JPH0324298A - Treatment of ferrous ion in aqueous acidic solution - Google Patents

Treatment of ferrous ion in aqueous acidic solution

Info

Publication number
JPH0324298A
JPH0324298A JP15852189A JP15852189A JPH0324298A JP H0324298 A JPH0324298 A JP H0324298A JP 15852189 A JP15852189 A JP 15852189A JP 15852189 A JP15852189 A JP 15852189A JP H0324298 A JPH0324298 A JP H0324298A
Authority
JP
Japan
Prior art keywords
soln
iron ions
ion
ozone
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15852189A
Other languages
Japanese (ja)
Inventor
Kazumi Kobayashi
一三 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15852189A priority Critical patent/JPH0324298A/en
Publication of JPH0324298A publication Critical patent/JPH0324298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To easily reduce the Fe ion content of an aq. acidic soln. by bubbling oxygen or ozone through the soln. having a high content of ferrous ion to oxidize the ferrous ion to ferric ion and removing the ferric ion with a chelating resin. CONSTITUTION:A band steel 3 with the surface cleaned in a pretreating device 4 is passed through a Zn electroplating bath 5, and the surface is plated with Zn. The ferrous ion content of the plating soln. in the plating bath 5 is increased, and the plating soln. is deteriorated. Accordingly, a part of the plating soln. is introduced into a first iron removing device 7 via a pipeline 8, oxygen or ozone is blown into the soln. to oxidize the ferrous ion to ferric ion, and excess oxygen and ozone are removed. The soln. is introduced into a second iron removing device 10, the ferric ion is adsorbed on a chelating ion-exchange resin packed in the device, and the plating soln. with the Fe content reduced is returned to the plating bath 5 through a pipeline 16 and used in plating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2価の鉄イオン濃度が高い酸性水溶液(特に
電気亜鉛メッキ液)中の2価の鉄イオン(Fe”)を酸
化し、処理技術の確立した3価の鉄イオン(Fe”)に
変えて2価の鉄イオン濃度を低減する方法に関するもの
である。
[Detailed description of the invention] [Industrial application field] The present invention oxidizes divalent iron ions (Fe'') in an acidic aqueous solution (especially electrogalvanizing solution) with a high concentration of divalent iron ions, This invention relates to a method of reducing the concentration of divalent iron ions by replacing trivalent iron ions (Fe'') with established processing technology.

(従来の技術〕 従来、3価の鉄イオン濃度が高い酸性水溶液中の3価の
鉄イオンを分離する手段としては、水酸化カルシウム等
の中和剤を投入し、水酸化物として水溶液から分離する
方法が最も原始的なものである。また、近年、非水溶性
のジアルキルリン酸を含む有機抽出剤を酸性水溶液に接
触させて分離する方法も考えられている(特公昭57−
53410号公報参照). しかし、電気亜鉛メッキ液からの鉄イオン分離には、キ
レート樹脂を使用した分離法が開発され、一般にも使用
されている。この方法は、メッキ液を、3価の鉄イオン
に対して選択的な吸着特性を有するキレート性イオン交
換樹脂を充填した交換塔に通液し、3価の鉄イオンを除
去するものであり(特公昭57−27460号公報、同
57−51479号公報参照)、3価の鉄イオンの除去
にかなり有効である。
(Prior art) Conventionally, as a means to separate trivalent iron ions in an acidic aqueous solution with a high concentration of trivalent iron ions, a neutralizing agent such as calcium hydroxide is added, and the hydroxide is separated from the aqueous solution. In recent years, a method has also been considered in which an organic extractant containing a water-insoluble dialkyl phosphoric acid is brought into contact with an acidic aqueous solution to separate it (Japanese Patent Publication No. 1983-1999).
(Refer to Publication No. 53410). However, a separation method using a chelate resin has been developed to separate iron ions from an electrolytic galvanizing solution, and is now in general use. This method removes trivalent iron ions by passing the plating solution through an exchange column filled with a chelating ion exchange resin that has selective adsorption properties for trivalent iron ions ( (See Japanese Patent Publication Nos. 57-27460 and 57-51479) and is quite effective in removing trivalent iron ions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記電気亜鉛メッキ液からの鉄イオン分
離方法は、その実施中に被メッキ鉄板、電解タンク等か
らの溶出しにより、また副原料からメッキ液中に多量に
入ってくる2価の鉄イオンに対しては有効ではなく、メ
ッキ液中の鉄イオン濃度を低減することができなかった
。このため、製品の電気亜鉛メッキ鉄板の製品表面特性
を劣化させたり、電解タンク、配管、ポンプ等の金属材
料の熔損を早めたりするという不都合を免れなかった。
However, during the method for separating iron ions from the electrolytic galvanizing solution, a large amount of divalent iron ions enter the plating solution from auxiliary raw materials due to elution from the iron plate to be plated, electrolytic tank, etc. It was not effective against plating, and it was not possible to reduce the iron ion concentration in the plating solution. As a result, the surface characteristics of the electrolytic galvanized iron plate of the product deteriorate, and metal materials such as electrolytic tanks, piping, pumps, etc. are subject to accelerated damage.

(発明の目的) 本発明は前記課題を解決するためになしたもので、酸素
又はオゾンにより2価の鉄イオンを3価の鉄イオンに効
率良く酸化できるようにすると共に、液中に残存する酸
素又はオゾンを確実に除去して次工程のキレート樹脂を
使用した3価の鉄イオンの除去処理を確実ならしめるよ
うにすることを目的とする。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and it makes it possible to efficiently oxidize divalent iron ions to trivalent iron ions by oxygen or ozone, and also to make it possible to efficiently oxidize divalent iron ions to trivalent iron ions remaining in the liquid. The purpose of this method is to ensure that oxygen or ozone is removed to ensure that trivalent iron ions are removed using a chelate resin in the next step.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、2価の鉄イオン濃度が高い酸性水溶液から2
価の鉄イオンを除去する方法であり、前記酸性水溶液を
酸素又はオゾンでバブリングして2価の鉄イオンを酸化
除去した後、前記吹き込んだ酸素又はオゾンを半透膜に
より酸性水溶液中から除去することを特徴としており、
かかる構威によって前記目的を達或するものである。
The present invention enables the production of iron from an acidic aqueous solution with a high concentration of divalent iron ions.
This is a method for removing valent iron ions, in which the acidic aqueous solution is bubbled with oxygen or ozone to oxidize and remove the divalent iron ions, and then the blown oxygen or ozone is removed from the acidic aqueous solution using a semipermeable membrane. It is characterized by
This structure achieves the above objective.

〔実施例] まず、本発明方法実施用設備の一例を第1図に沿って説
明する。
[Example] First, an example of equipment for implementing the method of the present invention will be described with reference to FIG.

図中1は電気亜鉛メッキ設備で、薄鋼板コイル2から薄
鋼板3が供給されると前処理タンク4で表面を調整され
た後、電気亜鉛メッキタンク5で表面に亜鉛メッキされ
、次いで後処理タンクで後処理されて製品コイル6とな
るように構或されている。
1 in the figure is an electrogalvanizing equipment, in which a thin steel plate 3 is supplied from a thin steel plate coil 2, its surface is conditioned in a pre-treatment tank 4, the surface is galvanized in an electro-galvanized tank 5, and then post-treated. It is configured to be post-processed in a tank to become a product coil 6.

7は2価の鉄イオンを除去するための第1除鉄装置で、
該第l除鉄装置7の入口には、配管8によりバルプ9を
介して電気亜鉛メッキタンク4と接続されている。
7 is the first iron removal device for removing divalent iron ions;
The inlet of the first iron removing device 7 is connected to the electrogalvanizing tank 4 via a valve 9 by a pipe 8.

10は3価の鉄イオンを除去するための第2除鉄装置(
イオン交換塔)で、該第2除鉄装置10内には、電気亜
鉛メッキ液中の3価の鉄イオンを吸着するキレート性イ
オン交換樹脂が充填されており、図示しない再生酸水溶
液流れ系により再生酸水溶液を通液してキレート性イオ
ン交換樹脂を再生可能となっている。
10 is a second iron removal device (
The second iron removing device 10 is filled with a chelating ion exchange resin that adsorbs trivalent iron ions in the electrolytic galvanizing solution, and is removed by a regenerating acid aqueous solution flow system (not shown). The chelating ion exchange resin can be regenerated by passing a regenerated acid aqueous solution through it.

この第2除鉄装置10の入口にはポンブl1の吐出側が
接続され、該ボンプIIの吸入側には、配管12により
バルブ13を介して第1除鉄装置7が接続され、かつ、
バイパス配管14によりバルブ15を介して電気亜鉛メ
ッキタンク4が直接的に接続されている。また、第2除
鉄装置10の出口は戻し配管l6によりバルブl7を介
して前記電気亜鉛メッキタンク5と接続されている。
The discharge side of a pump l1 is connected to the inlet of the second iron removal device 10, and the first iron removal device 7 is connected to the suction side of the pump II via a valve 13 via a pipe 12, and
Bypass piping 14 is directly connected to electrogalvanizing tank 4 via valve 15 . Further, the outlet of the second iron removing device 10 is connected to the electrogalvanizing tank 5 via a return pipe 16 and a valve 17.

第l除鉄装置7は、電気亜鉛メッキ液を一方向に流すパ
イプ状の処理タンク18を有し、該処理タンクl8に、
その入口側端部と出口側端部を接続しており、中間部に
ボンプ19を設け、両端部にバルブ20、21を設けた
戻り配管22を接続し、バルブ20,21の開状態で戻
り配管22を介しボンブ19により処理タンクl8内に
電気亜鉛メッキ液を複数回流すことが可能となっている
The first iron removal device 7 has a pipe-shaped processing tank 18 through which the electrolytic galvanizing solution flows in one direction, and the processing tank 18 includes:
The inlet side end and the outlet side end are connected, and a return pipe 22 with a pump 19 provided in the middle and valves 20 and 21 at both ends is connected, and when the valves 20 and 21 are open, the return pipe 22 is connected. It is possible to flow the electrogalvanizing solution into the processing tank 18 multiple times by the bomb 19 through the piping 22.

処理タンク18の人口側部には吹込配管23が酸素又は
オゾンを吹き込み可能に接続されており、該吹込配管2
3を介して処理タンク18内に吹き込んだ酸素又はオゾ
ンで処理タンク18内の電気亜鉛メッキ液をハブリング
可能としている。
A blowing pipe 23 is connected to the artificial side of the processing tank 18 so as to be able to blow oxygen or ozone into it.
The electrolytic galvanizing solution in the processing tank 18 can be hubbed with oxygen or ozone blown into the processing tank 18 through the tank 3.

また、処理タンク18の出口側部は、気体は通過させる
が液体は通過させないという性質を有する半透膜24(
商品名「ゴアテックス」)から形成され、その周囲全体
は、排気装置と接続したフード25で覆われており、フ
ード25を介し排気装置による排気作用を半透膜24の
全体に及ぼし、半透膜の性質を利用して電気亜鉛メッキ
液内に吹き込んだ酸素又はオゾンを脱気可能としている
In addition, the exit side of the processing tank 18 is provided with a semipermeable membrane 24 (
The entire periphery of the membrane is covered with a hood 25 connected to an exhaust device, and the exhaust action of the exhaust device is exerted on the entire semipermeable membrane 24 through the hood 25. Utilizing the properties of the film, it is possible to degas the oxygen or ozone blown into the electrolytic galvanizing solution.

このような設備においては、バルブ15の閉状態でバル
ブ9、l3、l7を開いてボンブ1lを駆動し、電気亜
鉛メッキタンク5円から電気亜鉛メッキ液の一部を抜き
出し、バルブ9、l3の開閉操作によって第1除鉄装置
7の処理タンク18内に所定の処理量だけ供給すると、
これにより処理タンク18から排出される処理済みのメ
ッキ液は配管l2を介して第2除鉄装置10に供給され
、該第2除鉄装置10から排出される処理済みの電気亜
鉛メッキ液は戻し配管l6を介して電気亜鉛メッキタン
ク5に戻される。そして、第1除鉄装置7においては後
述する2価の鉄イオンの酸化及びガス抜き工程が行われ
る。また、第2除鉄装置10において3価の鉄イオンの
除去工程が行われる。
In such equipment, with valve 15 closed, valves 9, l3, and l7 are opened to drive bomb 1l, a portion of the electrolytic galvanizing solution is extracted from electrogalvanizing tank 5, and valves 9, l3, and l7 are opened. When a predetermined amount of iron is supplied into the processing tank 18 of the first iron removal device 7 by opening and closing operations,
As a result, the treated electrogalvanizing solution discharged from the processing tank 18 is supplied to the second iron removal device 10 via the pipe 12, and the treated electrogalvanizing solution discharged from the second iron removal device 10 is returned. It is returned to the electrogalvanizing tank 5 via piping 16. Then, in the first iron removing device 7, a process of oxidizing divalent iron ions and degassing, which will be described later, is performed. Further, a step of removing trivalent iron ions is performed in the second iron removing device 10.

第l除鉄装置7においては、バルプ20、21の開状態
でポンブI9を駆動して戻し配管22を介し電気亜鉛メ
ッキ液を処理タンク18内に複数回通液させながら、排
気装置を駆動すると共に、吹込配管23を介して酸素又
はオゾンを処理タンク18内の電気亜鉛メッキ液に吹き
込む。そうすると、処理タンク18内を電気亜鉛メッキ
液が複数回流れ、その度に電気亜鉛メッキ液は酸素又は
オゾンでバブリングされ、電気亜鉛メッキ液中の2価の
鉄イオンは下記の(1)叉は(2)式に従って3価の鉄
イオンに酸化される。また、2価の鉄イオンの酸化に使
用されずに電気亜鉛メッキ液内に残存する酸素又はオゾ
ンは半透膜24を通過してフード25内に排出、捕集さ
れて排気される。
In the first iron removal device 7, the pump I9 is driven with the valves 20 and 21 open, and the electrolytic galvanizing solution is passed into the processing tank 18 multiple times through the return pipe 22, while the exhaust device is driven. At the same time, oxygen or ozone is blown into the electrolytic galvanizing solution in the processing tank 18 via the blowing pipe 23. Then, the electrogalvanizing solution flows through the processing tank 18 multiple times, and each time the electrogalvanizing solution is bubbled with oxygen or ozone, and the divalent iron ions in the electrolytic galvanizing solution are It is oxidized to trivalent iron ions according to formula (2). Further, oxygen or ozone remaining in the electrogalvanizing solution without being used for oxidizing divalent iron ions passes through the semipermeable membrane 24 and is discharged into the hood 25, where it is collected and exhausted.

(1)  F e”+Oz +2 H’ +3 e−+
Fe”+20H (2)  F e”+Ot +3 H” +5 e− 
→F e”+30H−本発明は、前記設備によるメッキ
液処理の流れで分かるように、流れ系の処理タンク18
内において電気亜鉛メッキ液中の2価の鉄イオンを酸素
又はオゾンでバブリングして酸化し3価の鉄イオンに変
えると共に、2価の鉄イオンの酸化に使用されずに電気
亜鉛メッキ液内に残存する酸素又はオゾンを半透膜24
により除去(ガス抜き)するものである。
(1) F e"+Oz +2 H' +3 e-+
Fe"+20H (2) Fe"+Ot +3 H"+5 e-
→F e"+30H
Inside the electrolytic galvanizing solution, divalent iron ions are bubbled with oxygen or ozone to oxidize and convert them into trivalent iron ions. Semi-permeable membrane 24 removes remaining oxygen or ozone.
It is removed (gas degassed) by

電気亜鉛メッキ液内に残存する酸素又はオゾンは第2除
鉄装置10内の3価の鉄イオン除去に有効なキレート樹
脂を侵し、またボンブ11、l9の吸入力を弱めるもの
であるから、その除去は、メッキ液処理の流れを確実な
らしめると共に、第2除鉄装置10における3価の鉄イ
オン除去機能を保証する. 尚、電気亜鉛メッキ液処理プロセスについて説明したが
、小さな上水道設備での酸化殺菌プロセス等にも応用可
能であることは勿論である。
Oxygen or ozone remaining in the electrogalvanizing solution corrodes the chelate resin effective in removing trivalent iron ions in the second iron removal device 10 and weakens the suction power of the bombs 11 and 19. The removal not only ensures the flow of the plating solution treatment but also guarantees the ability of the second iron removal device 10 to remove trivalent iron ions. Although the electrogalvanizing solution treatment process has been described, it is of course applicable to oxidation sterilization processes in small water supply facilities.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明は、酸性水溶液中の2価の鉄イオン
を3価の鉄イオンに確実に酸化できる。
As described above, the present invention can reliably oxidize divalent iron ions in an acidic aqueous solution to trivalent iron ions.

また、酸素又はオゾンによるバブリングで2価の鉄イオ
ンを酸化しており、中和剤を投入しないから、酸性水溶
液の組戒に影響はない。更に、半透膜により酸性水溶液
中に残存する酸素又はオゾンを確実に除去できる。従っ
て、次工程のキレート樹脂を使用する3価の鉄イオンの
除去処理を確実ならしめることができ、酸性水溶液中の
鉄イオン除去が図れる。また、流れ系において実施でき
るから、小さい設備で効率良い処理が行えると共に、処
理プロセスの簡素化が図れる。
Furthermore, since divalent iron ions are oxidized by bubbling with oxygen or ozone and no neutralizing agent is added, there is no effect on the composition of the acidic aqueous solution. Furthermore, the semipermeable membrane can reliably remove oxygen or ozone remaining in the acidic aqueous solution. Therefore, the removal treatment of trivalent iron ions using the chelate resin in the next step can be ensured, and iron ions in the acidic aqueous solution can be removed. Furthermore, since it can be carried out in a flow system, efficient treatment can be performed with small equipment, and the treatment process can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法実施用設備の概要図、第2図は第1
図の要部を詳細に示す概略的な断面図である。 l・・・・・・電気亜鉛メッキ設備、5・・・・・・電
気亜鉛メッキタンク、7・・・・・・第1除鉄装置、8
・・・・・・配管、9・・・・・・バルブ、10・・・
・・・第2除鉄装置、11・・・・・・ポンプ、l2・
・・・・・配管、l3・・・・・・バルブ、14・・・
・・・バイパス配管、15・・・・・・バルブ、16・
・・・・・戻し配管、17・・・・・・バルブ、18・
・・・・・処理タンク、l9・・・・・・ポンプ、20
、2l・・・・・・バルブ、22・・・・・・戻り配管
、23・・・・・・吹込配管、24・・・・・・半透膜
、25・・・・・・フード.
Figure 1 is a schematic diagram of the equipment for carrying out the method of the present invention, and Figure 2 is the
FIG. 2 is a schematic cross-sectional view showing the main part of the figure in detail. l...Electrogalvanizing equipment, 5...Electrogalvanizing tank, 7...First iron removal device, 8
...Piping, 9...Valve, 10...
...Second iron removal device, 11...Pump, l2.
...Piping, l3...Valve, 14...
...Bypass piping, 15...Valve, 16.
...Return piping, 17...Valve, 18.
...Processing tank, l9...Pump, 20
, 2l...Valve, 22...Return piping, 23...Blowing piping, 24...Semipermeable membrane, 25...Hood.

Claims (1)

【特許請求の範囲】[Claims] (1)、2価の鉄イオン濃度が高い酸性水溶液から2価
の鉄イオンを除去する方法であり、前記酸性水溶液を酸
素又はオゾンでバブリングして2価の鉄イオンを酸化除
去した後、前記吹き込んだ酸素又はオゾンを半透膜によ
り酸性水溶液中から除去することを特徴とする酸性水溶
液中の2価の鉄イオンの処理方法。
(1) is a method for removing divalent iron ions from an acidic aqueous solution with a high concentration of divalent iron ions, in which the acidic aqueous solution is bubbled with oxygen or ozone to oxidize and remove the divalent iron ions, and then the A method for treating divalent iron ions in an acidic aqueous solution, which comprises removing blown oxygen or ozone from the acidic aqueous solution using a semipermeable membrane.
JP15852189A 1989-06-21 1989-06-21 Treatment of ferrous ion in aqueous acidic solution Pending JPH0324298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15852189A JPH0324298A (en) 1989-06-21 1989-06-21 Treatment of ferrous ion in aqueous acidic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15852189A JPH0324298A (en) 1989-06-21 1989-06-21 Treatment of ferrous ion in aqueous acidic solution

Publications (1)

Publication Number Publication Date
JPH0324298A true JPH0324298A (en) 1991-02-01

Family

ID=15673555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15852189A Pending JPH0324298A (en) 1989-06-21 1989-06-21 Treatment of ferrous ion in aqueous acidic solution

Country Status (1)

Country Link
JP (1) JPH0324298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042797A (en) * 2001-11-24 2003-06-02 주식회사 포스코 Removing method of surface defect in electro galvanizing
JP2009057615A (en) * 2007-09-03 2009-03-19 Nippon Steel Corp Method and facility for removing iron ion from displacement plating liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042797A (en) * 2001-11-24 2003-06-02 주식회사 포스코 Removing method of surface defect in electro galvanizing
JP2009057615A (en) * 2007-09-03 2009-03-19 Nippon Steel Corp Method and facility for removing iron ion from displacement plating liquid

Similar Documents

Publication Publication Date Title
US5770090A (en) Method for recovery of heavy metal from waste water
US4157942A (en) Method for recovery of metals from metal plating baths and neutralizing toxic effluents therefrom
US4171255A (en) Apparatus for recovery of metals from metal plating baths and neutralizing toxic effluents therefrom
CN111186931A (en) Stainless steel pickling wastewater recycling equipment and process
EP0507006B1 (en) Method of treating salt bath liquid
JPH0324298A (en) Treatment of ferrous ion in aqueous acidic solution
CN106277474A (en) The process recovery method of a kind of steel industry sulfuric acid pickling waste liquid and system thereof
KR102570569B1 (en) recycling apparatus and method of waste sulfuric acid
KR100209987B1 (en) The reproduction method for sodium sulphate
CN213803052U (en) Cleaning system for iron-manganese scaling of electrodialysis system
CN209974464U (en) Stainless steel pickling waste water resource equipment
JPH09235688A (en) Method for pickling stainless steel
JPS6357799A (en) Treatment of plating solution
JP3012553B2 (en) Method and apparatus for removing heavy metals from contaminated water
CN109399832A (en) The processing method of acid heavy metal wastewater
Ciancia Pollution abatement in the metal finishing industry
JPS63278592A (en) Treatment of waste water containing ferrous sulfate
JP6103976B2 (en) Drainage treatment method and drainage treatment apparatus for surface treatment wastewater
US20200032398A1 (en) Surface treatment plant, preconditioning apparatus and process for treating process medium and/or rinsing medium
JPS62235499A (en) Method and apparatus for recovering effluent produced by washing electroplating tank
JP4441636B2 (en) Method and apparatus for recovering radioactive metal
SU1730048A1 (en) Method of removing heavy metal ions from sewage
KR100395114B1 (en) A reusing method of waste sulfuric acid solution as pickling solution and ferrous sulfate coagulant
JP2010094650A (en) Method for removing adhesive material in denitrification apparatus
JPS5850155B2 (en) Improved wastewater treatment method