696B2 (en) Thermally conductive sheet and power module
WO2004093186A1 (en) Metal-base circuit board and its manufacturing method
JP5115029B2 (en) High thermal conductive insulation and paper, coil bobbin and electric motor
JP7267032B2 (en) Filler filling material and its manufacturing method, and high thermal conductivity insulating material and its manufacturing method
JP2010283327A (en) Thermal interface material, electronic device, and manufacturing method for the electronic device
US11441855B2 (en) Thermal interface materials
JP6657616B2 (en) Thermal conductive sheet, cured product of thermal conductive sheet, and semiconductor device
JP2008519455A (en) Integrated circuit chip device
JP2013159748A (en) Resin composition, and method for producing the same
JP6413478B2 (en) Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member
JP5085972B2 (en) Insulating sheet and semiconductor device
JP5369163B2 (en) Insulating sheet and semiconductor device
JP2008308576A (en) Process for producing thermally conductive resin sheet, thermally conductive resin sheet and power module using the same
JP2006332305A (en) Method of manufacturing thermal conductive sheet
JP6572643B2 (en) Thermally conductive sheet, cured product of thermally conductive sheet, and semiconductor device
KR102384105B1 (en) heat dissipation composite material and method of fabricating of the same
US20150318269A1 (en) Method for Carbon Nanotube Alignment Using Magnetic Nanoparticles
JP2013095761A (en) Curable composition and cured product
JP3739335B2 (en) Heat dissipation member and power module
WO2022054478A1 (en) Thermally conductive sheet and production method for thermally conductive sheet
JP2001339019A (en) Heat conducting material and its manufacturing method
JP2009170678A (en) Circuit board
JP2017028130A (en) Substrate for power module, circuit board for power module, and power module
JP2017212254A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R151 Written notification of patent or utility model registration

Ref document number: 5115029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3