JP5114739B2 - Method and equipment for removing iron ions in displacement plating solution - Google Patents

Method and equipment for removing iron ions in displacement plating solution Download PDF

Info

Publication number
JP5114739B2
JP5114739B2 JP2007227448A JP2007227448A JP5114739B2 JP 5114739 B2 JP5114739 B2 JP 5114739B2 JP 2007227448 A JP2007227448 A JP 2007227448A JP 2007227448 A JP2007227448 A JP 2007227448A JP 5114739 B2 JP5114739 B2 JP 5114739B2
Authority
JP
Japan
Prior art keywords
plating solution
iron ions
iron
oxygen
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007227448A
Other languages
Japanese (ja)
Other versions
JP2009057615A (en
Inventor
賢一郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007227448A priority Critical patent/JP5114739B2/en
Publication of JP2009057615A publication Critical patent/JP2009057615A/en
Application granted granted Critical
Publication of JP5114739B2 publication Critical patent/JP5114739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、鋼材の置換めっきにおいて、鉄を含有する置換めっき液から鉄イオンを除去して置換めっき液を再生する手段とその設備に関するものである。   The present invention relates to means and equipment for regenerating a replacement plating solution by removing iron ions from a replacement plating solution containing iron in replacement plating of a steel material.

耐食性、導電性、意匠性、その他の性能確保を目的として、多くのめっきが提供され、とりわけ、水溶液から金属を析出させる電気めっき、無電解めっき、置換めっきは、その取り扱いの容易さから、自動車、建材、家電用材料向けに広く製造されている。   Many platings are provided for the purpose of ensuring corrosion resistance, conductivity, design, and other performances. In particular, electroplating, electroless plating, and displacement plating for depositing metals from aqueous solutions are easy to handle. Widely manufactured for building materials and household appliance materials.

一方、環境問題への懸念から、廃液処理に対する規制は厳しさを増しており、容易かつ低コストで処理する技術への要望は強く、また、めっき液を廃棄処分することなくリサイクルしながら長期的に使用できるようにするニーズは高い。
鉄鋼業においては、鋼材への金属めっきが主流であることから、めっき液へ不可避的に混入する鉄イオンによるめっき液の汚染は、狙い通りの金属析出を妨害したり、その効率を低下せしめるため、めっき液から鉄イオンを除去することは重要な課題である。
On the other hand, due to concerns about environmental issues, regulations on waste liquid treatment are becoming stricter, and there is a strong demand for technologies that can be processed easily and at low cost, and the plating liquid can be recycled without being disposed of for a long time. There is a high need to be able to use it.
In the iron and steel industry, metal plating on steel materials is the mainstream, so contamination of the plating solution by iron ions inevitably mixed into the plating solution hinders the targeted metal deposition and reduces its efficiency. The removal of iron ions from the plating solution is an important issue.

特に、鋼材の鉄とめっき液中の金属との電位差で電子交換を起こして、金属を置換析出させる置換めっきは、その原理上、めっき液への鉄の混入は避けられず、単に消耗した金属イオンの補充だけでは、置換反応によってめっき液中に溶存した鉄イオンが蓄積される一方であり、めっき液の汚染が続き、めっき液は廃棄処分することが必要となる。   In particular, substitution plating, which causes electron exchange due to the potential difference between iron in steel and the metal in the plating solution to displace and deposit the metal, inevitably contains iron in the plating solution. Only by replenishment of ions, iron ions dissolved in the plating solution are accumulated by the substitution reaction, the contamination of the plating solution continues, and the plating solution needs to be disposed of.

この問題に対し、重金属などを除去するイオン交換樹脂による除去を行うことは一般的であるが、コストが大きい上、鉄イオンに加え他の重金属イオンも同時に除去してしまうため、めっき液中のめっき主成分金属をも除去してしまう。また特許文献1、特許文献2では、微生物を使用しためっき液中の鉄の除去法を提示しているが、微生物を使用する環境を担保しなければならないという制約が生じる。   In order to solve this problem, it is common to perform removal with an ion exchange resin that removes heavy metals and the like, but the cost is high and other heavy metal ions are removed at the same time in addition to iron ions. The plating main component metal is also removed. In Patent Document 1 and Patent Document 2, a method for removing iron in a plating solution using microorganisms is presented. However, there is a restriction that an environment in which microorganisms are used must be ensured.

特許文献3では、固形廃水処理材を使用することで、めっき液中の鉄の除去法を提案しているが、固形処理材は酸を中和する能力を有しているため、廃水処理といった水溶液の最終処理には適しているが、リサイクル使用に向けためっき液の再生処理やめっき製造の操業中での除去を考慮すると、極端なpH変動は好ましくない。特許文献4では鉄および酸素を励起させる波長の光を照射せしめて、めっき液中の鉄イオンを3価の鉄へ酸化させ、沈殿除去することを提案しているが、光励起されて生じた原子状態の酸素は、強い酸化作用を有するため、装置自体へのダメージを与えてしまうとともに、工業的な多量のめっき溶液中に存在する鉄イオンに確実に紫外光といった短波長の光を照射することは困難である。   In patent document 3, although the removal method of the iron in a plating solution is proposed by using a solid wastewater treatment material, since a solid treatment material has the ability to neutralize an acid, wastewater treatment etc. Although it is suitable for the final treatment of an aqueous solution, extreme pH fluctuations are not preferable in consideration of regeneration treatment of a plating solution for recycling and removal during operation of plating production. Patent Document 4 proposes to irradiate light having a wavelength that excites iron and oxygen to oxidize iron ions in the plating solution to trivalent iron, and to remove the precipitate. Since oxygen in the state has a strong oxidizing action, it damages the device itself, and reliably irradiates iron ions present in a large amount of industrial plating solution with short-wavelength light such as ultraviolet light. It is difficult.

特許文献5では酸素および触媒として白金族金属を使用して、電気めっき液中に蓄積した2価の鉄の酸化を進めて、3価の鉄として分離する手段を提示している。電気めっき液は当該公報にもある通り、光沢性や平滑性などを得る目的で各種の有機添加剤が使用され、通常の酸素の通気では添加剤が分解されてしまう課題があり、白金族を触媒として利用することで添加剤の損耗を最小限にすることができる。しかし白金族金属は極めて高価であり、コスト的に課題がある。また、そもそも、金属間の電位差を利用して置換析出させる置換めっきにおいては有機添加剤は置換の妨害であるだけでなく、極めて貴な白金族が万一置換めっき液中に溶解した場合には、白金族が置換析出する危険性を生じ、貴金属を置換めっき系に持ち込むことは好ましくない。   Patent Document 5 proposes means for using oxygen and a platinum group metal as a catalyst to oxidize divalent iron accumulated in an electroplating solution and separate it as trivalent iron. As the electroplating solution also has in the publication, various organic additives are used for the purpose of obtaining glossiness and smoothness, and there is a problem that the additive is decomposed by normal aeration of oxygen. By using it as a catalyst, the wear of the additive can be minimized. However, platinum group metals are extremely expensive and have a problem in cost. In the first place, in substitution plating that uses the potential difference between metals to substitute and deposit, the organic additive is not only a hindrance to substitution, but in the unlikely event that a very precious platinum group dissolves in the substitution plating solution. It is not preferable to bring a noble metal into the displacement plating system because there is a risk that the platinum group is displaced and deposited.

特許文献6では、酸素またはオゾンのバブリングで2価の鉄を酸化して3価の鉄として除去する手段を提案しているが、強い酸化剤のオゾンは有害であり、安全上の厳重な管理とそのためのコストを要求する。また特許文献6では、キレート樹脂を使用することから酸化されて生じた3価の鉄イオンを沈殿させずにイオン交換除去するものである。したがって沈殿などが生じるpH領域ではキレート樹脂が目づまりを起こして機能しなくなるため、pH範囲は該公報にあるように3価の鉄の沈殿が生じないような高い酸性水溶液中、すなわち低いpHに限定される。   Patent Document 6 proposes a means of oxidizing divalent iron by bubbling with oxygen or ozone to remove it as trivalent iron. However, strong oxidizing agent ozone is harmful and is strictly controlled for safety. And request the cost for it. In Patent Document 6, trivalent iron ions generated by oxidation due to the use of a chelate resin are removed by ion exchange without precipitation. Accordingly, since the chelate resin becomes clogged and does not function in the pH range where precipitation or the like occurs, the pH range is limited to a highly acidic aqueous solution in which precipitation of trivalent iron does not occur, that is, low pH as described in the publication Is done.

ここで高い酸性水溶液について考えてみる。Fe(OH)の溶解度積Ksp=3.16×10−38(化学便覧基礎編 改訂3版、ページII−179、丸善、1984)より、電気めっき液中に存在する2価の鉄イオンが0.1g/lがすべて3価の鉄イオンに酸化されたとすると、沈殿しないpH領域は2.4以下であり、このような低いpH領域を保つことで除去できるものである。一方置換めっきにおいては、当該範囲の低いpH領域を維持することは浴調整を必要とするため、酸素バブリングとキレート樹脂による3価の鉄の除去は極めて高いコストを要求することになる。また、一般的にキレート樹脂はイオン交換樹脂と同様多くの重金属イオンを配位結合する能力を有し、目的とする3価の鉄の除去だけでなく、主たる重金属イオンをも除去してしまうなどの不具合がある。また、必須のキレート樹脂の添加によるコスト増や残存する酸素やオゾンによりキレート樹脂そのものが分解してめっき液を汚染する課題も発生する。
特開平8−164399号公報 特開平8−173990号公報 特開2004−174327号公報 特開平2−66199号公報 特開平3−232999号公報 特開平3−24298号公報
Now consider a highly acidic aqueous solution. From the solubility product Ksp = 3.16 × 10 −38 of Fe (OH) 3 (Chemical Handbook basic edition 3rd edition, page II-179, Maruzen, 1984), the divalent iron ions present in the electroplating solution are Assuming that all 0.1 g / l is oxidized to trivalent iron ions, the pH region where precipitation does not occur is 2.4 or less, and can be removed by keeping such a low pH region. On the other hand, in displacement plating, it is necessary to adjust the bath to maintain a low pH range in this range, so removal of trivalent iron by oxygen bubbling and chelate resin requires extremely high costs. In general, chelate resins have the ability to coordinate and bond many heavy metal ions as well as ion exchange resins, and not only remove the intended trivalent iron, but also remove the main heavy metal ions. There is a bug. In addition, the cost increases due to the addition of the essential chelate resin, and the chelate resin itself is decomposed by the remaining oxygen and ozone, thereby causing the problem of contaminating the plating solution.
JP-A-8-164399 JP-A-8-173990 JP 2004-174327 A JP-A-2-66199 JP-A-3-232999 Japanese Patent Laid-Open No. 3-24298

本発明は上記の問題に鑑み、置換めっき液中に蓄積された鉄イオンを低コストで容易に除去できる方法とその設備を提供するものである。   In view of the above problems, the present invention provides a method and equipment capable of easily removing iron ions accumulated in a displacement plating solution at low cost.

本発明者らは、まず鉄の化学的性質に着目した。置換めっき液中に溶存する鉄イオンは2価イオンであるが、これは酸化される能力を有しているところに特徴がある。すなわち鉄は何らかの酸化剤の存在によって3価イオンになりうる。3価の鉄イオンは、水溶液中では不安定であり、計算上は前述のようにpH2.4を超えると水酸化物の形態で沈殿する。   The inventors first focused on the chemical nature of iron. The iron ion dissolved in the displacement plating solution is a divalent ion, which is characterized in that it has an ability to be oxidized. That is, iron can become a trivalent ion in the presence of some oxidizing agent. Trivalent iron ions are unstable in an aqueous solution, and are calculated in the form of hydroxide when the pH exceeds 2.4 as described above.

本発明者らは、上記の3価の鉄の沈殿する性質を利用して、鉄を酸化し、沈殿除去することを検討した。もっとも容易なのは酸素を利用した酸化であるが、2価の鉄が酸化されるときの反応 Fe2+→Fe3++eの標準電極電位+0.771Vは、酸素の還元反応 1/2O+HO+2e→2OHの標準電極電位+0.401Vより貴に位置しているため、単純に酸素による酸化が進まない。2価の鉄イオンを酸化する手段として、オゾンといった強い酸化剤や酸化微生物、光照射を使用し、さらにイオン交換、キレート樹脂等を組み合わせて利用する理由がここにある。しかしながらオゾンはそれ自身が毒性であり、微生物においても、厳格な設備管理、安全管理を要求するためコストは大きくなる。また、3価の鉄イオンを除去する手段として、イオン交換樹脂やキレート樹脂などの高価な金属イオン除去設備はコストも大きくなり、樹脂の再生コストや廃棄処分の際の問題も生じる。 The present inventors studied to oxidize iron and remove the precipitate by utilizing the property of precipitation of the trivalent iron. The simplest is oxidation using oxygen, but the reaction when divalent iron is oxidized. Fe 2+ → Fe 3+ + e standard electrode potential +0.771 V is oxygen reduction reaction 1 / 2O 2 + H 2 O + 2e Since it is located nobler than the standard electrode potential +0.401 V of → 2OH , oxidation by oxygen simply does not proceed. This is the reason for using strong oxidizing agents such as ozone, oxidizing microorganisms, and light irradiation as means for oxidizing divalent iron ions, and further combining ion exchange and chelating resin. However, ozone itself is toxic, and even microorganisms require strict facility management and safety management, which increases costs. In addition, as a means for removing trivalent iron ions, expensive metal ion removal equipment such as ion exchange resin and chelate resin increases in cost, and also causes problems in resin regeneration cost and disposal.

設備管理上、その手段は簡便かつ安全なものであることが望ましく、本発明者らは上記の酸素を使用した鉄の除去方法について再度検討を重ねた。標準電極電位の大小は、平衡がどちらに傾くかを示しているものであり、酸素を酸化剤とした2価の鉄の酸化反応は発生しないのではなく、酸化反応が進んでも、3価のまま永続的に安定して存在するのではなく、無限時間のうちに、2価の鉄に戻ることを意味しているものである。したがって、3価になった鉄イオンを即座に水溶液系外から排出すれば、反応を進める可能性があるのではないかと考えた。この推察に基づき、3価の鉄が沈殿しうるpH領域になるようにめっき液を調整し酸素を吹き込んだところ、酸素の供給とともにめっき液中の2価の鉄イオンが3価の鉄イオンに酸化され、水酸化物として黄色の沈殿を発生することを見出した。   In terms of facility management, it is desirable that the means be simple and safe, and the present inventors have reexamined the above-described method for removing iron using oxygen. The magnitude of the standard electrode potential indicates which direction the equilibrium is inclined to. The oxidation reaction of divalent iron using oxygen as an oxidizing agent does not occur, but the trivalent It does not exist permanently and stably, but it means that it returns to divalent iron in an infinite time. Therefore, we thought that there was a possibility of proceeding the reaction if the trivalent iron ions were immediately discharged from the aqueous solution system. Based on this inference, when the plating solution was adjusted so that the pH range where trivalent iron can precipitate was blown, oxygen was blown, and as the oxygen was supplied, the divalent iron ions in the plating solution became trivalent iron ions. It has been found that it is oxidized to produce a yellow precipitate as a hydroxide.

しかし反応が進むと溶液は酸性化し、あるpHまで酸性化した後、鉄の沈殿反応が進まなくなった。これは下式(1)の反応が進んで溶液が酸性化し、酸化して発生した3価の鉄イオンが沈殿することなく溶液系内にとどまることができることで、平衡上有利な2価の鉄イオンに戻ることが可能になり、結果的に下式(1)の反応が進まなかったものと推察した。
Fe2++1/4O+5/2HO→Fe(OH)+2H・・・・・(1)
However, as the reaction progressed, the solution acidified, and after acidifying to a certain pH, the iron precipitation reaction did not proceed. This is because the reaction of the following formula (1) proceeds, the solution is acidified, and the trivalent iron ions generated by oxidation can remain in the solution system without precipitating. It became possible to return to the ion, and as a result, it was speculated that the reaction of the following formula (1) did not proceed.
Fe 2+ +1/4 O 2 + 5 / 2H 2 O → Fe (OH) 3 + 2H + (1)

そこで、生成した3価の鉄イオンを沈殿させるために、溶液を3価の鉄イオンの沈殿領域であるpH2.5以上に維持したところ、3価の鉄イオンの沈殿除去が進むことを見出した。図1に酸素の吹き込み時間に対する2価の鉄イオンの減少量、3価鉄イオンの沈殿量、pHの変化を示す。酸素の吹き込みとともに、pHは低下し、2価の鉄イオンが減少して、3価鉄イオンの沈殿量が増加した。ところが、pH2.5を下回ると、2価鉄イオンの減少と3価鉄イオンの沈殿は停滞した。24時間後、pHを4に再調整したところ、再び2価鉄イオンの減少と3価鉄イオンの沈殿が進行した。   Therefore, in order to precipitate the generated trivalent iron ions, the solution was maintained at pH 2.5 or higher, which is a precipitation region of the trivalent iron ions, and it was found that the precipitation removal of the trivalent iron ions proceeded. . FIG. 1 shows the amount of decrease in divalent iron ions and the amount of precipitation of trivalent iron ions and the change in pH with respect to the oxygen blowing time. As oxygen was blown in, the pH decreased, divalent iron ions decreased, and the amount of precipitated trivalent iron ions increased. However, below pH 2.5, the decrease in divalent iron ions and the precipitation of trivalent iron ions stagnated. After 24 hours, when the pH was readjusted to 4, reduction of divalent iron ions and precipitation of trivalent iron ions proceeded again.

一般的に電気めっきに用いる溶液は、例えば100A/dmなどのような高電流密度の電気印加時には電子を受け取る金属イオンの電極表面への拡散が間に合わず、めっきやけといわれるめっきの焦げ現象(金属酸化物の生成)が生じるために、これを防ぐ目的として例えばpH1といった強い酸性溶液としてプロトンを多く存在させ、金属イオンの拡散が間に合わない場合に敢えて水素発生させる。逆に、プロトンが少ない弱酸から中性側(例えばpH3〜5)へのpHの調整は、めっきやけという品質劣化を招くために、電気めっき溶液への本発明の採用は難しい。 In general, the solution used for electroplating, for example, when a high current density such as 100 A / dm 2 is applied, the diffusion of metal ions that receive electrons to the electrode surface is not in time, so that the burning phenomenon of plating (called plating or scorching) ( For the purpose of preventing this, a large amount of protons are present as a strong acidic solution such as pH 1, and hydrogen is generated when the diffusion of metal ions is not in time. Conversely, adjustment of pH from a weak acid with few protons to a neutral side (for example, pH 3 to 5) causes quality deterioration such as plating burn, so that it is difficult to employ the present invention for an electroplating solution.

しかし、金属イオンと鉄との自然な電子交換反応による置換めっきは、めっきやけは発生しないため、むしろ水素発生をさせないよう弱酸から中性付近のpH領域(例えばpH3〜5)を利用することがめっき効率上好ましく、鉄イオンを沈殿除去するpH域とうまく適合する。   However, substitution plating based on a natural electron exchange reaction between metal ions and iron does not generate plating or scorching, so it is rather possible to use a pH range from a weak acid to a neutral pH range (for example, pH 3 to 5) to prevent hydrogen generation. It is preferable in terms of plating efficiency and is well suited to a pH range where iron ions are precipitated and removed.

本発明は上記の知見に基づきなされたもので、鋼材に鉄以外の金属を置換めっきするに際し、置換めっき液中に溶存してくる鉄イオンを除去する置換めっき液中の鉄イオン除去方法であって、アルカリ剤として置換めっきする金属の炭酸塩を置換めっき液に投入し、置換めっき液主槽またはその予備槽における置換めっき液のpHを2.5以上に維持しつつ、置換めっき液に、めっき液1m あたり0.01L/min以上の酸素または酸素含有気体を通気することにより、下記式の反応を促進し、鉄イオンを水酸化物の沈殿として反応系から除去していくことを特徴とするものである。
Fe 2+ +1/4O +5/2H O→Fe(OH) +2H
である。
The present invention has been made based on the above knowledge, and is a method for removing iron ions in a displacement plating solution that removes iron ions dissolved in a displacement plating solution when a metal other than iron is displacement plated on a steel material. Then, the metal carbonate to be subjected to displacement plating as an alkaline agent is added to the displacement plating solution, while maintaining the pH of the displacement plating solution in the displacement plating solution main tank or its spare tank at 2.5 or more , By ventilating oxygen or oxygen-containing gas of 0.01 L / min or more per 1 m 3 of plating solution , the reaction of the following formula is promoted, and iron ions are removed from the reaction system as precipitates of hydroxide. It is what.
Fe 2+ +1/4 O 2 + 5 / 2H 2 O → Fe (OH) 3 + 2H +
It is.

以上述べたように、本発明は、置換めっき液中に蓄積した鉄イオンを酸素または酸素含有気体の通気という極めて容易な手段により低コストでかつ簡便に除去することを可能としたものであり、産業への貢献はきわめて大きい。   As described above, the present invention enables iron ions accumulated in the displacement plating solution to be easily removed at a low cost by an extremely easy means of aeration of oxygen or oxygen-containing gas. The contribution to industry is extremely large.

以下、本発明について詳細に説明する。
まず本発明におけるめっき液であるが、鉄イオンが次々と溶解してくる置換めっきに対して最も効果が大きい。また図1より、3価の鉄イオンが沈殿しないとされるpHが2.4以下の領域とは異なるpHが2.5以上であることが必須であり、このpH領域にある置換めっきが最も効果が大きい。
Hereinafter, the present invention will be described in detail.
First, the plating solution according to the present invention is most effective for displacement plating in which iron ions dissolve one after another. In addition, as shown in FIG. 1, it is essential that the pH is 2.5 or more, which is different from the region where pH is 2.4 or less, where trivalent iron ions are not precipitated, and substitution plating in this pH region is the most. Great effect.

なお、置換めっきとは、鉄より貴な電位を有する金属イオンと鉄との電位差によって金属が析出し鉄が溶解する電気化学反応であり、電流を強制的に印加し、鉄との電子交換をさせる必要のない電気めっきとは異なるめっきであり、また、還元補助剤を加えることで、母材と溶液中の金属イオンとの電子交換を生じさせない無電解めっきとも異なる。   Displacement plating is an electrochemical reaction in which a metal precipitates due to a potential difference between iron and a metal ion having a potential nobler than iron and the iron dissolves, and an electric current is forcibly applied to exchange electrons with iron. The electroplating is different from electroplating that does not need to be performed, and is different from electroless plating that does not cause electron exchange between the base material and metal ions in the solution by adding a reducing auxiliary agent.

置換めっき液の種類は問わず、鉄より貴な金属の置換めっきであればいずれでもよく、例えば銅やニッケルなどが相当する。また、置換めっきされる金属イオンの濃度は、本発明における鉄イオンの除去においてなんら影響を与えるものではなく、数mg/lから数十g/lなど、必要に応じた濃度の溶液を用いることができる。さらに、置換めっき液にめっきの平滑性や付着性を改善することを目的に、各種の添加剤を加えてもかまわない。また、置換めっきさせる金属イオンの対イオンとして、硫酸イオン、硝酸イオン、ハロゲン化物イオンなど、各種の対イオンを選択してもなんら影響がない。   There is no limitation on the type of the displacement plating solution, and any displacement plating solution may be used as long as it is a displacement plating of a metal nobler than iron, for example, copper or nickel. Further, the concentration of metal ions to be subjected to displacement plating does not have any influence on the removal of iron ions in the present invention, and a solution having a concentration as required such as several mg / l to several tens g / l should be used. Can do. Furthermore, various additives may be added to the replacement plating solution for the purpose of improving the smoothness and adhesion of the plating. Further, even if various counter ions such as sulfate ion, nitrate ion and halide ion are selected as counter ions of metal ions to be subjected to displacement plating, there is no influence.

本発明の効果が大きく期待できるのは、置換めっき液に鉄イオンが0.1g/l以上含まれている場合である。0.1g/lを下回るような希薄な鉄イオン濃度であれば、鉄イオンによる置換めっき液の劣化は大して進まず、本発明を実施しなくても置換めっき液は良好な状態を保ち続けるため、本発明の除去効果は乏しい。上限は定めないが、水溶液中への2価の鉄イオンの溶解度の上限を考慮すると、20g/l以下が適当である。   The effect of the present invention can be greatly expected when the substitution plating solution contains 0.1 g / l or more of iron ions. If the dilute iron ion concentration is less than 0.1 g / l, the deterioration of the displacement plating solution due to the iron ions does not progress greatly, and the displacement plating solution continues to maintain a good state without carrying out the present invention. The removal effect of the present invention is poor. Although an upper limit is not defined, 20 g / l or less is appropriate considering the upper limit of the solubility of divalent iron ions in an aqueous solution.

鉄の酸化に使用する酸素は、純酸素はもちろんのこと、空気などの酸素含有気体であればかまわない。また通気の方法は問わない。   The oxygen used for the oxidation of iron may be pure oxygen or an oxygen-containing gas such as air. The ventilation method is not limited.

吹き込む酸素量は、めっき液1mあたり0.01L/minを下回ると反応が進みにくいため下限を0.01L/minとする。反応性の向上を考慮すると、めっき液1mあたりに1L/min以上が好ましく、鉄の酸化とその沈殿を極めて迅速に進めることができる。上限は定めないが、設備のスペースや設備コスト、気泡の発生等を考慮して、600L/minまでが好ましい。また、浴温も高い方が有利であり、40℃以上で反応性を高めることができる。図2は吹き込み酸素量と2価の鉄イオンの減少量の関係を示したものである。0.01L/min付近から鉄イオンの減少が顕著に進んだ。 When the amount of oxygen blown is less than 0.01 L / min per 1 m 3 of the plating solution, the reaction is difficult to proceed, so the lower limit is set to 0.01 L / min. In consideration of improvement in reactivity, 1 L / min or more is preferable per 1 m 3 of the plating solution, and iron oxidation and precipitation can proceed extremely rapidly. An upper limit is not set, but it is preferably up to 600 L / min in consideration of equipment space, equipment cost, generation of bubbles, and the like. Moreover, the one where a bath temperature is also high is advantageous, and reactivity can be improved above 40 degreeC. FIG. 2 shows the relationship between the amount of oxygen blown and the amount of divalent iron ions decreased. The decrease of iron ions markedly progressed from around 0.01 L / min.

溶液のpHは2.5以上に保つことが必要である。pH2.5を下回ると、3価の鉄イオンが沈殿しにくいため、溶液中に生じた3価の鉄イオンは2価の鉄イオンに戻ってしまう。図3は、鉄イオンのpH−電位曲線図(Atlas of Electrochemical Equilibria in Aqueous Solutions、Marcel Pourbaix著、p313、NACE International 編、1996年)を示している。図3中の点線は、ある鉄濃度における沈殿発生の限界pHを示している。溶液中の鉄イオン濃度によって発生するFe(OH)の沈殿pHは変化するが、1mol/lの鉄イオン濃度ではpH1.8、0.01mol/lの鉄イオン濃度ではpH2.4である。したがって、pH1.5のような強い酸性領域では、3価の鉄イオンとして存在するため沈殿は発生しない。 The pH of the solution needs to be kept at 2.5 or higher. When the pH is less than 2.5, trivalent iron ions are difficult to precipitate, and thus the trivalent iron ions generated in the solution return to divalent iron ions. FIG. 3 shows a pH-potential curve of iron ions (Atlas of Electrochemical Equilibria in Aqueous Solutions, Marcel Pourbaix, p313, edited by NACE International, 1996). The dotted line in FIG. 3 indicates the pH limit for precipitation at a certain iron concentration. The precipitation pH of Fe (OH) 3 generated varies depending on the iron ion concentration in the solution, but is pH 1.8 at an iron ion concentration of 1 mol / l and pH 2.4 at an iron ion concentration of 0.01 mol / l. Therefore, precipitation does not occur in a strongly acidic region such as pH 1.5 because it exists as trivalent iron ions.

pH2.5以上に保つ手段は、置換めっきする金属の炭酸塩とする。例えば銅の置換めっきの場合は炭酸銅、ニッケルの置換めっきの場合は炭酸ニッケルがもっとも好ましい。炭酸塩は酸性溶液下では、二酸化炭素が発生してめっき液外へ放散されるほか、金属イオンと水のみが供給されるため、他のアルカリ剤では発生する第三の成分、例えば水酸化物におけるカチオンやアンモニアにおけるアンモニウムイオンなどのめっき液への蓄積が無く、イオンバランスを崩すことなく、pH調整とイオン補給を同時に実施することができる。   The means for maintaining the pH at 2.5 or higher is a carbonate of a metal to be subjected to displacement plating. For example, copper carbonate is most preferable for copper displacement plating, and nickel carbonate is most preferable for nickel displacement plating. Carbonate is generated in an acidic solution and is emitted to the outside of the plating solution. In addition, since only metal ions and water are supplied, the third component generated by other alkaline agents, such as hydroxide, is used. PH adjustment and ion replenishment can be carried out at the same time without losing the ion balance.

pH2.5以上を維持するように置換めっき液に緩衝溶液を用いても本発明の効果発現上なんら問題なく、むしろ3価の鉄イオンを効率よく沈殿でき、好ましい。緩衝溶液の種類は特に問わず、リン酸系、ハロゲン化物系、硝酸系、硫酸系など、一般的に緩衝作用のあるものを使用することができる。pHの上限は特に定めず、めっきする金属の沈殿限界、例えばpH5程度が好ましい。   Even if a buffer solution is used as the displacement plating solution so as to maintain a pH of 2.5 or more, there is no problem in the manifestation of the effect of the present invention. Rather, trivalent iron ions can be precipitated efficiently, which is preferable. The type of the buffer solution is not particularly limited, and those having a buffering action such as phosphoric acid, halide, nitric acid, and sulfuric acid can be used. The upper limit of the pH is not particularly defined, and the precipitation limit of the metal to be plated, for example, about pH 5 is preferable.

鉄イオンを除去する設備の一例を図4に示す。酸素通気装置では純酸素あるいは空気あるいは非反応性ガス(例えば窒素、アルゴンなど)+酸素にて任意の酸素濃度に調整した酸素含有ガスなどが酸素通気装置2によって置換めっき液主槽1に通気される。図4ではめっき液をためている置換めっき液主槽1に酸素を通気しているが、通気用に設置された別の予備槽を設けて、そこで酸素を通気してもかまわない。   An example of equipment for removing iron ions is shown in FIG. In the oxygen aeration apparatus, pure oxygen or air or a non-reactive gas (for example, nitrogen, argon, etc.) + an oxygen-containing gas adjusted to an arbitrary oxygen concentration with oxygen is ventilated by the oxygen aeration apparatus 2 into the replacement plating solution main tank 1. The In FIG. 4, oxygen is ventilated in the replacement plating solution main tank 1 storing the plating solution, but another spare tank installed for ventilation may be provided and oxygen may be vented there.

酸素を通気された置換めっき液は、pH維持のためのpH調整装置3に送り込まれ、pHの調整が実施される。このpH調整装置では、イオン補給が同時に行われてもかまわない。さらに、pHの調整が狙い通り行われているかを確認するために、pH調整装置3出口および/または置換めっき液主槽1および/または前述の別の予備槽にpHメーターを設置して、pH制御を自動的に制御するとより好ましい。   The displacement plating solution in which oxygen is passed is sent to the pH adjusting device 3 for maintaining the pH, and the pH is adjusted. In this pH adjuster, ion replenishment may be performed simultaneously. Further, in order to confirm whether the pH adjustment is performed as intended, a pH meter is installed at the outlet of the pH adjusting device 3 and / or the replacement plating solution main tank 1 and / or the above-mentioned another auxiliary tank, and the pH is adjusted. More preferably, the control is automatically controlled.

沈殿除去装置4では、ろ過等によって沈殿した鉄イオンを除去が行われる。沈殿除去装置4にはめっき液の流れと逆流した自動洗浄装置などをつけることで沈殿物の堆積による目詰まりを回避することができる。さらには、沈殿除去装置4を複数設置し、順に作動させることで、目詰まりによる操業効率の低下を防ぐことができる。沈殿除去装置4とpH調整装置3は並列して設置されても、直列して設置されてもかまわない。   In the precipitation removing device 4, iron ions precipitated by filtration or the like are removed. By attaching an automatic washing device or the like that flows backward to the flow of the plating solution to the precipitation removing device 4, clogging due to deposit accumulation can be avoided. Furthermore, by installing a plurality of precipitation removing devices 4 and operating them sequentially, it is possible to prevent a decrease in operation efficiency due to clogging. The precipitation removing device 4 and the pH adjusting device 3 may be installed in parallel or in series.

次に、本発明の実施例を比較例とともにあげる。
表1に示す置換めっき金属成分と通気条件および各種pH調整剤にて鉄イオンの酸化除去試験を実施した。評価は、めっき液中のFe濃度とめっき付着効率の変化、浴寿命を実施した。めっき液中のFe濃度は、除去試験24時間後および48時間後のめっき液中の鉄の濃度をICP発光分析法にて分析した。めっき付着効率の変化は、鉄イオン除去前後にめっき付着量を測定し、鉄イオン除去後のめっき付着量が20%以上向上したものを◎、0%超20%未満向上したものを○、変化なかったものを△、減少したものを×とした。浴寿命は、めっき付着効率の変化が、0%超回復する現象が、6回以上繰り返しても可能だったものを○、4〜5回可能だったものを△、3回以下だったものを×とした。結果を同じく表1に示した。
Next, the Example of this invention is given with a comparative example.
An oxidation removal test of iron ions was carried out using the displacement plating metal components shown in Table 1, the aeration conditions, and various pH adjusting agents. Evaluation was carried out by changing the Fe concentration in the plating solution, the plating adhesion efficiency, and the bath life. As for the Fe concentration in the plating solution, the concentration of iron in the plating solution after 24 hours and 48 hours after the removal test was analyzed by ICP emission spectrometry. The change in plating adhesion efficiency was measured by measuring the amount of plating deposited before and after removal of iron ions. Those that did not exist were marked with Δ, and those that decreased were marked with ×. The bath life is that the phenomenon that the change in plating adhesion efficiency recovers more than 0% was possible even after repeated 6 times or more. X. The results are also shown in Table 1.

Figure 0005114739
Figure 0005114739

本発明例は何れも、24時間後には、鉄イオンの顕著な減少が見られ、めっきの付着効率も向上した。一方、初期の鉄イオンが少ない比較例9、通気するガスが酸素を含まない比較例10、通器量が少ない比較例11、調整したpHが低い比較例12では、鉄イオン除去の効果がほとんど認められず、めっき付着効率も向上しなかった。   In all of the inventive examples, after 24 hours, a marked decrease in iron ions was observed, and the plating deposition efficiency was improved. On the other hand, Comparative Example 9 with little initial iron ions, Comparative Example 10 in which the gas to be aerated does not contain oxygen, Comparative Example 11 with a small amount of gas passed through, and Comparative Example 12 with a low adjusted pH, almost have the effect of removing iron ions. The plating deposition efficiency was not improved.

上記の通り、本発明によれば置換めっき液中に蓄積される鉄イオンを簡便、安全かつ安価に除去できることが可能となり、産業に貢献するところ大である。   As described above, according to the present invention, iron ions accumulated in the displacement plating solution can be removed easily, safely and inexpensively, which greatly contributes to the industry.

酸素の吹込みによる鉄イオン除去の説明図である。It is explanatory drawing of the iron ion removal by the blowing of oxygen. 酸素の吹き込み量と置換めっき液中に存在する2価の鉄イオンの減少量の関係図である。It is a relationship diagram of the amount of oxygen blowing and the amount of decrease of divalent iron ions present in the displacement plating solution. 3価の鉄イオンの沈殿発生のpHの説明図である。It is explanatory drawing of pH of precipitation generation | occurrence | production of a trivalent iron ion. 鉄イオン除去設備の一例を示す説明図である。It is explanatory drawing which shows an example of an iron ion removal installation.

符号の説明Explanation of symbols

1 置換めっき液主槽
2 酸素通気装置
3 pH調整装置
4 沈殿除去装置
1 Displacement plating solution main tank 2 Oxygen ventilation device 3 pH adjustment device 4 Precipitation removal device

Claims (1)

鋼材に鉄以外の金属を置換めっきするに際し、置換めっき液中に溶存してくる鉄イオンを除去する置換めっき液中の鉄イオン除去方法であって、
アルカリ剤として置換めっきする金属の炭酸塩を置換めっき液に投入し、
置換めっき液主槽またはその予備槽における置換めっき液のpHを2.5以上に維持しつつ、
置換めっき液に、めっき液1m あたり0.01L/min以上の酸素または酸素含有気体を通気することにより、
下記式の反応を促進し、鉄イオンを水酸化物の沈殿として反応系から除去していくことを特徴とする置換めっき液中の鉄イオン除去方法。

Fe 2+ +1/4O +5/2H O→Fe(OH) +2H
A method for removing iron ions in a displacement plating solution that removes iron ions dissolved in a displacement plating solution when a metal other than iron is plated on a steel material ,
Put the carbonate of the metal to be replaced as an alkaline agent into the replacement plating solution,
While maintaining the pH of the replacement plating solution in the replacement plating solution main tank or its spare tank at 2.5 or more,
By passing oxygen or oxygen-containing gas at a rate of 0.01 L / min or more per 1 m 3 of the plating solution into the replacement plating solution ,
A method for removing iron ions in a displacement plating solution, wherein the reaction of the following formula is promoted and iron ions are removed from the reaction system as precipitates of hydroxide .

Fe 2+ +1/4 O 2 + 5 / 2H 2 O → Fe (OH) 3 + 2H +
JP2007227448A 2007-09-03 2007-09-03 Method and equipment for removing iron ions in displacement plating solution Active JP5114739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227448A JP5114739B2 (en) 2007-09-03 2007-09-03 Method and equipment for removing iron ions in displacement plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227448A JP5114739B2 (en) 2007-09-03 2007-09-03 Method and equipment for removing iron ions in displacement plating solution

Publications (2)

Publication Number Publication Date
JP2009057615A JP2009057615A (en) 2009-03-19
JP5114739B2 true JP5114739B2 (en) 2013-01-09

Family

ID=40553624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227448A Active JP5114739B2 (en) 2007-09-03 2007-09-03 Method and equipment for removing iron ions in displacement plating solution

Country Status (1)

Country Link
JP (1) JP5114739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150114472A (en) * 2013-02-05 2015-10-12 후지쇼지 가부시키가이샤 Method for regenerating plating solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080326A1 (en) * 2011-11-30 2013-06-06 不二商事株式会社 Method of regenerating plating solution

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266199A (en) * 1988-08-31 1990-03-06 Japan Steel Works Ltd:The Method for removing iron in plating solution
JP2564394B2 (en) * 1989-04-29 1996-12-18 株式会社神戸製鋼所 Replacement plating method
JPH083160B2 (en) * 1989-06-07 1996-01-17 日本鋼管株式会社 Apparatus and method for removing ferric ion and iron hydroxide sludge in iron-based electroplating solution
JPH0324298A (en) * 1989-06-21 1991-02-01 Sumitomo Metal Ind Ltd Treatment of ferrous ion in aqueous acidic solution
JPH03232999A (en) * 1990-02-06 1991-10-16 Daiso Co Ltd Method for refining plating bath
JPH0571000A (en) * 1991-09-17 1993-03-23 Agency Of Ind Science & Technol Method for removing iron ion in plating bath solution
JPH05123682A (en) * 1991-11-06 1993-05-21 Toyo Eng Corp Treatment of solution containing iron ion
JP3259008B2 (en) * 2000-01-05 2002-02-18 独立行政法人産業技術総合研究所 Preparation of electroless nickel plating replenisher and plating solution
JP2002030352A (en) * 2000-07-11 2002-01-31 Nippon Steel Corp Method for recovering valuable metal from metal- containing waste water
JP4173988B2 (en) * 2002-12-09 2008-10-29 新日本製鐵株式会社 Method for treating waste liquid containing a plurality of metals and method for recovering valuable metals
JP4589748B2 (en) * 2005-02-04 2010-12-01 新日本製鐵株式会社 Treatment of acidic waste liquid containing iron and chromium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150114472A (en) * 2013-02-05 2015-10-12 후지쇼지 가부시키가이샤 Method for regenerating plating solution
KR102133319B1 (en) * 2013-02-05 2020-07-13 후지쇼지 가부시키가이샤 Method for regenerating plating solution

Also Published As

Publication number Publication date
JP2009057615A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4947640B2 (en) Waste acid solution treatment method
WO2006112521A1 (en) Method of electrolyzing wastewater containing ammonia nitrogen and apparatus therefor
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JPWO2006126248A1 (en) Machining fluid quality control device and method, and electrical discharge machining device
JP2013010073A (en) Method and device for waste water treatment
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JP2005193202A (en) Water treatment method and water treatment system
JP2008036608A (en) Method and apparatus for treating cyanide-containing wastewater
JP4203076B2 (en) Method for producing cadmium
JP5114739B2 (en) Method and equipment for removing iron ions in displacement plating solution
EP2109588B1 (en) Method of treating liquid waste
JP2007185578A (en) Water treatment method and system
JP2007069068A (en) Heavy metal-containing waste water treatment method
JP2014140826A (en) Ultrapure water production method
JP4656379B2 (en) Method of treating wastewater containing iron cyanide
JP2009034633A (en) Method and apparatus for reducing nitrogen in nitrogen component-containing solution
US6884332B2 (en) Method and apparatus for treating an aqueous electroplating bath solution
JP5822235B2 (en) Method for removing oxidized nitrogen
JP2012040524A (en) Electrolytic treatment apparatus and electrolytic treatment method
JP7454096B1 (en) Wastewater treatment method
JP4718879B2 (en) Electric tin plating method
JP2019166459A (en) Water treatment device and water treatment method
KR20060108735A (en) Method for treating containing solutions
JP3109430B2 (en) Method of regenerating etching solution and method of using the regenerating solution
JP5776357B2 (en) Method for treating waste water containing hydrazine and chelating organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R151 Written notification of patent or utility model registration

Ref document number: 5114739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350