JP5113475B2 - Seismic intensity prediction system for buildings based on earthquake information - Google Patents

Seismic intensity prediction system for buildings based on earthquake information Download PDF

Info

Publication number
JP5113475B2
JP5113475B2 JP2007260746A JP2007260746A JP5113475B2 JP 5113475 B2 JP5113475 B2 JP 5113475B2 JP 2007260746 A JP2007260746 A JP 2007260746A JP 2007260746 A JP2007260746 A JP 2007260746A JP 5113475 B2 JP5113475 B2 JP 5113475B2
Authority
JP
Japan
Prior art keywords
earthquake
seismic intensity
building
data
early warning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007260746A
Other languages
Japanese (ja)
Other versions
JP2009092402A (en
Inventor
治 金子
脩 千葉
正喜 藤堂
美敏 保井
慎介 稲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2007260746A priority Critical patent/JP5113475B2/en
Publication of JP2009092402A publication Critical patent/JP2009092402A/en
Application granted granted Critical
Publication of JP5113475B2 publication Critical patent/JP5113475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、緊急地震速報に基づいて、所定の建物における各階毎にいち早く地震の来ることを連絡して、地震被害を最小にしようとする地震情報による建物の震度予測システムに関するものである。   TECHNICAL FIELD The present invention relates to a building seismic intensity prediction system based on earthquake information that attempts to minimize earthquake damage by, for example, notifying an early earthquake every floor in a predetermined building based on an emergency earthquake warning. .

従来、地震に対して、小地域などの限定された地域の地震被害や影響を、その地域に設置された観測手段の観測情報から短時間で地震被害を推定できる地震被害予測システムの被害推定方法が知られている(特許文献1参照)。
特開2003−161783号公報
Conventionally, the damage estimation method of earthquake damage prediction system that can estimate earthquake damage and impact of limited areas such as small areas in a short time from the observation information of observation means installed in that area. Is known (see Patent Document 1).
JP 2003-161783 A

しかし、従来の予測システムでは、従来の緊急地震速報は、対象となる建物に、警報受信及び地震情報解析の為の端末装置,パーソナルコンピュータ等を装備し、それぞれの建物位置情報、地盤増幅度のデータを入力しておくのが一般的である。その端末装置,コンピュータ等に気象庁から配信される、日本全国の発生地震の配信を受け、各個別に、地震と対象建物との距離,地盤増幅特性から、予測到達余裕時間および予測震度をすべて計算し、影響のありそうな地震のみについて警報を発している。   However, in the conventional prediction system, the conventional earthquake early warning is equipped with a terminal device, personal computer, etc. for receiving alarms and analyzing earthquake information in the target building, and each building position information, ground amplification degree It is common to enter data. Receiving earthquakes from all over Japan distributed from the Japan Meteorological Agency to the terminal device, computer, etc., and calculating each predicted arrival time and predicted seismic intensity individually from the distance between the earthquake and the target building and the ground amplification characteristics. However, only alarms that are likely to have an impact are issued.

しかしながら、対象となる建物の端末装置,パーソナルコンピュータ等ごとに、解析プログラムおよびメンテナンスが必要である。また、対象となる建物までの到達時間や震度について、従来は、地震が一律に同心円状に広がるとして予測し、地盤増幅特性から予測される震度は地表面の震度であって建物毎の振動特性は考慮されていない、しかも、地盤増幅度は、0.5km−1kmごとのメッシュで分割されたデータを用いるのが一般的であって、震度の予測精度は高くない。そこで、予測震度の精度を高めようとしても、解析のための時間が長くなるので、地震が発生してから解析計算をしたのでは、緊急地震速報で最も重要な「緊急性」が確保できないという課題がある。そこで、本発明に係る地震情報による建物の震度予測システムは、このような課題を解決するために提案されたものである。   However, an analysis program and maintenance are required for each terminal device, personal computer, and the like in the target building. Also, with regard to the arrival time and seismic intensity to the target building, conventionally, it was predicted that the earthquake would spread uniformly in a concentric circle, and the seismic intensity predicted from the ground amplification characteristics is the seismic intensity of the ground surface and the vibration characteristics for each building Is not considered, and the ground amplification is generally data divided by a mesh of 0.5 km-1 km, and the prediction accuracy of seismic intensity is not high. Therefore, even if trying to increase the accuracy of the predicted seismic intensity, the time required for analysis will increase, so if the analysis calculation was performed after the earthquake occurred, the most important “emergency” in emergency earthquake warnings could not be secured There are challenges. Therefore, the seismic intensity prediction system for buildings based on earthquake information according to the present invention has been proposed in order to solve such problems.

本発明に係る地震情報による建物の震度予測システムの上記課題を解決して目的を達成するための要旨は、気象庁からの緊急地震速報のデータを配信する配信手段に接続されるとともに所定のネットワークに接続された現場地震速報サーバーと、前記現場地震速報サーバーに電気的に接続されると共に地震情報を伝えたい建物における所望の各階毎の地震の種類・大きさによって予測される応答解析の結果である震度データを建物毎の振動特性データベースとして入力装置で予め入力されて記憶する記憶装置と、前記所定のネットワークを介して前記現場地震速報サーバーからの送信された警報信号を受信するとともに警報を発するように前記建物毎における所望の階毎に設けられた警報用表示端末機と、前記現場地震速報サーバーの中央演算処理装置に記憶されるプログラムで、前記緊急地震速報の地震データが配信されて受信されると、前記記憶装置の振動特性データベースから前記各建物における所望階毎の前記震度データを中央演算装置に取り込み、前記配信された地震データと前記震度データとを照合して、当該地震データの地震パターンから計算される建物の基礎部の予測震度及び予測到達余裕時間と、地震パターンに対応する前記基礎部の予測震度から照合される当該建物の各階毎の予測震度とを前記現場地震速報サーバーから前記建物毎における各階毎の前記警報用表示端末機にネットワークを介して送信させる地震警報プログラムとからなることである。   The gist for solving the above-described problems of the building seismic intensity prediction system based on earthquake information according to the present invention is achieved by connecting to a distribution means for distributing emergency earthquake warning data from the Japan Meteorological Agency and to a predetermined network. It is the result of the response analysis predicted by the type and magnitude of the desired earthquake on each floor in the building that is connected to the on-site earthquake early warning server and electrically connected to the on-site earthquake early warning server and wants to convey earthquake information A storage device that stores seismic intensity data as a vibration characteristic database for each building in advance by an input device and stores an alarm signal transmitted from the local earthquake early warning server via the predetermined network and issues an alarm. The alarm display terminal provided for each desired floor in each building and the on-site earthquake early warning server When earthquake data of the earthquake early warning is distributed and received by a program stored in a processing device, the seismic intensity data for each desired floor in each building is taken into a central processing unit from the vibration characteristic database of the storage device , Comparing the distributed seismic data with the seismic intensity data, and calculating the predicted seismic intensity and predicted arrival time of the foundation of the building calculated from the seismic pattern of the seismic data, and the base of the base corresponding to the seismic pattern A seismic alarm program for transmitting the predicted seismic intensity of each floor of the building to be verified from the predicted seismic intensity from the on-site earthquake early warning server to the alarm display terminal for each floor of the building via the network. is there.

また、警報用表示端末機は、嫌振機器の制御装置と電気的に接続され、予測震度が閾値の震度より高い場合には所定の制御信号が現場地震速報サーバーから前記警報用表示端末機を介して前記制御装置に発信されることを含むものである。   The alarm display terminal is electrically connected to the control device of the vibration isolator, and when the predicted seismic intensity is higher than the threshold seismic intensity, a predetermined control signal is sent from the local earthquake early warning server to the alarm display terminal. Via the control device.

本発明の地震情報による建物の震度予測システムによれば、地震が発生したときに、気象庁の緊急地震速報により、地震の種類・大きさにより対象となる建物の各階における予測震度は、予め解析されている震度特性ベータベースからの震度データの照合で済むので、瞬時に高精度に震度を予測することができる。これにより、建物が、生産施設、病院等であって嫌振機器を有する場合に、高精度な予測が可能となり重要機器や設備を停止させたり、病院では手術などの医療行為を一時中断にしたり、非常電源への切替を行ったりすることができる。更に、機能に悪影響を及ぼさない程度の震度では、生産ラインを止めたり医療行為を停止したり等の過度の反応を防ぐことにもなる。   According to the seismic intensity prediction system for buildings based on earthquake information of the present invention, when an earthquake occurs, the predicted seismic intensity on each floor of the target building is analyzed in advance according to the type and magnitude of the earthquake based on the earthquake early warning of the Japan Meteorological Agency. Since the seismic intensity data from the existing seismic intensity characteristic beta base can be collated, the seismic intensity can be predicted instantaneously with high accuracy. As a result, when a building is a production facility, a hospital, etc. and has a vibration control device, it is possible to predict with high accuracy and stop important devices and equipment, or temporarily suspend medical activities such as surgery at the hospital. Or switch to emergency power. Furthermore, a seismic intensity that does not adversely affect the function also prevents excessive reactions such as stopping the production line or stopping medical practice.

また、前記警報用表示端末機は、嫌振機器の制御装置と電気的に接続され、予測震度が閾値の震度より高い場合には所定の制御信号が現場地震速報サーバーから前記警報用表示端末機を介して前記制御装置に発信されることを含むので、重要な嫌振機器等の運転を停止したり、安全運転にしたりすることが自動的にできる。   The alarm display terminal is electrically connected to a control device of the vibration isolator, and when the predicted seismic intensity is higher than the threshold seismic intensity, a predetermined control signal is sent from the local earthquake early warning server to the alarm display terminal. Therefore, it is possible to automatically stop the operation of an important vibration isolator or the like or to perform a safe operation.

本発明に係る地震情報による建物の震度予測システム1は、図1に示すように、気象庁2からの緊急地震速報のデータを配信する配信手段である配信業者(例えば、(財)気象業務支援センター)3のサーバーに専用線4で接続されるとともに所定のネットワーク5に接続された現場地震速報サーバー6がある。   As shown in FIG. 1, a building seismic intensity prediction system 1 based on earthquake information according to the present invention is a distributor (for example, a meteorological service support center) serving as a distribution means for distributing emergency earthquake warning data from the Japan Meteorological Agency 2. ) There is a site earthquake early warning server 6 connected to the server 3 by the dedicated line 4 and connected to a predetermined network 5.

前記緊急地震速報とは、気象庁2が提供する、地震の発生時間、発生位置、深さ、マグニチュード等の地震データである。この地震データが、具体的には、配信業者3である気象事業支援センターのサーバーから専用線4にて配信される。   The earthquake early warning is earthquake data provided by the Japan Meteorological Agency 2 such as the occurrence time, occurrence position, depth, and magnitude of the earthquake. Specifically, this earthquake data is distributed on a dedicated line 4 from a server of a weather business support center which is a distributor 3.

前記現場地震速報サーバー6に電気的に接続されると共に地震情報を伝えたい建物8の位置データと、当該建物8における地盤増幅のデータと、各階毎の予測震度の震度データと、振動特性データベースとしてを入力装置で予め入力されて記憶する記憶装置7がある。この記憶装置7は、前記現場地震速報サーバー6の一部に組み込まれている。   As the position data of the building 8 that is electrically connected to the site earthquake early warning server 6 and to transmit the earthquake information, the ground amplification data in the building 8, the seismic intensity data of the predicted seismic intensity for each floor, and the vibration characteristic database Is stored in advance by an input device. This storage device 7 is incorporated in a part of the site earthquake early warning server 6.

前記建物8は、例えば、中高層の建物、病院等であって、前記位置データは、当該建物8のIPアドレスと経度、緯度に関するデータであり、地盤増幅のデータとは、建物8が存在する場所の、地層の特性により定めた地震増幅係数のデータである。   The building 8 is, for example, a medium to high-rise building, a hospital, or the like, and the position data is data related to the IP address, longitude, and latitude of the building 8, and the ground amplification data is a place where the building 8 exists. This is the data of the seismic amplification coefficient determined by the characteristics of the strata.

前記建物8の各階毎の予測震度については、予め地震による建物毎の特性を解析しておく必要がある。即ち、前記地震のパターンを、例えば、直下型とプレート型の2種類に分類し(図2参照、地震Aがプレート型、地震Bが直下型)、震度6弱相当にして作成したサイト波(模擬波)が地震A、地震Bであり、これを例えば東京で震度5弱で観測された地震の観測波が地震C(観測地点の計測震度は3.4、震源距離約30km)である。   Regarding the predicted seismic intensity for each floor of the building 8, it is necessary to analyze the characteristics of each building due to the earthquake in advance. That is, the earthquake patterns are classified into two types, for example, a direct type and a plate type (see FIG. 2, earthquake A is a plate type, and earthquake B is a direct type), and site waves created with a seismic intensity equivalent to 6 ( Simulated waves) are earthquake A and earthquake B, and for example, an observed wave of an earthquake observed in Tokyo with a seismic intensity of less than 5 is earthquake C (measured seismic intensity at the observation point is 3.4, epicenter distance is about 30 km).

そして、モデル建物として、同じ地盤に規模の異なる建物1,2,3があり、ここで、建物1は、生産施設で鉄骨造5階、地下無し、免震構造であり、建物2は、事務所建物で鉄骨造37階、地下4階、制震構造であり、建物3は、集合住宅、RC造30階、地下1階である、を想定して、弾塑性振動解析プログラムRESP−M/IIを用い、前記建物を等価剪断バネを用いた質点モデルにモデル化している。   As model buildings, there are buildings 1, 2, and 3 of different scales on the same ground. Here, building 1 is a production facility with a steel-framed fifth floor, no basement, and a seismic isolation structure. Assuming that the building is a steel-framed 37th floor, 4th basement, and a seismic control structure, and that the building 3 is an apartment house, the 30th floor of an RC structure, and the 1st basement, the elastic-plastic vibration analysis program RESP-M / II is used to model the building into a mass point model using an equivalent shear spring.

応答解析結果のうち、一例として、前記建物1の5階床における応答加速度の時刻歴を図3に示す。この建物1は、免震建物であり、長周期成分が卓越し、最大加速度は入力に比べて非常に小さくなり、地震A,Bに対する応答加速度の最大値は同程度であり、入力波における地震Cと地震A,Bとの差と、応答加速度における地震Cと地震A,Bとの差と、では応答加速度における差が小さくなっている。これより、地震の種類よりも建物の振動特性の方が建物に与える影響が大きいことが判る。   As an example of the response analysis results, a time history of response acceleration on the fifth floor of the building 1 is shown in FIG. This building 1 is a base-isolated building, has a long period component, maximum acceleration is very small compared to the input, and the maximum response acceleration for earthquakes A and B is comparable. The difference in response acceleration is small between the difference between C and earthquakes A and B and the difference between earthquake C and earthquakes A and B in response acceleration. From this, it can be seen that the vibration characteristics of the building have a greater influence on the building than the type of earthquake.

図4に、各建物1,2,3における最大応答加速度の高さ方向の分布を、図5に各建物1,2,3における最大応答速度の高さ方向の分布を示す。これを見ると、建物の種類により異なる傾向があり、前記建物1に比べると建物2,3が地震の種類により応答値に差があらわれている。   FIG. 4 shows the distribution in the height direction of the maximum response acceleration in each of the buildings 1, 2, 3, and FIG. 5 shows the distribution in the height direction of the maximum response speed in each of the buildings 1, 2, 3. Looking at this, there is a tendency that it differs depending on the type of building. Compared with the building 1, the response values of the buildings 2 and 3 are different depending on the type of earthquake.

更に、各建物1,2,3における代表的な階について、応答結果を用いて計測震度を算定した結果と、建物の基礎部の計測震度と各階の計測震度との比(倍率)が、下記の表1に示すものである。

Figure 0005113475
Furthermore, for the representative floors in each building 1, 2 and 3, the result of calculating the measured seismic intensity using the response results and the ratio (magnification) between the measured seismic intensity of the foundation of the building and the measured seismic intensity of each floor are as follows: It shows in Table 1.
Figure 0005113475

このように、各建物について、その建物の特性、地震の種類、大きさによって計測震度を予め予備解析(パラメータスタディ)しておいて、各建物毎の振動特性をデータベース化して記憶装置7に記憶させ構築する。これにより、気象庁2からの緊急地震速報により、建物8の部位毎の予測震度を高精度で瞬時に予測することができるようになる。   As described above, for each building, the measured seismic intensity is preliminarily analyzed (parameter study) according to the characteristics of the building, the type of earthquake, and the magnitude, and the vibration characteristics for each building are stored in the storage device 7 as a database. Let build. Thereby, the predicted seismic intensity for each part of the building 8 can be instantaneously predicted with high accuracy by the emergency earthquake warning from the Japan Meteorological Agency 2.

前記ネットワーク5、例えば、社内ネットワーク若しくはインターネットVPN(Virtual Private Network)とハブ10とを介して前記地震情報を伝えたい建物8にて、前記現場地震速報サーバー6からの送信された警報信号を受信するとともに警報を発する警報用表示端末機9がある。   The alarm signal transmitted from the local earthquake early warning server 6 is received at the building 5 where the earthquake information is to be transmitted via the network 5, for example, the in-house network or the Internet VPN (Virtual Private Network) and the hub 10. In addition, there is an alarm display terminal 9 that issues an alarm.

この端末機9には、特にプログラムなどはインストールされているわけではなく、前記現場地震速報サーバー6と社内ネットワークやインターネットで双方向で繋がっていて、常に電源が入っていて、警報信号を受信することで、警報を発するものである。前記警報用表示端末機9による警報には、公知の手段であって、例えば、光によるライトの点滅、音声による警告、LEDなどによる文字情報の表示などがある。また、この警報用表示端末機9には、図1に示すように、重要設備,精密機器等の嫌振機器11若しくは手術室11a、危険物11bなどにおける制御装置あるいは放送設備等と電気的に接続する制御信号用配線12が接続されている。   This terminal 9 is not particularly installed with a program, and is connected to the local earthquake early warning server 6 in two ways via an in-house network or the Internet, is always turned on, and receives an alarm signal. In this way, a warning is issued. The alarm by the alarm display terminal 9 is a known means, for example, blinking of light by light, warning by sound, display of character information by LED or the like. Further, as shown in FIG. 1, the alarm display terminal 9 is electrically connected to a vibration control device 11 such as important equipment, precision equipment, or the like, an operating room 11a, a dangerous object 11b, or a control device or broadcasting equipment. A control signal wiring 12 to be connected is connected.

更に、前記現場地震速報サーバー6の中央演算処理装置に記憶されるプログラムで、前記緊急地震速報のデータが配信されて受信されると、前記記憶装置7から前記所定の建物8の位置データと当該所定の建物8における地盤増幅のデータ、及び振動特性データベース化した当該建物8の部位毎の震度データを中央演算装置に取り込み、前記配信された緊急地震速報のデータを基にして照合し、地震パターンによる建物の基礎部の予測震度と予測到達余裕時間とを所定の計算式で計算するとともに、同じく、地震のパターンによる前記建物の基礎部の予測震度に基づいて前記建物8の部位毎の予測震度を震度データから照合して得ると共に、前記建物8の部位の予測震度が閾値(例えば震度4)を越えた場合に、当該建物8の各部位に対して警報信号及び嫌振機器における制御装置に対する停止信号などを、前記現場地震速報サーバー6から前記所定のネットワーク5に送信させる地震警報プログラム(図示せず)がある。   Further, when the data of the earthquake early warning is distributed and received by the program stored in the central processing unit of the site earthquake early warning server 6, the location data of the predetermined building 8 and the data The ground amplification data in a given building 8 and the seismic intensity data for each part of the building 8 created in the vibration characteristic database are taken into the central processing unit, collated based on the distributed emergency earthquake warning data, and the earthquake pattern The predicted seismic intensity of the foundation of the building and the estimated surplus time are calculated by a predetermined formula, and similarly, the predicted seismic intensity of each part of the building 8 based on the predicted seismic intensity of the foundation of the building according to the earthquake pattern Is obtained from the seismic intensity data, and when the predicted seismic intensity of the part of the building 8 exceeds a threshold (for example, seismic intensity 4), And stop signal for the control device in the broadcast signal and Iyafu equipment, there is an earthquake alarm program to transmit from the site earthquake bulletin server 6 to the predetermined network 5 (not shown).

以上のような構成から成る地震情報による建物の震度予測システム1によって、実際に地震が発生すると、図5に示すように、前記気象庁2から配信された緊急地震速報のデータにより、記憶装置7のデータベースと照合して、前記各建物8の基礎部に地震が届く迄の時間と予測震度とを、前記現場地震速報サーバー6の前記地震警報プログラムで計測する。   When an earthquake actually occurs by the building seismic intensity prediction system 1 based on the seismic information having the above-described configuration, as shown in FIG. In comparison with the database, the time until the earthquake reaches the foundation of each building 8 and the predicted seismic intensity are measured by the earthquake warning program of the on-site earthquake early warning server 6.

その後、前記地震警報プログラムによって、地震パターンに対応した前記建物8の基礎部における予測震度、及び震度データを照合して前記基礎部の予測震度に対応する当該建物8の各部位毎の予測震度を求める。そして、その予測震度が、閾値、例えば、予測震度が4若しくは5、の震度を超える当該建物8の各部位に対して、前記所定のネットワーク5を介して前記建物8の各部位に備えられた警報用表示端末機9に警報信号が送信される。該警報用表示端末機9から警報機によって警報を発するとともに、制御信号用配線12を介し嫌振機器11の制御装置に対して運転停止,緊急点検などの制御信号が送信される。   Thereafter, the earthquake warning program collates the predicted seismic intensity at the foundation of the building 8 corresponding to the earthquake pattern and the seismic intensity data to obtain the predicted seismic intensity for each part of the building 8 corresponding to the estimated seismic intensity of the foundation. Ask. The predicted seismic intensity is provided in each part of the building 8 via the predetermined network 5 for each part of the building 8 that exceeds a threshold, for example, the predicted seismic intensity is 4 or 5. An alarm signal is transmitted to the alarm display terminal 9. An alarm is issued from the alarm display terminal 9 by an alarm device, and control signals such as operation stop and emergency inspection are transmitted to the control device of the vibration isolator 11 via the control signal wiring 12.

このような伝達システム1により、例えば、発生した地震のS波の地震が届くまでに、例えば、10秒程度の余裕があれば、建物8において、人の安全を図るのは勿論のほか、重要機器の機能維持、更に、手術室の医療機器の機能維持、危険物の安全確保など、物理的な被害を最小に食い止めることができるものである。   With such a transmission system 1, for example, if there is a margin of about 10 seconds before the arrival of the S-wave earthquake of the earthquake that has occurred, for example, in the building 8, it is important to secure human safety. It is possible to prevent physical damage to a minimum, such as maintaining the function of the device, further maintaining the function of the medical device in the operating room, and ensuring the safety of dangerous goods.

本発明に係る地震情報による建物の震度予測システム1の概略構成図である。1 is a schematic configuration diagram of a building seismic intensity prediction system 1 based on earthquake information according to the present invention. 地震のパターン別の入力地震動の例を示す説明図(A)と、想定した地震の緒元を示す図(B)である。It is explanatory drawing (A) which shows the example of the input ground motion for every earthquake pattern, and the figure (B) which shows the origin of the assumed earthquake. 図2に示す入力地震動に対する建物1の応答加速度の時刻歴を示す説明図である。It is explanatory drawing which shows the time history of the response acceleration of the building 1 with respect to the input earthquake motion shown in FIG. 同建物1,2,3における建物の高さ方向の応答加速度分布を示す説明図である。It is explanatory drawing which shows the response acceleration distribution of the height direction of the building in the same building 1,2,3. 同建物1,2,3における建物の高さ方向の応答速度分布を示す説明図である。It is explanatory drawing which shows the response speed distribution of the height direction of the building in the same building 1,2,3. 本発明に係る地震情報による建物の震度予測システム1のフロー図である。It is a flowchart of the seismic intensity prediction system 1 of the building by the earthquake information which concerns on this invention.

符号の説明Explanation of symbols

1 地震情報による建物の震度予測システム、
2 気象庁、
3 配信業者、
4 専用線、
5 ネットワーク、
6 現場地震速報サーバー、
7 記憶装置、
8 建物、
9 警報用表示端末機、 10 ハブ、
11 建機機器、 11a 手術室、
11b 危険物、
12 制御信号用配線。
1 Seismic intensity prediction system for buildings based on earthquake information
2 Japan Meteorological Agency,
3 distributors,
4 Dedicated line,
5 network,
6 Earthquake Early Warning Server,
7 storage device,
8 Building,
9 Alarm display terminal, 10 Hub,
11 Construction equipment, 11a Operating room,
11b Dangerous goods,
12 Wiring for control signal.

Claims (2)

気象庁からの緊急地震速報のデータを配信する配信手段に接続されるとともに所定のネットワークに接続された現場地震速報サーバーと、
前記現場地震速報サーバーに電気的に接続されると共に地震情報を伝えたい建物における所望の各階毎の地震の種類・大きさによって予測される応答解析の結果である震度データを建物毎の振動特性データベースとして入力装置で予め入力されて記憶する記憶装置と、
前記所定のネットワークを介して前記現場地震速報サーバーからの送信された警報信号を受信するとともに警報を発するように前記建物毎における所望の階毎に設けられた警報用表示端末機と、
前記現場地震速報サーバーの中央演算処理装置に記憶されるプログラムで、前記緊急地震速報の地震データが配信されて受信されると、前記記憶装置の振動特性データベースから前記各建物における所望階毎の前記震度データを中央演算装置に取り込み、前記配信された地震データと前記震度データとを照合して、当該地震データの地震パターンから計算される建物の基礎部の予測震度及び予測到達余裕時間と、地震パターンに対応する前記基礎部の予測震度から照合される当該建物の各階毎の予測震度とを前記現場地震速報サーバーから前記建物毎における各階毎の前記警報用表示端末機にネットワークを介して送信させる地震警報プログラムとからなること、
を特徴とする地震情報による建物の震度予測システム。
An on-site earthquake early warning server connected to a distribution means for delivering emergency earthquake early warning data from the Japan Meteorological Agency and connected to a predetermined network;
Seismic intensity data, which is the result of response analysis predicted by the type and magnitude of earthquakes at each desired floor in a building that is electrically connected to the on-site earthquake bulletin server and wants to transmit earthquake information, is a vibration characteristic database for each building. A storage device that is pre-input and stored as an input device,
An alarm display terminal provided for each desired floor in each building so as to receive an alarm signal transmitted from the site earthquake early warning server via the predetermined network and issue an alarm;
In the program stored in the central processing unit of the site earthquake early warning server, when the earthquake data of the emergency earthquake early warning is distributed and received, the vibration characteristics database of the storage unit is used for each desired floor in each building. The seismic intensity data is taken into a central processing unit, the distributed earthquake data and the seismic intensity data are collated, and the predicted seismic intensity and predicted arrival time of the foundation of the building calculated from the earthquake pattern of the seismic data, The predicted seismic intensity of each floor of the building that is collated from the predicted seismic intensity of the foundation corresponding to the pattern is transmitted from the site earthquake early warning server to the warning display terminal for each floor of the building via the network. Consisting of an earthquake warning program,
A seismic intensity prediction system for buildings based on earthquake information.
警報用表示端末機は、嫌振機器の制御装置と電気的に接続され、予測震度が閾値の震度より高い場合には所定の制御信号が現場地震速報サーバーから前記警報用表示端末機を介して前記制御装置に発信されること、
を特徴とする請求項1に記載の地震情報による建物の震度予測システム。
The alarm display terminal is electrically connected to the control device of the vibration isolation device. When the predicted seismic intensity is higher than the threshold seismic intensity, a predetermined control signal is sent from the local earthquake early warning server via the alarm display terminal. Being transmitted to the control device;
The seismic intensity prediction system for buildings based on earthquake information according to claim 1.
JP2007260746A 2007-10-04 2007-10-04 Seismic intensity prediction system for buildings based on earthquake information Expired - Fee Related JP5113475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260746A JP5113475B2 (en) 2007-10-04 2007-10-04 Seismic intensity prediction system for buildings based on earthquake information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260746A JP5113475B2 (en) 2007-10-04 2007-10-04 Seismic intensity prediction system for buildings based on earthquake information

Publications (2)

Publication Number Publication Date
JP2009092402A JP2009092402A (en) 2009-04-30
JP5113475B2 true JP5113475B2 (en) 2013-01-09

Family

ID=40664541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260746A Expired - Fee Related JP5113475B2 (en) 2007-10-04 2007-10-04 Seismic intensity prediction system for buildings based on earthquake information

Country Status (1)

Country Link
JP (1) JP5113475B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705415B2 (en) 2009-04-06 2015-04-22 ソニー株式会社 Wireless communication apparatus, communication system, communication method, and program
JP5499515B2 (en) * 2009-05-11 2014-05-21 凸版印刷株式会社 Earthquake disaster prevention system and earthquake information distribution system
JP6082597B2 (en) * 2013-01-09 2017-02-15 白山工業株式会社 Damage status notification system and earthquake disaster prevention system
JP6075099B2 (en) * 2013-02-08 2017-02-08 株式会社大林組 Response value calculation system for building earthquakes and method for preparing damage survey table for building earthquakes
JP2016017848A (en) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ Structure verification system, structure verification device, and structure verification program
JP6506922B2 (en) * 2014-07-08 2019-04-24 株式会社Nttファシリティーズ Structure verification system, structure verification device, structure verification program
JP6609403B2 (en) * 2014-07-08 2019-11-20 株式会社Nttファシリティーズ Structure verification system, structure verification device, structure verification program
JP7061877B2 (en) * 2018-01-11 2022-05-16 清水建設株式会社 Earthquake information provision system
WO2019148950A1 (en) * 2018-02-05 2019-08-08 清华大学 Method and device for analyzing nonlinear seismic response history of urban building group
CN108460200B (en) * 2018-02-12 2019-07-16 青岛理工大学 Multi-modal performance-based Seismic Design Method based on condition bispectrum
JP7116481B2 (en) * 2018-09-11 2022-08-10 株式会社Zweispace Japan Earthquake simulation system, program and method
CN114282294B (en) * 2021-12-24 2022-06-21 哈尔滨工业大学 Hospital building earthquake damage prediction method and system based on digital twins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165965A (en) * 2004-12-07 2006-06-22 Real Time Jishin Joho Riyo Kyogikai Information appliance disaster prevention system using emergency earthquake news flash
JP2006317160A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Earthquake alarm system and its program
JP2007047936A (en) * 2005-08-08 2007-02-22 Toshiba Corp Earthquake information distribution system, its mobile communication terminal, and earthquake information distribution device

Also Published As

Publication number Publication date
JP2009092402A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5113475B2 (en) Seismic intensity prediction system for buildings based on earthquake information
KR101767343B1 (en) Earthquake Warning and Evacuation Broadcasting System
KR101653736B1 (en) Disaster prevention system and method
US10955573B2 (en) Multi facility earthquake automation system and method
Kubo et al. Application of an earthquake early warning system and a real-time strong motion monitoring system in emergency response in a high-rise building
US20150084788A1 (en) Earthquake Warning Disaster Prevention and Safety Report-Back System
JP5126143B2 (en) Earthquake motion prediction system
JP2009293934A (en) Earthquake damage determination apparatus, earthquake damage determination method, and earthquake discrimination program
Naeim Real-time damage detection and performance evaluation for buildings
JP4512898B2 (en) Earthquake damage prediction system
Zulfikar et al. Istanbul natural gas network rapid response and risk mitigation system
JP7448177B2 (en) Damage estimation information creation system for disaster countermeasures and program for the system
JP6609403B2 (en) Structure verification system, structure verification device, structure verification program
JP2022187011A (en) State analysis program, device and system
JP2020034517A (en) Seismic observation and output system
CN104486410A (en) Earthquake intensity information interaction method
JP2016017848A (en) Structure verification system, structure verification device, and structure verification program
JP2016017849A (en) Structure verification system, structure verification device, and structure verification program
JP2021167839A (en) Device and system for managing earthquake information
Fathani et al. Promoting a global standard for community-based landslide early warning systems (WCoE 2014–2017, IPL-158, IPL-165)
JP4964703B2 (en) Earthquake information transmission method and system
JP2008105762A (en) Long period vibration control operation system of elevator
Skolnik et al. Structural health monitoring of unique structures in Abu Dhabi Emirate
JP6286264B2 (en) Structure verification system, structure verification device, structure verification program
JP5345993B2 (en) Earthquake motion prediction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees