JP5114790B2 - Pressure sensitive conductive material - Google Patents

Pressure sensitive conductive material Download PDF

Info

Publication number
JP5114790B2
JP5114790B2 JP2008074074A JP2008074074A JP5114790B2 JP 5114790 B2 JP5114790 B2 JP 5114790B2 JP 2008074074 A JP2008074074 A JP 2008074074A JP 2008074074 A JP2008074074 A JP 2008074074A JP 5114790 B2 JP5114790 B2 JP 5114790B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive conductive
resistance value
conductive
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008074074A
Other languages
Japanese (ja)
Other versions
JP2009231009A (en
Inventor
康雄 近藤
隆行 森
寛 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2008074074A priority Critical patent/JP5114790B2/en
Publication of JP2009231009A publication Critical patent/JP2009231009A/en
Application granted granted Critical
Publication of JP5114790B2 publication Critical patent/JP5114790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)

Description

本発明は、感圧素子として利用するのに好適な感圧導電性材料に関する。   The present invention relates to a pressure-sensitive conductive material suitable for use as a pressure-sensitive element.

従来、圧力センサー等の感圧素子を製造する際に利用される感圧導電性材料としては、母材となる合成ゴムや熱可塑性エラストマーに対して、金属系または炭素系の粒子や短繊維を、導電性フィラーとして配合したものが知られている。   Conventionally, as pressure-sensitive conductive materials used when manufacturing pressure-sensitive elements such as pressure sensors, metal-based or carbon-based particles and short fibers are used as a base material for synthetic rubber and thermoplastic elastomer. What is blended as a conductive filler is known.

例えば、下記特許文献1には、シリコーンゴムを母材として、その母材中に金属めっき粒子を配合してなる感圧導電性シリコーンゴム組成物が開示されている。また、このような感圧導電性シリコーンゴム組成物は、加圧、圧縮変形に対し良好な抵抗値の変化を示し、圧力センサー、圧力接点スイッチ、コネクター等として好適に用いられるとされている。
特開2004−323652号公報
For example, Patent Document 1 below discloses a pressure-sensitive conductive silicone rubber composition obtained by blending metal plating particles in a base material using silicone rubber as a base material. Further, such a pressure-sensitive conductive silicone rubber composition exhibits a favorable change in resistance value against pressure and compression deformation, and is preferably used as a pressure sensor, a pressure contact switch, a connector and the like.
JP 2004-336552 A

しかしながら、従来の感圧導電性材料は、後述するような複数の問題の内、ある問題を改善しようとすると、他の問題が顕在化してしまう傾向があり、それらの問題すべてを改善するのは容易なことではなかった。   However, conventional pressure-sensitive conductive materials tend to reveal other problems when trying to improve one of a plurality of problems as described later. It was not easy.

具体的には、従来の感圧導電性材料には、(1)過剰に抵抗値が高いため低電圧での利用が困難、(2)柔軟性や緩衝性に欠ける、(3)圧力が比較的大きく変動しても抵抗値の変動幅が狭い、(4)逆に、圧力が僅かに変動しても過剰に大幅に抵抗値が変動してしまう、といった欠点を有するものも多い。   Specifically, conventional pressure-sensitive conductive materials are (1) difficult to use at low voltage due to excessively high resistance, (2) lack of flexibility and buffering, (3) pressure comparison Even if it fluctuates greatly, there are many drawbacks such that the fluctuation range of the resistance value is narrow. (4) Conversely, even if the pressure fluctuates slightly, the resistance value fluctuates excessively.

こうした問題に対し、例えば、上記欠点(2)を改善したい場合、一般的な手法としては「樹脂材料を発泡させる」といった対策も考えられる。しかし、感圧導電性材料を発泡させると、導電性フィラーの形成する導電経路が気泡によって寸断されるため、抵抗値が上昇して上記欠点(1)が顕在化する。   For example, when it is desired to improve the defect (2) with respect to such a problem, a countermeasure such as “foaming a resin material” can be considered as a general technique. However, when the pressure-sensitive conductive material is foamed, the conductive path formed by the conductive filler is cut off by the bubbles, so that the resistance value increases and the above-mentioned defect (1) becomes obvious.

また、上記欠点(1)を改善したい場合、一般的な手法としては「導電性フィラーの配合率を高める」といった対策も考えられる。しかし、このような対策をとると、材料が硬くなりやすく、上記欠点(2)が顕在化する。特に、グラファイト粉末等で導電性を得るには配合量を多くする必要があるため、柔軟性が損なわれたり、脆性が過剰に高くなったりする傾向が強い。   Further, when it is desired to improve the defect (1), as a general technique, a measure such as “increasing the blending ratio of the conductive filler” can be considered. However, if such measures are taken, the material tends to become hard, and the above-mentioned defect (2) becomes obvious. In particular, in order to obtain electrical conductivity with graphite powder or the like, it is necessary to increase the amount of blending, so that there is a strong tendency for flexibility to be lost or brittleness to become excessively high.

あるいは、上記欠点(1)を改善したい場合、より電気抵抗の低い銀系フィラーなどを利用することも一案であるが、金属系フィラーには耐食性が低いという問題があり、用途によっては、長期信頼性に劣る点で問題がある。   Alternatively, when it is desired to improve the above-mentioned defect (1), it is one idea to use a silver-based filler having a lower electrical resistance. However, the metal-based filler has a problem of low corrosion resistance. There is a problem in that it is inferior in reliability.

さらに、どの程度の圧力が作用しているのかをアナログ的に検出したい場合、上記(3)のような特性を持つものは、抵抗値の僅かな変化で圧力の変化を検出することになるので、僅かなノイズの影響で検出誤差が大きくなりやすいという問題がある。   Furthermore, when it is desired to detect how much pressure is acting in an analog manner, a device having the characteristic (3) can detect a change in pressure with a slight change in resistance value. However, there is a problem that a detection error tends to increase due to a slight noise.

しかし、上記(4)のような特性を持つものでも、ON−OFFだけを見るスイッチとして利用する分には問題はないが、圧力の幅広い変化を検出するには好ましくない。
つまり、従来の感圧導電性材料には、未だ改良の余地がいくつも残されており、特にこれらの欠点すべてを解消することは、きわめて困難であった。
However, even if it has the characteristics as described in (4) above, there is no problem in using it as a switch for viewing only ON-OFF, but it is not preferable for detecting a wide change in pressure.
In other words, the pressure-sensitive conductive material of the prior art still has room for improvement, and it has been extremely difficult to eliminate all of these drawbacks.

本発明は、上記問題を解決するためになされたものであり、その目的は、比較的低電圧での利用が可能で、柔軟性や緩衝性に優れ、圧力の変動幅に応じて抵抗値がきわめて大幅に変動することで、圧力検出精度も向上させることができる感圧導電性材料を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is that it can be used at a relatively low voltage, has excellent flexibility and buffering properties, and has a resistance value corresponding to the pressure fluctuation range. It is an object of the present invention to provide a pressure-sensitive conductive material that can improve pressure detection accuracy by changing extremely greatly.

上記目的を達成するため、本発明においては、次のような構成を採用した。
すなわち、本発明の感圧導電性材料は、母材となる樹脂材料中に、当該樹脂材料100重量部に対する重量比で5〜25重量部の気相成長炭素繊維が配合された導電性樹脂組成物に対し、前記樹脂材料中で独立気泡を形成可能な発泡剤を、前記樹脂材料100重量部に対する重量比で1〜20重量部添加することにより、前記導電性樹脂組成物を1.5〜4倍に発泡させてなることを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
That is, the pressure-sensitive conductive material of the present invention is a conductive resin composition in which 5 to 25 parts by weight of vapor grown carbon fiber is blended in a weight ratio with respect to 100 parts by weight of the resin material in a resin material as a base material. By adding 1 to 20 parts by weight of a foaming agent capable of forming closed cells in the resin material in a weight ratio with respect to 100 parts by weight of the resin material , the conductive resin composition is 1.5 to It is characterized by being foamed 4 times .

このように構成される本発明の感圧導電性樹脂材料によれば、比較的低電圧での利用が可能で、柔軟性や緩衝性に優れ、圧力の変動幅に応じて抵抗値がきわめて大幅に変動することで、圧力検出精度も向上させることができる。   According to the pressure-sensitive conductive resin material of the present invention configured as described above, it can be used at a relatively low voltage, has excellent flexibility and buffering property, and has a very large resistance value according to the pressure fluctuation range. Therefore, the pressure detection accuracy can be improved.

すなわち、本発明の場合、導電性樹脂組成物を発泡させてあるので、従来品に比べ、柔軟性や緩衝性が比較的優れたものとなる。しかも、本発明においては、導電性フィラーとして気相成長炭素繊維を利用しているので、導電性樹脂組成物を発泡させてあるにもかかわらず、比較的抵抗値を低く抑えることができ、低電圧での利用が可能となる。   That is, in the case of the present invention, since the conductive resin composition is foamed, the flexibility and buffering properties are relatively excellent as compared with the conventional products. Moreover, in the present invention, since vapor-grown carbon fibers are used as the conductive filler, the resistance value can be kept relatively low despite the foaming of the conductive resin composition. Use with voltage becomes possible.

この点、他の一般的な炭素繊維や炭素系粒子、金属めっき粒子などを導電性フィラーとして利用する従来品の場合、発泡させると導電性フィラーの形成する導電経路が気泡により寸断されるため、本発明ほど抵抗値を低くすることは困難である。   In this regard, in the case of conventional products that use other general carbon fibers, carbon-based particles, metal plating particles, etc. as conductive fillers, the conductive path formed by the conductive fillers is broken by bubbles when foamed, It is difficult to reduce the resistance value as much as the present invention.

また、本発明の場合、導電性フィラーとして気相成長炭素繊維を利用しているので、単に抵抗値が低くなるだけにとどまらず、抵抗値の変動幅が広くなり、これにより、圧力検出精度も向上させることができる。   In the case of the present invention, since vapor-grown carbon fiber is used as the conductive filler, not only the resistance value is lowered, but also the fluctuation range of the resistance value is widened. Can be improved.

この点に関し、気相成長炭素繊維を利用した場合に、抵抗値の変動幅が格段に広くなる理由は、明確に解明されてはいない。ただし、気相成長炭素繊維は、一般的な炭素繊維よりも細くて短いため、同重量の導電性フィラーを配合した場合でも、繊維の総数が格段に多く、気泡間にある僅かな連続部分にも導電経路が形成されやすく、このことが良好な特性が発現する要因の一つではないかと推察される。   In this regard, the reason why the fluctuation range of the resistance value is remarkably widened when the vapor growth carbon fiber is used has not been clearly clarified. However, vapor-grown carbon fibers are thinner and shorter than common carbon fibers, so even when the same weight of conductive filler is blended, the total number of fibers is much larger, and there are only a few continuous parts between the bubbles. However, it is presumed that a conductive path is easily formed, and this may be one of the factors that develop good characteristics.

ちなみに、樹脂材料中に気相成長炭素繊維を配合すること自体は既に実施されている技術であり、また、樹脂材料を発泡させる技術そのものも広く知られた技術である。しかし、発泡させた樹脂材料中に気相成長炭素繊維を配合した場合に、感圧導電性樹脂材料として優れた特性が発現することは、本件発明者が知る限り、過去に類例のない技術である。   Incidentally, mixing the vapor-grown carbon fiber in the resin material itself is a technique that has already been implemented, and the technique itself for foaming the resin material is also a widely known technique. However, as long as the present inventor knows, when the vapor-grown carbon fiber is blended in the foamed resin material, excellent characteristics are expressed as a pressure-sensitive conductive resin material. is there.

特に、この種の感圧導電性材料においては、母材の発泡は必ずしも好ましいことではなく、例えば、上記特許文献1の段落[0023]の記載を見ても、発泡を問題視する旨が示唆されている。しかし、本発明は、このような技術常識にとらわれることなく、気相成長炭素繊維を配合した導電性樹脂組成物を、あえて発泡させるという特異な手段を採用し、その結果、上述のような優れた特性を発現させたものである。   In particular, in this type of pressure-sensitive conductive material, foaming of the base material is not necessarily preferable. For example, it is suggested that foaming is regarded as a problem even when the description in paragraph [0023] of Patent Document 1 is seen. Has been. However, the present invention employs a unique means of deliberately foaming the conductive resin composition containing the vapor-grown carbon fiber without being bound by such technical common sense, and as a result, excellent as described above. It expresses the characteristics.

このような優れた特性を備えた本発明の感圧導電性樹脂材料を利用すれば、従来品以上に感圧素子の性能を大幅に改善することができるものと期待でき、例えば、パーソナルコンピュータのタッチパッド、ゲーム機のコントローラ、その他、アナログ的に圧力の程度を検知するための圧力センサーの性能を向上させることができる。   If the pressure-sensitive conductive resin material of the present invention having such excellent characteristics is used, it can be expected that the performance of the pressure-sensitive element can be greatly improved over conventional products. The performance of the pressure sensor for detecting the degree of pressure in an analog manner, such as a touch pad, a controller of a game machine, or the like, can be improved.

また、母材となる樹脂材料についても、必要とする性能が発現する材料であれば、各種合成ゴムや熱可塑性エラストマーなどを任意に利用できるが、その中でも、シリコーンゴムを母材として利用すると、感圧導電性樹脂材料としては好適なものとなる。   In addition, as for the resin material used as a base material, various synthetic rubbers and thermoplastic elastomers can be arbitrarily used as long as the necessary performance is exhibited. Among them, when silicone rubber is used as a base material, This is suitable as a pressure-sensitive conductive resin material.

さらに、気相成長炭素繊維の物性についても、必要とする性能が発現するものであれば特に限定されないが、一例を挙げれば、直径が0.01μm〜0.2μm、繊維長が1μm〜500μm、アスペクト比が10〜500のものを採用すると好ましい。   Furthermore, the physical properties of the vapor-grown carbon fiber are not particularly limited as long as the required performance is expressed. For example, the diameter is 0.01 μm to 0.2 μm, the fiber length is 1 μm to 500 μm, It is preferable to use one having an aspect ratio of 10 to 500.

また、発泡剤については、独立気泡を形成可能なものが利用される。このような構成を採用することにより、吸湿性を低くすることができるので、吸湿に伴う特性変化などが生じにくい感圧導電性樹脂材料とすることができる。 Moreover, what can form a closed cell is utilized about a foaming agent . By adopting such a configuration , the hygroscopicity can be lowered, so that a pressure-sensitive conductive resin material in which a characteristic change due to moisture absorption hardly occurs can be obtained.

次に、本発明の実施形態について一例を挙げて説明する。
まず、下記表1に示すような配合比で、母材となるシリコーンゴム中に各導電性フィラーを配合するとともに、一部のものについては発泡剤を配合した。
Next, an embodiment of the present invention will be described with an example.
First, the conductive fillers were blended in the silicone rubber as a base material at a blending ratio as shown in Table 1 below, and a foaming agent was blended for some of the fillers.

なお、上記表1中、シリコーンゴムとしては、二液型のシリコーンゲル組成物(品名:CY52−276、東レ・ダウコーニング・シリコーン株式会社製)および硬化促進剤(RD−1、東レ・ダウコーニング・シリコーン株式会社製)を利用した。また、気相成長炭素繊維は、昭和電工株式会社製の市販品(品名:VGCF(登録商標)−H、平均繊維径150nm、繊維長10〜20μm)を利用し、発泡剤としては、大日精化工業株式会社製の市販品(品名:ダイフォームH850)を利用した。 In Table 1, the silicone rubber includes a two-part silicone gel composition (product name: CY52-276, manufactured by Toray Dow Corning Silicone Co., Ltd.) and a curing accelerator (RD-1, Toray Dow Corning). -Silicone Co., Ltd. was used. The vapor grown carbon fiber is a commercial product (product name: VGCF (registered trademark) -H, average fiber diameter 150 nm, fiber length 10 to 20 μm) manufactured by Showa Denko KK A commercially available product (product name: Dieform H850) manufactured by Chemical Industries, Ltd. was used.

また、比較例として挙げた試作品において導電性フィラーとして利用した比較用炭素繊維は、繊維径10μmの市販品(品名:ダイアリード(登録商標)K223SE、三菱化学産資株式会社製)である。また、銀めっきウィスカーとしては、大塚化学株式会社製の市販品(品名:スーパーデントール(登録商標)SD100)を使用し、人造黒鉛としては、昭和電工株式会社製の市販品(品名:UF−G30)を使用した。   In addition, the comparative carbon fiber used as the conductive filler in the prototype cited as a comparative example is a commercial product (product name: DIALEAD (registered trademark) K223SE, manufactured by Mitsubishi Chemical Corporation) having a fiber diameter of 10 μm. In addition, as a silver plating whisker, a commercial product manufactured by Otsuka Chemical Co., Ltd. (product name: Super Dentor (registered trademark) SD100) is used, and as artificial graphite, a commercial product manufactured by Showa Denko Co., Ltd. (product name: UF-G30). )It was used.

以上のような各組成物を、次のような手順で混練し、シート状の成形品に加工した。すなわち、まず、所定量計量した各原料は、脱泡ミキサー(小平製作所製ACM−5LVT型)を用いて常温下で10分間撹拌混合した。次に、前記撹拌混合物を2mmの高さになるよう型枠に流し込み、型枠ごと110℃の恒温槽内で5分間加熱してシリコーンゴムの硬化を促進させる。   Each composition as described above was kneaded by the following procedure and processed into a sheet-like molded product. That is, first, each raw material weighed in a predetermined amount was stirred and mixed at room temperature for 10 minutes using a defoaming mixer (ACM-5 LVT type manufactured by Kodaira Seisakusho). Next, the stirring mixture is poured into a mold so as to have a height of 2 mm, and the whole mold is heated in a thermostat at 110 ° C. for 5 minutes to accelerate the curing of the silicone rubber.

次に、ゴム状に硬化した前記混合物を型枠から取り出して170℃の恒温槽に移し、10分間加熱する。この加熱により発泡剤の発泡が開始され、発泡した材料が得られる。なお、発泡剤を添加しない比較例においては、型枠に流し込む高さを3mmとし、その後同一条件で加熱した。   Next, the rubber-cured mixture is taken out of the mold, transferred to a constant temperature bath at 170 ° C., and heated for 10 minutes. By this heating, foaming of the foaming agent is started and a foamed material is obtained. In addition, in the comparative example which does not add a foaming agent, the height poured into a formwork was 3 mm, and it heated on the same conditions after that.

以上のような手順で製造した各シート状材料から、50×50×3mmの試験片を切り出して、各試験片について、圧力と抵抗率との関係を、引張圧縮試験機(ミネベア株式会社製;TCM−50)に図1に示すような材料試験装置を組み合わせて測定した。   A test piece of 50 × 50 × 3 mm was cut out from each sheet-like material manufactured by the above procedure, and the relationship between pressure and resistivity was determined for each test piece using a tensile and compression tester (manufactured by Minebea Co., Ltd .; TCM-50) was combined with a material testing apparatus as shown in FIG.

図1に示す材料試験装置は、絶縁性の下圧縮盤1の上に載せられた試験片Sを絶縁性の上圧縮盤3で挟み、引張圧縮試験機により上下圧縮可能な構造になっていて、引張圧縮試験器により圧縮量を任意に変更して、そのときに試験片Sに作用する圧力を測定可能となっている。なお、この試験例では、クロスヘッドスピードを20mm/minとした。   The material testing apparatus shown in FIG. 1 has a structure in which a test piece S placed on an insulating lower compression plate 1 is sandwiched between insulating upper compression plates 3 and can be compressed vertically by a tensile compression tester. The compression amount can be arbitrarily changed by a tensile compression tester, and the pressure acting on the test piece S at that time can be measured. In this test example, the crosshead speed was 20 mm / min.

また、試験片Sと下圧縮盤1との間には一対の電極5を配置して、電極5間の抵抗値をマルチメーター7で測定できるように構成した。各電極5の試験片Sに対する接触面は直径10mmの円形とし、電極の中心間距離は20mmとした。測定結果を図2〜図4に示す。   In addition, a pair of electrodes 5 was disposed between the test piece S and the lower compression platen 1 so that the resistance value between the electrodes 5 could be measured with a multimeter 7. The contact surface of each electrode 5 with respect to the test piece S was a circle having a diameter of 10 mm, and the distance between the centers of the electrodes was 20 mm. The measurement results are shown in FIGS.

図2から明らかなように、実施例A1は、圧力の変動幅に応じて抵抗値がきわめて大幅に変動し、感圧導電性樹脂材料としての特性に優れたものであった。一方、図3に示したように、比較例a1は、実施例A1と同じ導電性フィラーを用いているものの、発泡剤が配合されていないため、実施例A1ほど抵抗値が大幅に変動しないものとなった。   As can be seen from FIG. 2, in Example A1, the resistance value fluctuated greatly according to the pressure fluctuation range, and the characteristics as a pressure-sensitive conductive resin material were excellent. On the other hand, as shown in FIG. 3, Comparative Example a1 uses the same conductive filler as Example A1, but does not contain a foaming agent, so that the resistance value does not vary as much as Example A1. It became.

このような傾向は、炭素繊維の種類を変更しても同じであり、例えば、比較例a2などは、さらに抵抗値の変動幅が小さいものとなった。また、比較例a1,比較例a2は、発泡させていないため密度が高く、実施例A1ほど柔軟性や緩衝性を高くすることは困難であった。   Such a tendency is the same even if the type of carbon fiber is changed. For example, Comparative Example a2 has a smaller fluctuation range of the resistance value. Moreover, since the comparative example a1 and the comparative example a2 were not made to foam, the density was high and it was difficult to make a softness | flexibility and buffer property high like Example A1.

さらに、実施例A1において、上記のように抵抗値が大幅に変動する特性は、母材を発泡させたことのみに起因して生じる特性ではない。このことは、図4に示した比較例a3,比較例a4を見ると明らかである。   Furthermore, in Example A1, the characteristic that the resistance value varies greatly as described above is not a characteristic that is caused only by foaming the base material. This is apparent when the comparative examples a3 and a4 shown in FIG.

すなわち、これら比較例a3,比較例a4は、いずれも実施例A1と同様に発泡剤を配合して発泡させたものである。しかし、導電性フィラーとして、気相成長炭素繊維以外を利用しているため、図2と図4とを対比すれば明らかなように、実施例A1ほど抵抗値が大幅に変動しないものとなった。   That is, Comparative Example a3 and Comparative Example a4 are both foamed by adding a foaming agent in the same manner as Example A1. However, since a material other than vapor-grown carbon fiber is used as the conductive filler, the resistance value does not fluctuate as much as in Example A1, as is clear when FIG. 2 and FIG. 4 are compared. .

特に、比較例a4は、炭素系導電性フィラーを利用しているという観点からは、実施例A1に近い構成であると考えられるものの、抵抗値が比較的高い領域にあり、低電圧での利用が困難な特性となっていた。   In particular, Comparative Example a4 is considered to have a configuration close to Example A1 from the viewpoint of using a carbon-based conductive filler, but is in a region where the resistance value is relatively high and is used at a low voltage. Was a difficult characteristic.

一方、比較例a3は、抵抗値が比較的低い領域にあるので、低電圧での利用が容易ではあるが、実施例A1ほど大幅に抵抗値が変動しないので、圧力の僅かな変化を抵抗値に基づいて判断することが、実施例A1ほど容易ではないものとなった。   On the other hand, Comparative Example a3 is in a region where the resistance value is relatively low, and thus it is easy to use at a low voltage. Judging from the above results is not as easy as in Example A1.

以上の説明から明らかなように、実施例A1として挙げた感圧導電性材料であれば、比較例a4などに比べ低電圧での利用が可能で、比較例a1,a2などに比べ柔軟性や緩衝性に優れ、さらに、比較例a1〜比較例a4に比べ、圧力の変動幅に応じて抵抗値がきわめて大幅に変動するので、これにより、圧力検出精度を向上させることができる感圧導電性材料となる。   As is clear from the above description, the pressure-sensitive conductive material mentioned as Example A1 can be used at a lower voltage than Comparative Example a4 and the like, and can be more flexible than Comparative Examples a1 and a2. Excellent in shock-absorbing properties, and the resistance value fluctuates greatly depending on the pressure fluctuation range as compared with Comparative Examples a1 to a4. This makes it possible to improve pressure detection accuracy. Become a material.

次に、発泡剤の配合比と特性の関係を調べるため、下記表2に示すような配合比で発泡剤を配合した。なお、母材(シリコーンゴム)および導電性フィラー(気相成長炭素繊維)の配合比は固定した。   Next, in order to investigate the relationship between the blending ratio of the foaming agent and the characteristics, the foaming agent was blended at a blending ratio as shown in Table 2 below. The mixing ratio of the base material (silicone rubber) and the conductive filler (vapor-grown carbon fiber) was fixed.

これらの各組成物は、上述の実験例と同様にシート化し、そこから切り出した試験片について、上述した通りの試験を実施した。測定結果を図5に示す。 Each of these compositions was formed into a sheet in the same manner as in the above experimental example, and the test as described above was performed on the test piece cut out from the sheet. The measurement results are shown in FIG.

図5から明らかなように、実施例B1〜実施例B4は、いずれも圧力の変動幅に応じて抵抗値がきわめて大きく変化し、その変動幅は、比較例b1を大きく上回る結果となった。   As is clear from FIG. 5, in each of Examples B1 to B4, the resistance value changed greatly according to the pressure fluctuation range, and the fluctuation range greatly exceeded that of Comparative Example b1.

最も発泡倍率が低い実施例B1で発泡倍率はおよそ1.5倍、最も発泡倍率が高い実施例B4で発泡倍率はおよそ4倍なので、この事実から発泡倍率を1.5〜4倍程度に設定すると、抵抗値の変動幅が大きくなり、感圧導電性材料としての特性を改善できることが判明した。   In Example B1 with the lowest expansion ratio, the expansion ratio is about 1.5 times, and in Example B4 with the highest expansion ratio, the expansion ratio is about 4 times. From this fact, the expansion ratio is set to about 1.5 to 4 times Then, it has been found that the fluctuation range of the resistance value is increased, and the characteristics as the pressure-sensitive conductive material can be improved.

なお、発泡倍率はさらに大きくすることも可能であるが、実施例B4を見ると明らかなように、発泡倍率が大きくなると抵抗値は全体的に高くなってゆく傾向がある。したがって、いたずらに発泡倍率を高めても、抵抗値の変動幅が大きくならない割には、抵抗値が高くなってゆくことになるので、この抵抗値上昇という問題と上述した感圧導電性材料としての特性改善ができる発泡倍率との双方を考慮すれば、発泡倍率は4倍以下にすることが好ましいと考えられる。   Although the expansion ratio can be further increased, as is clear from Example B4, as the expansion ratio increases, the resistance tends to increase overall. Therefore, even if the foaming ratio is increased unnecessarily, the resistance value increases for a range in which the fluctuation range of the resistance value does not increase. Therefore, the problem of the increase in resistance value and the pressure-sensitive conductive material described above can be obtained. Considering both the expansion ratio that can improve the characteristics of the above, it is considered that the expansion ratio is preferably 4 times or less.

ちなみに、気相成長炭素繊維以外の導電性フィラー(上述の比較用炭素繊維、銀めっきウィスカー、人造黒鉛)についても、発泡剤の配合比を増量する実験を行ったが、いずれも抵抗値が高くなりすぎて、ほぼ絶縁状態になってしまった。   By the way, for conductive fillers other than vapor-grown carbon fibers (the above-mentioned comparative carbon fibers, silver-plated whiskers and artificial graphite), an experiment was conducted to increase the blending ratio of the foaming agent. It became too insulated and almost insulative.

また、上記のような発泡剤の増量によって高くなりすぎた抵抗値を下げるため、さらに導電性フィラーの配合比を高めたところ、混合後に脆性が高くなりすぎて、一定形状に硬化させることができなくなってしまった。   In addition, in order to reduce the resistance value that has become too high due to the increase in the amount of foaming agent as described above, when the blending ratio of the conductive filler is further increased, the brittleness becomes too high after mixing and it can be cured to a certain shape. I'm gone.

したがって、気相成長炭素繊維以外の導電性フィラー(上述の比較用炭素繊維、銀めっきウィスカー、人造黒鉛)では、発泡剤による性能改善は困難であり、気相成長炭素繊維の持つ特異な物性と発泡剤とを組み合わせることで、初めて感圧導電性材料としての特性を改善できることが判明した。   Therefore, with conductive fillers other than vapor grown carbon fibers (the above-mentioned comparative carbon fibers, silver-plated whiskers, and artificial graphite), it is difficult to improve the performance with the foaming agent. It has been found that the characteristics as a pressure-sensitive conductive material can be improved for the first time by combining with a foaming agent.

以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
例えば、上記実施形態では、母材としてシリコーンゴムを用いる例を示したが、母材については、感圧導電性材料としての特性を損なわないものであれば、各種合成ゴムや天然ゴム、熱可塑性エラストマーなどを利用することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
For example, in the above-described embodiment, an example in which silicone rubber is used as a base material has been shown. However, as long as the base material does not impair the characteristics as a pressure-sensitive conductive material, various synthetic rubbers, natural rubbers, and thermoplastics An elastomer or the like can be used.

性能試験に用いた装置の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the apparatus used for the performance test. 実施例A1の特性を示すグラフ。The graph which shows the characteristic of Example A1. 比較例a1および比較例a2の特性を示すグラフ。The graph which shows the characteristic of the comparative example a1 and the comparative example a2. 比較例a3および比較例a4の特性を示すグラフ。The graph which shows the characteristic of the comparative example a3 and the comparative example a4. 実施例B1〜実施例B4および比較例b1の特性を示すグラフ。The graph which shows the characteristic of Example B1- Example B4 and the comparative example b1.

符号の説明Explanation of symbols

1・・・下圧縮盤、3・・・上圧縮盤、5・・・電極、7・・・マルチメーター。   DESCRIPTION OF SYMBOLS 1 ... Lower compression board, 3 ... Upper compression board, 5 ... Electrode, 7 ... Multimeter.

Claims (3)

母材となる樹脂材料中に、当該樹脂材料100重量部に対する重量比で5〜25重量部の気相成長炭素繊維が配合された導電性樹脂組成物に対し、前記樹脂材料中で独立気泡を形成可能な発泡剤を、前記樹脂材料100重量部に対する重量比で1〜20重量部添加することにより、前記導電性樹脂組成物を1.5〜4倍に発泡させてなる
ことを特徴とする感圧導電性材料。
With respect to the conductive resin composition in which 5 to 25 parts by weight of vapor-grown carbon fiber is blended in a weight ratio with respect to 100 parts by weight of the resin material in the resin material as a base material, closed cells are formed in the resin material. The conductive resin composition is foamed 1.5 to 4 times by adding 1 to 20 parts by weight of a foaming agent that can be formed in a weight ratio with respect to 100 parts by weight of the resin material. Pressure sensitive conductive material.
前記樹脂材料は、シリコーンゴムである
ことを特徴とする請求項1に記載の感圧導電性材料。
The pressure-sensitive conductive material according to claim 1, wherein the resin material is silicone rubber.
前記気相成長炭素繊維は、直径が0.01μm〜0.2μm、繊維長が1μm〜500μm、アスペクト比が10〜500のものである
ことを特徴とする請求項1または請求項に記載の感圧導電性材料。
The vapor-grown carbon fiber has a diameter of 0.01 to 0.2 [mu] m, fiber length 1Myuemu~500myuemu, aspect ratio according to claim 1 or claim 2, characterized in that 10 to 500 Pressure sensitive conductive material.
JP2008074074A 2008-03-21 2008-03-21 Pressure sensitive conductive material Active JP5114790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074074A JP5114790B2 (en) 2008-03-21 2008-03-21 Pressure sensitive conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074074A JP5114790B2 (en) 2008-03-21 2008-03-21 Pressure sensitive conductive material

Publications (2)

Publication Number Publication Date
JP2009231009A JP2009231009A (en) 2009-10-08
JP5114790B2 true JP5114790B2 (en) 2013-01-09

Family

ID=41246183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074074A Active JP5114790B2 (en) 2008-03-21 2008-03-21 Pressure sensitive conductive material

Country Status (1)

Country Link
JP (1) JP5114790B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942202A (en) * 2010-09-07 2011-01-12 吴江朗科化纤有限公司 Carbon fiber-silicon rubber composite material and processing method thereof
CN106928725A (en) * 2015-12-31 2017-07-07 蓝星有机硅(上海)有限公司 conductive curable organic silicon rubber
JP2018077191A (en) * 2016-11-11 2018-05-17 北川工業株式会社 Pressure sensitive sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60723B2 (en) * 1976-07-07 1985-01-10 ジェイエスアール株式会社 Manufacturing method of foamed pressure-sensitive resistor
JPH02228340A (en) * 1989-03-01 1990-09-11 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH0654603B2 (en) * 1990-07-11 1994-07-20 イナバゴム株式会社 Pressure-sensitive conductive elastomer
JPH05325647A (en) * 1991-03-29 1993-12-10 Siegel:Kk Silicone gel porous conductor and its manufacture
JP2003238727A (en) * 2002-02-20 2003-08-27 Idemitsu Petrochem Co Ltd Electroconductive resin foam and production method therefor
JP2004355982A (en) * 2003-05-29 2004-12-16 Mitsumi Electric Co Ltd Pressure-sensitive conductive material

Also Published As

Publication number Publication date
JP2009231009A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
EP0207450B1 (en) Pressure-sensitive conductive rubber material
JP5166714B2 (en) Cross-linked elastomer for sensor and method for producing the same
US7001191B2 (en) Conductive contact elements and electric connectors
US6309563B1 (en) Conductive silicone rubber composition and low-resistance connector
CA2763067A1 (en) Force sensing compositions, devices and methods
JP5114790B2 (en) Pressure sensitive conductive material
JP6919790B2 (en) Silicone composites and their manufacturing methods
US10995216B2 (en) Silicone rubber composite and method for producing same
KR101861244B1 (en) Reflow solderable thermal conductive elastomer and method of manufacturing the same
JP5263682B2 (en) Pressure sensitive conductive material
CN110177840B (en) Silicone rubber composite material and preparation method thereof
WO2018116821A1 (en) Pressure sensor
Joshi et al. Electrically conductive silicone/organic polymer composites
Araki et al. Effect of void volume and silver loading on strain response of electrical resistance in silver flakes/polyurethane composite for stretchable conductors
JP4920147B2 (en) Semiconductive roll
WO2018088435A1 (en) Pressure-sensitive sensor
JP4706868B2 (en) Antistatic micro-contact printing plate
Suo et al. Preparation, microstructure, and piezoresistive behavior of conductive nanocomposite foams based on poly (1-butene) and carbon black
Estrada Moreno et al. Strain effect on the electrical conductivity of CB/SEBS and GP/SEBS composites
JP2005133002A (en) Fluororesin composition
JP2019009071A (en) Conductive composition and planar heating element
JP5577022B2 (en) Composite materials for sensors and deformation sensors
JP4716793B2 (en) Composite material
Chiu et al. Curing behavior, mechanical properties, intermolecular interaction, and morphology of silicone/polypyrrole/polymer electrolyte composites
JPS6254742A (en) Pressure-sensitive rubber molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5114790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250