JP5114838B2 - Image plane conversion element, method of manufacturing the element, and optical system having the element - Google Patents

Image plane conversion element, method of manufacturing the element, and optical system having the element Download PDF

Info

Publication number
JP5114838B2
JP5114838B2 JP2005285381A JP2005285381A JP5114838B2 JP 5114838 B2 JP5114838 B2 JP 5114838B2 JP 2005285381 A JP2005285381 A JP 2005285381A JP 2005285381 A JP2005285381 A JP 2005285381A JP 5114838 B2 JP5114838 B2 JP 5114838B2
Authority
JP
Japan
Prior art keywords
image plane
conversion element
light transmission
plane conversion
transmission tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005285381A
Other languages
Japanese (ja)
Other versions
JP2007094168A (en
JP2007094168A5 (en
Inventor
健治 堀
寛 浜村
潔 門松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005285381A priority Critical patent/JP5114838B2/en
Publication of JP2007094168A publication Critical patent/JP2007094168A/en
Publication of JP2007094168A5 publication Critical patent/JP2007094168A5/ja
Application granted granted Critical
Publication of JP5114838B2 publication Critical patent/JP5114838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Description

本発明は、CCD等の撮像素子を用いた撮像光学系における画質向上技術に関する。   The present invention relates to a technique for improving image quality in an imaging optical system using an imaging element such as a CCD.

従来、撮像素子により画像を取得する光学系では、撮像素子の受光素子が平面上に配置されているため、光学系の像面は平面に限定され像面湾曲収差量を所定値以下に抑えるように光学設計されている。また、投影光学系において、画像をドーム状のスクリーン等に投影する際に、投影画像が歪んでしまうことを軽減するための画像補正装置が提案されている(特許文献1参照)。
特開2000−39586号公報
Conventionally, in an optical system that acquires an image with an image sensor, the light receiving element of the image sensor is arranged on a plane, so that the image plane of the optical system is limited to a plane and the amount of field curvature aberration is suppressed to a predetermined value or less. It is optically designed. In addition, an image correction apparatus for reducing the distortion of a projected image when an image is projected onto a dome-shaped screen or the like in a projection optical system has been proposed (see Patent Document 1).
JP 2000-39586 A

しかしながら、光学系において像面湾曲収差量を所定量以下に抑えるためには、結像光学系内に強い曲率を持つ負の屈折力の曲面を存在させるか、正の屈折力を持つ曲面と負の屈折力を持つ曲面との間隔を十分に広げるなどの構成をとる必要がある。このため、像面彎曲収差が小さい結像光学系は、構成レンズ面数の増加や、光学系の製造公差が厳しくなるなどの欠点を有している。   However, in order to suppress the amount of field curvature aberration to a predetermined amount or less in the optical system, a negative refractive curved surface having a strong curvature exists in the imaging optical system, or a curved surface having positive refractive power and a negative curved surface are negative. It is necessary to take a configuration such as sufficiently widening the distance from the curved surface having a refractive power of. For this reason, the imaging optical system with a small image surface curvature aberration has drawbacks such as an increase in the number of constituent lens surfaces and a tight manufacturing tolerance of the optical system.

また、特許文献1の開示例では、光学系の像面における像面湾曲収差量は考慮されていない。また、市販のファイバー束を使ったのでは、出射端における個々の光伝達管位置を撮像装置の受光素子のサイズ及びピッチに合わせて正確に製造することが困難である為に、個々の光伝達管の光の出射端位置と受光素子の位置合わせが不正確となり出力画像にモアレが発生してしまうと言う問題がある。   In the disclosed example of Patent Document 1, the amount of field curvature aberration in the image plane of the optical system is not considered. In addition, if a commercially available fiber bundle is used, it is difficult to accurately manufacture the position of each light transmission tube at the exit end according to the size and pitch of the light receiving element of the imaging device. There is a problem that the position of the light emitting end of the tube and the alignment of the light receiving element are inaccurate, and moire occurs in the output image.

本発明は、上記課題に鑑みて成されたものであり、像面湾曲収差を有する結像光学系の像面と撮像素子との間に配置して像面湾曲収差を解消し良好な画像の撮像を可能にする像面変換素子と、この像面変換素子の製造方法と、この像面変換素子を有する光学系を提供することを目的とする。   The present invention has been made in view of the above problems, and is arranged between an image plane of an imaging optical system having field curvature aberration and an image pickup element to eliminate the field curvature aberration and to obtain a good image. An object of the present invention is to provide an image plane conversion element that enables imaging, a method for manufacturing the image plane conversion element, and an optical system having the image plane conversion element.

上記課題を解決するために、本発明は、
結像光学系の像面と撮像素子の間に配置され、前記撮像素子の複数の受光素子のそれぞれに対向し互いに非交差に形成された複数の光伝達管からなり
前記光伝達管は、透明基板と該透明基板に接着された高分子部材とからなり、
前記光伝達管に成型される第1面は、前記像面における像面湾曲収差に対応した曲面に成型され、
前記第1面に対向して形成され、前記光伝達管の端面の集合体の包絡面である第2面は、前記撮像素子の受光素子の包絡面に略平行に形成され、
前記第2面は前記透明基板中に形成されることを特徴とする像面変換素子を提供する。
In order to solve the above problems, the present invention provides:
It is arranged between the image plane of the imaging optical system and the image sensor, and consists of a plurality of light transmission tubes that are opposed to each other and formed non-intersecting with each other .
The light transmission tube comprises a transparent substrate and a polymer member bonded to the transparent substrate,
The first surface molded into the light transmission tube is molded into a curved surface corresponding to the field curvature aberration in the image surface,
The second surface, which is formed to face the first surface and is the envelope surface of the aggregate of the end surfaces of the light transmission tube, is formed substantially parallel to the envelope surface of the light receiving element of the imaging element,
It said second surface provides an image plane conversion element characterized Rukoto formed in the transparent substrate.

また、本発明は、物体側から順に、結像光学系と、前記像面変換素子と、撮像素子と、からなることを特徴とする光学系を提供する。   In addition, the present invention provides an optical system including an imaging optical system, the image plane conversion element, and an imaging element in order from the object side.

また、本発明は、前記像面変換素子の前記第1面を光軸に垂直な方向に移動する手段を有することを特徴とする光学系を提供する。   The present invention also provides an optical system comprising means for moving the first surface of the image plane conversion element in a direction perpendicular to the optical axis.

また、本発明は、
結像光学系の像面と撮像素子の間に配置され、前記撮像素子の複数の受光素子にそれぞれ対向する複数の光伝達管を互いに非交差に形成する像面変換素子の製造方法であって、
前記光伝達管が形成される高分子部材の第1面である前記像面側の面を前記結像光学系の像面湾曲収差に対応する曲面に金型で成型する成型工程と、
前記高分子部材の前記第1面に対向する平面を透明基板に接着する接着工程と、
前記高分子部材と前記透明基板とから前記光伝達管を形成し、前記光伝達管の端面の集合体の包絡面である第2面を前記撮像素子の受光素子の包絡面に略平行に形成し、前記第2面を前記透明基板中に形成する加工工程と、を有することを特徴とする像面変換素子の製造方法を提供する。
The present invention also provides:
A method for manufacturing an image plane conversion element, which is disposed between an image plane of an imaging optical system and an image sensor, and forms a plurality of light transmission tubes that respectively face the plurality of light receiving elements of the image sensor so as not to intersect each other. ,
A molding step of molding the surface on the image plane side, which is the first surface of the polymer member on which the light transmission tube is formed, into a curved surface corresponding to the field curvature aberration of the imaging optical system with a mold;
An adhesion step of adhering a plane facing the first surface of the polymer member to a transparent substrate;
The light transmission tube is formed from the polymer member and the transparent substrate, and a second surface, which is an envelope surface of the aggregate of end surfaces of the light transmission tube, is formed substantially parallel to the envelope surface of the light receiving element of the imaging element. And a processing step of forming the second surface in the transparent substrate . A method of manufacturing an image plane conversion element is provided.

本発明によれば、像面湾曲収差を有する結像光学系の像面と撮像素子との間に配置して像面湾曲収差を解消し良好な画像の撮像を可能にする像面変換素子とこの像面変換素子の製造方法とこの像面変換素子を有する光学系を提供することができる。   According to the present invention, an image plane conversion element that is disposed between an image plane of an imaging optical system having a field curvature aberration and the image sensor and eliminates the field curvature aberration and enables a good image to be captured. A method for manufacturing the image plane conversion element and an optical system having the image plane conversion element can be provided.

以下、本発明の実施の形態に関し図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1実施の形態にかかる像面変換素子を結像光学系の像面と撮像素子の間に配置した状態を示している。図2は、図1の像面変換素子と撮像素子の拡大断面図を示す。   FIG. 1 shows a state in which the image plane conversion element according to the first embodiment of the present invention is disposed between the image plane of the imaging optical system and the image pickup element. FIG. 2 is an enlarged cross-sectional view of the image plane conversion element and the imaging element in FIG.

図1、及び図2において、本発明の第1実施の形態にかかる像面変換素子1は、結像光学系3の像面Iと撮像素子5(例えば、CCD、CMOS素子等)の間に配置されている。像面変換素子1は、ロッド状或いはファイバー状の光伝達管7から構成され、光伝達管7の端面で形成される第1面7aが結像光学系3からの光が入射する面を構成している。この第1面7aは結像光学系3の像面Iにおける結像光学系3の像面湾曲収差に対応する面形状に形成され、この第1面7aに対向し光伝達管7の端面の集合体の包絡面である第2面7bが撮像素子5の受光素子5aの包絡面に略平行形成されている。光伝達管7の端面が平面の場合、その包絡面は平面となり、光伝達管7の端面にマイクロアレイレンズ等の複数の曲面が存在する場合、包絡面は複数の曲面に接する面となる。受光素子5aの包絡面も同様に、受光素子5aの面が平面の場合、包絡面は平面となり、マイクロアレイレンズ等の複数の曲面が存在する場合、包絡面は複数の曲面に接する面となる。   1 and 2, the image plane conversion element 1 according to the first embodiment of the present invention is between an image plane I of the imaging optical system 3 and an imaging element 5 (for example, CCD, CMOS element, etc.). Has been placed. The image plane conversion element 1 includes a rod-shaped or fiber-shaped light transmission tube 7, and a first surface 7 a formed by an end surface of the light transmission tube 7 forms a surface on which light from the imaging optical system 3 is incident. is doing. The first surface 7a is formed in a surface shape corresponding to the field curvature aberration of the image forming optical system 3 on the image surface I of the image forming optical system 3, and faces the first surface 7a and is formed on the end surface of the light transmission tube 7. A second surface 7 b that is an envelope surface of the aggregate is formed substantially parallel to the envelope surface of the light receiving element 5 a of the image sensor 5. When the end surface of the light transmission tube 7 is a flat surface, the envelope surface is a flat surface. When a plurality of curved surfaces such as a microarray lens are present on the end surface of the light transmission tube 7, the envelope surface is a surface in contact with the plurality of curved surfaces. Similarly, the envelope surface of the light receiving element 5a is a plane when the surface of the light receiving element 5a is a flat surface, and when there are a plurality of curved surfaces such as a microarray lens, the envelope surface is a surface in contact with the plurality of curved surfaces.

なお、第1面7aの表面に、光伝達管7の端面を保護及び光伝達管7を支持するための透明樹脂等で形成された支持部材7cを有しても良い。結像光学系3が焦点深度を有しているため、第1面7aの表面及び支持部材7cの表面の面精度を特に高く製造する必要はない。また、支持部材7cは、光伝達管7を支持するように第1面7aの側の近傍に設け、光伝達管7の第1面7aが露出する構成でも良い。   In addition, you may have the supporting member 7c formed in the surface of the 1st surface 7a with the transparent resin etc. for protecting the end surface of the light transmission tube 7, and supporting the light transmission tube 7. Since the imaging optical system 3 has a depth of focus, it is not necessary to manufacture the surface accuracy of the surface of the first surface 7a and the surface of the support member 7c with a particularly high level. The support member 7c may be provided in the vicinity of the first surface 7a so as to support the light transmission tube 7 so that the first surface 7a of the light transmission tube 7 is exposed.

像面変換素子1のそれぞれの光伝達管7は、第2面7bにおいて、それぞれの光伝達管7の端面が撮像素子5のそれぞれの受光素子5aに対向して配置されている。即ち、それぞれの光伝達管7は、それぞれの受光素子5aと1対1の関係を有するように配置されている。光伝達管7は、RGB1ピクセルに相当する受光素子5aに対応する面積と、受光素子5aのピッチに対応するピッチでそれぞれ形成されている。更に、それぞれの光伝達管7は、第1面7a側から第2面7b側に亘って交差することなく形成されている。この結果、第1面7aに入射した光は、それぞれの光伝達管7の中を伝達され、結像光学系3から入射した光の像面I上における位置が途中で交わること無く第2面7bから対向する受光素子5aに出射されるので撮像された画像が乱れることがない。   Each light transmission tube 7 of the image plane conversion element 1 is disposed on the second surface 7 b so that the end face of each light transmission tube 7 faces the respective light receiving elements 5 a of the imaging device 5. That is, each light transmission tube 7 is arranged so as to have a one-to-one relationship with each light receiving element 5a. The light transmission tube 7 is formed with an area corresponding to the light receiving element 5a corresponding to RGB1 pixel and a pitch corresponding to the pitch of the light receiving elements 5a. Further, each light transmission tube 7 is formed without intersecting from the first surface 7a side to the second surface 7b side. As a result, the light incident on the first surface 7a is transmitted through the respective light transmission tubes 7, and the position of the light incident from the imaging optical system 3 on the image surface I does not intersect in the middle of the second surface. Since the light is emitted from 7b to the opposing light receiving element 5a, the captured image is not disturbed.

受光素子5aはアレイレンズ5bを有し、第2面7b側の光伝達管7の出射端面は、受光素子5aと共役な位置に配置されており、第2面7bのそれぞれの光伝達管7の出射端面から出射した光は、対向するそれぞれの受光素子5aに効率よく集光される。第2面7bは、受光素子5aにより形成される包絡面に対応して平面や曲面に形成される。第2面7b側には、薄いガラス或いはプラスチックなどの基板7dが配設され、光伝達管7を所定位置に固定、支持している。なお、受光素子5aがアレイレンズ5bを有していない場合、第2面7b側の光伝達管7の出射端面と受光素子5aを共役な位置とするために基板7dの受光素子5a側にアレイレンズ7eを配設することも可能である。また、基板7dの受光素子5a側のアレイレンズ7eと受光素子5aのアレイレンズ5bとで光伝達管7の出射端面と受光素子5aを共役な位置にするように構成することも可能である。このようにして、像面変換素子1が形成され、この像面変換素子1を有する光学系が構成される。なお、アレイレンズ5b、又は7eは無くても良く、この場合には、第2面7b側の光伝達管7の出射端面と受光素子5aは、光伝達管7からの光が他の受光素子5aに大量に漏れることがないよう十分に近接するように、像面変換素子1と撮像素子5とを配置すればよい。   The light receiving element 5a has an array lens 5b, and the emission end face of the light transmission tube 7 on the second surface 7b side is disposed at a position conjugate with the light receiving element 5a, and each light transmission tube 7 on the second surface 7b. The light emitted from the emission end face is efficiently condensed on each of the opposing light receiving elements 5a. The second surface 7b is formed in a flat surface or a curved surface corresponding to the envelope surface formed by the light receiving element 5a. On the second surface 7b side, a substrate 7d such as thin glass or plastic is disposed, and the light transmission tube 7 is fixed and supported at a predetermined position. When the light receiving element 5a does not have the array lens 5b, an array is formed on the light receiving element 5a side of the substrate 7d so that the light emitting element 5a is conjugate to the light emitting element 7a on the second surface 7b side. It is also possible to arrange the lens 7e. Further, the array lens 7e on the light receiving element 5a side of the substrate 7d and the array lens 5b of the light receiving element 5a may be configured so that the emission end face of the light transmission tube 7 and the light receiving element 5a are in a conjugate position. In this way, the image plane conversion element 1 is formed, and an optical system including the image plane conversion element 1 is configured. The array lens 5b or 7e may not be provided. In this case, the light-emitting element 7a and the light-receiving element 5a on the second surface 7b side receive light from the light-transmitting tube 7 as another light-receiving element. What is necessary is just to arrange | position the image surface conversion element 1 and the image pick-up element 5 so that it may adjoin enough so that it may not leak to 5a in large quantities.

結像光学系3の像面Iにおいて良好な結像性能を得るために、結像光学系3は種々の収差を補正するように構成される。収差の中で像面湾曲収差を最小にするためには、結像光学系3のペッツバール和を零に近づけなければならない。その為には、結像光学系3は全体として所定の正屈折力を有しつつ他に負屈折力を有する面要素が必要となる。像面湾曲収差を最小にするためには多くの光学要素が必要となり、結像光学系3全体が大型化すると供にコスト高となってしまう。特に、全長の短い結像光学系3では、結像光学系3全体の所定パワーを確保しつつペッツバール和を零に近づける為に負屈折力の面の曲率を大きくする必要がある。面の曲率の大きな要素があると種々の収差が発生しやすくなる為、所望の結像性能を得ることが困難になる。   In order to obtain good imaging performance on the image plane I of the imaging optical system 3, the imaging optical system 3 is configured to correct various aberrations. In order to minimize the field curvature aberration among aberrations, the Petzval sum of the imaging optical system 3 must be close to zero. For this purpose, the imaging optical system 3 as a whole requires a surface element having a predetermined positive refractive power and a negative refractive power. In order to minimize the curvature of field, many optical elements are required, and when the entire imaging optical system 3 is enlarged, the cost is increased. In particular, in the imaging optical system 3 having a short overall length, it is necessary to increase the curvature of the surface of the negative refractive power in order to make the Petzval sum close to zero while ensuring a predetermined power of the entire imaging optical system 3. If there is an element having a large curvature of the surface, various aberrations are likely to occur, and it is difficult to obtain desired imaging performance.

本実施の形態にかかる像面変換素子1は、結像光学系3の像面Iに配置される像面変換素子1の第1面7aが、結像光学系3の像面Iにおける像面湾曲収差に対応した曲面に形成されているため、第1面7aに焦点の合った像(像面湾曲収差が最小である像)が形成される。この像からの光は、それぞれの光伝達管7中を第2面7bに伝達されそれぞれの光伝達管7から出射し、アレイレンズ7e、5bを介してそれぞれの光伝達管7に対向するそれぞれの受光素子5aで受光されて撮像画像が取得される。第1面7aは、結像光学系3の焦点深度内にあれば合焦した良好な像が得られるので、第1面7aの面精度を高くする必要がなく、面の加工がし易く低コスト化を達成することができる。   In the image plane conversion element 1 according to the present embodiment, the first surface 7 a of the image plane conversion element 1 arranged on the image plane I of the imaging optical system 3 is the image plane on the image plane I of the imaging optical system 3. Since the curved surface corresponding to the curvature aberration is formed, an image focused on the first surface 7a (an image with the smallest curvature of field curvature) is formed. Light from this image is transmitted through the respective light transmission tubes 7 to the second surface 7b, emitted from the respective light transmission tubes 7, and opposed to the respective light transmission tubes 7 via the array lenses 7e and 5b. The received light is received by the light receiving element 5a to obtain a captured image. If the first surface 7a is within the focal depth of the imaging optical system 3, a good focused image can be obtained. Therefore, it is not necessary to increase the surface accuracy of the first surface 7a, and the surface processing is easy and low. Costing can be achieved.

なお、図1及び以降の図において、像面変換素子の各要素の大きさは説明の都合上拡大して示している。   In FIG. 1 and the subsequent drawings, the size of each element of the image plane conversion element is shown enlarged for convenience of explanation.

図3(a)〜(c)は、像面変換素子1を構成する種々の形状の光伝達管7を示した図である。   FIGS. 3A to 3C are views showing various shapes of the light transmission tube 7 constituting the image plane conversion element 1.

図3(a)は、光伝達管7の第1面7a側の面(同じ符号7aと記す),及び第2面7b側の面(同じ符号7bと記す)が光伝達管7の軸Oに略垂直に形成されている。光伝達管7の面7aに入射した光は、光伝達管7の側面で全反射を繰り返して面7bに伝達され、面7bから受光素子5aに向け出射する。面7a、及び面7bが軸Oに略垂直に形成されているので、面7aにおける光の入射角度と面7bにおける光の出射角度はほぼ等しくなる。像面湾曲収差に対応して形成された第1面7aの曲率が緩やかで、一つの光伝達管7の面7aに亘って平面と見なしてよい場合にはこのような形状の光伝達管7で十分な効果を得ることができる。   FIG. 3A shows that the surface of the light transmission tube 7 on the first surface 7a side (denoted by the same reference numeral 7a) and the surface of the second surface 7b side (denoted by the same reference numeral 7b) are the axes O of the light transmission tube 7. It is formed substantially perpendicular to. The light incident on the surface 7a of the light transmission tube 7 is transmitted to the surface 7b by repeating total reflection on the side surface of the light transmission tube 7, and is emitted from the surface 7b toward the light receiving element 5a. Since the surface 7a and the surface 7b are formed substantially perpendicular to the axis O, the light incident angle on the surface 7a and the light emitting angle on the surface 7b are substantially equal. When the curvature of the first surface 7a formed corresponding to the field curvature aberration is gentle and can be regarded as a flat surface across the surface 7a of one light transmission tube 7, the light transmission tube 7 having such a shape is used. A sufficient effect can be obtained.

図3(b)は、光伝達管7の面7aを入射光の入射角度が大きくなる方向に傾斜させて形成している。このように面7aを傾斜して形成すると、光伝達管7を伝達する光の軸Oに対してなす角が小さくなり面7bからの出射光の広がりを抑えることができる。また、側面からの漏れ光が抑えられるため、隣接する光伝達管7の相互干渉を抑えることができ高画質の画像を得ることができる。   In FIG. 3B, the surface 7a of the light transmission tube 7 is formed so as to be inclined in the direction in which the incident angle of incident light increases. When the surface 7a is formed so as to be inclined in this way, the angle formed with respect to the axis O of the light transmitted through the light transmission tube 7 is reduced, and the spread of the emitted light from the surface 7b can be suppressed. Further, since leakage light from the side surface is suppressed, mutual interference between adjacent light transmission tubes 7 can be suppressed, and a high-quality image can be obtained.

図3(c)は、光伝達管7の面7aを物体側に凸面に、かつ面7aの結像光学系3の光軸2側を向いた部分7fを凹面に形成している。これは隣接する光伝達管7との側面付近に入射する光を光伝達管7の光の軸Oに対してなす角を小さくするためである。   In FIG. 3C, the surface 7a of the light transmission tube 7 is convex on the object side, and the portion 7f of the surface 7a facing the optical axis 2 side of the imaging optical system 3 is formed on the concave surface. This is to reduce the angle between the light incident on the side of the adjacent light transmission tube 7 and the light axis O of the light transmission tube 7.

また、結像光学系3の光軸2からの距離に応じてそれぞれの光伝達管7の面7aの傾斜を適宜傾けることによって、光学系がテレセントリックからずれている場合でも受光素子5aに対して光の傾斜角を大きくせずに伝達することが可能となる。光学系に対してテレセントリックの条件が緩和されると、光学系の全長をより短くする設計が可能となる。   Further, even when the optical system is deviated from telecentricity, the surface 7a of each light transmission tube 7 is appropriately inclined according to the distance from the optical axis 2 of the imaging optical system 3 to the light receiving element 5a. It is possible to transmit the light without increasing the inclination angle. When the telecentric conditions for the optical system are relaxed, it is possible to design the entire length of the optical system to be shorter.

なお、光伝達管7の軸Oに垂直な断面形状は、四角形に限らず円形或いは六角形などの多角形でも良く、受光素子5aの形状に合わせて形成される。   The cross-sectional shape perpendicular to the axis O of the light transmission tube 7 is not limited to a quadrangle, and may be a polygon such as a circle or a hexagon, and is formed in accordance with the shape of the light receiving element 5a.

図4は、本発明の第2実施の形態にかかる像面変換素子を有する光学系を示し、(a)は像面と撮像素子との間に像面変換素子を配置した状態を、(b)は光伝達管の概略形状をそれぞれ示している。第1実施の形態と同様の構成には同じ符号を付し説明を省略する。   FIG. 4 shows an optical system having an image plane conversion element according to the second embodiment of the present invention. FIG. 4A shows a state in which the image plane conversion element is arranged between the image plane and the image pickup element. ) Shows the schematic shape of the light transmission tube. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図4において、イメージサイズが小さいほど結像光学系3の負担は小さくなり、撮像素子5は全体サイズが大きいほど画素数(受光素子数5a)の多いものが実現できる。これらの要求を同時に満たす方法として像面変換素子11を構成する光伝達管17の第2面17b側の面(同じ符号17bと記す)の太さ(面積)を第1面17a側の面(同じ符号17aと記す)の太さ(面積)よりも太く(広く)する。図4(b)において、光伝達管17は軸Oに沿った断面が略台形状に形成されている。この場合、光伝達管17の面17bから出る光の広がり角は、入射光の広がり角よりも狭くすることが可能で、面17bからの光を受光素子5aにより垂直に近い角度で入射することができるため、撮像素子5の表面構造部分による反射の影響を受け難くなる。   In FIG. 4, as the image size is smaller, the burden on the imaging optical system 3 is reduced. As the overall size of the image sensor 5 is larger, a larger number of pixels (the number of light receiving elements 5a) can be realized. As a method of simultaneously satisfying these requirements, the thickness (area) of the second surface 17b side surface (denoted by the same reference numeral 17b) of the light transmission tube 17 constituting the image plane conversion element 11 is set to the first surface 17a side surface ( It is made thicker (wider) than the thickness (area) of the same symbol 17a. In FIG. 4B, the light transmission tube 17 has a substantially trapezoidal cross section along the axis O. In this case, the divergence angle of the light emitted from the surface 17b of the light transmission tube 17 can be made smaller than the divergence angle of the incident light, and the light from the surface 17b is incident on the light receiving element 5a at an angle close to vertical. Therefore, it becomes difficult to be influenced by reflection by the surface structure portion of the image sensor 5.

また、図4(b)から分かるように、面7aから面7bに亘って光伝達管17の太さがしだいに太くなる場合、光伝達管17の内部を反射しながら進行する光の光伝達管17の軸Oに対する角度が小さくなり、面17bを出射する光の進行方向に対する広がりがより小さくなり、隣接する光伝達管17への迷光を減らすと供に、受光素子5aに対してより入射角度のまとまった光束を形成することができる。このように、結像光学系3の負担が軽い小さな像面I(イメージサイズ)の場合でも、画像数(受光素子数5a)の多い撮像素子5を使用することが可能となる。   As can be seen from FIG. 4B, when the thickness of the light transmission tube 17 gradually increases from the surface 7a to the surface 7b, the light transmission tube of light traveling while reflecting the inside of the light transmission tube 17 is used. 17 with respect to the axis O becomes smaller, the spread of the light emitted from the surface 17b in the traveling direction becomes smaller, stray light to the adjacent light transmission tube 17 is reduced, and the incident angle with respect to the light receiving element 5a is further increased. A bundle of luminous fluxes can be formed. Thus, even in the case of a small image plane I (image size) where the burden on the imaging optical system 3 is light, it is possible to use the imaging element 5 having a large number of images (the number of light receiving elements 5a).

なお、上述とは逆に、面7aの太さ(面積)を面7bの太さ(面積)より太くして、大きな像面Iを小さな撮像素子5で撮像することを可能にすることもできる。   Contrary to the above, the thickness (area) of the surface 7a is made thicker than the thickness (area) of the surface 7b, so that the large image plane I can be imaged by the small image sensor 5. .

図5は、本発明の第3実施の形態にかかる像面変換素子を有する光学系を示す。第1実施の形態と同様の構成には同じ符号を付し説明を省略する。   FIG. 5 shows an optical system having an image plane conversion element according to the third embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図5において、本第3実施の形態では、像面湾曲収差の小さな部分(ほほ零の部分)の光伝達管27を形成せず平面とし、像面湾曲収差の大きい周辺部分のみに光伝達管27を形成した構成としている。このように像面湾曲収差の小さな部分の光伝達管27を省略することによって像面変換素子21の製造が容易となる。その他の構成、作用、効果は第1実施の形態と同様であり説明を省略する。   In FIG. 5, in the third embodiment, the light transmission tube 27 is not formed in the portion (nearly zero) where the field curvature aberration is small, but the light transmission tube 27 is a flat surface and only the peripheral portion where the field curvature aberration is large. 27 is formed. In this manner, the omission of the light transmission tube 27 with a small field curvature aberration facilitates the manufacture of the image plane conversion element 21. Other configurations, operations, and effects are the same as those in the first embodiment, and a description thereof will be omitted.

図6は、本発明の第4実施の形態にかかる像面変換素子を有する光学系を示す。第1実施の形態と同様の構成には同じ符号を付し説明を省略する。   FIG. 6 shows an optical system having an image plane conversion element according to the fourth embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図6において、像面変換素子31は、図2に示す支持部材7cの四隅に像面変換素子31の第1面7aを結像光学系3の光軸に垂直な方向に移動する移動手段33に連結する連結部30を有している。なお、移動手段33は、像面変換素子33の第1面7aを光軸に垂直な面内の直交する二つの軸方向にそれぞれ移動可能に構成されている。このように構成された像面変換手段31を不図示の手ブレ検出手段を介して検出された光学系のブレに対して、移動手段33を介して像面変換手段31の第1面7aを光軸に垂直な方向に移動することで手ブレ補正を行うことができる光学系を構成することができる。像面変換素子31は小型、軽量であるため、駆動力が小さくて済み移動手段33を小型化、及び高速化することができる。   In FIG. 6, the image plane conversion element 31 moves the first surface 7 a of the image plane conversion element 31 in the four corners of the support member 7 c shown in FIG. 2 in a direction perpendicular to the optical axis of the imaging optical system 3. It has the connection part 30 connected to. The moving means 33 is configured to be able to move the first surface 7a of the image plane conversion element 33 in two orthogonal axial directions in a plane perpendicular to the optical axis. The first surface 7a of the image plane converting means 31 is moved via the moving means 33 with respect to the blur of the optical system detected by the image plane converting means 31 configured as described above via the camera shake detecting means (not shown). An optical system capable of performing camera shake correction by moving in a direction perpendicular to the optical axis can be configured. Since the image plane conversion element 31 is small and lightweight, the driving force is small and the moving means 33 can be reduced in size and speed.

図7は、本発明の第5実施の形態にかかる像面変換素子を有する光学系を示す。第1実施の形態と同様の構成には同じ符号を付し説明を省略する。   FIG. 7 shows an optical system having an image plane conversion element according to the fifth embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図7において、像面変換素子41は、それぞれの光伝達管7の側面の一部又は全部の領域に光を吸収する物質からなる遮光部材48を設けて構成している。このように光伝達管7の側面に遮光部材48を設けることで、光伝達管7相互の光の干渉を抑制することができると供に、像面変換素子41外からの迷光が受光素子5aの受光面に達することを防ぐことができ、高画質の画像を得ることができる。なお、遮光部材48に光伝達管7の固定機能を持たせて光伝達管7を一体的に固定しても良い。   In FIG. 7, the image plane conversion element 41 is configured by providing a light shielding member 48 made of a substance that absorbs light in a part or all of the side surface of each light transmission tube 7. By providing the light blocking member 48 on the side surface of the light transmission tube 7 in this way, interference of light between the light transmission tubes 7 can be suppressed, and stray light from the outside of the image plane conversion element 41 is received by the light receiving element 5a. Can be prevented from reaching the light receiving surface, and a high-quality image can be obtained. The light transmission tube 7 may be integrally fixed by providing the light shielding member 48 with a function of fixing the light transmission tube 7.

また、上記実施の形態における光伝達管の太さのばらつきは±5%以内にすることが望ましい。太さのばらつきが±5%を超えると、光伝達管の受光面積がそれぞれ変化し受光素子に向かう光量がばらつき高い画質を得ることが難しくなる。   Moreover, it is desirable that the variation in the thickness of the light transmission tube in the above embodiment is within ± 5%. When the variation in thickness exceeds ± 5%, the light receiving area of the light transmission tube changes, and it becomes difficult to obtain an image with high variation in the amount of light directed toward the light receiving element.

また、光伝達管の分離間隔のばらつきは±5%以内にすることが望ましい。分離間隔のばらつきが±5%を超えると、光伝達管の受光面積がそれぞれ変化し受光素子に向かう光量がばらつき高い画質を得ることが難しくなる。   Further, it is desirable that the variation in the separation interval of the light transmission tube is within ± 5%. When the variation in separation interval exceeds ± 5%, the light receiving area of the light transmission tube changes, and it becomes difficult to obtain an image with high variation in the amount of light directed toward the light receiving element.

また、光伝達管の軸間距離(ピッチ)のばらつきは±5%以内にすることが望ましい。軸間距離のばらつきが±5%を越えると、光伝達管と受光素子とがずれてしまい隣接する光伝達管からの光の干渉が増加するので好ましくない。   Further, it is desirable that the variation in the distance (pitch) between the axes of the light transmission tube is within ± 5%. If the variation in the distance between the axes exceeds ± 5%, the light transmission tube and the light receiving element are displaced from each other, and the light interference from the adjacent light transmission tube increases, which is not preferable.

次に、本発明にかかる像面変換素子を用いた光学系の実施例に関し図面を参照しつつ説明する。   Next, embodiments of an optical system using the image plane conversion element according to the present invention will be described with reference to the drawings.

以下の各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(頂点曲率半径)をRとし、円錐定数をKとし、n次の非球面係数をCnとしたとき、以下の数式で表される。
S(y)=(y/R)/{1+(1−(1+K)×y/R1/2
+C4×y+C6×y+C8×y+C10×y10
なお、各実施例において、2次の非球面係数C2は0であり、頂点曲率半径Rと近軸曲率半径rとは一致している。
In each of the following embodiments, the aspherical surface has a height in the direction perpendicular to the optical axis y, and the distance (sag) along the optical axis from the tangent plane of each vertex of the aspherical surface to each aspherical surface at the height y. When the quantity) is S (y), the radius of curvature of the reference sphere (vertex radius of curvature) is R, the conic constant is K, and the nth-order aspherical coefficient is Cn, the following equation is used.
S (y) = (y 2 / R) / {1+ (1− (1 + K) × y 2 / R 2 ) 1/2 }
+ C4 × y 4 + C6 × y 6 + C8 × y 8 + C10 × y 10
In each example, the secondary aspherical coefficient C2 is 0, and the vertex curvature radius R and the paraxial curvature radius r coincide with each other.

(第1実施例)
図8、図9は、本発明の実施の形態にかかる像面変換素子を用いた光学系の第1実施例を示す。図8は、撮像素子を含む光学系の概略構成図を、図9は像面までの光学系の概略構成図をそれぞれ示す。本第1実施例では、結像光学系の像面における像面湾曲収差が凸面形状になる場合を示している。
(First embodiment)
8 and 9 show a first example of an optical system using the image plane conversion element according to the embodiment of the present invention. FIG. 8 is a schematic configuration diagram of an optical system including an image sensor, and FIG. 9 is a schematic configuration diagram of the optical system up to the image plane. The first embodiment shows a case where the field curvature aberration on the image plane of the imaging optical system becomes a convex shape.

図8、図9において、光学系100は、物体側から順に、開口絞りSと、キューブ型ビームスプリッタQBSと、凹面反射鏡Mと、像面変換素子101と撮像素子5とから構成されている。本光学系では、像面Iでの像面湾曲収差の形状は物体側に凸面の形状を有し、像面変換素子101の第1面107aは像面Iにおける像面歪曲収差に対応する形状に形成されている。   8 and 9, the optical system 100 includes, in order from the object side, an aperture stop S, a cube beam splitter QBS, a concave reflecting mirror M, an image plane conversion element 101, and an imaging element 5. . In the present optical system, the shape of the field curvature on the image plane I has a convex shape on the object side, and the first surface 107a of the image plane conversion element 101 has a shape corresponding to the image plane distortion on the image plane I. Is formed.

物体からの光は、開口絞りSで制限されて、キューブ型ビームスプリッタQBSに入射する。入射した光は、ビームスプリッタBSを透過して凹面反射鏡Mに入射して反射され再度ビームスプリッタBSに入射して、略90度偏向され図面下方に反射され、像面変換素子101の第1面107aのそれぞれの光伝達管7上に結像する。像からの光は、それぞれの光伝達管7中を伝達されて第2面107bからそれぞれの光伝達管7に対向する受光素子5aに向けて出射され受光素子5aでそれぞれ受光される。像面変換素子101の第1面107aの形状が、結像光学系3の像面湾曲収差を解消するように形成されているので、受光素子5aでは像面湾曲収差が解消された高画質の画像が得られる。   The light from the object is limited by the aperture stop S and enters the cube beam splitter QBS. The incident light is transmitted through the beam splitter BS, is incident on the concave reflecting mirror M, is reflected, is incident on the beam splitter BS again, is deflected by approximately 90 degrees, and is reflected downward in the drawing. An image is formed on each light transmission tube 7 of the surface 107a. Light from the image is transmitted through the respective light transmission tubes 7, emitted from the second surface 107b toward the light receiving elements 5a facing the respective light transmission tubes 7, and received by the light receiving elements 5a. Since the shape of the first surface 107a of the image plane conversion element 101 is formed so as to eliminate the field curvature aberration of the imaging optical system 3, the light receiving element 5a has a high image quality in which the field curvature aberration is eliminated. An image is obtained.

ビームスプリッタBSは半透過面で形成されており、像面変換素子101の第1面107aに到達する光は入射光の凡そ25%となる。なお、ビームスプリッタBSを偏光ビームスプリッタとして、偏光ビームスプリッタと凹面反射鏡Mの間に1/4波長板を配置することで、第1面107aへの入射光量を高めることができる。   The beam splitter BS is formed of a semi-transmissive surface, and the light reaching the first surface 107a of the image plane conversion element 101 is approximately 25% of the incident light. In addition, the incident light quantity to the 1st surface 107a can be raised by arrange | positioning the quarter wavelength plate between the polarizing beam splitter and the concave reflecting mirror M by using the beam splitter BS as a polarizing beam splitter.

次の表1に、本第1実施例にかかる光学系の諸元の値を掲げる。表中の(全体諸元)において、fは焦点距離を、F.NOはFナンバーをそれぞれ表している。(レンズデータ)では、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、曲率半径はレンズ面の曲率半径を、面間隔はレンズ面の間隔を、屈折率およびアッベ数はそれぞれd線(λ=587.6nm)に対する値をそれぞれ示している。像面Iは、像面の曲率半径を示す。ペッツバール和は、本結像光学系3におけるペッツバール和を示している。なお、空気の屈折率1.000000は記載を省略し、曲率半径「∞」は平面を表している。(非球面データ)では、円錐定数K、及び非球面定数C4〜C10の値をそれぞれ示している。   Table 1 below provides values of specifications of the optical system according to the first example. In (Overall specifications) in the table, f is the focal length, F.F. NO represents each F number. In (lens data), the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels, the radius of curvature is the radius of curvature of the lens surfaces, the surface interval is the lens surface interval, the refractive index and the Abbe Each number represents a value for the d-line (λ = 587.6 nm). The image plane I indicates the radius of curvature of the image plane. The Petzval sum indicates the Petzval sum in the imaging optical system 3. Note that the refractive index of air of 1.000 000 is omitted, and the radius of curvature “∞” represents a plane. (Aspherical data) shows values of the conic constant K and the aspherical constants C4 to C10, respectively.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径、面間隔その他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。また、これらの記号の説明は、以降の他の実施例においても同様とし説明を省略する。   In addition, in all the following specification values, “mm” is generally used as the focal length f, the radius of curvature, the surface interval and other lengths, etc. unless otherwise specified. Even if proportional reduction is performed, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. In addition, the description of these symbols is the same in the following other embodiments, and the description is omitted.

(表1)
(全体諸元)
f= 7.91mm
F.NO= 1.582
水平方向半画角 ω= 20 度
垂直方向半画角 ω= 15 度
(レンズデータ)
面番号 曲率半径 面間隔 屈折率 アッベ数
1: ∞ 5.377800 開口絞りS
2: ∞ 10.000000 1.5168 64.1
3: -23.99578 -5.000000 1.5168 64.1 反射面M
4: ∞ 5.000000 1.5168 64.1 ビームスプリッタBS
5: ∞ 1.317173
像面I 19.42367
ペッツバール和 = 0.05495
(非球面データ)
{3面}
K C4 C6 C8 C10
0.000000 0.906482E-05 -0.271319E-06 0.449536E-08 -0.254866E-10
(Table 1)
(Overall specifications)
f = 7.91mm
F.NO = 1.582
Horizontal half field angle ω = 20 degrees Vertical half field angle ω = 15 degrees (lens data)
Surface number Curvature radius Surface spacing Refractive index Abbe number
1: ∞ 5.377800 Aperture stop S
2: ∞ 10.000000 1.5168 64.1
3: -23.99578 -5.000000 1.5168 64.1 Reflecting surface M
4: ∞ 5.000000 1.5168 64.1 Beam splitter BS
5: ∞ 1.317173
Image plane I 19.42367
Petzval sum = 0.05495
(Aspheric data)
{3 sides}
K C4 C6 C8 C10
0.000000 0.906482E-05 -0.271319E-06 0.449536E-08 -0.254866E-10

図10は、本第1実施例の湾曲収差図を示し、(a)は像面Iを平面とした際の湾曲収差図を、(b)は像面変換素子の受光面、即ち曲がった像面Iに結像させた時の湾曲収差図をそれぞれ示している。湾曲収差図においてXはサジタル方向の値を、Yはメリジオナル方向の値をそれぞれ示している。なお、他の実施例でも同様の符号を用い説明を省略する。   10A and 10B are diagrams showing the curvature aberration of the first embodiment, where FIG. 10A is a view of curvature aberration when the image plane I is a plane, and FIG. 10B is a light receiving surface of the image plane conversion element, that is, a bent image. Curve aberration diagrams when the image is formed on the surface I are shown. In the curved aberration diagram, X represents a value in the sagittal direction, and Y represents a value in the meridional direction. In the other embodiments, the same reference numerals are used and the description thereof is omitted.

図8に示すように、本発明にかかる像面変換素子101を結像光学系3の像面Iと撮像素子5との間に配置することによって、本第1実施例にかかる光学系は、図10の(a)に示す像面湾曲収差を(b)の如く解消でき、高画質の画像を得ることができることが判る。   As shown in FIG. 8, by disposing the image plane conversion element 101 according to the present invention between the image plane I of the imaging optical system 3 and the imaging element 5, the optical system according to the first embodiment is It can be seen that the field curvature aberration shown in FIG. 10A can be eliminated as shown in FIG. 10B, and a high-quality image can be obtained.

(第2実施例)
図11、図12は、本発明の実施の形態にかかる像面変換素子を用いた光学系の第2実施例を示す。図11は、撮像素子を含む光学系の概略構成図を、図12は像面までの結像光学系3の概略構成図をそれぞれ示す。本第2実施例では、結像光学系3の像面Iにおける像面湾曲収差が凹面形状になる場合を示している。
(Second embodiment)
11 and 12 show a second example of the optical system using the image plane conversion element according to the embodiment of the present invention. FIG. 11 is a schematic configuration diagram of an optical system including an image sensor, and FIG. 12 is a schematic configuration diagram of the imaging optical system 3 up to the image plane. In the second example, the case where the field curvature aberration on the image plane I of the imaging optical system 3 is concave is shown.

図11、図12において、光学系200は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1とより強い凸面を物体側に向けた両凸形状の正レンズL2との接合レンズと、像面変換素子1と撮像素子5とから構成されている。負メニスカスレンズL1と両凸形状の正レンズL2との接合面には開口絞りSが配置されている。本光学系では、像面Iでの像面湾曲収差の形状は物体側に凹面の形状を有し、像面変換素子1の第1面7aは像面Iにおける像面歪曲収差に対応する形状に形成されている。   11 and 12, an optical system 200 includes, in order from the object side, a cemented lens of a negative meniscus lens L1 having a convex surface facing the object side and a biconvex positive lens L2 having a stronger convex surface facing the object side. The image plane conversion element 1 and the imaging element 5 are included. An aperture stop S is disposed on the cemented surface between the negative meniscus lens L1 and the biconvex positive lens L2. In this optical system, the shape of the field curvature aberration on the image plane I has a concave shape on the object side, and the first surface 7a of the image plane conversion element 1 has a shape corresponding to the image plane distortion on the image plane I. Is formed.

物体からの光は、負メニスカスレンズL1、開口絞りS、及び両凸形状の正レンズL2を介して像面変換素子1の第1面7aのそれぞれの光伝達管7上に結像する。像からの光は、それぞれの光伝達管7中を伝達されて第2面7bからそれぞれの光伝達管7に対向する受光素子5aに向けて出射され受光素子5aでそれぞれ受光される。像面変換素子1の第1面7aの形状が、結像光学系3の像面湾曲収差を解消するように形成されているので、受光素子5aでは像面湾曲収差が解消された高画質の画像が得られる。   Light from the object forms an image on each light transmission tube 7 of the first surface 7a of the image plane conversion element 1 through the negative meniscus lens L1, the aperture stop S, and the biconvex positive lens L2. Light from the image is transmitted through the respective light transmission tubes 7, emitted from the second surface 7b toward the light receiving elements 5a facing the respective light transmission tubes 7, and received by the light receiving elements 5a. Since the shape of the first surface 7a of the image plane conversion element 1 is formed so as to eliminate the field curvature aberration of the imaging optical system 3, the light receiving element 5a has a high image quality in which the field curvature aberration is eliminated. An image is obtained.

次の表2に、本第2実施例にかかる光学系の諸元の値を掲げる。   Table 2 below provides values of specifications of the optical system according to the second example.

(表2)
(全体諸元)
入射瞳径 2.57mm
f= 7.91mm
F.No= 2
最大半画角 ω= 45
(レンズデータ)
面番号 曲率半径 面間隔 屈折率 アッベ数
1: 3.60544 1.528185 1.722498 29.6
2: 2.06702 3.178679 1.542496 62.9 開口絞りS
3: -4.59335 2.862011
像面I -6.33419
ペッツバール和 = -0.16013
(非球面データ)
{1面}
K C4 C6 C8 C10
0.000000 -0.181577E-02 0.893504E-04 -0.371334E-04 0.000000E+00
{3面}
K C4 C6 C8 C10
0.000000 0.285013E-02 -0.852893E-05 0.646081E-05 0.000000E+00
(Table 2)
(Overall specifications)
Entrance pupil diameter 2.57mm
f = 7.91mm
F. No = 2
Maximum half angle of view ω = 45
(Lens data)
Surface number Curvature radius Surface spacing Refractive index Abbe number
1: 3.60544 1.528185 1.722498 29.6
2: 2.06702 3.178679 1.542496 62.9 Aperture stop S
3: -4.59335 2.862011
Image plane I -6.33419
Petzval sum = -0.16013
(Aspheric data)
{1 side}
K C4 C6 C8 C10
0.000000 -0.181577E-02 0.893504E-04 -0.371334E-04 0.000000E + 00
{3 sides}
K C4 C6 C8 C10
0.000000 0.285013E-02 -0.852893E-05 0.646081E-05 0.000000E + 00

図13は、本第2実施例の湾曲収差図を示し、(a)は像面Iを平面とした際の湾曲収差図を、(b)は像面変換素子の受光面、即ち曲がった像面Iに結像させた時の湾曲収差図をそれぞれ示している。   FIGS. 13A and 13B are diagrams showing the curvature aberration of the second embodiment. FIG. 13A is a diagram showing the curvature aberration when the image plane I is a plane, and FIG. 13B is the light receiving surface of the image plane conversion element, that is, a curved image. Curve aberration diagrams when the image is formed on the surface I are shown.

図11に示すように、本発明にかかる像面変換素子1を結像光学系3の像面Iと撮像素子5との間に配置することによって、本第2実施例にかかる光学系は、図13の(a)に示す像面湾曲収差を(b)の如く解消でき、高画質の画像を得ることができることが判る。   As shown in FIG. 11, by disposing the image plane conversion element 1 according to the present invention between the image plane I of the imaging optical system 3 and the imaging element 5, the optical system according to the second embodiment is It can be seen that the field curvature aberration shown in FIG. 13A can be eliminated as shown in FIG. 13B, and a high-quality image can be obtained.

次に、本発明の実施の形態にかかる像面変換素子の製造方法に関して図面を参照しつつ説明する。   Next, a method for manufacturing an image plane conversion element according to an embodiment of the present invention will be described with reference to the drawings.

像面変換素子は、撮像素子の受光素子と同程度の面積を有する細いロッド又はファイバーを束ねたものに結像光学系の像面湾曲収差に対応する曲面を形成することで製造することが可能である。   The image plane conversion element can be manufactured by forming a curved surface corresponding to the field curvature aberration of the imaging optical system on a bundle of thin rods or fibers having the same area as the light receiving element of the image sensor. It is.

この時、選択された撮像素子の受光素子の数に対応した光ファイバーのような光伝達管を束ねた後、均一に引き伸ばして撮像素子の受光素子全体の大きさにした光伝達管群を製造することが考えられる。しかし、このような製法では、光伝達管の面積と受光素子の面積を一致させること、それぞれの受光素子に対向する光伝達管の中心間距離(ピッチ)を受光素子の中心間距離に一致させること、及び受光素子間の分離間隔と光伝達管の分離間隔を一致させることが困難である。この結果、光伝達管の位置と受光素子の位置が僅かにずれることによるモアレが発生してしまい画質の劣化を招いてしまう。   At this time, after bundling light transmission tubes such as optical fibers corresponding to the number of light receiving elements of the selected image sensor, a light transmission tube group is manufactured that is uniformly stretched to have the entire size of the light receiving elements of the image sensor. It is possible. However, in such a manufacturing method, the area of the light transmission tube and the area of the light receiving element are matched, and the distance (pitch) between the centers of the light transmission tubes facing each light receiving element is matched with the distance between the centers of the light receiving elements. In addition, it is difficult to match the separation interval between the light receiving elements and the separation interval of the light transmission tube. As a result, moire occurs due to a slight shift between the position of the light transmission tube and the position of the light receiving element, leading to degradation of image quality.

以下に説明する像面変換素子の製造方法では、光伝達管の面積と受光素子の面積をほぼ一致させ、両者のピッチずれを最小にし、分離間隔をほぼ同一にすることができる像面変換素子を製造することが可能になる。   In the method for manufacturing an image plane conversion element described below, the area of the light transmission tube and the area of the light receiving element are substantially matched, the pitch deviation between them is minimized, and the separation interval can be made substantially the same. Can be manufactured.

(第1の製造方法)
図14(a)から(d)は、本発明の実施の形態にかかる像面変換素子の第1の製造方法に関する概略工程図である。以下、工程に沿って説明する。
(First manufacturing method)
FIGS. 14A to 14D are schematic process diagrams relating to the first manufacturing method of the image plane conversion element according to the embodiment of the present invention. Hereinafter, it demonstrates along a process.

「工程1」(図14(a)参照)
像面変換素子300(図14(d)参照)の射出端側に配置され、後述する工程で形成される光伝達管を支持するガラスやプラスチック等の薄い基板303に、以後の工程中での基板303の平面性を維持するための支持基板305(例えば、Si基板、プラズマCVD成膜したSi薄膜層を有するセラミック板等)を接着固定する。なお、Si基板の接着には陽極接合が好ましい。また、接着材を用いても良い。
Step 1” (see FIG. 14A)
It is arranged on the exit end side of the image plane conversion element 300 (see FIG. 14D), and is attached to a thin substrate 303 such as glass or plastic that supports the light transmission tube formed in the process described later, in the subsequent process. A support substrate 305 (for example, a Si substrate or a ceramic plate having a Si thin film layer formed by plasma CVD) for maintaining the flatness of the substrate 303 is bonded and fixed. Note that anodic bonding is preferable for bonding the Si substrate. An adhesive may be used.

「工程2」(図14(b)参照)
支持基板であるSi基板305に接着された基板303(例えば、パイレックス(登録商標)ガラス等、以後ガラス基板と記す)の表面を洗浄して乾燥した後、ガラス基板303上にホトレジスト307を所定の厚さに塗布する。塗布は、通常のスピンコート法などが用いられる。ホトレジスト307は例えば、化薬マイクロケム社製の製品名SU8などが使用可能である。ホトレジスト307を塗布後、別に用意した金型309をヒーターで過熱したホトレジスト307の表面に押圧して、像面変換素子300の第1面(入射面)311の曲面形状を創製する。金型309で曲面形状を創製するとともにホトレジスト307のプリベークも併せて行う。金型309で曲面が創製されたホトレジスト307の厚さが光伝達管の長さに相当し、数ミクロンから数mm程度となる。
Step 2” (see FIG. 14B)
After cleaning and drying the surface of a substrate 303 (for example, a Pyrex (registered trademark) glass or the like, hereinafter referred to as a glass substrate) bonded to the Si substrate 305 as a support substrate, a photoresist 307 is placed on the glass substrate 303 in a predetermined manner. Apply to thickness. For the application, a normal spin coating method or the like is used. As the photoresist 307, for example, the product name SU8 manufactured by Kayaku Microchem Corporation can be used. After applying the photoresist 307, a separately prepared mold 309 is pressed against the surface of the photoresist 307 heated with a heater to create the curved surface shape of the first surface (incident surface) 311 of the image plane conversion element 300. A curved surface shape is created with the mold 309 and the photoresist 307 is pre-baked together. The thickness of the photoresist 307 having a curved surface created by the mold 309 corresponds to the length of the light transmission tube, and is about several microns to several mm.

「工程3」(図14(c)参照)
選択された撮像素子の受光素子の配列、及び受光素子分離間隔に対応するように形成された不図示のホトマスクを使って、光伝達管パターンをホトレジスト307に露光、現像する。このように、露光、現像が終わった時点でホトレジスト307の部分を光伝達管として使用する像面変換素子300が形成される。なお、露光には、焦点深度の深いX線露光方法や、紫外線近接露光方法を用いて一括露光する方法、あるかはガラス基板303の底面からの高さに応じてエリア分割をし、エリア内のホトレジスト膜307表面の高低差が露光装置の焦点深度内になるようにエリアサイズに応じて準備されたレチクルを用いたスッテパー露光方法を用いて露光する方法、又はレーザーパターンジェネレータ(LPG)による直接描画方法で露光する方法などが適宜選択して用いられる。
Step 3” (see FIG. 14C)
The light transmission tube pattern is exposed and developed on the photoresist 307 using a photomask (not shown) formed so as to correspond to the arrangement of the light receiving elements of the selected image sensor and the light receiving element separation interval. In this way, the image plane conversion element 300 that uses the photoresist 307 portion as a light transmission tube at the time of completion of exposure and development is formed. For exposure, an X-ray exposure method with a deep focal depth or a method of batch exposure using an ultraviolet proximity exposure method, or whether the exposure is divided into areas according to the height from the bottom surface of the glass substrate 303. The exposure method using a stepper exposure method using a reticle prepared according to the area size so that the height difference of the surface of the photoresist film 307 is within the depth of focus of the exposure apparatus, or directly by a laser pattern generator (LPG) A method of exposing by a drawing method is appropriately selected and used.

「工程4」(図14(d)参照)
支持基板であるSi基板305を除去して像面変換素子300が完成する。Si基板305の除去には、XeF2ガスによる等方性ドライエッチング法などを用いて行う。
“Step 4” (see FIG. 14D)
The image plane conversion element 300 is completed by removing the Si substrate 305 as the support substrate. The removal of the Si substrate 305 is performed by using an isotropic dry etching method using XeF 2 gas.

なお、ホトレジスト307を支持するガラス基板303をホトレジスト307をマスクとしてガラス基板303の途中の厚さまで異方性ドライエッチングでエッチングし、受光素子と光伝達管307の端面(第2面)313を近づけるように形成することで、光伝達管307の端面313から受光素子に向けて出射する光の広がりを抑えるようにすることもできる。   The glass substrate 303 that supports the photoresist 307 is etched by anisotropic dry etching to a thickness in the middle of the glass substrate 303 using the photoresist 307 as a mask, and the light receiving element and the end surface (second surface) 313 of the light transmission tube 307 are brought closer to each other. By forming in this way, it is possible to suppress the spread of light emitted from the end face 313 of the light transmission tube 307 toward the light receiving element.

このようにして、本第1の製造方法により像面変換素子300が完成する。この後、図2に示すように、所定の撮像素子において受光素子と光伝達管307の出射端面313とを位置合わせする。なお、受光素子と光伝達管307との位置合わせの際の作業性及び像面変換素子300の強度を得るために、後述する図17に示すような枠部600を像面変換素子300の外周部分に形成しておくことが望ましい。なお、受光素子と光伝達管307との位置合わせが終了した後、接着剤等で固定して一体化した撮像素子を構成しても良い。   In this manner, the image plane conversion element 300 is completed by the first manufacturing method. Thereafter, as shown in FIG. 2, the light receiving element and the emission end face 313 of the light transmission tube 307 are aligned in a predetermined imaging element. In addition, in order to obtain the workability in aligning the light receiving element and the light transmission tube 307 and the strength of the image plane conversion element 300, a frame portion 600 as shown in FIG. It is desirable to form in the part. In addition, after the alignment between the light receiving element and the light transmission tube 307 is completed, the imaging element may be configured to be fixed and integrated with an adhesive or the like.

(第2の製造方法)
図15(a)から(g)は、本発明の実施の形態にかかる像面変換素子の第2の製造方法に関する概略工程図である。以下、工程に沿って説明する。なお、第1の製造方法と同様の部材には同じ符号を付して説明する。
(Second manufacturing method)
FIGS. 15A to 15G are schematic process diagrams relating to the second manufacturing method of the image plane conversion element according to the embodiment of the present invention. Hereinafter, it demonstrates along a process. In addition, the same code | symbol is attached | subjected and demonstrated to the member similar to a 1st manufacturing method.

「工程1」(図15(a)参照)
撮像素子側が平面で、この面に対向する面が結像光学系の像面湾曲収差に対応する曲面311を有する樹脂部材320を射出成型等で形成する。
Step 1” (see FIG. 15A)
A resin member 320 having a flat surface on the imaging element side and a curved surface 311 corresponding to the curvature of field aberration of the imaging optical system is formed by injection molding or the like.

「工程2」(図15(b)参照)
成型された樹脂部材320の撮影素子側の平面を薄い(例えば、厚さが数十ミクロン程度)ガラス基板303に接着する。なお、成型された樹脂部材320の撮影素子側の平面に数ミクロンから数十ミクロンの厚さの透明な膜(例えば、SiO2膜)を蒸着、又はスパッタリング等で成膜して基板303としても良い。
Step 2” (see FIG. 15B)
The plane of the molded resin member 320 on the imaging element side is bonded to a thin glass substrate 303 (for example, a thickness of about several tens of microns). Note that a transparent film (eg, SiO 2 film) having a thickness of several microns to several tens of microns may be formed on the plane of the molded resin member 320 on the imaging element side by vapor deposition or sputtering to form the substrate 303. .

「工程3」(図15(c)参照)
樹脂部材320をエッチングする際のマスク材322(例えば、SiO2膜等の酸化膜、SiN4等の窒化膜等)を蒸着、又はスパッタリングで樹脂部材320の表面に0.3〜3.0ミクロンの厚さで成膜する。成膜するSiO2膜322の厚さはエッチングする樹脂部材320の厚さによって決める。
Step 3” (see FIG. 15C)
A mask material 322 for etching the resin member 320 (for example, an oxide film such as a SiO2 film, a nitride film such as SiN4) is deposited or sputtered on the surface of the resin member 320 by a thickness of 0.3 to 3.0 microns. Then, a film is formed. The thickness of the SiO 2 film 322 to be formed is determined by the thickness of the resin member 320 to be etched.

「工程4」(図15(d)参照)
マスク材であるSiO2膜322の上にホトレジスト307を所定の厚さ塗布、プリベークする。その後、選択された撮像素子の受光素子に対応するパターンを形成されたマスクを用いて露光し、現像を行う。この結果、受光素子に対応する部分にホトレジスト307が残り、受光素子を分離する素子分離間隔部のホトレジスト307が除かれたホトレジストパターン307が形成される。なお、露光には、焦点深度の深いX線露光方法や、紫外線近接露光方法を用いて一括露光する方法、あるかは樹脂部材320に貼り付けられたガラス基板303の底面からの高さに応じてエリア分割をし、エリア内のホトレジスト膜307表面の高低差が露光装置の焦点深度内になるようにエリアサイズに応じて準備されたレチクルを用いたスッテパー露光方法を用いて露光する方法、又はレーザーパターンジェネレータ(LPG)による直接描画方法で露光する方法などが適宜選択して用いられる。
“Step 4” (see FIG. 15D)
A photoresist 307 is applied to a predetermined thickness on the SiO2 film 322 as a mask material and pre-baked. Thereafter, exposure is performed using a mask on which a pattern corresponding to the light receiving element of the selected image sensor is formed, and development is performed. As a result, the photoresist 307 remains in a portion corresponding to the light receiving element, and a photoresist pattern 307 is formed by removing the photoresist 307 in the element separation interval for separating the light receiving elements. In addition, the exposure is a method of performing batch exposure using an X-ray exposure method having a deep focal depth or an ultraviolet proximity exposure method, or depending on the height from the bottom surface of the glass substrate 303 attached to the resin member 320. Dividing the area and exposing using a stepper exposure method using a reticle prepared according to the area size so that the height difference of the surface of the photoresist film 307 in the area is within the depth of focus of the exposure apparatus, or A method of exposing by a direct drawing method using a laser pattern generator (LPG) is appropriately selected and used.

「工程5」(図15(e)参照)
反応性イオンエッチング(RIE)法などのドライエッチング法を用いてホトレジスト307をマスクにしてSiO2膜322をエッチングする。これで、ホトレジスト307に代わってホトレジスト307のエッチング残り層とSiO2膜322が次工程のマスクとして残る。
Step 5” (see FIG. 15E)
The SiO2 film 322 is etched using the photoresist 307 as a mask by using a dry etching method such as a reactive ion etching (RIE) method. Thus, the remaining etching layer of the photoresist 307 and the SiO 2 film 322 remain as a mask for the next process in place of the photoresist 307.

「工程6」(図15(f)参照)
ホトレジスト307のエッチング残り層とSiO2膜322をマスクにしてその下の樹脂部材320をエッチングする。エッチングは、酸素ガスを使った異方性ドライエッチング法を用い、樹脂部材320をほぼ垂直にエッチングしロッド状の樹脂部材320を形成する。このロッド状の樹脂部材320が光伝達管(同じ符号320を付して説明する)となる。この際、下層のガラス基板303はエッチングのストッパーとして働き、エッチング終了後は光伝達管320を支える支持部材303として機能する。
“Step 6” (see FIG. 15F)
The remaining resin layer 320 of the photoresist 307 and the SiO2 film 322 are used as a mask to etch the resin member 320 therebelow. The etching uses an anisotropic dry etching method using oxygen gas, and the resin member 320 is etched almost vertically to form the rod-shaped resin member 320. This rod-shaped resin member 320 serves as a light transmission tube (described with the same reference numeral 320). At this time, the lower glass substrate 303 functions as an etching stopper, and functions as a support member 303 that supports the light transmission tube 320 after the etching is completed.

「工程7」(図15(g)参照)
光伝達管である樹脂部材320をマスクとして下層のガラス基板303を途中の厚さまでエッチングする。このエッチングにより下層のガラス基板303まで光伝達管320が形成され樹脂部材320及びガラス基板303を含めて光伝達管320として機能する。この結果、光伝達管320の受光素子側の出射端面313を受光素子に近づけることが可能になると供に、出射端面313から出射した光のガラス基板303中での広がりを抑えることができる。なお、ガラス基板303のエッチングの時に樹脂部材320の表面に残っているSiO2膜322も一緒にエッチングされるため、光伝達管320である樹脂部材320の表面にSiO2膜322が残ることはない。なお、SiO2膜322は透明であり樹脂部材320の表面に残っていても問題は無い。
Step 7” (see FIG. 15G)
The lower glass substrate 303 is etched to an intermediate thickness using the resin member 320 as a light transmission tube as a mask. By this etching, the light transmission tube 320 is formed up to the lower glass substrate 303 and functions as the light transmission tube 320 including the resin member 320 and the glass substrate 303. As a result, the emission end face 313 on the light receiving element side of the light transmission tube 320 can be brought close to the light receiving element, and the spread of the light emitted from the emission end face 313 in the glass substrate 303 can be suppressed. Since the SiO 2 film 322 remaining on the surface of the resin member 320 is etched together when the glass substrate 303 is etched, the SiO 2 film 322 does not remain on the surface of the resin member 320 that is the light transmission tube 320. Note that there is no problem even if the SiO 2 film 322 is transparent and remains on the surface of the resin member 320.

このようにして、本第2の製造方法により像面変換素子330が完成する。この後、図2に示すように、所定の撮像素子において受光素子と光伝達管320の出射端面313とを位置合わせする。なお、受光素子と光伝達管320との位置合わせの際の作業性及び像面変換素子の強度を得るために、後述する図17に示すような枠部600を像面変換素子330の外周部分に形成しておくことが好ましい。なお、受光素子と光伝達管320との位置合わせが終了した後、接着剤等で固定して一体化した撮像素子を構成しても良い。   In this way, the image plane conversion element 330 is completed by the second manufacturing method. Thereafter, as shown in FIG. 2, the light receiving element and the emission end face 313 of the light transmission tube 320 are aligned in a predetermined imaging element. In addition, in order to obtain the workability at the time of alignment between the light receiving element and the light transmission tube 320 and the strength of the image plane conversion element, a frame portion 600 as shown in FIG. It is preferable to form them in the same manner. It should be noted that after the alignment between the light receiving element and the light transmission tube 320 is completed, an image pickup element that is fixed and integrated with an adhesive or the like may be configured.

(第3の製造方法)
図16(a)から(j)は、本発明の実施の形態にかかる像面変換素子の第3の製造方法に関する概略工程図である。本第3の製造方法は量産性を向上させることを目的にしている。以下、工程に沿って説明する。なお、第1、第2の製造方法と同様の部材には同じ符号を付して説明する。
(Third production method)
FIGS. 16A to 16J are schematic process diagrams relating to the third method of manufacturing the image plane conversion element according to the embodiment of the present invention. The third manufacturing method aims to improve mass productivity. Hereinafter, it demonstrates along a process. In addition, the same code | symbol is attached | subjected and demonstrated to the member similar to the 1st, 2nd manufacturing method.

「工程1」(図16(a)参照)
ガラス、石英、又はプラスチック等からなる支持基板350上に、厚さ約1ミクロン程度の導電性膜351(例えば、Au/Cr膜等)を蒸着、又はスパッタリングによって成膜する。この導電性膜351は後の電気メッキ工程における電極となる。
Step 1” (see FIG. 16A)
On a support substrate 350 made of glass, quartz, plastic, or the like, a conductive film 351 (for example, an Au / Cr film) having a thickness of about 1 micron is formed by vapor deposition or sputtering. This conductive film 351 will be an electrode in a later electroplating process.

「工程2」(図16(b)参照)
前もって成型された、撮像素子側が平面で、この面に対向する面が結像光学系の像面湾曲収差に対応する曲面311を有する樹脂部材320を、樹脂部材320の撮影素子側の平面を薄いUV接着剤等を介して導電性膜351上に接着する。
Step 2” (see FIG. 16B)
The resin member 320 having a curved surface 311 corresponding to the field curvature aberration of the imaging optical system is thinned in advance, and the plane on the imaging element side of the resin member 320 is thin. It adheres on the conductive film 351 through a UV adhesive or the like.

「工程3」(図16(c)参照)
樹脂部材320をエッチングする際のマスク材となるSiO2膜322を蒸着、又はスパッタリングで樹脂部材320の表面に0.3〜3.0ミクロンの厚さで成膜する。成膜するSiO2膜322の厚さはエッチングする樹脂部材320の厚さによって決める。
Step 3” (see FIG. 16C)
A SiO2 film 322 serving as a mask material when etching the resin member 320 is deposited or sputtered to a thickness of 0.3 to 3.0 microns on the surface of the resin member 320. The thickness of the SiO 2 film 322 to be formed is determined by the thickness of the resin member 320 to be etched.

「工程4」(図16(d)参照)
マスク材となるSiO2膜322の上にホトレジスト307を所定の厚さ塗布、プリベークする。その後、選択された撮像素子の受光素子に対応するパターンを形成されたマスクを用いて露光し、現像を行う。この結果、受光素子に対応する部分にホトレジスト307が残り、受光素子を分離する素子分離間隔部のホトレジスト307が除かれたホトレジストパターン307が形成される。なお、露光には、焦点深度の深いX線露光方法や、紫外線近接露光方法を用いて一括露光する方法、あるかはガラス基板350の底面からの高さに応じてエリア分割をし、エリア内のホトレジスト膜表面の高低差が露光装置の焦点深度内になるようにエリアサイズに応じて準備されたレチクルを用いたスッテパー露光方法を用いて露光する方法、又はレーザーパターンジェネレータ(LPG)直接描画方法で露光する方法などが適宜選択して用いられる。
“Step 4” (see FIG. 16D)
A photoresist 307 is applied to a predetermined thickness on the SiO2 film 322 serving as a mask material and pre-baked. Thereafter, exposure is performed using a mask on which a pattern corresponding to the light receiving element of the selected image sensor is formed, and development is performed. As a result, the photoresist 307 remains in a portion corresponding to the light receiving element, and a photoresist pattern 307 is formed by removing the photoresist 307 in the element separation interval for separating the light receiving elements. For exposure, an X-ray exposure method with a deep focal depth or a method of batch exposure using an ultraviolet proximity exposure method, or whether or not the area is divided according to the height from the bottom surface of the glass substrate 350. Exposure method using a stepper exposure method using a reticle prepared according to the area size so that the difference in height of the photoresist film surface is within the depth of focus of the exposure apparatus, or a laser pattern generator (LPG) direct writing method The method of exposing with the above is appropriately selected and used.

「工程5」(図16(e)参照)
反応性イオンエッチング(RIE)法などのドライエッチング法を用いてホトレジスト307をマスクにしてSiO2膜322をエッチングする。SiO2膜322をエッチングした後、残りのホトレジスト膜307を除去する。これで、ホトレジストに代わってSiO2膜322が次工程のマスクとして残る。
Step 5” (see FIG. 16E)
The SiO2 film 322 is etched using the photoresist 307 as a mask by using a dry etching method such as a reactive ion etching (RIE) method. After the SiO 2 film 322 is etched, the remaining photoresist film 307 is removed. Thus, the SiO2 film 322 remains as a mask for the next process in place of the photoresist.

「工程6」(図16(f)参照)
SiO2膜322をマスクにしてその下の樹脂部材320をエッチングする。エッチングは、酸素ガスを使った異方性ドライエッチング法を用い、樹脂部材320をエッチングしロッド状の樹脂部材320を形成する。このロッド状の樹脂部材320が光伝達管(同じ符号320を付して説明する)となる。この際、下層の導電性膜351はエッチングのストッパーとして働き、エッチング終了後、ガラス基板350は電気メッキ中の基板を支える支持部材として機能する。
“Step 6” (see FIG. 16F)
The underlying resin member 320 is etched using the SiO 2 film 322 as a mask. For the etching, an anisotropic dry etching method using oxygen gas is used to etch the resin member 320 to form the rod-shaped resin member 320. This rod-shaped resin member 320 serves as a light transmission tube (described with the same reference numeral 320). At this time, the lower conductive film 351 functions as an etching stopper, and after the etching, the glass substrate 350 functions as a support member for supporting the substrate during electroplating.

「工程7」(図16(g)参照)
Ni電気メッキでNiの金型360を形成する。
Step 7” (see FIG. 16G)
A Ni mold 360 is formed by Ni electroplating.

「工程8」(図16(h)参照)
金型360からガラス基板350、光伝達管である樹脂部材320、及び導電性膜351をエッチング等を用いて除去し、Ni電鋳金型360が完成する。
“Step 8” (see FIG. 16H)
The glass substrate 350, the resin member 320 which is a light transmission tube, and the conductive film 351 are removed from the mold 360 by etching or the like, and the Ni electroforming mold 360 is completed.

「工程9」(図16(i)参照)
Ni電鋳金型360にUV硬化樹脂、或いは熱可塑性樹脂等370を充填し、前記樹脂の支持基板でとなる薄板ガラス基板371をカバーしてUV硬化、又は熱硬化させて光伝達管(同じ符号370を付す)を形成し像面変換素子400を成型する。その後金型360から像面変換素子400を分離する。この工程を繰り返すことにより同型の像面変換素子400が容易に製造される。なお、Ni電鋳金型360を用いた射出成型法を用いて像面変換素子400を成型しても良い。射出成型法によるときは、薄板ガラス371に代わり薄い樹脂板が形成される。
“Step 9” (see FIG. 16I)
The Ni electroforming mold 360 is filled with a UV curable resin, a thermoplastic resin, or the like 370, and the thin glass substrate 371 serving as a support substrate for the resin is covered and UV cured or thermally cured to form a light transmission tube (same reference numeral). 370) and the image plane conversion element 400 is molded. Thereafter, the image plane conversion element 400 is separated from the mold 360. By repeating this process, the same image plane conversion element 400 can be easily manufactured. The image plane conversion element 400 may be molded using an injection molding method using a Ni electroforming mold 360. When the injection molding method is used, a thin resin plate is formed instead of the thin glass plate 371.

「工程10」(図16(j)参照)
光伝達管である樹脂部材370をマスクにして下層のガラス基板371を異方性ドライエッチングで薄板ガラス基板371の途中の厚さまでエッチングする。このエッチングにより下層の薄板ガラス基板371まで光伝達管370が形成され樹脂部材370及びガラス基板371を含めて光伝達管370として機能する。この結果、光伝達管370の受光素子側の出射端面313を受光素子に近づけることが可能になると供に、出射端面313から出射した光のガラス基板371中での広がりを抑えることができる。なお、支持基板である薄板ガラス基板371が十分薄い場合(例えば、10μ程度)には、この工程を省くことも可能である。
“Step 10” (see FIG. 16J)
The lower glass substrate 371 is etched to an intermediate thickness of the thin glass substrate 371 by anisotropic dry etching using the resin member 370 which is a light transmission tube as a mask. By this etching, the light transmission tube 370 is formed up to the lower glass substrate 371, and functions as the light transmission tube 370 including the resin member 370 and the glass substrate 371. As a result, it becomes possible to bring the emission end face 313 on the light receiving element side of the light transmission tube 370 closer to the light receiving element, and to suppress the spread of the light emitted from the emission end face 313 in the glass substrate 371. In addition, when the thin glass substrate 371 which is a support substrate is sufficiently thin (for example, about 10 μm), this step can be omitted.

このようにして、本第3の製造方法により像面変換素子400が完成する。この後、図2に示すように、所定の撮像素子において受光素子と光伝達管370の出射端面313とを位置合わせする。なお、受光素子と光伝達管370との位置合わせの際の作業性及び像面変換素子の強度を得るために、後述する図17に示すような枠部600を像面変換素子400の外周部分に形成しておくことが好ましい。なお、受光素子と光伝達管307との位置合わせが終了した後、接着剤等で固定して一体化した撮像素子を構成しても良い。   In this way, the image plane conversion element 400 is completed by the third manufacturing method. Thereafter, as shown in FIG. 2, the light receiving element and the emission end face 313 of the light transmission tube 370 are aligned in a predetermined imaging element. In addition, in order to obtain the workability and the strength of the image plane conversion element when aligning the light receiving element and the light transmission tube 370, a frame portion 600 as shown in FIG. It is preferable to form them in the same manner. In addition, after the alignment between the light receiving element and the light transmission tube 307 is completed, the imaging element may be configured to be fixed and integrated with an adhesive or the like.

なお、上述した各製造方法において説明した工程は主要な工程であり、この他にも半導体などの製造で用いられる一般的な洗浄工程、乾燥工程、素子分割工程などの加工工程、及び検査工程などがあるがその詳細は本製造方法の主要部分ではないので説明を省略している。   In addition, the process demonstrated in each manufacturing method mentioned above is a main process, In addition to this, processing processes, such as a general washing process used in manufacture of a semiconductor, a drying process, an element division process, an inspection process, etc. However, the details are not the main part of the manufacturing method, and the explanation is omitted.

また、一部の工程において光伝達管の支持基板としてガラス基板を用いて説明したが、他のガラス以外の石英基板、或いはプラスチック基板で有っても良い。   In addition, although a glass substrate is used as a support substrate for the light transmission tube in some processes, a quartz substrate other than glass or a plastic substrate may be used.

図17は、本発明にかかる像面変換素子を有する撮像素子の好ましい形態の一例を示している。上述の製造方法で製造された像面変換素子300、330、400は、所定の撮像素子5の受光面に配置され、受光素子と光伝達管とを対向させて固定する必要がある。この時、図17に示すような枠部600を設けておくことで位置合わせ、接着などを容易に行うことが可能になる。枠部600は、素子位置合わせ後、取り除いても良いし、或いは素子の固定枠として活用しても良い。   FIG. 17 shows an example of a preferred form of an image sensor having an image plane conversion element according to the present invention. The image plane conversion elements 300, 330, and 400 manufactured by the above-described manufacturing method are disposed on the light receiving surface of the predetermined imaging element 5, and it is necessary to fix the light receiving element and the light transmission tube so as to face each other. At this time, by providing a frame portion 600 as shown in FIG. 17, it is possible to easily perform positioning, bonding, and the like. The frame portion 600 may be removed after the element alignment, or may be used as a fixed frame for the element.

また、本発明にかかる像面変換素子を選択された撮像素子の受光素子に位置合わせ固定し、一体として像面変換素子を有する撮像素子とすることも可能である。これにより、像面変換素子と撮像素子とを光学系に組込み易くすることができる。   In addition, the image plane conversion element according to the present invention can be positioned and fixed to the light receiving element of the selected image pickup element, and the image pickup element having the image plane conversion element as a whole can be obtained. As a result, the image plane conversion element and the imaging element can be easily incorporated into the optical system.

更に、受光素子の製造工程と光伝達管の製造工程とを組み合わせて、受光素子の製造工程で形成された受光素子の上に光伝達管を直接製造して、光伝達管を有する受光素子を形成し、撮像素子とすることも可能である。   Further, the light receiving element manufacturing process and the light transmitting tube manufacturing process are combined to directly manufacture the light transmitting tube on the light receiving element formed in the light receiving element manufacturing process. It is also possible to form an imaging device.

以上述べたように、本発明によれば、像面湾曲収差を有する結像光学系において、結像光学系の像面と撮像素子との間に配置して像面湾曲収差を解消して高画質の画像を撮像可能にする像面変換素子を提供することが可能になる。また、この像面変換素子を有する光学系(撮像光学系)を提供することが可能になる。また、この像面変換素子を製造する製造方法を提供することが可能になる。また、この像面変換素子と撮像素子とを一体的に形成した撮像素子を提供することが可能になる。   As described above, according to the present invention, in an imaging optical system having field curvature aberration, it is disposed between the image plane of the imaging optical system and the image sensor to eliminate the field curvature aberration. It is possible to provide an image plane conversion element that makes it possible to capture an image of an image quality. It is also possible to provide an optical system (imaging optical system) having this image plane conversion element. It is also possible to provide a manufacturing method for manufacturing this image plane conversion element. In addition, it is possible to provide an image sensor in which the image plane conversion element and the image sensor are integrally formed.

なお、上述の実施の形態は例に過ぎず、上述の構成や形状に限定されるものではなく、本発明の範囲内において適宜修正、変更が可能である。   The above-described embodiment is merely an example, and is not limited to the above-described configuration and shape, and can be appropriately modified and changed within the scope of the present invention.

本発明の第1実施の形態にかかる像面変換素子を結像光学系の像面と撮像素子の間に配置した状態を示している。The state which has arrange | positioned the image surface conversion element concerning 1st Embodiment of this invention between the image surface of an imaging optical system and an image pick-up element is shown. 図1の像面変換素子と撮像素子の拡大断面図を示す。FIG. 2 shows an enlarged cross-sectional view of the image plane conversion element and the imaging element in FIG. 1. 像面変換素子を構成する種々の形状の光伝達管(a)〜(c)を示す。The light transmission tubes (a) to (c) of various shapes constituting the image plane conversion element are shown. 本発明の第2実施の形態にかかる像面変換素子を有する光学系を示し、(a)は像面と撮像素子との間に像面変換素子を配置した状態を、(b)は光伝達管の概略形状をそれぞれ示している。2 shows an optical system having an image plane conversion element according to a second embodiment of the present invention, where (a) shows a state in which the image plane conversion element is arranged between the image plane and the image pickup element, and (b) shows an optical transmission. The schematic shapes of the tubes are shown respectively. 本発明の第3実施の形態にかかる像面変換素子を有する光学系を示す。7 shows an optical system having an image plane conversion element according to a third embodiment of the present invention. 本発明の第4実施の形態にかかる像面変換素子を有する光学系を示す。7 shows an optical system having an image plane conversion element according to a fourth embodiment of the present invention. 本発明の第5実施の形態にかかる像面変換素子を有する光学系を示す。7 shows an optical system having an image plane conversion element according to a fifth embodiment of the present invention. 本発明の実施の形態にかかる像面変換素子を用いた光学系の第1実施例を示し、撮像素子を含む光学系の概略構成図を示す。The 1st Example of the optical system using the image plane conversion element concerning embodiment of this invention is shown, and the schematic block diagram of the optical system containing an image pick-up element is shown. 像面Iまでの結像光学系の概略構成図を示す。1 is a schematic configuration diagram of an imaging optical system up to an image plane I. FIG. 本第1実施例の湾曲収差図を示し、(a)は像面Iを平面とした際の湾曲収差図を、(b)は像面変換素子受光面、即ち曲がった像面に結像させた時の湾曲収差図をそれぞれ示している。The curved aberration diagram of the first embodiment is shown, (a) is a curved aberration diagram when the image surface I is a plane, and (b) is imaged on the light receiving surface of the image plane conversion element, that is, a curved image surface. FIG. 4 shows a curved aberration diagram at the time. 本発明の実施の形態にかかる像面変換素子を用いた光学系の第2実施例を示し、撮像素子を含む光学系の概略構成図を示す。The 2nd Example of the optical system using the image surface conversion element concerning embodiment of this invention is shown, and the schematic block diagram of the optical system containing an image pick-up element is shown. 像面Iまでの結像光学系の概略構成図を示す。1 is a schematic configuration diagram of an imaging optical system up to an image plane I. FIG. 本第2実施例の湾曲収差図を示し、(a)は像面Iを平面とした際の湾曲収差図を、(b)は像面変換素子受光面、即ち曲がった像面に結像させた時の湾曲収差図をそれぞれ示している。The curved aberration diagram of the second embodiment is shown, (a) is a curved aberration diagram when the image plane I is a plane, and (b) is imaged on the light receiving surface of the image plane conversion element, that is, a curved image plane. FIG. 4 shows a curved aberration diagram at the time. 本発明の実施の形態にかかる像面変換素子の第1の製造方法に関する概略工程図を示す。The schematic process drawing regarding the 1st manufacturing method of the image plane conversion element concerning embodiment of this invention is shown. 本発明の実施の形態にかかる像面変換素子の第2の製造方法に関する概略工程図を示す。The schematic process drawing regarding the 2nd manufacturing method of the image plane conversion element concerning embodiment of this invention is shown. 本発明の実施の形態にかかる像面変換素子の第3の製造方法に関する概略工程図を示す。The schematic process drawing regarding the 3rd manufacturing method of the image plane conversion element concerning embodiment of this invention is shown. 本発明にかかる像面変換素子を有する撮像素子の好ましい形態の一例を示している。An example of the preferable form of the image pick-up element which has an image surface conversion element concerning this invention is shown.

符号の説明Explanation of symbols

1、11、21、31、41、101、300、330、400 像面変換素子
2 光軸
3 結像光学系
100、200 光学系
5 撮像素子
5a 受光素子
7、17、27、107 光伝達管
30 連結部
48 遮光部材
303、350、371 (ガラス)基板
305 支持基板
307 ホトレジスト、光伝達管
309、360 金型
311 曲面
320 樹脂部材、光伝達管
370 樹脂、光伝達管
600 枠部
1, 11, 21, 31, 41, 101, 300, 330, 400 Image plane conversion element 2 Optical axis 3 Imaging optical system 100, 200 Optical system 5 Imaging element 5a Light receiving element 7, 17, 27, 107 Light transmission tube 30 connecting portion 48 light shielding member 303, 350, 371 (glass) substrate 305 support substrate 307 photoresist, light transmission tube 309, 360 mold 311 curved surface 320 resin member, light transmission tube 370 resin, light transmission tube 600 frame portion

Claims (37)

結像光学系の像面と撮像素子の間に配置され、前記撮像素子の複数の受光素子にそれぞれ対向する複数の光伝達管を互いに非交差に形成する像面変換素子の製造方法であって、
前記光伝達管が形成される高分子部材の第1面である前記像面側の面を前記結像光学系の像面湾曲収差に対応する曲面に金型で成型する成型工程と、
前記高分子部材の前記第1面に対向する平面を透明基板に接着する接着工程と、
前記高分子部材と前記透明基板とから前記光伝達管を形成し、前記光伝達管の端面の集合体の包絡面である第2面を前記撮像素子の受光素子の包絡面に略平行に形成し、前記第2面を前記透明基板中に形成する加工工程と、を有することを特徴とする像面変換素子の製造方法。
A method for manufacturing an image plane conversion element, which is disposed between an image plane of an imaging optical system and an image sensor, and forms a plurality of light transmission tubes that respectively face the plurality of light receiving elements of the image sensor so as not to intersect each other. ,
A molding step of molding the surface on the image plane side, which is the first surface of the polymer member on which the light transmission tube is formed, into a curved surface corresponding to the field curvature aberration of the imaging optical system with a mold;
An adhesion step of adhering a plane facing the first surface of the polymer member to a transparent substrate;
The light transmission tube is formed from the polymer member and the transparent substrate, and a second surface, which is an envelope surface of the aggregate of end surfaces of the light transmission tube, is formed substantially parallel to the envelope surface of the light receiving element of the imaging element. And a processing step of forming the second surface in the transparent substrate .
前記高分子部材は、ホトレジスト、プラスチック、UV硬化樹脂、又は熱可塑性樹脂からなることを特徴とする請求項1に記載の像面変換素子の製造方法。   2. The method of manufacturing an image plane conversion element according to claim 1, wherein the polymer member is made of photoresist, plastic, UV curable resin, or thermoplastic resin. 前記透明基板は、ガラス、又はプラスチックであることを特徴とする請求項1または2に記載の像面変換素子の製造方法。 The transparent substrate, method of manufacturing the image surface conversion element according to claim 1 or 2, characterized in that a glass, or plastic. 前記加工工程は、所定の光伝達管パターンを露光する工程、現像工程、及びエッチング工程を含むことを特徴とする請求項1から3のいずれか一項に記載の像面変換素子の製造方法。 The processing step includes the steps of exposing a predetermined light transmission tube pattern, development process, and a manufacturing method of an image plane conversion device according to any one of claims 1 to 3, characterized in that it comprises an etching step. 前記成型工程と前記接着工程とは同一工程で行われることを特徴とする請求項1から4のいずれか一項に記載の像面変換素子の製造方法。   The method for manufacturing an image plane conversion element according to claim 1, wherein the molding step and the bonding step are performed in the same step. 前記加工工程は、金属膜、酸化膜、又は窒化膜の成膜工程を更に含むことを特徴とする請求項1から4のいずれか一項に記載の像面変換素子の製造方法。 The processing step, the metal film, oxide film, or a manufacturing method of an image plane conversion element according to claim 1, any one of 4, further comprising a nitride film deposition process. 前記露光する工程は、紫外線近接露光、X線露光工程、又は露光する領域を複数の領域に分割して基板下部から前記ホトレジスト表面までの高さに応じて所定のレチクルを選択してそれぞれ露光するステッパー露光による露光工程を含むことを特徴とする請求項に記載の像面変換素子の製造方法。 In the exposure step, an ultraviolet proximity exposure, an X-ray exposure step, or a region to be exposed is divided into a plurality of regions, and a predetermined reticle is selected according to the height from the bottom of the substrate to the photoresist surface and exposed. The method for manufacturing an image plane conversion element according to claim 4 , further comprising an exposure step by stepper exposure. 前記エッチング工程は、等方性ドライエッチング工程、又は異方性ドライエッチング工程を含むことを特徴とする請求項に記載の像面変換素子の製造方法。 The method of manufacturing an image plane conversion element according to claim 4 , wherein the etching step includes an isotropic dry etching step or an anisotropic dry etching step. 前記透明基板を略平面に支持する支持部材を接着する工程と、
前記接着工程として、前記透明基板にホトレジストを塗布する工程と、
前記成型工程として、前記透明基板に塗布されたホトレジストの表面を前記金型で成型する工程と、
前記加工工程として、
選択された撮像素子の受光素子の配列に対応するパターンを露光する工程と、
現像工程と、
前記現像工程で得られた前記ホトレジストをマスクとして前記基板をエッチングする工程と、
前記支持部材を剥離する工程と、
を含むことを特徴とする請求項1に記載の像面変換素子の製造方法。
Bonding a support member that supports the transparent substrate in a substantially flat surface;
As the bonding step, a step of applying a photoresist to the transparent substrate;
As the molding step, a step of molding the surface of the photoresist applied to the transparent substrate with the mold,
As the processing step,
Exposing a pattern corresponding to the arrangement of the light receiving elements of the selected image sensor;
Development process;
Etching the substrate using the photoresist obtained in the developing step as a mask;
Peeling the support member;
The method of manufacturing an image plane conversion element according to claim 1, comprising:
前記支持部材は、シリコン板またはCVD成膜されたシリコン薄膜層を有するセラミック板またはガラス板であることを特徴とする請求項に記載の像面変換素子の製造工程。 10. The image plane conversion element manufacturing process according to claim 9 , wherein the support member is a silicon plate or a ceramic plate or a glass plate having a silicon thin film layer formed by CVD. 前記支持部材を接着する工程は、陽極接合を含むことを特徴とする請求項9または10載の像面変換素子の製造方法。 The method for manufacturing an image plane conversion element according to claim 9, wherein the step of bonding the support member includes anodic bonding. 前記成型工程として、前記高分子部材を、前記第1面が像面湾曲収差に対応する曲面、及び前記第2面が略平面に成型する工程と、
前記接着工程として、前記高分子部材の前記第2面を透明基板に接着する工程と、
前記加工工程として、
前記透明樹脂部材の表面に透明な酸化膜を形成する工程と、
前記酸化膜上にホトレジストを塗布する工程と、
選択された撮像素子の受光素子の配列に対応するパターンを露光する工程と、
現像工程と、
前記酸化膜をエッチングする工程と、
前記酸化膜をマスクとして前記透明樹脂部材をエッチングする工程と、
前記透明部材をマスクとして前記透明基板をエッチングする工程と、
を含むことを特徴とする請求項1に記載の像面変換素子の製造方法。
As the molding step, a step of the polymer member, the curved surface first surface corresponds to the curvature of field, and that the second surface is formed into a substantially flat surface,
Bonding the second surface of the polymer member to a transparent substrate as the bonding step;
As the processing step,
Forming a transparent oxide film on the surface of the transparent resin member;
Applying a photoresist on the oxide film;
Exposing a pattern corresponding to the arrangement of the light receiving elements of the selected image sensor;
Development process;
Etching the oxide film;
Etching the transparent resin member using the oxide film as a mask;
Etching the transparent substrate using the transparent member as a mask;
The method of manufacturing an image plane conversion element according to claim 1, comprising:
前記金型を形成する工程として、
基板に導電層を形成する工程と、
第1面が像面湾曲収差に対応する曲面に形成され、第1面に対向する第2面が略平面に形成された樹脂部材の前記第2面側を前記導電層の上に接着する工程と、
前記樹脂部材の表面に酸化膜を形成する工程と、
前記酸化膜上にホトレジストを塗布する工程と、
選択された撮像素子の受光素子の配列に対応するパターンを露光する工程と、
現像工程と、
前記酸化膜をエッチングする工程と、
前記酸化膜をマスクとして前記樹脂部材をエッチングする工程と、
前記導電層を電極としてNi電気メッキを行いNi金型を形成する工程と、
前記Ni金型から前記樹脂部材及び前記基板を剥離する工程とを有し
前記成型工程と前記接着工程として、前記Ni金型により前記高分子部材からなる複数の前記光伝達管前記透明基板上に成型する工程と、
前記加工工程として、前記高分子部材と前記透明基板をエッチングするエッチング工程と、
を含むことを特徴とする請求項1に記載の像面変換素子の製造方法。
As the step of forming the mold,
Forming a conductive layer on the substrate;
Adhering the second surface side of the resin member on which the first surface is formed into a curved surface corresponding to the curvature of field aberration and the second surface facing the first surface is substantially flat on the conductive layer. When,
Forming an oxide film on the surface of the resin member;
Applying a photoresist on the oxide film;
Exposing a pattern corresponding to the arrangement of the light receiving elements of the selected image sensor;
Development process;
Etching the oxide film;
Etching the resin member using the oxide film as a mask;
Forming Ni mold by performing Ni electroplating using the conductive layer as an electrode;
And a step of removing the resin member and the substrate from the Ni mold,
As the bonding step and the molding step, a step of molding a plurality of the light transmission tube further comprising the polymer member to the Ni mold on the transparent substrate,
As the processing step, an etching step for etching the polymer member and the transparent substrate,
The method of manufacturing an image plane conversion element according to claim 1, comprising:
前記樹脂部材は、UV硬化樹脂、又は熱可塑性樹脂からなることを特徴とする請求項13に記載の像面変換素子の製造方法。 The resin member, the manufacturing method of the image plane conversion element according to claim 13, characterized in that it consists of UV-curable resin, or a thermoplastic resin. 前記基板は、ガラス、又はプラスチックであることを特徴とする請求項13に記載の像面変換素子の製造方法。 The method of manufacturing an image plane conversion element according to claim 13 , wherein the substrate is made of glass or plastic. 前記露光する工程は、紫外線近接露光、X線露光工程、又は露光する領域を複数の領域に分割して基板下部から前記ホトレジスト表面までの高さに応じて所定のレチクルを選択してそれぞれ露光するステッパー露光による露光工程を含むことを特徴とする請求項9たは12または13に記載の像面変換素子の製造方法。 In the exposure step, an ultraviolet proximity exposure, an X-ray exposure step, or a region to be exposed is divided into a plurality of regions, and a predetermined reticle is selected according to the height from the bottom of the substrate to the photoresist surface and exposed. 14. The method of manufacturing an image plane conversion element according to claim 9 , further comprising an exposure step by stepper exposure. 前記エッチング工程は、等方性ドライエッチング工程、又は異方性ドライエッチング工程を含むことを特徴とする請求項9または12または13に記載の像面変換素子の製造方法。 The method for manufacturing an image plane conversion element according to claim 9 , wherein the etching step includes an isotropic dry etching step or an anisotropic dry etching step. 結像光学系の像面と撮像素子の間に配置され、前記撮像素子の複数の受光素子のそれぞれに対向し互いに非交差に形成された複数の光伝達管からなり
前記光伝達管は、透明基板と該透明基板に接着された高分子部材とからなり、
前記光伝達管に成型される第1面は、前記像面における像面湾曲収差に対応した曲面に金型により成型され、
前記第1面に対向して形成され、前記光伝達管の端面の集合体の包絡面である第2面は、前記撮像素子の受光素子の包絡面に略平行に形成され、
前記第2面は前記透明基板中に形成されることを特徴とする像面変換素子。
It is arranged between the image plane of the imaging optical system and the image sensor, and consists of a plurality of light transmission tubes that are opposed to each other and formed non-intersecting with each other .
The light transmission tube comprises a transparent substrate and a polymer member bonded to the transparent substrate,
A first surface which is molded on the light transmission tube is molded by a die into a curved surface corresponding to the curvature of field in the image plane,
The second surface, which is formed to face the first surface and is the envelope surface of the aggregate of the end surfaces of the light transmission tube, is formed substantially parallel to the envelope surface of the light receiving element of the imaging element,
The second surface is the image surface conversion element characterized Rukoto formed in the transparent substrate.
前記第1面側の前記光伝達管のそれぞれの端面は、光の入射角度が大きくなる方向に傾斜して形成されていることを特徴とする請求項18に記載の像面変換素子。 19. The image plane conversion element according to claim 18 , wherein each end surface of the light transmission tube on the first surface side is formed to be inclined in a direction in which an incident angle of light increases. 前記第1面側の前記光伝達管のそれぞれの端面は、光の入射角度が大きくなる方向に湾曲して形成されていることを特徴とする請求項18に記載の像面変換素子。 19. The image plane conversion element according to claim 18 , wherein each end surface of the light transmission tube on the first surface side is curved in a direction in which the incident angle of light increases. 前記第1面側の前記光伝達管の端面近傍の側端部は、凹面状に形成されていることを特徴とする請求項18から20のいずれか一項に記載の像面変換素子。 The side edge of the end face neighborhood of the optical transmission tube of the first surface side is the image surface conversion device according to claims 18 to any one of 20, characterized in that it is formed in a concave shape. 前記光伝達管は、前記第1面側の面積と前記第2面側の面積が異なることを特徴とする請求項18から21のいずれか一項に記載の像面変換素子。 The image plane conversion element according to any one of claims 18 to 21 , wherein the light transmission tube has an area on the first surface side different from an area on the second surface side. 前記撮像素子の中央部分のみ、又は周辺部分のみに前記受光素子に対向する前記光伝達管が形成されていることを特徴とする請求項18から22のいずれか一項に記載の像面変換素子。 The image plane conversion element according to any one of claims 18 to 22 , wherein the light transmission tube facing the light receiving element is formed only in a central part or only in a peripheral part of the imaging element. . 前記第1面側の前記光伝達管を互いに固定する固定部材を有することを特徴とする請求項18から23のいずれか一項に記載の像面変換素子。 The image plane conversion element according to any one of claims 18 to 23 , further comprising a fixing member that fixes the light transmission tubes on the first surface side to each other. 前記光伝達管の側面部の一部又は全部が遮光部材で覆われていることを特徴とする請求項18から24のいずれか一項に記載の像面変換素子。 The image plane conversion element according to any one of claims 18 to 24 , wherein a part or all of the side surface portion of the light transmission tube is covered with a light shielding member. 前記第2面の近傍に前記光伝達管にそれぞれ対向して配置されたレンズを有するレンズアレイを少なくとも1つ有することを特徴とする請求項18から25のいずれか1項に記載の像面変換素子。 The image plane conversion according to any one of claims 18 to 25 , further comprising at least one lens array having lenses disposed in the vicinity of the second surface so as to face the light transmission tube. element. 前記光伝達管は、光学的に透明な部材からなることを特徴とする請求項18から26のいずれか1項に記載の像面変換素子。 27. The image plane conversion element according to claim 18 , wherein the light transmission tube is made of an optically transparent member. 前記光学的に透明な部材は、ガラス部材、高分子部材、酸化物部材、又は窒化物部材からなることを特徴とする請求項27に記載の像面変換素子。 28. The image plane conversion element according to claim 27 , wherein the optically transparent member comprises a glass member, a polymer member, an oxide member, or a nitride member. 前記光伝達管は、前記第1面側が高分子部材からなり、前記第2面側が前記光学的に透明な部材で支持されていることを特徴とする請求項18から28のいすれか一項に記載の像面変換素子。 The optical transmission tube, the first surface side, a polymer member, Isure one of claims 18 to 28, wherein the second surface is characterized in that it is supported by the optically transparent member The image plane converting element according to 1. 前記高分子部材は、UV硬化樹脂からなることを特徴とする請求項28又は29に記載の像面変換素子。 The polymer member, the image plane conversion element according to claim 28 or 29, characterized in that it consists of UV-curable resin. 前記高分子部材は、熱可塑性樹脂からなることを特徴とする請求項28又は29に記載の像面変換素子。 The polymer member, the image plane conversion element according to claim 28 or 29, characterized in that a thermoplastic resin. 前記高分子部材は、ホトレジストからなることを特徴とする請求項28又は29に記載の像面変換素子。 The polymer member, the image plane conversion element according to claim 28 or 29, characterized in that it consists of photoresist. 前記光伝達管は、円形状、又は多角形状の断面形状を有することを特徴とする請求項18から32のいずれか一項に記載の像面変換素子。 The light transmission tube is circular, or image surface conversion device as claimed in any one of claims 18 32, characterized in that it has a cross-sectional shape of a polygonal shape. 前記光伝達管の太さのばらつきは、±5%以内であることを特徴とする請求項18から33のいずれか一項に記載の像面変換素子。 Variation thickness of the light transmission tube is an image plane conversion device as claimed in any one of claims 18 33, characterized in that is within ± 5%. 前記光伝達管の分離間隔のばらつきは、±5%以内であることを特徴とする請求項18から34のいずれか一項に記載の像面変換素子。 The image plane conversion element according to any one of claims 18 to 34 , wherein a variation in separation interval of the light transmission tube is within ± 5%. 物体側から順に、結像光学系と、請求項18から35のいずれか一項に記載の像面変換素子と、撮像素子と、からなることを特徴とする光学系。 An optical system comprising an imaging optical system, an image plane conversion element according to any one of claims 18 to 35 , and an imaging element in order from the object side. 請求項18から36のいずれか一項に記載の像面変換素子の前記第1面を光軸と垂直な方向に移動する手段を有することを特徴とする光学系。 37. An optical system comprising means for moving the first surface of the image plane conversion element according to any one of claims 18 to 36 in a direction perpendicular to the optical axis.
JP2005285381A 2005-09-29 2005-09-29 Image plane conversion element, method of manufacturing the element, and optical system having the element Expired - Fee Related JP5114838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285381A JP5114838B2 (en) 2005-09-29 2005-09-29 Image plane conversion element, method of manufacturing the element, and optical system having the element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285381A JP5114838B2 (en) 2005-09-29 2005-09-29 Image plane conversion element, method of manufacturing the element, and optical system having the element

Publications (3)

Publication Number Publication Date
JP2007094168A JP2007094168A (en) 2007-04-12
JP2007094168A5 JP2007094168A5 (en) 2009-03-12
JP5114838B2 true JP5114838B2 (en) 2013-01-09

Family

ID=37979941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285381A Expired - Fee Related JP5114838B2 (en) 2005-09-29 2005-09-29 Image plane conversion element, method of manufacturing the element, and optical system having the element

Country Status (1)

Country Link
JP (1) JP5114838B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110791B2 (en) 2007-08-16 2012-02-07 Bae Systems Plc Imaging device
JP4702384B2 (en) * 2008-03-26 2011-06-15 ソニー株式会社 Solid-state image sensor
JP5272652B2 (en) * 2008-10-29 2013-08-28 株式会社ニコン Imaging optical element, imaging optical device, and manufacturing method of imaging optical element
DE102009008747B4 (en) * 2009-02-13 2012-02-16 Carl Zeiss Ag Optical imaging system
US8503102B2 (en) 2011-04-19 2013-08-06 Panavision International, L.P. Wide angle zoom lens
JP2014109752A (en) * 2012-12-04 2014-06-12 Nikon Corp Optical element, imaging optical element, imaging device and optical element manufacturing method
JP6598535B2 (en) * 2015-06-30 2019-10-30 キヤノン株式会社 Imaging device
DE102015121840A1 (en) 2015-12-15 2017-06-22 Sick Ag Optoelectronic sensor and method for detecting an object
DE102019126982A1 (en) 2019-10-08 2021-04-08 Sick Ag Optoelectronic sensor and method for detecting objects
CN113489871A (en) * 2021-07-05 2021-10-08 维沃移动通信有限公司 Photosensitive chip assembly, preparation method thereof, camera module and electronic equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242632A (en) * 1991-06-21 2001-09-07 Mitsui Chemicals Inc Method for manufacturing optical device
JP2000175087A (en) * 1998-12-02 2000-06-23 Sony Corp Image pickup device with wide visual field angle

Also Published As

Publication number Publication date
JP2007094168A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
CN110888288B (en) Projection optical system and image projection device
JP3559623B2 (en) Imaging lens
US20060088244A1 (en) Planar lenses for integrated optics
JP5988297B2 (en) Variable magnification projection optical system and image projection apparatus
JP5114838B2 (en) Image plane conversion element, method of manufacturing the element, and optical system having the element
JP4902700B2 (en) Imaging module
TW201348730A (en) Optics lens assembly for image capture and image capture device thereof
KR20200026694A (en) Wide-angle imaging lens
JP4916187B2 (en) Lens system
JP2002062417A (en) Diffractive optical device, optical system and optical appliance having the diffractive optical device, method for manufacturing diffractive optical device and mold for manufacturing diffractive optical device
JP2002208551A (en) Reflection/refraction optical system and projection aligner
CN111638591B (en) Projection optical system, projection type image display device, imaging device, and manufacturing method of optical element
KR100473243B1 (en) Projection lens and projector provided with the same
JP2652637B2 (en) Endoscope objective lens
WO2007114024A1 (en) Projection optical system, aligner, and method for fabricating device
JP5272652B2 (en) Imaging optical element, imaging optical device, and manufacturing method of imaging optical element
US20130188945A1 (en) Optical System for Improved FTM Imaging
JPH10308344A (en) Catadioptric projection optical system
JP2010152128A (en) Method of manufacturing imaging optical element
CN217467464U (en) Optical engine system
US12019225B2 (en) Optical system, optical apparatus, imaging apparatus, and method for manufacturing optical system and imaging apparatus
JPH10260350A (en) Infrared-ray image pickup device
WO2020021662A1 (en) Microscope objective lens and microscope
JP2004361725A (en) Solid type catadioptric optical system
JP2000098224A (en) Lens and optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5114838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees