JP5114207B2 - Vane bearing ring of turbocharger for automobile internal combustion engine - Google Patents

Vane bearing ring of turbocharger for automobile internal combustion engine Download PDF

Info

Publication number
JP5114207B2
JP5114207B2 JP2007547154A JP2007547154A JP5114207B2 JP 5114207 B2 JP5114207 B2 JP 5114207B2 JP 2007547154 A JP2007547154 A JP 2007547154A JP 2007547154 A JP2007547154 A JP 2007547154A JP 5114207 B2 JP5114207 B2 JP 5114207B2
Authority
JP
Japan
Prior art keywords
bearing ring
turbocharger
vane
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007547154A
Other languages
Japanese (ja)
Other versions
JP2008525630A (en
JP2008525630A5 (en
Inventor
ルーフ ローラント
シュタイネルト ルッツ
ヴィントリヒ クラウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Ventiltrieb GmbH
Original Assignee
Mahle Ventiltrieb GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Ventiltrieb GmbH filed Critical Mahle Ventiltrieb GmbH
Publication of JP2008525630A publication Critical patent/JP2008525630A/en
Publication of JP2008525630A5 publication Critical patent/JP2008525630A5/ja
Application granted granted Critical
Publication of JP5114207B2 publication Critical patent/JP5114207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、請求項1〜3に記載した形式の、調節可能なタービンベーンを備えたターボチャージャのベーン支承リング(Schaufellagerring)に関する。つまり本発明は、自動車内燃機関の、可変のタービンジオメトリを有するターボチャージャのベーン支承リングであって、ターボチャージャが、可変のタービンジオメトリのために、ベーン支承リング内で調節可能なタービンベーンを有しており、ベーン支承リングが、その支承面での固体潤滑剤作用を達成するための硫黄成分を有するオーステナイト系の鉄マトリックス合金から成っている形式のものに関する。 The invention relates to a turbocharger vane bearing ring with adjustable turbine vanes of the type as defined in claims 1 to 3 . That is, the present invention is a vane bearing ring of a turbocharger having a variable turbine geometry for an automotive internal combustion engine, wherein the turbocharger has a turbine vane adjustable within the vane bearing ring for the variable turbine geometry. And the vane bearing ring is of a type made of an austenitic iron matrix alloy having a sulfur component to achieve a solid lubricant action on the bearing surface.

欧州特許出願公開第1394364号明細書から、2つのベーン支承リングを備えるターボチャージャが公知である。製作コストを減じることができるように、少なくとも一方のベーン支承リングは、その面周方向にわたって分配され一体的に成形されたスペーサを有する。これらのスペーサにより、両ベーン支承リングの軸方向の間隔は確保可能である。
欧州特許出願公開第1396620号明細書から、ベーン支承リングを備える別のターボチャージャが公知である。
最近の高出力エンジンにおいて、耐久的に機能を果たし得るベーン支承リングには、極めて高い材料要求が課される。相応に適した材料は、十分なクリープ抵抗、高温時でもベーン支承リングの熱的なひずみを回避する高い寸法安定性、高い耐摩耗性ならびに十分な耐酸化性を有していなければならない。上位概念部に記載した形式のベーン支承リングのひずみ、クリープまたは強い酸化が生じると、タービンガイドベーンのロック、つまり固着に至り得る。すなわち、ターボチャージャ横断面はもはやガイドベーン調節によりエンジンの運転状態に適合され得ない。
From European Patent Application No. 1394364, a turbocharger with two vane bearing rings is known. In order to reduce manufacturing costs, at least one of the vane bearing rings has a spacer that is distributed and integrally molded over its circumferential direction. With these spacers, it is possible to ensure an axial distance between the two vane support rings.
From EP 1396620 another turbocharger with a vane bearing ring is known.
In modern high power engines, extremely high material requirements are imposed on vane bearing rings that can perform durablely. A correspondingly suitable material must have sufficient creep resistance, high dimensional stability to avoid thermal distortion of the vane bearing ring even at high temperatures, high wear resistance and sufficient oxidation resistance. Strain, creep or strong oxidation of the vane bearing ring of the type described in the superordinate concept can lead to turbine guide vane locking, i.e., sticking. That is, the turbocharger cross-section can no longer be adapted to the engine operating conditions by adjusting the guide vanes.

ベーン支承リングとして、従来、主に高い割合のクロムおよびクロムカーバイドを含有するフェライト系の材料が使用される。熱的により高く負荷されるベーン支承リングでは、クロムカーバイドを含有するオーステナイト系の材料が使用される。この種の合金は例えば、それぞれ質量%で示す以下の成分を含有する:C=0.4〜0.7、Cr=18〜21、Ni=12〜14、S=0.2〜0.4、Si=1.8〜2.2(残りとしての鉄と3%までの不特定の合金成分もしくは不純物とを有する)。そのような合金は以下合金PL23と呼ぶ。   Conventionally, ferrite-based materials containing a high proportion of chromium and chromium carbide are used as the vane bearing ring. For vane bearing rings, which are more thermally loaded, austenitic materials containing chromium carbide are used. This type of alloy contains, for example, the following components, each represented by mass%: C = 0.4 to 0.7, Cr = 18 to 21, Ni = 112 to 14, S = 0.2 to 0.4. Si = 1.8-2.2 (with remaining iron and up to 3% unspecified alloy components or impurities). Such an alloy is hereinafter referred to as alloy PL23.

本発明の課題は、上位概念部に記載した形式のベーン支承リングを、材料に関して、極度に高い温度での使用のために機能信頼性に設計することである。特に850℃を上回る温度での高いクリープ抵抗および高い強度の達成に努める。特にこのような高い温度時、上位概念部に記載した形式のベーン支承リング内でのタービンベーンの可動性は完全に保証されているべきである。   The object of the present invention is to design a vane bearing ring of the type described in the superordinate concept part with functional reliability for use at extremely high temperatures in terms of materials. In particular, strive to achieve high creep resistance and high strength at temperatures above 850 ° C. Especially at such high temperatures, the mobility of the turbine vanes in the vane bearing ring of the type described in the superordinate concept should be completely guaranteed.

この課題は、請求項1の特徴部に記載した合金組成、つまり該鉄マトリックス合金が、質量%で、炭素(C):0.4〜0.6%、クロム(Cr):18〜27%、ニッケル(Ni):12〜22%、硫黄(S):0.2〜0.5%およびケイ素(Si):2.9〜3.2%を含有し、さらに、タングステン(W):2.4〜2.8%および/またはニオブ(Nb):1.4〜1.8%を含有し、残部が鉄および不純物からなる、上位概念部に記載した形式のベーン支承リングにより解決される。 The problem is that the alloy composition described in the characterizing portion of claim 1, that is, the iron matrix alloy is, in mass%, carbon (C): 0.4 to 0.6%, chromium (Cr): 18 to 27%. Nickel (Ni): 12 to 22%, sulfur (S): 0.2 to 0.5% and silicon (Si): 2.9 to 3.2%, and tungsten (W): 2 .4 to 2.8% and / or niobium (Nb): solved by a vane bearing ring of the type described in the superordinate conceptual part, which contains 1.4 to 1.8%, the balance being iron and impurities .

特に有利なベーン支承リングを構成するオーステナイト系の鉄マトリックス合金、請求項に記載した合金、つまりそれぞれ質量%で示す個々の合金元素を有する次の合金組成、質量%で、炭素(C):0.4〜0.6%、クロム(Cr):18.5〜20.5%、ニッケル(Ni):12.5〜14%、硫黄(S):0.25〜0.45%およびケイ素(Si):2.9〜3.15%を含有し、さらに、タングステン(W):2.4〜2.8%および/またはニオブ(Nb):1.4〜1.8%を含有し、残部が鉄および不純物からなるか、あるいは、請求項に記載した合金、つまりそれぞれ質量%で示す個々の合金元素を有する次の合金組成、質量%で、炭素(C):0.4〜0.6%、クロム(Cr):24.5〜26.5%、ニッケル(Ni):19.5〜21.5%、硫黄(S):0.25〜0.45%およびケイ素(Si):2.9〜3.15%を含有し、さらに、タングステン(W):2.4〜2.8%および/またはニオブ(Nb):1.4〜1.8%を含有し、残部が鉄および不純物からなる合金であることが、特に良好な解決策であることが判った。 An austenitic iron matrix alloy which constitutes a particularly advantageous vane bearing ring is the alloy according to claim 2 , that is to say carbon (C) with the following alloy composition, each by mass%, each having an individual alloy element expressed in mass%: : 0.4-0.6%, chromium (Cr): 18.5-20.5%, nickel (Ni): 12.5-14%, sulfur (S): 0.25-0.45% and Silicon (Si): 2.9 to 3.15%, tungsten (W): 2.4 to 2.8% and / or niobium (Nb): 1.4 to 1.8% And the balance consists of iron and impurities, or the alloy according to claim 3 , that is, the following alloy composition, each having an individual alloy element expressed in% by mass, with carbon (C): 0.4% -0.6%, chromium (Cr): 24.5-26.5%, d Kell (Ni): 19.5 to 21.5%, Sulfur (S): 0.25 to 0.45% and Silicon (Si): 2.9 to 3.15%, and further containing tungsten (W ): 2.4-2.8% and / or niobium (Nb): 1.4-1.8%, with the balance being an alloy consisting of iron and impurities is a particularly good solution I found out.

本発明は、出力向上されるエンジンにおいてベーン支承リング材料の特に耐クリープ性および強度に対する高められた要求を、固体の潤滑剤特性をもたらす硫黄成分を有し、高融点の合金元素が添加されているオーステナイト系の鉄材料により充足するという一般的な思想に基づく。その際、これらの合金元素は単独でまたは複数のこれらの元素の存在時に、少なくとも1質量パーセント〜6質量パーセントの質量割合を占めるべきである。   The present invention provides an increased demand for especially creep resistance and strength of vane bearing ring materials in engines with improved power, with the addition of a high melting point alloying element having a sulfur component that provides solid lubricant properties. It is based on the general idea of being satisfied with existing austenitic iron materials. In this case, these alloy elements should occupy a mass proportion of at least 1 mass percent to 6 mass percent, alone or in the presence of a plurality of these elements.

ベーン支承リング材料の、本発明により達成可能な高められた耐クリープ性は、より高い温度時に、ベーン支承リングの高い寸法安定性を生む。合金中の硫黄成分に由来する固体潤滑剤作用により、良好な潤滑が、特にベーン支承リングとこのベーン支承リング内に支承されたタービンベーンとの間の接触面に生じる。本発明による材料使用時、タービンベーン、すなわちガイドベーンのロックは高温時に確実に回避される。   The enhanced creep resistance achievable by the present invention of the vane bearing ring material results in higher dimensional stability of the vane bearing ring at higher temperatures. Due to the solid lubricant action originating from the sulfur component in the alloy, good lubrication occurs, particularly at the contact surface between the vane bearing ring and the turbine vane supported in the vane bearing ring. When using the material according to the invention, the locking of the turbine vanes, ie guide vanes, is reliably avoided at high temperatures.

図面には、本発明によるベーン支承リング材料のための幾つかの特性グラフが示されている。個々のグラフに示した曲線は、Aが付されていれば、請求項に記載した材料に該当し、Bが付されていれば、請求項に記載した材料に該当する。 In the drawing, several characteristic graphs for a vane bearing ring material according to the invention are shown. The curve shown in each graph corresponds to the material described in claim 2 if A is attached, and corresponds to the material described in claim 3 if B is attached.

個々のグラフの説明
図1a,1b
これらのグラフは、段階的な負荷時の合金A,Bのクリープ特性を示している。この試験では、2MPaずつ、35秒の保持時間が与えられており、保持時間の最後の5秒のクリープ率が測定されている。図1aは700℃でのクリープ特性を示しており、図1bは900℃でのクリープ特性を示している。
Explanation of individual graphs FIGS. 1a and 1b
These graphs show the creep characteristics of Alloys A and B under stepwise loading. In this test, a holding time of 35 seconds is given every 2 MPa, and the creep rate of the last 5 seconds of the holding time is measured. FIG. 1 a shows the creep characteristics at 700 ° C., and FIG. 1 b shows the creep characteristics at 900 ° C.

図2
このグラフには、温度に依存した合金A,Bの弾性率(Elastizitaetsmodul:E−Modul)ならびに剛性率(Schubmodul:G−Modul)が記載されている。
FIG.
In this graph, the elastic modulus (Elastizitatsmodul: E-Modul) and the rigidity (Schubmodul: G-Modul) of the alloys A and B depending on temperature are described.

図3
このグラフは、温度に依存した合金A,Bの熱膨張係数を示している。
FIG.
This graph shows the thermal expansion coefficients of alloys A and B depending on the temperature.

図4
このグラフには、縦軸に、温度に依存した合金A,Bの高温硬さ(HV10)が記載されている。
FIG.
In this graph, the vertical axis indicates the high temperature hardness (HV10) of alloys A and B depending on the temperature.

図5
縦軸には、それぞれ2時間の保管および空冷後の、温度に依存した合金A,Bの硬さ(HB2.5/187.5)が示されている。
FIG.
The vertical axis shows the temperature-dependent hardness of alloys A and B (HB2.5 / 187.5) after storage for 2 hours and air cooling, respectively.

図6
この図は、合金A,Bに関してそれぞれ室温で、ρ=密度、λ=熱伝導度、Rp02=弾性限度、R=引張強さ、E=弾性率の値が記載されている表である。
FIG.
This figure is a table in which values of ρ = density, λ = thermal conductivity, R p02 = elastic limit, R m = tensile strength, E = elastic modulus are described for alloys A and B at room temperature, respectively. .

明細書および特許請求の範囲に記載したすべての特徴は、個別的にも、互いに組み合わされた任意の形態でも本発明の本質を成すものであり得る。   All of the features described in the description and the claims may form the essence of the present invention individually or in any form combined with each other.

段階的な負荷時の合金A,Bのクリープ特性(図1aは700℃でのクリープ特性、図1bは900℃でのクリープ特性)を示す図である。It is a figure which shows the creep characteristic (FIG. 1a is a creep characteristic in 700 degreeC, FIG. 1b is a creep characteristic in 900 degreeC) of the alloys A and B at the time of a step load. 温度に依存した合金A,Bの弾性率(E−Modul)ならびに剛性率(G−Modul)を示す図である。It is a figure which shows the elastic modulus (E-Modul) and rigidity (G-Modul) of alloys A and B depending on temperature. 温度に依存した合金A,Bの熱膨張係数を示す図である。It is a figure which shows the thermal expansion coefficient of the alloys A and B depending on temperature. 温度に依存した合金A,Bの高温硬さ(HV10)を示す図である。It is a figure which shows the high temperature hardness (HV10) of the alloys A and B depending on temperature. それぞれ2時間の保管および空冷後の、温度に依存した合金A,Bの硬さ(HB2.5/187.5)を示す図である。It is a figure which shows the hardness (HB2.5 / 187.5) of the alloys A and B depending on temperature after storage for 2 hours and air cooling, respectively. 合金A,Bに関してそれぞれ室温で、ρ=密度、λ=熱伝導度、Rp02=弾性限度、R=引張強さ、E=弾性率の値を示す図である。Alloys A, respectively at room temperature with respect to B, [rho = density, lambda = thermal conductivity, R p02 = elastic limit, R m = tensile strength, shows a value of E = elastic modulus.

Claims (3)

自動車内燃機関の、可変のタービンジオメトリを有するターボチャージャのベーン支承リングであって、ターボチャージャが、可変のタービンジオメトリのために、ベーン支承リング内で調節可能なタービンベーンを有しており、ベーン支承リングが、その支承面での固体潤滑剤作用を達成するための硫黄成分を有するオーステナイト系の鉄マトリックス合金から成っている形式のものにおいて、
該鉄マトリックス合金が、質量%で、炭素(C):0.4〜0.6%、クロム(Cr):18〜27%、ニッケル(Ni):12〜22%、硫黄(S):0.2〜0.5%およびケイ素(Si):2.9〜3.2%を含有し、さらに、タングステン(W):2.4〜2.8%および/またはニオブ(Nb):1.4〜1.8%を含有し、残部が鉄および不純物からなることを特徴とする、内燃機関のターボチャージャのベーン支承リング。
A vane bearing ring of a turbocharger having a variable turbine geometry for an automotive internal combustion engine, the turbocharger having a turbine vane adjustable in the vane bearing ring for the variable turbine geometry. In the type in which the bearing ring is made of an austenitic iron matrix alloy having a sulfur component to achieve a solid lubricant action on the bearing surface,
The iron matrix alloy is in mass%, carbon (C): 0.4-0.6%, chromium (Cr): 18-27%, nickel (Ni): 12-22%, sulfur (S): 0 2 to 0.5% and silicon (Si): 2.9 to 3.2%, and tungsten (W): 2.4 to 2.8% and / or niobium (Nb): 1. A vane bearing ring for a turbocharger of an internal combustion engine, comprising 4 to 1.8%, the balance being iron and impurities .
自動車内燃機関の、可変のタービンジオメトリを有するターボチャージャのベーン支承リングであって、ターボチャージャが、可変のタービンジオメトリのために、ベーン支承リング内で調節可能なタービンベーンを有しており、ベーン支承リングが、その支承面での固体潤滑剤作用を達成するための硫黄成分を有するオーステナイト系の鉄マトリックス合金から成っている形式のものにおいて、
該鉄マトリックス合金が、質量%で、炭素(C):0.4〜0.6%、クロム(Cr):18.5〜20.5%、ニッケル(Ni):12.5〜14%、硫黄(S):0.25〜0.45%およびケイ素(Si):2.9〜3.15%を含有し、さらに、タングステン(W):2.4〜2.8%および/またはニオブ(Nb):1.4〜1.8%を含有し、残部が鉄および不純物からなることを特徴とする、内燃機関のターボチャージャのベーン支承リング。
A vane bearing ring of a turbocharger having a variable turbine geometry for an automotive internal combustion engine, the turbocharger having a turbine vane adjustable in the vane bearing ring for the variable turbine geometry. In the type in which the bearing ring is made of an austenitic iron matrix alloy having a sulfur component to achieve a solid lubricant action on the bearing surface,
The iron matrix alloy is, in mass%, carbon (C): 0.4 to 0.6%, chromium (Cr): 18.5 to 20.5%, nickel (Ni): 12.5 to 14%, Sulfur (S): 0.25 to 0.45% and silicon (Si): 2.9 to 3.15%, tungsten (W): 2.4 to 2.8% and / or niobium (Nb): A vane support ring for a turbocharger of an internal combustion engine, comprising 1.4 to 1.8%, the balance being iron and impurities .
自動車内燃機関の、可変のタービンジオメトリを有するターボチャージャのベーン支承リングであって、ターボチャージャが、可変のタービンジオメトリのために、ベーン支承リング内で調節可能なタービンベーンを有しており、ベーン支承リングが、その支承面での固体潤滑剤作用を達成するための硫黄成分を有するオーステナイト系の鉄マトリックス合金から成っている形式のものにおいて、
該鉄マトリックス合金が、質量%で、炭素(C):0.4〜0.6%、クロム(Cr):24.5〜26.5%、ニッケル(Ni):19.5〜21.5%、硫黄(S):0.25〜0.45%およびケイ素(Si):2.9〜3.15%を含有し、さらに、タングステン(W):2.4〜2.8%および/またはニオブ(Nb):1.4〜1.8%を含有し、残部が鉄および不純物からなることを特徴とする、内燃機関のターボチャージャのベーン支承リング。
A vane bearing ring of a turbocharger having a variable turbine geometry for an automotive internal combustion engine, the turbocharger having a turbine vane adjustable in the vane bearing ring for the variable turbine geometry. In the type in which the bearing ring is made of an austenitic iron matrix alloy having a sulfur component to achieve a solid lubricant action on the bearing surface,
The iron matrix alloy is, in mass%, carbon (C): 0.4 to 0.6%, chromium (Cr): 24.5 to 26.5%, nickel (Ni): 19.5 to 21.5. %, Sulfur (S): 0.25 to 0.45% and silicon (Si): 2.9 to 3.15%, and tungsten (W): 2.4 to 2.8% and / or Or the vane bearing ring of the turbocharger of an internal combustion engine characterized by containing niobium (Nb): 1.4-1.8%, and the remainder which consists of iron and an impurity .
JP2007547154A 2004-12-24 2005-08-17 Vane bearing ring of turbocharger for automobile internal combustion engine Expired - Fee Related JP5114207B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004062564.6 2004-12-24
DE102004062564A DE102004062564B4 (en) 2004-12-24 2004-12-24 Blade bearing ring of a turbocharger of a motor vehicle internal combustion engine
PCT/DE2005/001449 WO2006066520A1 (en) 2004-12-24 2005-08-17 Blade mounting ring for a turbocharger on an internal combustion engine

Publications (3)

Publication Number Publication Date
JP2008525630A JP2008525630A (en) 2008-07-17
JP2008525630A5 JP2008525630A5 (en) 2008-08-28
JP5114207B2 true JP5114207B2 (en) 2013-01-09

Family

ID=35355057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007547154A Expired - Fee Related JP5114207B2 (en) 2004-12-24 2005-08-17 Vane bearing ring of turbocharger for automobile internal combustion engine

Country Status (5)

Country Link
US (1) US20080112815A1 (en)
EP (1) EP1704304B1 (en)
JP (1) JP5114207B2 (en)
DE (2) DE102004062564B4 (en)
WO (1) WO2006066520A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149837B (en) 2008-09-25 2014-01-08 博格华纳公司 Turbocharger and blade bearing ring thereof
JP5645828B2 (en) * 2008-09-25 2014-12-24 ボーグワーナー インコーポレーテッド Sub-assembly for bypass control in turbocharger and its turbine casing
DE102009005938A1 (en) 2009-01-23 2010-07-29 Bosch Mahle Turbo Systems Gmbh & Co. Kg loader
DE102010035293A1 (en) 2010-08-25 2012-03-01 Bosch Mahle Turbo Systems Gmbh & Co. Kg Sintered molded part comprises carbon, chromium, nickel, molybdenum, manganese, silicon, at least one of cobalt, titanium, niobium, vanadium or tungsten, sulfur, and iron including production related impurities
JP2015502473A (en) * 2011-10-20 2015-01-22 ボーグワーナー インコーポレーテッド Turbocharger and components therefor
DE102020202736A1 (en) 2020-03-04 2021-09-09 Mahle International Gmbh Metallic material
WO2022144995A1 (en) * 2020-12-28 2022-07-07 三菱重工エンジン&ターボチャージャ株式会社 Nozzle component, variable nozzle mechanism for variable-capacity turbocharger, variable-capacity turbocharger, and method for manufacturing nozzle component

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1341202A (en) * 1970-06-18 1973-12-19 Timken Co Bearing rings
US3876475A (en) * 1970-10-21 1975-04-08 Nordstjernan Rederi Ab Corrosion resistant alloy
US4643640A (en) * 1984-04-20 1987-02-17 The Garrett Corporation Gas seal vanes of variable nozzle turbine
JPH06228713A (en) * 1993-02-03 1994-08-16 Hitachi Metals Ltd Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JP3417636B2 (en) * 1994-02-16 2003-06-16 日立金属株式会社 Austenitic heat-resistant cast steel with excellent castability and machinability and exhaust system parts made of it
JPH0987809A (en) * 1995-09-27 1997-03-31 Kawasaki Steel Corp Hot rolled plate of chromium-containing austenitic stainless steel for automobile exhaust system material
JP4379753B2 (en) * 1999-04-05 2009-12-09 日立金属株式会社 Exhaust system component, internal combustion engine using the same, and method of manufacturing exhaust system component
US7381369B2 (en) * 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy
US6685881B2 (en) * 2000-09-25 2004-02-03 Daido Steel Co., Ltd. Stainless cast steel having good heat resistance and good machinability
GB0106046D0 (en) * 2001-03-12 2001-05-02 Glaxo Group Ltd Canister
KR20040028752A (en) * 2001-05-10 2004-04-03 소기 고교 가부시키가이샤 Surface-reformed exhaust gas guide assembly of vgs type turbo charger, and method of surface-reforming component member thereof
EP1396620A4 (en) * 2001-05-10 2005-01-12 Soghi Kogyo Co Ltd Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
JP2002332857A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly for vgs turbocharger applied with surface modification
US20060048865A1 (en) * 2002-07-01 2006-03-09 Etsuo Fujita Material for sliding parts having self lubricity and wire material for piston ring
EP1394364B1 (en) * 2002-08-26 2006-03-08 BorgWarner Inc. Turbocharger and annular guide conduit therefor

Also Published As

Publication number Publication date
US20080112815A1 (en) 2008-05-15
DE102004062564B4 (en) 2008-08-07
EP1704304A1 (en) 2006-09-27
JP2008525630A (en) 2008-07-17
DE102004062564A1 (en) 2006-07-13
WO2006066520A1 (en) 2006-06-29
DE502005006420D1 (en) 2009-02-26
EP1704304B1 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP5114207B2 (en) Vane bearing ring of turbocharger for automobile internal combustion engine
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
KR20020046988A (en) Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US8883072B2 (en) Ni-base alloy, high-temperature member for steam turbine and welded rotor for turbine using the same, and method for manufacturing the same
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
EP2765214B1 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
EP2623623B1 (en) Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
JP2015502473A (en) Turbocharger and components therefor
EP2537951B1 (en) Ni-based alloy, and turbine rotor and stator blade for gas turbine
TWI452149B (en) High heat-resistant and high-strength rh group alloy and method for manufacturing the same
JP2008525630A5 (en)
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JPH0826438B2 (en) Ferritic heat-resistant cast steel with excellent thermal fatigue life
JPH055161A (en) Austenitic heat resistant cast steel excellent in high temperature strength and exhaust system part made thereof
JP5165679B2 (en) Heat resistant bearing material
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
KR20190125381A (en) Nickel and chromium base iron alloys with high temperature oxidation resistance
KR101551961B1 (en) Ti-Al alloys with superior creep resistance
KR102467393B1 (en) Austenitic steel sinter, austenitic steel powder and turbine member
JP6670779B2 (en) Spheroidal graphite cast iron and exhaust system parts
RU2433196C1 (en) CASTABLE ALLOY ON BASIS OF INTERMETALLIC COMPOUND Ni3Al AND ITEM MADE FROM IT
JP2002129276A (en) Cast iron material having excellent machinability and thermal fatigue resistance
KR102135185B1 (en) Austenitic steel excellent in room temperature strength and high temperature strength
US20180002784A1 (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CREEP CHARACTERISTICS, AND GAS TURBINE MEMBER USING THE SAME
EP2910661B1 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111027

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5114207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees