JP5113302B1 - Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film - Google Patents
Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film Download PDFInfo
- Publication number
- JP5113302B1 JP5113302B1 JP2012092094A JP2012092094A JP5113302B1 JP 5113302 B1 JP5113302 B1 JP 5113302B1 JP 2012092094 A JP2012092094 A JP 2012092094A JP 2012092094 A JP2012092094 A JP 2012092094A JP 5113302 B1 JP5113302 B1 JP 5113302B1
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet
- infrared shielding
- fine particles
- shielding coating
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Paints Or Removers (AREA)
Abstract
【課題】可視光線透過率を保持したまま、紫外線及び近・遠赤外線を有効に遮蔽し、ガラスに密着性が高く、その遮蔽効果が長期間持続する紫外線・赤外線遮蔽コーティング膜を提供すること。
【解決手段】(A)1500nm〜2500nmの波長の光を吸収する金属酸化物半導体微粒子と、(B)800nm〜1200nmの波長の光を吸収する金属酸化物半導体微粒子と、(C)透明な樹脂と、(D)200nm〜380nmの波長の光を吸収する金属酸化物微粒子と、(E)有機溶媒と、を含むことを特徴とする紫外線・赤外線遮蔽コーティング剤。
【選択図】 なしAn ultraviolet / infrared shielding coating film that effectively shields ultraviolet rays and near / far infrared rays while maintaining visible light transmittance, has high adhesion to glass, and maintains the shielding effect for a long period of time.
SOLUTION: (A) Metal oxide semiconductor fine particles that absorb light having a wavelength of 1500 nm to 2500 nm, (B) Metal oxide semiconductor fine particles that absorb light having a wavelength of 800 nm to 1200 nm, and (C) a transparent resin. And (D) a metal oxide fine particle that absorbs light having a wavelength of 200 nm to 380 nm, and (E) an organic solvent.
[Selection figure] None
Description
本発明は、紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜に関するものである。 The present invention relates to an ultraviolet / infrared shielding coating agent and an ultraviolet / infrared shielding coating film.
自動車用のガラスやビル、住宅、住宅等の建築物の窓ガラスについて、紫外線及び赤外線を遮蔽するガラスあるいはガラスに貼り付けるフィルム等が数多く市販されている。赤外線は物に当たるとその物の温度を上昇させる働きを持つ。そのため、日射中の赤外線は室内や車内の温度を上げるため、冷房にかかるエネルギーを節約するという省エネの観点からも、可視光線を効果的に取り込みかつ近赤外線を遮蔽する材料が求められてきた。また、紫外線は皮膚の炎症などを引き起こし、室内調度品及び装飾物(畳、クロス、襖、調度品など)の劣化を促進することが知られている。 As for glass for automobiles and window glass for buildings such as buildings, houses, houses, etc., there are many commercially available glasses that shield ultraviolet rays and infrared rays, or films that are attached to the glass. Infrared rays have the function of raising the temperature of an object when it hits it. Therefore, since infrared rays during solar radiation raise the temperature in the room and the interior of the vehicle, a material that effectively captures visible light and shields near infrared rays has been demanded from the viewpoint of energy saving in that it saves the energy required for cooling. In addition, it is known that ultraviolet rays cause skin irritation and the like, and promote the deterioration of indoor furniture and decorations (tatami mats, cloth, bags, furniture, etc.).
紫外線及び赤外線を遮蔽する技術としては、特開2006−334530(特許文献1)に記載されている「紫外線遮蔽剤や赤外線遮蔽剤を含有した塗膜を形成する塗装方法」、特開2004−037768(特許文献2)に記載されている「紫外線・赤外線遮蔽体」、特許4698420(特許文献3)に記載されている「近赤外線遮蔽用塗料、それから得られる近赤外線遮蔽積層体及びその製造方法」等がある。 As a technique for shielding ultraviolet rays and infrared rays, “Painting method for forming a coating film containing an ultraviolet shielding agent or an infrared shielding agent” described in JP-A-2006-334530 (Patent Document 1), JP-A-2004-037768. “Ultraviolet / infrared shielding body” described in (Patent Document 2), “Near-infrared shielding coating material, and near-infrared shielding laminate obtained therefrom and manufacturing method thereof” described in Patent 4698420 (Patent Document 3) Etc.
しかしながら、特許文献1に記載の材料では近赤外領域の800nm〜1200nmでの透過率が高いため、赤外線の遮蔽効果はそれほど高くなく、かつ紫外線の遮蔽率が時間経過とともに低下していくという問題がある。特許文献2の公報に記載の材料では近赤外線領域の透過率は低くなっているが、屋外に暴露して1年ほど経過すると、その近赤外線吸収材料が変質し、近赤外線の透過率が高くなってしまうという問題がある。特許文献3に記載の材料でも、特許文献2と同様に近赤外領域の透過率は低くなるが、屋外暴露において長期間、赤外線及び紫外線の遮蔽効果が持続できないという問題点があった。 However, since the material described in Patent Document 1 has a high transmittance at 800 nm to 1200 nm in the near infrared region, the infrared shielding effect is not so high, and the ultraviolet shielding rate decreases with time. There is. In the material described in Patent Document 2, the transmittance in the near infrared region is low, but when exposed to the outdoors for about one year, the near infrared absorbing material is altered and the transmittance of near infrared is high. There is a problem of becoming. Even in the material described in Patent Document 3, the transmittance in the near-infrared region is low as in Patent Document 2, but there is a problem in that the effect of shielding infrared rays and ultraviolet rays cannot be sustained for a long time in outdoor exposure.
そこで、本発明は、可視光線透過率を高い効率で保持したまま、太陽光からの紫外線、近赤外線及び遠赤外線を有効に遮蔽し、かつ長期間その効果が保持することができる紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜を提供することを課題とするものである。 Therefore, the present invention effectively shields ultraviolet rays, near infrared rays, and far infrared rays from sunlight while maintaining visible light transmittance with high efficiency, and can keep the effect for a long time. It is an object of the present invention to provide a coating agent and an ultraviolet / infrared shielding coating film.
請求項1の発明は、
(A)錫ドープ酸化インジウム微粒子と、
(B)ホウ化ランタン化合物微粒子と、
(C)シリコーン変性アクリル樹脂と、
(D)酸化チタン微粒子、酸化亜鉛微粒子、及び酸化セリウム微粒子から成る群から選ばれる1種以上と、
(E)有機溶媒と、
を含み、
前記A成分の重量であるa、前記B成分の重量であるb、前記C成分の重量であるc、及び前記D成分の重量であるdについて、
a:bが、2:1〜8:1であり、
(a+b):cが、1:15〜1:7であり、
d:cが、1:20〜1:5であること
を特徴とする紫外線・赤外線遮蔽コーティング剤を要旨とする。
The invention of claim 1
(A) tin-doped indium oxide fine particles ;
(B) lanthanum boride compound fine particles ,
(C) a silicone-modified acrylic resin ;
(D) one or more selected from the group consisting of titanium oxide fine particles, zinc oxide fine particles, and cerium oxide fine particles ;
(E) an organic solvent;
Only including,
About the weight a of the component A, the weight b of the component B, the weight c of the component C, and the weight d of the component D,
a: b is 2: 1 to 8: 1,
(A + b): c is 1:15 to 1: 7,
The gist of the ultraviolet / infrared shielding coating agent is characterized in that d: c is 1:20 to 1: 5 .
本発明の紫外線・赤外線遮蔽コーティング剤を塗布して形成された紫外線・赤外線遮蔽コーティング被膜は金属酸化物半導体微粒子が太陽光からの近・遠赤外線を吸収し、金属酸化物微粒子が紫外線を吸収するため、可視光線(400nm〜800nm)は高い割合で透過し、赤外線、紫外線を高効率で遮断できる。したがって、室内装飾品、人間の皮膚に有害な紫外線と熱源となる近赤外線も遮断することができ、室内装飾品の劣化防止、日焼け・炎症防止効果、室内が暖まりにくいことによる夏場のクーラーなど負荷軽減による省エネ効果が得られる。また、冬場においても、室内の熱がガラス表面で吸収されることにより、ガラスが冷えにくくなることで、室内の熱が外に放出しにくくなり、断熱効果も有すると考えられる。(A),(B),(C),(D)がある割合の間において、紫外線・赤外線遮蔽として最も良好な効果が得られた。また、屋外暴露においてもその耐久性が極めて優れたものとなった。また、紫外線・赤外線遮蔽被膜の形成方法として、紫外線・赤外線遮蔽コーティング剤を、ガラスの状況に合わせて、ローラー、刷毛、噴霧、流延、スピン法を行うことが可能である。 In the ultraviolet / infrared shielding coating film formed by applying the ultraviolet / infrared shielding coating agent of the present invention, the metal oxide semiconductor fine particles absorb near / far infrared rays from sunlight, and the metal oxide fine particles absorb ultraviolet rays. Therefore, visible light (400 nm to 800 nm) is transmitted at a high rate and can block infrared rays and ultraviolet rays with high efficiency. Therefore, it is possible to block the interior decorations, ultraviolet rays harmful to human skin and near-infrared rays that are heat sources, prevent deterioration of interior decorations, prevent sunburn and inflammation, and cooler in summer due to the difficulty of warming the interior. Energy saving effect by reduction is obtained. Further, even in winter, it is considered that the heat of the room is absorbed by the glass surface, which makes it difficult for the glass to cool, thereby making it difficult to release the heat of the room to the outside and also having a heat insulating effect. In a certain ratio of (A), (B), (C), (D), the best effect was obtained as ultraviolet / infrared shielding. In addition, the durability was excellent even when exposed outdoors. In addition, as a method for forming the ultraviolet / infrared shielding film, it is possible to apply an ultraviolet / infrared shielding coating agent to a roller, a brush, a spray, a casting, or a spin method in accordance with the situation of the glass.
このようにして、太陽光からの紫外線、近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができ、その効果が長期間持続する紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜となる。 In this way, ultraviolet rays, near infrared rays, and far infrared rays from sunlight can be effectively and easily shielded, and the ultraviolet ray / infrared shielding coating agent and the ultraviolet ray / infrared shielding coating film whose effects can last for a long time Become.
請求項1の発明では、
前記A成分の重量であるa、前記B成分の重量であるb、前記C成分の重量であるc、及び前記D成分の重量であるdについて、
a:bが、2:1〜8:1であり、
(a+b):cが、1:15〜1:7であり、
d:cが、1:20〜1:5である。
In the invention of claim 1 ,
About the weight a of the component A, the weight b of the component B, the weight c of the component C, and the weight d of the component D,
a: b is 2: 1 to 8: 1,
(A + b): c is 1:15 to 1: 7,
d: c is 1: 20-1: 5 .
発明者らの実験によれば、このような金属酸化物半導体微粒子、金属酸化物微粒子及び透明な樹脂の混合比が、この範囲内にある場合に、可視光線透過率が65%以上で透明性を損なうことがなく、近赤外線及び遠赤外線の遮蔽率が70%以上、紫外線の遮蔽効果が95%以上と優れたものとなった。 According to the experiments by the inventors, when the mixing ratio of such metal oxide semiconductor fine particles, metal oxide fine particles and transparent resin is within this range, the visible light transmittance is 65% or more and the transparency is high. The near-infrared and far-infrared shielding rates were 70% or more, and the ultraviolet shielding effect was 95% or more.
a:bが2:1より小さいの場合には可視光線透過率が65%未満となり、8:1より多いの場合には近赤外線及び遠赤外線の遮蔽率が70%未満となる。
(a+b):cが1:15より小さい場合には近赤外線及び遠赤外線の遮蔽率が70%未満となり、1:7より大きい場合には可視光線透過率が65%未満となる。
また、d:cが、1:20より小さい場合には紫外線の遮蔽効果が95%未満となり、1:5より大きい場合には可視光線透過率が65%未満となる。
When a: b is less than 2: 1, the visible light transmittance is less than 65%, and when it is more than 8: 1, the shielding ratio of near infrared rays and far infrared rays is less than 70%.
(A + b): When c is less than 1:15, the near-infrared and far-infrared shielding rates are less than 70%, and when it is greater than 1: 7, the visible light transmittance is less than 65%.
When d: c is less than 1:20, the ultraviolet shielding effect is less than 95%, and when it is greater than 1: 5, the visible light transmittance is less than 65%.
請求項1記載の発明では、
前記A成分が、錫ドープ酸化インジウム微粒子であり、
前記B成分が、ホウ化ランタン化合物微粒子であり、
前記D成分が、酸化チタン微粒子、酸化亜鉛微粒子、及び酸化セリウム微粒子から成る群から選ばれる1種以上である。
In invention of Claim 1 ,
Wherein component A is a tin-doped indium oxide fine particles,
The component B is lanthanum boride compound fine particles,
The component D is at least one selected from the group consisting of titanium oxide fine particles, zinc oxide fine particles, and cerium oxide fine particles.
A成分として、遠赤外線を効果的に遮蔽するとともに、可視光線の透過率が高いことを特徴とする錫ドープ酸化インジウム微粒子及び/又は錫ドープ酸化アンチモン微粒子を用い、
B成分として、近赤外線を効果的に遮蔽するとともに、可視光線の透過率が高いことを特徴とするホウ化ランタン化合物微粒子を用い、
D成分として、紫外線を効果的に遮蔽するとともに、可視光線の透過率が高いことを特徴とする酸化チタン微粒子、酸化亜鉛微粒子、及び酸化セリウム微粒子を用いることにより、
紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜となる。
As the A component, while using the tin-doped indium oxide fine particles and / or tin-doped antimony oxide fine particles, which effectively shields far infrared rays and has a high visible light transmittance,
As the B component, lanthanum boride compound fine particles that effectively shield near infrared rays and have high visible light transmittance are used.
By using titanium oxide fine particles, zinc oxide fine particles, and cerium oxide fine particles, which are characterized by effectively shielding ultraviolet rays and having high visible light transmittance as D component,
It becomes an ultraviolet / infrared shielding coating agent and an ultraviolet / infrared shielding coating film.
請求項1記載の発明では、
前記C成分が、シリコーン変性アクリル樹脂である。
In invention of Claim 1 ,
The C component is a silicone-modified acrylic resin .
合成樹脂として、シリコーン変性アクリル樹脂を使用することで、ガラスとの密着性が高く、紫外線・赤外線遮蔽被膜が長期間劣化しにくいことがわかり、また、硬化触媒を用いることにより、施工性が良くなるとともに、乾燥後短期間で表面の硬度が清掃などに十分耐えうる硬さになる。 By using a silicone-modified acrylic resin as a synthetic resin, it can be seen that the adhesion to glass is high, and the ultraviolet and infrared shielding coatings are difficult to deteriorate for a long period of time, and the workability is improved by using a curing catalyst. In addition, the hardness of the surface becomes sufficiently hard to withstand cleaning and the like in a short period after drying.
このようにして、太陽光からの紫外線、近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができ、ガラスへの密着性が高く、その効果が長期間持続する紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜となる
請求項2記載の発明は、
請求項1記載の紫外線・赤外線遮蔽コーティング剤をガラスの表面に塗布し、前記有機溶媒を除去することで形成される紫外線・赤外線遮蔽コーティング被膜を要旨とする。
In this way, ultraviolet / infrared shielding coating agent that can effectively and easily shield ultraviolet rays from sunlight, near infrared rays and far infrared rays, has high adhesion to glass, and maintains the effect for a long period of time. and the invention of claim 2, wherein the ultraviolet-infrared shielding coating film is
The claim 1 Symbol placement ultraviolet-infrared shielding coating agent is applied to the surface of the glass, the ultraviolet-infrared shielding coating film with subject matter that is formed by removing the organic solvent.
本発明の紫外線・赤外線遮蔽コーティング剤を塗布して形成された紫外線・赤外線遮蔽コーティング被膜は金属酸化物半導体微粒子が太陽光からの近・遠赤外線を吸収し、金属酸化物微粒子が紫外線を吸収するため、可視光線(400nm〜800nm)は高い割合で透過し、赤外線、紫外線を高効率で遮断できる。したがって、室内装飾品、人間の皮膚に有害な紫外線と熱源となる近赤外線も遮断することができ、室内装飾品の劣化防止、日焼け・炎症防止効果、室内が暖まりにくいことによる夏場のクーラーなど負荷軽減による省エネ効果が得られる。また、冬場においても、室内の熱がガラス表面で吸収されることにより、ガラスが冷えにくくなることで、室内の熱が外に放出しにくくなり、断熱効果も有すると考えられる。(A),(B),(C),(D)がある割合の間において、紫外線・赤外線遮蔽として最も良好な効果が得られた。また、屋外暴露においてもその耐久性が極めて優れたものとなった。また、紫外線・赤外線遮蔽被膜の形成方法として、紫外線・赤外線遮蔽コーティング剤を、ガラスの状況に合わせて、ローラー、刷毛、噴霧、流延、スピン法を行うことが可能である。 In the ultraviolet / infrared shielding coating film formed by applying the ultraviolet / infrared shielding coating agent of the present invention, the metal oxide semiconductor fine particles absorb near / far infrared rays from sunlight, and the metal oxide fine particles absorb ultraviolet rays. Therefore, visible light (400 nm to 800 nm) is transmitted at a high rate and can block infrared rays and ultraviolet rays with high efficiency. Therefore, it is possible to block the interior decorations, ultraviolet rays harmful to human skin and near-infrared rays that are heat sources, prevent deterioration of interior decorations, prevent sunburn and inflammation, and cooler in summer due to the difficulty of warming the interior. Energy saving effect by reduction is obtained. Further, even in winter, it is considered that the heat of the room is absorbed by the glass surface, which makes it difficult for the glass to cool, thereby making it difficult to release the heat of the room to the outside and also having a heat insulating effect. In a certain ratio of (A), (B), (C), (D), the best effect was obtained as ultraviolet / infrared shielding. In addition, the durability was excellent even when exposed outdoors. In addition, as a method for forming the ultraviolet / infrared shielding film, it is possible to apply an ultraviolet / infrared shielding coating agent to a roller, a brush, a spray, a casting, or a spin method in accordance with the situation of the glass.
このようにして、太陽光からの紫外線、近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができ、その効果が長期間持続する紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜となる。 In this way, ultraviolet rays, near infrared rays, and far infrared rays from sunlight can be effectively and easily shielded, and the ultraviolet ray / infrared shielding coating agent and the ultraviolet ray / infrared shielding coating film whose effects can last for a long time Become.
請求項3記載の発明は、
(A)錫ドープ酸化インジウム微粒子と、
(B)ホウ化ランタン化合物微粒子と、
(C)シリコーン変性アクリル樹脂と、
(D)酸化チタン微粒子、酸化亜鉛微粒子、及び酸化セリウム微粒子から成る群から選ばれる1種以上と、
を含み、
前記A成分の重量であるa、前記B成分の重量であるb、前記C成分の重量であるc、及び前記D成分の重量であるdについて、
a:bが、2:1〜8:1であり、
(a+b):cが、1:15〜1:7であり、
d:cが、1:20〜1:5であること
を特徴とする紫外線・赤外線遮蔽コーティング被膜を要旨とする。
The invention described in claim 3
(A) tin-doped indium oxide fine particles ;
(B) lanthanum boride compound fine particles ,
(C) a silicone-modified acrylic resin ;
(D) one or more selected from the group consisting of titanium oxide fine particles, zinc oxide fine particles, and cerium oxide fine particles ;
Only including,
About the weight a of the component A, the weight b of the component B, the weight c of the component C, and the weight d of the component D,
a: b is 2: 1 to 8: 1,
(A + b): c is 1:15 to 1: 7,
The gist is an ultraviolet / infrared shielding coating film in which d: c is from 1:20 to 1: 5 .
本発明の紫外線・赤外線遮蔽コーティング剤を塗布して形成された紫外線・赤外線遮蔽コーティング被膜は金属酸化物半導体微粒子が太陽光からの近・遠赤外線を吸収し、金属酸化物微粒子が紫外線を吸収するため、可視光線(400nm〜800nm)は高い割合で透過し、赤外線、紫外線を高効率で遮断できる。したがって、室内装飾品、人間の皮膚に有害な紫外線と熱源となる近赤外線も遮断することができ、室内装飾品の劣化防止、日焼け・炎症防止効果、室内が暖まりにくいことによる夏場のクーラーなど負荷軽減による省エネ効果が得られる。また、冬場においても、室内の熱がガラス表面で吸収されることにより、ガラスが冷えにくくなることで、室内の熱が外に放出しにくくなり、断熱効果も有すると考えられる。(A),(B),(C),(D)がある割合の間において、紫外線・赤外線遮蔽として最も良好な効果が得られた。また、屋外暴露においてもその耐久性が極めて優れたものとなった。また、紫外線・赤外線遮蔽被膜の形成方法として、紫外線・赤外線遮蔽コーティング剤を、ガラスの状況に合わせて、ローラー、刷毛、噴霧、流延、スピン法を行うことが可能である。 In the ultraviolet / infrared shielding coating film formed by applying the ultraviolet / infrared shielding coating agent of the present invention, the metal oxide semiconductor fine particles absorb near / far infrared rays from sunlight, and the metal oxide fine particles absorb ultraviolet rays. Therefore, visible light (400 nm to 800 nm) is transmitted at a high rate and can block infrared rays and ultraviolet rays with high efficiency. Therefore, it is possible to block the interior decorations, ultraviolet rays harmful to human skin and near-infrared rays that are heat sources, prevent deterioration of interior decorations, prevent sunburn and inflammation, and cooler in summer due to the difficulty of warming the interior. Energy saving effect by reduction is obtained. Further, even in winter, it is considered that the heat of the room is absorbed by the glass surface, which makes it difficult for the glass to cool, thereby making it difficult to release the heat of the room to the outside and also having a heat insulating effect. In a certain ratio of (A), (B), (C), (D), the best effect was obtained as ultraviolet / infrared shielding. In addition, the durability was excellent even when exposed outdoors. In addition, as a method for forming the ultraviolet / infrared shielding film, it is possible to apply an ultraviolet / infrared shielding coating agent to a roller, a brush, a spray, a casting, or a spin method in accordance with the situation of the glass.
このようにして、太陽光からの紫外線、近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができ、その効果が長期間持続する紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜となる。 In this way, ultraviolet rays, near infrared rays, and far infrared rays from sunlight can be effectively and easily shielded, and the ultraviolet ray / infrared shielding coating agent and the ultraviolet ray / infrared shielding coating film whose effects can last for a long time Become.
始めに、上記の紫外線・赤外線遮蔽コーティング剤及び紫外線・赤外線遮蔽コーティング被膜の作成方法について説明する。実施例として透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40g(カネカ YC−3835)と、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8g(三菱マテリアル ITO分散液)と800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.4gを含む有機溶剤混合液4g(住友金属鉱山 KHを有機溶剤で濃度調整) (A:B=4:1)と紫外線を吸収する酸化チタン微粒子(D) 2.0g(テイカ MT−100HD)(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレン(オルトキシレン、メタキシレン、パラキシレンを未分留してある、3種混合されたキシレン)の混合液46gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 First, the method for producing the ultraviolet / infrared shielding coating agent and the ultraviolet / infrared shielding coating will be described. As an example, 40 g (Kaneka YC-3835) of an organic solvent mixture containing 20 g of a silicone-modified acrylic resin (C) as a transparent synthetic resin, and tin-doped oxidation as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 8 g of an organic solvent mixture containing 1.6 g of indium (A) (Mitsubishi Materials ITO dispersion) and 4 g of an organic solvent mixture containing 0.4 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm ( Sumitomo Metal Mining KH concentration adjusted with organic solvent) (A: B = 4: 1) and 2.0g of titanium oxide fine particles (D) that absorb ultraviolet rays (Taika MT-100HD) (C: D = 10: 1) , A mixture of isopropyl alcohol as an organic solvent and mixed xylene (or mixed xylene in which ortho-xylene, meta-xylene and para-xylene are not fractionated) 3 g of an organic solvent mixed solution containing dibutyltin dilaurate (5% by weight) as a resin curing agent was added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の表面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部での厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。
これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。
This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method to form an ultraviolet / infrared shielding coating film on the surface of the glass plate. The thickness of the ultraviolet / infrared shielding coating film at the center of the glass plate was about 5 μm on each of the front and back surfaces (total of about 10 μm).
This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
請求項1、3の範囲内で可視光線透過率が65%以上で透明性を損なうことがなく、近及び遠赤外線の遮蔽効果が70%以上、紫外線の遮蔽効果が95%以上であることを説明するために実施例2〜7の材料を用いて説明する。 Within the scope of claims 1 and 3 , the visible light transmittance is 65% or more and the transparency is not impaired, the near and far infrared shielding effect is 70% or more, and the ultraviolet shielding effect is 95% or more. In order to explain, the materials of Examples 2 to 7 will be used.
実施例2の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.8gを含む有機溶剤混合液9gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.2gを含む有機溶剤混合液2g(A:B=9:1)、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液47gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Example 2 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 1.8 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 9 g of organic solvent mixed solution and 2 g of organic solvent mixed solution (A: B = 9: 1) containing 0.2 g of lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm, titanium oxide fine particles that absorb ultraviolet rays (D) 2.0 g (C: D = 10: 1) was dissolved in 47 g of a mixed solution of isopropyl alcohol as an organic solvent and mixed xylene and mixed uniformly, and dibutyltin dilaurate (5 wt. %) Was further added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
実施例1との違いは、錫ドープ酸化インジウム微粒子(A)とホウ化ランタン化合物微粒子(B)との割合が、(A:B=9:1)となり、請求項1、3の範囲を超えていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の表面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部の厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that the ratio of the tin-doped indium oxide fine particles (A) to the lanthanum boride compound fine particles (B) is (A: B = 9: 1), which exceeds the range of claims 1 and 3. It is that. This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method to form an ultraviolet / infrared shielding coating film on the surface of the glass plate. The thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm (total of about 10 μm) on each of the front and back surfaces. This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
実施例3の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.0gを含む有機溶剤混合液5gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)1.0gを含む有機溶剤混合液10g(A:B=1:1)と、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液43gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Example 3 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin and 1.0 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 10 g (A: B = 1: 1) of an organic solvent mixture containing 5 g of an organic solvent mixture, 1.0 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm, and titanium oxide that absorbs ultraviolet rays Dissolve 2.0 g of fine particles (D) (C: D = 10: 1) in 43 g of a mixed solution of isopropyl alcohol as an organic solvent and mixed xylene, and mix them uniformly to obtain dibutyltin dilaurate (5 Further, 3 g of an organic solvent mixed solution containing (wt%) was added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
実施例1との違いは、錫ドープ酸化インジウム微粒子(A)とホウ化ランタン化合物微粒子(B)との割合が、(A:B=1:1)となり、請求項1、3の範囲を超えていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布した。塗布されたガラス中央部の厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that the ratio of the tin-doped indium oxide fine particles (A) to the lanthanum boride compound fine particles (B) is (A: B = 1: 1), which exceeds the range of claims 1 and 3. It is that. This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method. The thickness of the applied glass central portion was about 5 μm (total of about 10 μm) on each of the front and back surfaces. This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
実施例4の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)0.8gを含む有機溶剤混合液4gと、800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.2gを含む有機溶剤混合液2g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液52gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:20)。 A method for preparing the sample of Example 4 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 0.8 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 4 g of an organic solvent mixed solution, 2 g of an organic solvent mixed solution containing 0.2 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm (A: B = 4: 1), and an oxidation that absorbs ultraviolet rays Titanium fine particles (D) 2.0 g (C: D = 10: 1) was dissolved in 52 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent and mixed uniformly, and dibutyltin dilaurate (resin curing agent ( 3 g of an organic solvent mixed solution containing 5 wt% was further added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 20).
実施例1との違いは、錫ドープ酸化インジウム微粒子(A)とホウ化ランタン化合物微粒子(B)の割合は変わらないが、シリコーン変性アクリル樹脂(C)との割合が、(A+B:C=1:20)となり、請求項1、3の範囲を超えていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の表面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部の厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that the ratio of the tin-doped indium oxide fine particles (A) and the lanthanum boride compound fine particles (B) is not changed, but the ratio of the silicone-modified acrylic resin (C) is (A + B: C = 1). 20), which is beyond the scope of claims 1 and 3 . This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method to form an ultraviolet / infrared shielding coating film on the surface of the glass plate. The thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm on each of the front and back surfaces (total of about 10 μm). This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
実施例5の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)3.2gを含む有機溶剤混合液16gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.8gを含む有機溶剤混合液8g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液34gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:5)。 A method for preparing the sample of Example 5 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 3.2 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 16 g of an organic solvent mixed solution, 8 g of an organic solvent mixed solution (A: B = 4: 1) containing 0.8 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm, and titanium oxide that absorbs ultraviolet rays Dissolve 2.0 g of fine particles (D) (C: D = 10: 1) in 34 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent and uniformly mix them to obtain dibutyltin dilaurate (5 Further, 3 g of an organic solvent mixed solution containing (wt%) was added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 5).
実施例1との違いは、錫ドープ酸化インジウム微粒子(A)とホウ化ランタン化合物微粒子(B)の割合は変わらないが、シリコーン変性アクリル樹脂(C)との割合が、(A+B:C=1:5)となり、請求項1、3の範囲を超えていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の表面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部の厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that the ratio of the tin-doped indium oxide fine particles (A) and the lanthanum boride compound fine particles (B) is not changed, but the ratio of the silicone-modified acrylic resin (C) is (A + B: C = 1). 5), which exceeds the scope of claims 1 and 3 . This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method to form an ultraviolet / infrared shielding coating film on the surface of the glass plate. The thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm (total of about 10 μm) on each of the front and back surfaces. This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
実施例6の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.4gを含む有機溶剤混合液4g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 5.0g(C:D=4:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液43gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Example 6 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 1.6 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 8 g of an organic solvent mixture, 4 g of an organic solvent mixture containing 0.4 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm (A: B = 4: 1), and titanium oxide that absorbs ultraviolet rays Fine particles (D) 5.0 g (C: D = 4: 1) is dissolved in 43 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent, and mixed uniformly to obtain dibutyltin dilaurate (5 Further, 3 g of an organic solvent mixed solution containing (wt%) was added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
実施例1との違いは、シリコーン変性アクリル樹脂(C)と酸化チタン微粒子の割合が、(D:C=1:4)となり、請求項1、3の範囲から外れていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の表面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部の厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that the ratio of the silicone-modified acrylic resin (C) and the titanium oxide fine particles is (D: C = 1: 4), which is out of the range of claims 1 and 3 . This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method to form an ultraviolet / infrared shielding coating film on the surface of the glass plate. The thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm (total of about 10 μm) on each of the front and back surfaces. This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
実施例7の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.4gを含む有機溶剤混合液4g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 1.0g(C:D=20:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液47gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Example 7 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 1.6 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 8 g of an organic solvent mixture, 4 g of an organic solvent mixture containing 0.4 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm (A: B = 4: 1), and titanium oxide that absorbs ultraviolet rays 1.0 g of fine particles (D) (C: D = 20: 1) was dissolved in 47 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent and mixed uniformly to obtain dibutyltin dilaurate (5 Further, 3 g of an organic solvent mixed solution containing (wt%) was added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
実施例1との違いは、シリコーン変性アクリル樹脂(C)と酸化チタン微粒子の割合が、(D:C=1:20)となり、請求項1、3の範囲内の最小値となっていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の表面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部厚みは表裏面それぞれ約5μm(合計 約10μm)の厚さであった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。 The difference from the first embodiment, the ratio of the titanium oxide fine particles with the silicone-modified acrylic resin (C) is, (D: C = 1: 20) , and the fact that that has the minimum value in the range of claims 1, 3 It is. This ultraviolet / infrared shielding coating agent was applied to a glass plate (length 150 mm × height 70 mm, thickness 4 mm) as a substrate by a dipping method to form an ultraviolet / infrared shielding coating film on the surface of the glass plate. The thickness of the central portion of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm (total of about 10 μm) on each of the front and back surfaces. This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
表1に実施例1及び実施例2〜7の試料の可視光線透過率及び紫外線カット率、赤外線カット率のデータを示す。200nm〜2500nmの透過率を元にして、紫外線カット率(%)、赤外線カット率(%)、可視光線透過率(%)を求めた。 Table 1 shows the data of visible light transmittance, ultraviolet cut rate, and infrared cut rate of the samples of Example 1 and Examples 2 to 7. Based on the transmittance of 200 nm to 2500 nm, an ultraviolet cut rate (%), an infrared cut rate (%), and a visible light transmittance (%) were determined.
紫外線透過率はJIS R 3106(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)により、算出した。紫外線の遮蔽効果を表すものとして、紫外線カット率を定義した。紫外線カット率は紫外線が透過しない割合とし、100(%)−紫外線透過率(%)より算出した。可視光線透過率はJIS R 3106((板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)により、算出した。赤外線遮蔽効果を表すものとして、赤外線カット率を定義した。赤外線カット率は 800nm〜2500nmの近赤外線及び遠赤外線領域において、近赤外線及び遠赤外線が透過しない割合とした。赤外線の透過率は800nm〜2500nmの光がすべて透過した場合を100%とし、その領域での透過率の積分値から、赤外線透過率を算出した。赤外線カット率は100(%)−赤外線透過率(%)より算出した。 The ultraviolet transmittance was calculated according to JIS R 3106 (Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass). The ultraviolet ray cut rate was defined as representing the ultraviolet shielding effect. The ultraviolet cut rate was calculated as 100 (%) − ultraviolet transmittance (%), which is a ratio that ultraviolet rays do not transmit. Visible light transmittance was calculated according to JIS R 3106 ((Test method for transmittance, reflectance, emissivity, and solar heat acquisition rate of plate glass). Infrared cut rate was defined as representing the infrared shielding effect. Infrared cut rate is the ratio that near infrared rays and far infrared rays are not transmitted in the near infrared region and far infrared region of 800 nm to 2500 nm.The infrared transmittance is 100% when all the light of 800 nm to 2500 nm is transmitted. The infrared transmittance was calculated from the integral value of the transmittance at 100. The infrared cut rate was calculated from 100 (%)-infrared transmittance (%).
このようにして、実施例1の紫外線・赤外線遮蔽体は、可視光線透過率を65%以上に保持した上で、紫外線、近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽コーティング膜となる。また、請求項1、3の範囲内で可視光線透過率が65%以上、赤外線カット率が70%を超える紫外線・赤外線遮蔽コーティング膜となる。 Thus, the ultraviolet / infrared shield of Example 1 can effectively and easily shield ultraviolet rays, near infrared rays, and far infrared rays while maintaining a visible light transmittance of 65% or more.・ Infrared shielding coating film. Further, the ultraviolet ray / infrared shielding coating film having a visible light transmittance of 65% or more and an infrared cut rate of more than 70% within the scope of claims 1 and 3 .
次に、実施例1の耐久性(耐候性)について説明する。耐久性は、フロートガラス(縦150mm×横70m 厚さ4mm)に、実施例1の紫外線・赤外線遮蔽コーティング剤を浸漬法にて両面塗布を行い、これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。JIS K 5600 7−4(耐湿潤冷熱繰り返し試験)を10サイクル(50℃ 95%RH 18時間、−20±2℃ 3時間、23±2℃ 50±5%RH 3時間)行い、その被膜の耐久性を評価した。また、JIS K 5600 6−3(耐加熱性) 125℃の恒温室に24時間静置し、被膜及び紫外線・赤外線遮蔽効果の耐久性を評価した。紫外線・赤外線遮蔽効果は波長200nm〜2500nmの光線の透過率を測定し、紫外線カット率及び赤外線カット率より評価した。 Next, the durability (weather resistance) of Example 1 will be described. Durability was applied to float glass (length 150 mm x width 70 m, thickness 4 mm) by applying the ultraviolet / infrared shielding coating agent of Example 1 on both sides by the dipping method, followed by curing and drying at room temperature for one week. The transmittance of light of 200 nm to 2500 nm was measured. 10 cycles of JIS K 5600 7-4 (wet and cold resistance test) were performed (50 ° C. 95% RH 18 hours, −20 ± 2 ° C. 3 hours, 23 ± 2 ° C. 50 ± 5% RH 3 hours). Durability was evaluated. JIS K 5600 6-3 (heat resistance) It was allowed to stand in a thermostatic chamber at 125 ° C. for 24 hours, and the durability of the coating film and the ultraviolet / infrared shielding effect was evaluated. The ultraviolet / infrared shielding effect was evaluated by measuring the transmittance of light having a wavelength of 200 nm to 2500 nm and evaluating the ultraviolet cut rate and infrared cut rate.
実施例8の試料の作成方法を説明する。透明な合成樹脂としてフッ素樹脂(旭硝子 LF−200)(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.4gを含む有機溶剤混合液4g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液46gに溶解させて均一に混合し、樹脂硬化剤としてイソシアネート基を含有する樹脂4g(日本ポリウレタン コロネート HX)をさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Example 8 will be described. 40 g of an organic solvent mixture containing 20 g of a fluororesin (Asahi Glass LF-200) (C) as a transparent synthetic resin, and tin-doped indium oxide (A) 1 as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 6 g of an organic solvent mixed solution containing 6 g, 4 g of an organic solvent mixed solution containing 0.4 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm (A: B = 4: 1), and ultraviolet rays. 2.0 g (C: D = 10: 1) of titanium oxide fine particles to be absorbed (C: D = 10: 1) is dissolved in 46 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent and mixed uniformly, and an isocyanate group as a resin curing agent 4 g (Nihon Polyurethane Coronate HX) was added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
実施例1との違いは、透明な合成樹脂として、フッ素樹脂を用いていることである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布しガラス板の両面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部膜厚は表裏面それぞれ約5μm(合計 約10μm)であった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。その後、耐湿潤繰り返し試験 及び 耐加熱性試験を行い、コーティング膜表面の評価と波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that a fluororesin is used as a transparent synthetic resin. This ultraviolet / infrared shielding coating agent was applied to a glass plate (vertical 150 mm × height 70 mm, thickness 4 mm) as a substrate by an immersion method to form an ultraviolet / infrared shielding coating film on both surfaces of the glass plate. The film thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm on each of the front and back surfaces (total of about 10 μm). This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured. Thereafter, a repeated wet resistance test and a heat resistance test were performed, and the coating film surface was evaluated and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
実施例9の試料の作成方法を説明する。透明な合成樹脂としてアクリル樹脂(DIC アクリディック A−141)(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.4gを含む有機溶剤混合液4g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液46gに溶解させて均一に混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Example 9 will be described. 40 g of an organic solvent mixed solution containing 20 g of acrylic resin (DIC Acrydic A-141) (C) as a transparent synthetic resin, and tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm ) 8 g of an organic solvent mixed solution containing 1.6 g and 4 g of an organic solvent mixed solution (A: B = 4: 1) containing 0.4 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm; Dissolve 2.0 g of titanium oxide fine particles (D) that absorb ultraviolet rays (C: D = 10: 1) in 46 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent, and uniformly mix them to shield ultraviolet rays and infrared rays. A coating agent was prepared (A + B: C = 1: 10).
実施例1との違いは、透明な合成樹脂として、アクリル樹脂を用いたことである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布しガラス板の両面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部の膜厚は表裏面それぞれ約5μm(合計 約10μm)であった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。その後、耐湿潤繰り返し試験 及び 耐加熱性試験を行い、コーティング膜表面の評価と波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that an acrylic resin was used as a transparent synthetic resin. This ultraviolet / infrared shielding coating agent was applied to a glass plate (vertical 150 mm × height 70 mm, thickness 4 mm) as a substrate by an immersion method to form an ultraviolet / infrared shielding coating film on both surfaces of the glass plate. The film thickness of the central portion of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm on each of the front and back surfaces (total of about 10 μm). This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured. Thereafter, a repeated wet resistance test and a heat resistance test were performed, and the coating film surface was evaluated and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
比較例1の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8gと800nm〜1200nmの波長の光を吸収するイモニウム系色素(ナガセケムテックス IR−IM1(B)0.4g(A:B=4:1)と、紫外線を吸収する酸化チタン微粒子(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液49.6gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Comparative Example 1 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 1.6 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 8 g of organic solvent mixture, imonium dye that absorbs light with a wavelength of 800 nm to 1200 nm (Nagase Chemtex IR-IM1 (B) 0.4 g (A: B = 4: 1), and titanium oxide fine particles that absorb ultraviolet rays (D) 2.0 g (C: D = 10: 1) is dissolved in 49.6 g of a mixed solution of isopropyl alcohol and mixed xylene as an organic solvent and mixed uniformly, and dibutyltin dilaurate (resin curing agent ( 3 g of an organic solvent mixed solution containing 5 wt%) was further added and mixed to prepare an ultraviolet / infrared shielding coating agent (A + B: C = 1: 10).
実施例1との違いは、ホウ化ランタン化合物の代わりに、イモニウム系色素(有機系)を用いたことである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の両面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部膜厚は表裏面それぞれ約5μm(合計 約10μm)であった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。耐湿潤繰り返し試験 及び 耐加熱性試験を行い、コーティング膜表面の評価と波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that an imonium dye (organic) was used instead of the lanthanum boride compound. This ultraviolet / infrared shielding coating agent was applied to a glass plate (vertical 150 mm × height 70 mm, thickness 4 mm) as a base material by an immersion method to form an ultraviolet / infrared shielding coating film on both surfaces of the glass plate. The film thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm on each of the front and back surfaces (total of about 10 μm). This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured. A wet resistance repeat test and a heat resistance test were conducted, and the coating film surface was evaluated and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
比較例2の試料の作成方法を説明する。透明な合成樹脂としてシリコーン変性アクリル樹脂(C)20gを含む有機溶剤混合液40gと、1500nm〜2500nmの波長の光を吸収する金属酸化物半導体としての錫ドープ酸化インジウム(A)1.6gを含む有機溶剤混合液8gと800nm〜1200nmの波長の光を吸収するホウ化ランタン化合物(B)0.4gを含む有機溶剤混合液4g(A:B=4:1)と、紫外線を吸収するベンゾトリアゾール系紫外線吸収剤(チバスペシャリティケミカルズ TINUVIN99−2)(D) 2.0g(C:D=10:1)を、有機溶剤としてのイソプロピルアルコール及び混合キシレンの混合液47gに溶解させて均一に混合し、樹脂硬化剤としてのジブチル錫ジラウレート(5重量%)を含む有機溶剤混合液を3gさらに加えて混合し、紫外線・赤外線遮蔽コーティング剤を作成した(A+B:C=1:10)。 A method for preparing the sample of Comparative Example 2 will be described. 40 g of organic solvent mixed solution containing 20 g of silicone-modified acrylic resin (C) as a transparent synthetic resin, and 1.6 g of tin-doped indium oxide (A) as a metal oxide semiconductor that absorbs light having a wavelength of 1500 nm to 2500 nm 8 g of an organic solvent mixture, 4 g of an organic solvent mixture containing 0.4 g of a lanthanum boride compound (B) that absorbs light having a wavelength of 800 nm to 1200 nm (A: B = 4: 1), and a benzotriazole that absorbs ultraviolet rays System UV absorber (Ciba Specialty Chemicals TINUVIN 99-2) (D) 2.0 g (C: D = 10: 1) is dissolved in 47 g of a mixture of isopropyl alcohol and mixed xylene as an organic solvent and mixed uniformly. 3g of organic solvent mixture containing dibutyltin dilaurate (5% by weight) as a resin curing agent is added and mixed to shield ultraviolet and infrared rays. It created a computing agent (A + B: C = 1: 10).
実施例1との違いは、紫外線吸収剤を金属酸化物微粒子の代わりに、ベンゾトリアゾール系(有機系)を用いたことである。この紫外線・赤外線遮蔽コーティング剤を、基材としてのガラス板(縦150mm×高さ70mm 厚さ4mm)に浸漬法で塗布し、ガラス板の両面に紫外線・赤外線遮蔽コーティング被膜を形成した。この紫外線・赤外線遮蔽コーティング被膜のガラス板の中央部膜厚は表裏面それぞれ約5μm(合計 約10μm)であった。これを1週間室温で硬化乾燥して、波長200nm〜2500nmの光線の透過率を測定した。耐湿潤繰り返し試験 及び 耐加熱性試験を行い、コーティング膜表面の評価と波長200nm〜2500nmの光線の透過率を測定した。 The difference from Example 1 is that the ultraviolet absorber is benzotriazole (organic) instead of metal oxide fine particles. This ultraviolet / infrared shielding coating agent was applied to a glass plate (vertical 150 mm × height 70 mm, thickness 4 mm) as a base material by an immersion method to form an ultraviolet / infrared shielding coating film on both surfaces of the glass plate. The film thickness of the central part of the glass plate of the ultraviolet / infrared shielding coating film was about 5 μm on each of the front and back surfaces (total of about 10 μm). This was cured and dried for 1 week at room temperature, and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured. A wet resistance repeat test and a heat resistance test were conducted, and the coating film surface was evaluated and the transmittance of light having a wavelength of 200 nm to 2500 nm was measured.
表2の耐加熱性試験後で、比較例1は赤外線カット率の低下がみられ、比較例2紫外線カット率の低下がみられた。実施例1及び実施例8及び9はほとんど問題はみられなかった。 After the heat resistance test shown in Table 2, in Comparative Example 1, a decrease in the infrared cut rate was observed, and in Comparative Example 2, a decrease in the ultraviolet cut rate was observed. In Example 1 and Examples 8 and 9, there was almost no problem.
表3の耐湿潤冷熱繰り返し試験後で、実施例8は被膜の剥離と密着性の低下が、実施例9は被膜の密着性の低下が確認された。実施例1と比較例1,2では問題はみられなかった。 After the wet and cold resistance repeated test shown in Table 3, Example 8 was confirmed to have a film peeling and a decrease in adhesion, and Example 9 was confirmed to have a decrease in film adhesion. There was no problem in Example 1 and Comparative Examples 1 and 2.
このようにして、近赤外線吸収剤として金属酸化物半導体微粒子、紫外線吸収剤として金属酸化物微粒子及び透明な樹脂としてシリコーン変性アクリル樹脂を用いることにより、遮蔽効果の耐久性が高く、ガラスへの密着性が高い紫外線・赤外線遮蔽コーティング膜となる。 Thus, by using the metal oxide semiconductor fine particles as the near-infrared absorber, the metal oxide fine particles as the ultraviolet absorber, and the silicone-modified acrylic resin as the transparent resin, the shielding effect is highly durable and adheres to the glass. It becomes a highly UV- and infrared-shielding coating film.
Claims (3)
(B)ホウ化ランタン化合物微粒子と、
(C)シリコーン変性アクリル樹脂と、
(D)酸化チタン微粒子、酸化亜鉛微粒子、及び酸化セリウム微粒子から成る群から選ばれる1種以上と、
(E)有機溶媒と、
を含み、
前記A成分の重量であるa、前記B成分の重量であるb、前記C成分の重量であるc、及び前記D成分の重量であるdについて、
a:bが、2:1〜8:1であり、
(a+b):cが、1:15〜1:7であり、
d:cが、1:20〜1:5であること
を特徴とする紫外線・赤外線遮蔽コーティング剤。 (A) tin-doped indium oxide fine particles ;
(B) lanthanum boride compound fine particles ,
(C) a silicone-modified acrylic resin ;
(D) one or more selected from the group consisting of titanium oxide fine particles, zinc oxide fine particles, and cerium oxide fine particles ;
(E) an organic solvent;
Only including,
About the weight a of the component A, the weight b of the component B, the weight c of the component C, and the weight d of the component D,
a: b is 2: 1 to 8: 1,
(A + b): c is 1:15 to 1: 7,
An ultraviolet / infrared shielding coating agent , wherein d: c is from 1:20 to 1: 5 .
(B)ホウ化ランタン化合物微粒子と、
(C)シリコーン変性アクリル樹脂と、
(D)酸化チタン微粒子、酸化亜鉛微粒子、及び酸化セリウム微粒子から成る群から選ばれる1種以上と、
を含み、
前記A成分の重量であるa、前記B成分の重量であるb、前記C成分の重量であるc、及び前記D成分の重量であるdについて、
a:bが、2:1〜8:1であり、
(a+b):cが、1:15〜1:7であり、
d:cが、1:20〜1:5であること
を特徴とする紫外線・赤外線遮蔽コーティング被膜。 (A) tin-doped indium oxide fine particles ;
(B) lanthanum boride compound fine particles ,
(C) a silicone-modified acrylic resin ;
(D) one or more selected from the group consisting of titanium oxide fine particles, zinc oxide fine particles, and cerium oxide fine particles ;
Only including,
About the weight a of the component A, the weight b of the component B, the weight c of the component C, and the weight d of the component D,
a: b is 2: 1 to 8: 1,
(A + b): c is 1:15 to 1: 7,
An ultraviolet / infrared shielding coating film , wherein d: c is from 1:20 to 1: 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012092094A JP5113302B1 (en) | 2012-04-13 | 2012-04-13 | Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012092094A JP5113302B1 (en) | 2012-04-13 | 2012-04-13 | Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5113302B1 true JP5113302B1 (en) | 2013-01-09 |
JP2013221049A JP2013221049A (en) | 2013-10-28 |
Family
ID=47676452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012092094A Expired - Fee Related JP5113302B1 (en) | 2012-04-13 | 2012-04-13 | Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5113302B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103614058A (en) * | 2013-11-13 | 2014-03-05 | 东华大学 | Infrared camouflage paint as well as preparation method and application thereof |
JP2016515084A (en) * | 2013-02-25 | 2016-05-26 | サン−ゴバン グラス フランス | Sheet glass arrangement including infrared attenuating coating |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2546223B1 (en) * | 2006-01-03 | 2016-08-10 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
CN109072010B (en) | 2016-06-02 | 2022-09-23 | M技术株式会社 | Ultraviolet and/or near infrared ray blocking agent composition for transparent material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169765A (en) * | 1998-12-10 | 2000-06-20 | Sumitomo Metal Mining Co Ltd | Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom |
JP2004204173A (en) * | 2002-12-26 | 2004-07-22 | Catalysts & Chem Ind Co Ltd | Coating for forming infrared light-shading film and substrate having infrared light-shading film |
JP2006068964A (en) * | 2004-08-31 | 2006-03-16 | Nbc Inc | Member for cutting off near infrared rays |
JP2008101111A (en) * | 2006-10-19 | 2008-05-01 | Sumitomo Metal Mining Co Ltd | Coating liquid for forming sun radiation shielding film, sun radiation shielding film and base material having sun radiation shielding function |
JP2009024145A (en) * | 2007-07-24 | 2009-02-05 | Asahi Glass Co Ltd | Fluororesin composition for coating and product using the same |
WO2010110354A1 (en) * | 2009-03-27 | 2010-09-30 | ダイキン工業株式会社 | Heat-shielding/heat-absorbing laminate |
-
2012
- 2012-04-13 JP JP2012092094A patent/JP5113302B1/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169765A (en) * | 1998-12-10 | 2000-06-20 | Sumitomo Metal Mining Co Ltd | Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom |
JP2004204173A (en) * | 2002-12-26 | 2004-07-22 | Catalysts & Chem Ind Co Ltd | Coating for forming infrared light-shading film and substrate having infrared light-shading film |
JP2006068964A (en) * | 2004-08-31 | 2006-03-16 | Nbc Inc | Member for cutting off near infrared rays |
JP2008101111A (en) * | 2006-10-19 | 2008-05-01 | Sumitomo Metal Mining Co Ltd | Coating liquid for forming sun radiation shielding film, sun radiation shielding film and base material having sun radiation shielding function |
JP2009024145A (en) * | 2007-07-24 | 2009-02-05 | Asahi Glass Co Ltd | Fluororesin composition for coating and product using the same |
WO2010110354A1 (en) * | 2009-03-27 | 2010-09-30 | ダイキン工業株式会社 | Heat-shielding/heat-absorbing laminate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016515084A (en) * | 2013-02-25 | 2016-05-26 | サン−ゴバン グラス フランス | Sheet glass arrangement including infrared attenuating coating |
CN103614058A (en) * | 2013-11-13 | 2014-03-05 | 东华大学 | Infrared camouflage paint as well as preparation method and application thereof |
CN103614058B (en) * | 2013-11-13 | 2016-04-06 | 东华大学 | A kind of infrared stealth coating and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP2013221049A (en) | 2013-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101050065B (en) | Coating Composition of insulating heat for glass, and preparation method | |
KR101308040B1 (en) | Energy-saving type glass coating composition and energy-saving type of glass structure using the same | |
JP5113302B1 (en) | Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film | |
KR101609525B1 (en) | Infrared-ray reflecting film | |
JP5441697B2 (en) | Heat ray shielding sheet | |
JP5653884B2 (en) | Ultraviolet / near-infrared water-shielding paint, heat-shielding glass on which a coating film made of the paint is formed, and method of heat-shielding window glass using the paint | |
KR101013123B1 (en) | Energy-saving type coating composition and method of coating using the same | |
TW201139135A (en) | Low emissivity and EMI shielding window films | |
KR20150113116A (en) | Method for producing infrared radiation reflecting film | |
JP2007106826A (en) | Ultraviolet or infrared shielding coating | |
EP3025860A1 (en) | Water-based anti-soiling agent, anti-soiling layer, layered body, and solar battery module | |
JP6163196B2 (en) | Infrared reflective film | |
JP2004037768A (en) | Ultraviolet ray and infrared ray shielding body | |
KR102081370B1 (en) | Infrared reflective film and Manufacturing method thereof | |
CN112659696A (en) | Heat-insulating energy-saving film | |
KR20180012357A (en) | Infrared shielding film with Near Infrared ray absorption and Infrared ray reflection | |
JP6797511B2 (en) | Aqueous infrared / ultraviolet shielding coating agent and infrared / ultraviolet shielding treatment method using this | |
EP2778204B1 (en) | Infrared reflective film, infrared reflective paint, and infrared reflector | |
JP5906226B2 (en) | Paint for coated metal plate, painted metal plate and method for producing painted metal plate | |
TW202041374A (en) | Energy saving film structure | |
KR20160034577A (en) | Manufacturing method of energy saving transparent paint | |
WO2018181424A1 (en) | Heat-shielding and heat-insulating substrate | |
JP7145629B2 (en) | Thermal insulation board | |
CN109054676B (en) | Bacteriostatic ultraviolet-proof window film | |
KR101297990B1 (en) | Ultraviolet and infrared absorbable film included glass bubble |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |