JP5112377B2 - Image projection device - Google Patents

Image projection device Download PDF

Info

Publication number
JP5112377B2
JP5112377B2 JP2009098515A JP2009098515A JP5112377B2 JP 5112377 B2 JP5112377 B2 JP 5112377B2 JP 2009098515 A JP2009098515 A JP 2009098515A JP 2009098515 A JP2009098515 A JP 2009098515A JP 5112377 B2 JP5112377 B2 JP 5112377B2
Authority
JP
Japan
Prior art keywords
projection
deflector
correction
image
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098515A
Other languages
Japanese (ja)
Other versions
JP2010250028A (en
Inventor
瑞樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2009098515A priority Critical patent/JP5112377B2/en
Publication of JP2010250028A publication Critical patent/JP2010250028A/en
Application granted granted Critical
Publication of JP5112377B2 publication Critical patent/JP5112377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

本発明は、画像情報信号によって変調処理された可視波長領域の光束を2次元的に偏向し、投射面上で走査させる事で、任意の画像を表示する事ができる光束走査型の画像投射装置に関する。   The present invention relates to a light beam scanning image projection apparatus capable of displaying an arbitrary image by two-dimensionally deflecting a light beam in a visible wavelength region modulated by an image information signal and scanning on a projection surface. About.

従来から、光源からの光束を2次元に偏向して画像を投射する画像投射装置が提案されている(例えば、特許文献1参照)。
ここで、表示画像の形状歪みを補正する機能を備えた従来の画像投射装置52について説明する。図10は、従来の画像投射装置の構成を示す概念図である。
2. Description of the Related Art Conventionally, there has been proposed an image projection apparatus that projects an image by two-dimensionally deflecting a light beam from a light source (see, for example, Patent Document 1).
Here, the conventional image projection apparatus 52 provided with the function which correct | amends the shape distortion of a display image is demonstrated. FIG. 10 is a conceptual diagram showing a configuration of a conventional image projection apparatus.

図10で示すように、この画像投射装置52は、可視波長領域の光束を出射する光源1bと、光束を水平方向と垂直方向へ2次元的に偏向させる2次元偏向器2bと、偏向された光束の垂直方向の形状歪みを補正する補正光学系3bと、偏向器を制御するための偏向器制御部4bと、画像情報信号から描画信号を生成する画像処理部5bと、描画信号に応じて光源からの出射光束を変調駆動する光源駆動部6bと、偏向器制御部4bの高速駆動信号生成部12bへ振幅補正信号を送るための振幅補正信号参照部31、とから構成されている。ここで、点線で囲った部分は電気回路またはソフトウェアにより構成される信号処理系8bに対応している。   As shown in FIG. 10, the image projection device 52 is deflected by a light source 1 b that emits a light beam in a visible wavelength region, a two-dimensional deflector 2 b that deflects the light beam two-dimensionally in a horizontal direction and a vertical direction. A correction optical system 3b for correcting the vertical shape distortion of the light beam, a deflector control unit 4b for controlling the deflector, an image processing unit 5b for generating a drawing signal from the image information signal, and a drawing signal The light source driving unit 6b that modulates and drives the emitted light beam from the light source, and the amplitude correction signal reference unit 31 for sending the amplitude correction signal to the high-speed drive signal generation unit 12b of the deflector control unit 4b. Here, a portion surrounded by a dotted line corresponds to the signal processing system 8b configured by an electric circuit or software.

続いて、画像投射装置52を構成する各部材と投射面21bとの光学的な位置関係を、図11を用いて説明する。
画像投射装置52における2次元偏向器2bは直交する2つの回動軸を中心とする高速回動機構10bと低速回動機構11bを有し、図11で示すように、これらの回動機構に基づいて回動運動するその主面には光束を反射するための反射面20bが設けられている。また、光源1bは、この反射面に対して所定の傾斜角度から入射する位置に配置されており、補正光学系3bは偏向される全光束を適切に補正できる位置に配置されている。投射面21bは、2次元偏向器2bの2軸の回動角度が何れもゼロである時の光束を法線とする面と平行に置かれ、ここでは便宜的に、高速の回動方向を水平のX軸、低速の回動方向を垂直Y軸と定義する。
Next, the optical positional relationship between each member constituting the image projection device 52 and the projection surface 21b will be described with reference to FIG.
The two-dimensional deflector 2b in the image projection device 52 has a high-speed rotation mechanism 10b and a low-speed rotation mechanism 11b centering on two orthogonal rotation axes, and as shown in FIG. A reflecting surface 20b for reflecting the light beam is provided on the main surface that rotates based on the surface. In addition, the light source 1b is disposed at a position where the light source 1b is incident on the reflecting surface from a predetermined inclination angle, and the correction optical system 3b is disposed at a position where the deflected total light flux can be appropriately corrected. The projection surface 21b is placed in parallel with a plane whose normal is the luminous flux when the two-axis rotation angles of the two-dimensional deflector 2b are zero. Here, for convenience, a high-speed rotation direction is set. The horizontal X axis and the low-speed rotation direction are defined as the vertical Y axis.

続いて、この画像投射装置52の動作と形状歪み補正に関する機能について、図12〜図13を用いて説明する。図12は、この画像投射装置52で画像を投射表示した状態で、偏向器制御部4bが2次元偏向器2bを駆動する駆動波形を示しており、図13は、この画像投射装置52で実現される形状歪み補正の様子を模式的に示したものである。   Next, the operation of the image projection device 52 and the function related to the shape distortion correction will be described with reference to FIGS. FIG. 12 shows a driving waveform in which the deflector control unit 4b drives the two-dimensional deflector 2b in a state where an image is projected and displayed by the image projecting device 52. FIG. 13 is realized by the image projecting device 52. This figure schematically shows how the shape distortion is corrected.

この画像投射装置52が起動されると、まず、図12(a)の駆動波形で示すように、低速回動機構11bが遅い周期で略線形の往復運動を行い、その間に図12(b)の駆動波形で示すように、高速回動機構10bが早い周期で略正弦波的な往復運動を行う。
そして、これら回動機構の往復動作と同期して、図12(a)における1画面描画期間の間に、画像処理部5bからの描画信号に基づいた所定の光源駆動信号を光源1bへ送られ、光源1bから強度またはパルス変調された光束が出射されて、2次元偏向器2bで偏向される事で、図11で示すように投射面21bへ画像が表示される。
When the image projection device 52 is activated, first, as shown by the drive waveform in FIG. 12A, the low-speed rotation mechanism 11b performs a substantially linear reciprocating motion at a slow period, while FIG. As shown by the driving waveform, the high-speed rotation mechanism 10b performs a reciprocating motion in a substantially sinusoidal manner at an early cycle.
Then, in synchronization with the reciprocating operation of these rotating mechanisms, a predetermined light source driving signal based on the drawing signal from the image processing unit 5b is sent to the light source 1b during the one-screen drawing period in FIG. The intensity or pulse-modulated light beam is emitted from the light source 1b and deflected by the two-dimensional deflector 2b, whereby an image is displayed on the projection surface 21b as shown in FIG.

次に、従来技術の画像投射装置52の形状歪み補正機能について述べる。反射面20bを備えた偏向器より構成される画像投射装置52では、図11に示すような、偏向器の回動軸、反射面、および光束の入射角度との幾何学的な関係から、投射面21bへ投射され
る画像の形状が、必然的に図13(a)に示すような水平および垂直の両軸方向の歪みを持ってしまう。
Next, the shape distortion correction function of the conventional image projection apparatus 52 will be described. In the image projection device 52 constituted by the deflector having the reflecting surface 20b, the projection is performed from the geometrical relationship between the rotation axis of the deflector, the reflecting surface, and the incident angle of the light beam as shown in FIG. The shape of the image projected onto the surface 21b inevitably has distortions in both the horizontal and vertical axes as shown in FIG.

従来技術の画像投射装置52では、2次元偏向器2bと投射面21bとの間に配置した補正光学系3bと、2次元偏向器2bの高速回動機構10bに対する振幅補正を行う手段により、水平および垂直の両軸方向の歪みを独立に補正するという手法を採用している。
特許文献1によれば、形状歪みの片軸方向の歪みは、2次元偏向器2bで偏向された光束の方向を、任意の自由曲面反射鏡を組み合わせた補正光学系3bにより微修正する事で、補正する事が可能である。ここでは、補正光学系3bによる補正方向を垂直走査方向とすると、図13(a)から図13(b)のように投射面21bへ表示される垂直走査方向の形状歪みが補正される。
In the image projection device 52 of the prior art, the correction optical system 3b disposed between the two-dimensional deflector 2b and the projection surface 21b and means for performing amplitude correction on the high-speed rotation mechanism 10b of the two-dimensional deflector 2b In addition, a technique of independently correcting the distortion in both the vertical axis directions is employed.
According to Japanese Patent Laid-Open No. 2004-260688, the distortion in one-axis direction of the shape distortion is obtained by finely correcting the direction of the light beam deflected by the two-dimensional deflector 2b by the correction optical system 3b combined with an arbitrary free-form curved mirror. It is possible to correct. Here, assuming that the correction direction by the correction optical system 3b is the vertical scanning direction, the shape distortion in the vertical scanning direction displayed on the projection surface 21b is corrected as shown in FIGS. 13 (a) to 13 (b).

一方、図13(b)で補正されずに残っている水平走査方向の歪みについては、予め振幅補正信号参照部31に保存されてある振幅補正信号に基づいて、図12(c)で示すように水平方向の高速回動機構10bの振幅を低速回動機構11bの周期に同期させる形で乗算し継時的に変化させる。こうする事で、投射する水平方向の走査線の振幅長が相殺され、図13(b)の台形形状から図13(c)のように歪みの無い正常な四角形状へと補正される事となる。   On the other hand, the distortion in the horizontal scanning direction that is not corrected in FIG. 13B is shown in FIG. 12C based on the amplitude correction signal stored in the amplitude correction signal reference unit 31 in advance. Are multiplied by the amplitude of the high-speed rotation mechanism 10b in the horizontal direction in synchronism with the period of the low-speed rotation mechanism 11b, and are changed over time. By doing so, the amplitude length of the horizontal scanning line to be projected is canceled, and the trapezoidal shape of FIG. 13B is corrected to a normal square shape without distortion as shown in FIG. 13C. Become.

特開2008−249797号公報(第32頁、図1)JP 2008-249797 A (page 32, FIG. 1)

しかしながら、上述した従来技術では以下のような問題がある。
図14は、特許文献1に記載の画像表示装置52による形状歪み補正の説明図である。図14(a)は補正前の投射画像の状態を示し、図14(b)は補正後の投射画像の状態を示す。特許文献1に記載の画像投射装置52では、高速回動機構10bの駆動波形に乗算するための振幅補正信号が、想定される投射条件下での歪み率から予め決定されている。
However, the above-described prior art has the following problems.
FIG. 14 is an explanatory diagram of the shape distortion correction by the image display device 52 described in Patent Document 1. FIG. 14A shows the state of the projection image before correction, and FIG. 14B shows the state of the projection image after correction. In the image projection device 52 described in Patent Document 1, an amplitude correction signal for multiplying the drive waveform of the high-speed rotation mechanism 10b is determined in advance from a distortion rate under an assumed projection condition.

このため、図14(a)、(b)に示すように、想定される投射条件(画像の投射画角)における投射領域25gの場合は、投射領域25iのように正常に形状歪み補正を行うことができる。しかし、想定される投射条件から2次元偏向器2bの最大回動角度を縮小し、画像の投射画角を狭くした投射領域25hの場合は、投射領域25jに示すように、水平方向の形状歪みを正常に補正する事ができない。
このように、従来の画像投射装置では、画像の投射画角に応じて形状歪みの補正を適切に行うことができず、画像投射装置としての用途が限定されてしまうという問題があった。
For this reason, as shown in FIGS. 14A and 14B, in the case of the projection area 25g under the assumed projection condition (projection angle of view of the image), the shape distortion is normally corrected as in the projection area 25i. be able to. However, in the case of the projection area 25h in which the maximum rotation angle of the two-dimensional deflector 2b is reduced from the assumed projection conditions and the projection angle of view of the image is narrowed, as shown in the projection area 25j, the horizontal shape distortion Cannot be corrected normally.
As described above, the conventional image projection apparatus cannot properly correct the shape distortion according to the projection angle of view of the image, and there is a problem that the application as the image projection apparatus is limited.

そこで、本発明は上記課題を解決し、画像の投射画角に応じて、形状歪の補正を適切に行うことを可能とする画像投射装置を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above-described problems and to provide an image projection apparatus that can appropriately correct shape distortion according to the projection angle of view of an image.

上述した課題を解決し、目的を達成するため、本発明の画像投射装置は下記記載の構成を採用するものである。   In order to solve the above-described problems and achieve the object, the image projection apparatus of the present invention adopts the following configuration.

本発明の画像投射装置は、光束を出射する光源と、互いに直交する第1および第2の軸を中心に回動し、光源から出射した光束を反射する反射面を有する偏向器と、偏向器の反
射面を第1の軸を中心に高速に回動するとともに第2の軸を中心に低速に回動させ、光束を2次元に偏向させる偏向器制御部と、補正演算部と、を備え、補正演算部は、第2の軸の最大回動角度に基づいて補正信号を生成し、偏向器制御部は、補正信号に基づいて、1画面描画期間内で第1の軸の回動振幅を漸次変化させることを特徴とする。
An image projection apparatus according to the present invention includes a light source that emits a light beam, a deflector that rotates around first and second axes orthogonal to each other and has a reflecting surface that reflects the light beam emitted from the light source, and a deflector A deflector controller that rotates the reflecting surface at a high speed around the first axis and at a low speed around the second axis, and deflects the light beam in two dimensions, and a correction calculation unit. The correction calculation unit generates a correction signal based on the maximum rotation angle of the second axis, and the deflector control unit generates the rotation amplitude of the first axis within one screen drawing period based on the correction signal. Is gradually changed.

また、本発明の画像投射装置は、上述した構成に加えて、偏向器の反射面の第2の軸を中心とした回動は、第1の軸を中心とした回動から独立であり、第2の軸と光源の光束の出射方向とが略直角をなすことを特徴とする。   In addition to the above-described configuration, the image projection device of the present invention is independent of the rotation about the second axis of the reflecting surface of the deflector from the rotation about the first axis. The second axis and the light emitting direction of the light source are substantially perpendicular to each other.

さらに、本発明の画像投射装置は、上述した構成に加えて、第2の軸の最大回動角度をφ2maxとし、Cを定数としたとき、補正演算部は、α=C×φ2maxで算出した振幅差分比率αに基づいて補正信号を生成することを特徴とする。   Furthermore, in addition to the above-described configuration, the image projection apparatus of the present invention calculates the correction calculation unit as α = C × φ2max, where the maximum rotation angle of the second shaft is φ2max and C is a constant. A correction signal is generated based on the amplitude difference ratio α.

本発明の画像投射装置は、低速に回動する軸の最大回動角度に基づいて補正信号を生成し、該補正信号に基づいて高速に回動する軸の回動振幅を制御する。これにより、投射条件(画像の投射画角)に応じて、適切に形状歪み補正を実施する事ができ、表示画像の画角を任意に変化させるような、より幅広い用途で使用可能な画像投射装置を提供すること事が可能となる。   The image projection apparatus of the present invention generates a correction signal based on the maximum rotation angle of a shaft that rotates at a low speed, and controls the rotation amplitude of the shaft that rotates at a high speed based on the correction signal. This makes it possible to perform shape distortion correction appropriately according to the projection condition (projection angle of view of the image), and image projection that can be used in a wider range of applications, such as changing the angle of view of the display image arbitrarily It is possible to provide a device.

本実施形態の画像投射装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the image projection apparatus of this embodiment. 本実施形態の画像投射装置の構成要素の光学的な配置関係を示す説明図である。It is explanatory drawing which shows the optical arrangement | positioning relationship of the component of the image projection apparatus of this embodiment. 本実施形態の画像投射装置の2次元偏向器の駆動波形を示す説明図である。It is explanatory drawing which shows the drive waveform of the two-dimensional deflector of the image projection apparatus of this embodiment. 形状歪み補正を動作させない状態の投射領域の計算値を示す説明図である。It is explanatory drawing which shows the calculated value of the projection area | region of the state which does not operate shape distortion correction. 本実施形態の画像投射装置の形状歪み補正の様子を示す説明図である。It is explanatory drawing which shows the mode of the geometric distortion correction of the image projector of this embodiment. 本実施形態の画像投射装置の補正処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the correction process of the image projection apparatus of this embodiment. 本実施形態の画像投射装置の補正演算に用いる定数算出の説明図である。It is explanatory drawing of the constant calculation used for the correction calculation of the image projection apparatus of this embodiment. 本実施形態の画像投射装置の形状歪み補正の様子を示す説明図である。It is explanatory drawing which shows the mode of the geometric distortion correction of the image projector of this embodiment. 本実施形態の画像投射装置の2次元偏向器の駆動波形を示す説明図である。It is explanatory drawing which shows the drive waveform of the two-dimensional deflector of the image projection apparatus of this embodiment. 従来技術の画像投射装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the image projection apparatus of a prior art. 従来技術の画像投射装置の構成要素の光学的な配置関係を示す説明図である。It is explanatory drawing which shows the optical arrangement | positioning relationship of the component of the image projection apparatus of a prior art. 従来技術の画像投射装置の2次元偏向器の駆動波形を示す説明図である。It is explanatory drawing which shows the drive waveform of the two-dimensional deflector of the image projection apparatus of a prior art. 従来技術の画像投射装置による形状歪み補正の説明図である。It is explanatory drawing of the geometric distortion correction by the image projection apparatus of a prior art. 従来技術の画像投射装置による形状歪み補正の説明図である。It is explanatory drawing of the geometric distortion correction by the image projection apparatus of a prior art.

以下に、本発明による画像投射装置の実施形態を詳細に説明する。なお、上述した従来技術の画像投射装置と同じ構成要素には、同番号の符号を用いる。   Embodiments of an image projection apparatus according to the present invention will be described in detail below. Note that the same reference numerals are used for the same components as those of the above-described conventional image projection apparatus.

[構成の説明:図1、図2]
図1は本実施形態の画像投射装置51の構成を示す説明図である。図1に示すように、この画像投射装置51は、可視波長領域の光束を出射する光源1aと、光束を水平方向と垂直方向へ2次元的に偏向させるための高速回動機構10aと低速回動機構11aを有する2次元偏向器2aと、偏向された光束の垂直方向の形状歪みを補正する補正光学系3aと、高速駆動信号生成部12aと低速駆動信号生成部13aと偏向器動作状態検出部14aとを有する偏向器制御部4aと、画像情報信号から描画信号を生成する画像処理部5a
と、描画信号に応じて光源1aからの出射光束を変調駆動する光源駆動部6aと、を備える。
[Description of Configuration: FIGS. 1 and 2]
FIG. 1 is an explanatory diagram showing the configuration of the image projection apparatus 51 of the present embodiment. As shown in FIG. 1, the image projection apparatus 51 includes a light source 1a that emits a light beam in a visible wavelength region, a high-speed rotation mechanism 10a that deflects the light beam in two dimensions in a horizontal direction and a vertical direction, and a low-speed rotation. A two-dimensional deflector 2a having a moving mechanism 11a, a correction optical system 3a for correcting a vertical shape distortion of the deflected light beam, a high-speed drive signal generator 12a, a low-speed drive signal generator 13a, and a deflector operation state detection A deflector control unit 4a having a unit 14a, and an image processing unit 5a that generates a drawing signal from the image information signal.
And a light source driving unit 6a that modulates and drives the emitted light beam from the light source 1a according to the drawing signal.

以上は、上述した従来技術の画像投射装置と同様であるが、本実施形態の画像投射装置51は、投射条件設定部15を備えるとともに、従来技術における振幅補正信号参照部に代えて、2次元偏向器2aの最適な偏向振幅を演算するための形状歪み補正演算部7を備える。   The above is the same as the above-described conventional image projection apparatus, but the image projection apparatus 51 according to the present embodiment includes the projection condition setting unit 15 and replaces the amplitude correction signal reference unit in the conventional technique with a two-dimensional structure. A geometric distortion correction calculation unit 7 for calculating the optimum deflection amplitude of the deflector 2a is provided.

図2は、画像投射装置51を構成する各部材と投射面との光学的な位置関係を示す説明図である。画像投射装置51における2次元偏向器2aは直交する2つの回動軸を中心とした高速回動機構10aと低速回動機構11aを有する。また、図2に示すように、これらの回動機構に基づいて回動するその主面には、光束を反射するための反射面20aが設けられている。   FIG. 2 is an explanatory diagram showing an optical positional relationship between each member constituting the image projection device 51 and the projection surface. The two-dimensional deflector 2a in the image projector 51 includes a high-speed rotation mechanism 10a and a low-speed rotation mechanism 11a around two orthogonal rotation axes. Further, as shown in FIG. 2, a reflecting surface 20a for reflecting the light beam is provided on the main surface that rotates based on these rotating mechanisms.

2次元偏向器2aの回動軸は、低速側の回動軸が光学的に固定された軸であり、他方の高速の回動軸が低速の回動に従属して偏向される、という機構になっている。ここでは、高速回動機構10aによる反射光束の偏向角度をφ1と定義する。これにより、高速回動機構10aの実回動角度はφ1/2と表される。また、低速回動機構11aによる同偏向角度をφ2と定義する。これにより、低速回動機構11aの実回動角度はφ1/2と表される。
また、反射面20aの光軸中心点から投射面21a(XY面)原点への投射距離をDと定義する。
The rotation axis of the two-dimensional deflector 2a is an axis in which the rotation axis on the low speed side is optically fixed, and the other high-speed rotation axis is deflected depending on the low-speed rotation. It has become. Here, the deflection angle of the reflected light beam by the high-speed rotation mechanism 10a is defined as φ1. Thereby, the actual rotation angle of the high-speed rotation mechanism 10a is expressed as φ1 / 2. Further, the deflection angle by the low-speed rotation mechanism 11a is defined as φ2. Thereby, the actual rotation angle of the low-speed rotation mechanism 11a is represented as φ1 / 2.
Further, D is defined as a projection distance from the center point of the optical axis of the reflection surface 20a to the projection surface 21a (XY surface) origin.

投射面21aは、2次元偏向器2aの2軸の回動角度が何れもゼロである時の光束を法線とする面と平行に配置されている。光源1aは、その出射光束が低速の回動軸に対しては常に直角な角度になる位置に配置される。また、光源1aは、2軸の回動角度が何れもゼロである時の反射面20aの法線方向に対しては直角でない所定の傾斜角度(θと定義する)で入射するように配置されている。   The projection surface 21a is arranged in parallel with a surface having the light beam as a normal line when the rotation angles of the two axes of the two-dimensional deflector 2a are both zero. The light source 1a is arranged at a position where the emitted light beam is always at an angle perpendicular to the low-speed rotation axis. The light source 1a is arranged so as to be incident at a predetermined inclination angle (defined as θ) that is not perpendicular to the normal direction of the reflecting surface 20a when the biaxial rotation angles are both zero. ing.

2軸の回動角度が何れもゼロである時の光束をZ軸、高速の回動に伴う走査方向をX軸(水平)、低速の回動に伴う走査方向をY軸(垂直)と定義する。補正光学系3aは、Z軸を中心軸とし、2次元偏向器2aによって偏向された光束全てに対して補正可能な位置に配置されている。   The light beam when the rotation angle of both axes is zero is defined as the Z axis, the scanning direction associated with the high speed rotation is defined as the X axis (horizontal), and the scanning direction associated with the low speed rotation is defined as the Y axis (vertical). To do. The correction optical system 3a is disposed at a position where the light beam deflected by the two-dimensional deflector 2a can be corrected with the Z axis as the central axis.

以下に、本実施形態の画像投射装置51の各構成要素について詳細に説明する。
光源1aは、例えば半導体レーザや固体レーザ等の光学機能素子を用いる事により、可視波長領域の光束を生成し出射する機能を有している。更に、後述する光源駆動部6aからの光源駆動信号に従って、出射光束を強度的又はパルス的に高速変調する機能を有している。
Below, each component of the image projection apparatus 51 of this embodiment is demonstrated in detail.
The light source 1a has a function of generating and emitting a light beam in the visible wavelength region by using an optical functional element such as a semiconductor laser or a solid-state laser. Further, it has a function of performing high-speed modulation of the emitted light beam in intensity or pulse in accordance with a light source drive signal from a light source drive unit 6a described later.

2次元偏向器2aは、光源1aから出射された光束を反射し、投射面21aへ2次元的に走査投射する。先述したように、この2次元偏向器2aは、互いに略垂直を為す2軸の回動機構(高速回動機構10aと低速回動機構11a)及び小型の反射面20aより構成されている。このような小型の反射面20aと回動機構は、半導体工程を用いてシリコン結晶基板より製造される事が多い為、一般に「MEMSスキャナ」と呼ばれている。更に、2次元偏向器2aは、光源1aからの出射光束を所定の入射角度θで反射面20aへ受け、回転機構に基づいた周期的な走査動作により、入射された光束の光強度を維持したまま反射させる事で、投射レーザ光を所定の方向へ2次元的に偏向し走査投射する。   The two-dimensional deflector 2a reflects the light beam emitted from the light source 1a and scans and projects it two-dimensionally on the projection surface 21a. As described above, the two-dimensional deflector 2a includes a biaxial rotation mechanism (a high-speed rotation mechanism 10a and a low-speed rotation mechanism 11a) that are substantially perpendicular to each other and a small reflecting surface 20a. Such a small reflection surface 20a and a rotation mechanism are generally manufactured from a silicon crystal substrate using a semiconductor process, and thus are generally called “MEMS scanners”. Further, the two-dimensional deflector 2a receives the light beam emitted from the light source 1a on the reflection surface 20a at a predetermined incident angle θ, and maintains the light intensity of the incident light beam by a periodic scanning operation based on the rotation mechanism. By reflecting the light as it is, the projection laser light is two-dimensionally deflected in a predetermined direction and scanned and projected.

一般に、このような2次元偏向器2aは、実用的な投射条件内の回動状態においては、
回動される両軸の角度が、後述する偏向器制御部4aからの駆動信号の振幅に比例する。また、回動される両軸の角度の駆動信号に対する遅延も殆ど無い(位相ズレを起こさない)という特性を有する。このため、偏向される光束の偏向角度は、駆動信号の波形とほぼ同様の動作をしているものとみなすことができる。
Generally, such a two-dimensional deflector 2a is in a rotating state within a practical projection condition.
The angle of both pivoted axes is proportional to the amplitude of the drive signal from the deflector control unit 4a described later. In addition, there is a characteristic that there is almost no delay with respect to the drive signals of the angles of the two axes rotated (no phase shift occurs). For this reason, the deflection angle of the deflected light beam can be regarded as performing substantially the same operation as the waveform of the drive signal.

補正光学系3aは、従来例の画像投射装置52に関する説明で述べたように、例えば、任意の自由曲面反射鏡を組み合わせた光学的な構成により、2次元偏向器2aで偏向された光束の方向を微修正する事で、形状歪みにおける垂直方向の歪みを補正する事が可能である。   As described in the description of the image projection apparatus 52 of the conventional example, the correction optical system 3a is, for example, the direction of the light beam deflected by the two-dimensional deflector 2a by an optical configuration in which an arbitrary free-form curved mirror is combined. It is possible to correct the vertical distortion in the shape distortion by finely correcting the above.

次に、信号処理系8aの構成について説明する。信号処理系8aは以下で詳説する、偏向器制御部4a、画像処理部5a、光源駆動部6a、形状歪み補正演算部7、投射条件設定部15を備え、電気回路またはソフトウェアにより構成される。   Next, the configuration of the signal processing system 8a will be described. The signal processing system 8a includes a deflector control unit 4a, an image processing unit 5a, a light source driving unit 6a, a shape distortion correction calculation unit 7, and a projection condition setting unit 15, which will be described in detail below, and is configured by an electric circuit or software.

偏向器制御部4aは、2次元偏向器2aにおける高速回動機構10aを駆動するための高速駆動信号生成部12aと、低速回動機構11aを駆動するための低速駆動信号生成部13aと、両回動機構からの帰還信号を受ける偏向器動作状態検出部14aと、から構成される。具体的には、高速駆動信号生成部12aと低速駆動信号生成部13aは、高速回動機構10aと低速回動機構11aの周期的な回動に対して、回動角度(偏向角度)の調整、回動周期の安定化、両回動機構の同期整合を行うなど、2次元偏向器2aを制御駆動するための全般的な処理機能を有している。   The deflector controller 4a includes a high-speed drive signal generator 12a for driving the high-speed rotation mechanism 10a in the two-dimensional deflector 2a, a low-speed drive signal generator 13a for driving the low-speed rotation mechanism 11a, And a deflector operation state detector 14a that receives a feedback signal from the rotation mechanism. Specifically, the high-speed drive signal generation unit 12a and the low-speed drive signal generation unit 13a adjust the rotation angle (deflection angle) with respect to the periodic rotation of the high-speed rotation mechanism 10a and the low-speed rotation mechanism 11a. It has a general processing function for controlling and driving the two-dimensional deflector 2a, for example, stabilizing the rotation cycle and synchronizing the two rotation mechanisms.

また、偏向器動作状態検出部14aは、2次元偏向器2aからの帰還信号と、高速駆動信号および低速駆動信号に基づき、2次元偏向器2aにおける両回動機構の瞬時的な情報(偏向角度、位相、等)を偏向器状態信号として、任意のタイミングで外部の処理手段へ伝達する機能を有している。更に、高速駆動信号生成部12aは、後述する形状歪み補正演算部7からの振幅補正信号を受けて、高速駆動信号の振幅を増減演算する処理機能を有している。   Further, the deflector operating state detector 14a, based on the feedback signal from the two-dimensional deflector 2a, the high-speed drive signal and the low-speed drive signal, instantaneous information (deflection angle) of the both rotation mechanisms in the two-dimensional deflector 2a. , Phase, etc.) as a deflector state signal, and has a function of transmitting to an external processing means at an arbitrary timing. Further, the high-speed drive signal generation unit 12a has a processing function of receiving an amplitude correction signal from the geometric distortion correction calculation unit 7 described later and calculating the increase / decrease of the amplitude of the high-speed drive signal.

投射条件設定部15は、画像の投射画角などの投射条件がユーザにより設定される機能を有する。投射条件設定部15は、設定された投射条件を投射条件信号として偏向器制御部4aへ伝達するとともに、低速回動機構11aの偏向角度の最大値φ2maxの情報を最大偏向角度信号として形状歪み補正演算部7に伝達する。   The projection condition setting unit 15 has a function of setting projection conditions such as a projection angle of view of an image by a user. The projection condition setting unit 15 transmits the set projection condition as a projection condition signal to the deflector control unit 4a, and corrects the shape distortion using information on the maximum deflection angle φ2max of the low-speed rotation mechanism 11a as the maximum deflection angle signal. This is transmitted to the calculation unit 7.

画像処理部5aは、外部装置から入力される画像情報信号と偏向器動作状態検出部14aからの偏向器状態信号に基づいて、投射面21aへ画像を描画するための適切な描画信号(変調信号)を生成する。光源駆動部6aは、この描画信号に基づいて光源1aを駆動し、光束出射を強度的またはパルス的に高速変調させる機能を有する。   Based on the image information signal input from the external device and the deflector state signal from the deflector operation state detector 14a, the image processing unit 5a generates an appropriate drawing signal (modulation signal) for drawing an image on the projection surface 21a. ) Is generated. The light source drive unit 6a has a function of driving the light source 1a based on the drawing signal and performing high-speed modulation of the luminous flux emission in intensity or pulse.

形状歪み補正演算部7は、投射条件設定部15からの最大偏向角度信号と、偏向器動作状態検出部14aからの偏向器状態信号に基づいて、2次元偏向器2aで偏向された光束が投射面21aへ走査投射される投射領域の形状歪みを推定する。また、形状歪み補正演算部7は、その水平走査方向の形状歪みを適切に補正するための振幅補正信号を、演算手段により生成し、偏向器制御部4aの高速駆動信号生成部12aへ伝達する。その具体的な作用手順と演算処理については、後ほど詳説する。   The shape distortion correction calculation unit 7 projects the light beam deflected by the two-dimensional deflector 2a based on the maximum deflection angle signal from the projection condition setting unit 15 and the deflector state signal from the deflector operation state detection unit 14a. The shape distortion of the projection area scanned and projected onto the surface 21a is estimated. The shape distortion correction calculation unit 7 generates an amplitude correction signal for appropriately correcting the shape distortion in the horizontal scanning direction by the calculation means, and transmits the amplitude correction signal to the high-speed drive signal generation unit 12a of the deflector control unit 4a. . The specific operation procedure and arithmetic processing will be described in detail later.

[動作の説明:図2〜図9]
続いて、この画像投射装置51の動作と形状歪み補正に関する機能及び作用について説明する。図3は、この画像投射装置51における偏向器制御部4aが、2次元偏向器2aの2つの回動機構を駆動する際の駆動波形の時間的な変化を示す説明図である。
[Description of Operation: FIGS. 2 to 9]
Next, functions and actions related to the operation and shape distortion correction of the image projection apparatus 51 will be described. FIG. 3 is an explanatory diagram showing temporal changes in drive waveforms when the deflector controller 4a in the image projection apparatus 51 drives the two rotation mechanisms of the two-dimensional deflector 2a.

この画像投射装置51の一般的な投射動作と原理は、先述した従来例における画像投射装置52と同様である。すなわち、装置が起動されると、まず、図3(a)、(b)の駆動波形で示すように、低速回動機構11aが遅い周期で略線形の往復運動を行い、その間に、高速回動機構10aが早い周期で略正弦波的な往復運動を行う。
そして、これら回動機構の往復動作と同期して、図3(a)における1画面描画期間の間に、画像処理部5aからの描画信号に基づいた所定の光源駆動信号が光源1aへ送られ、光源1aから強度またはパルス変調された光束が出射されて、2次元偏向器2aで偏向される事で、図2に示すように、投射面21aへ画像が表示される。
The general projection operation and principle of the image projection apparatus 51 are the same as those of the image projection apparatus 52 in the conventional example described above. That is, when the apparatus is started, first, as shown by the drive waveforms in FIGS. 3 (a) and 3 (b), the low-speed rotation mechanism 11a performs a substantially linear reciprocating motion with a slow period, The moving mechanism 10a reciprocates substantially sinusoidally at an early cycle.
Then, in synchronization with the reciprocating operation of these rotating mechanisms, a predetermined light source drive signal based on the drawing signal from the image processing unit 5a is sent to the light source 1a during the one-screen drawing period in FIG. A light beam that has been intensity- or pulse-modulated is emitted from the light source 1a and deflected by the two-dimensional deflector 2a, whereby an image is displayed on the projection surface 21a as shown in FIG.

ここでまず、形状歪み補正を動作させない状態で、画像投射装置51を駆動した時の投射形状について説明する。すなわち、図2における補正光学系3aが無く、図3における高速回動機構10aが、形状歪み補正演算部7による振幅補正信号を受けずに、1点鎖線で示す定常振幅線通りの駆動波形により駆動されている場合を想定する。
この場合、画像投射装置51が投射面21a上へ走査投射する光束の投射座標点は、図2の投射光学系で示す配置関係と変数定義に基づいて、式(1)および式(2)のように幾何光学的に定式化する事ができる。式(1)は水平方向における座標点のX成分を示し、式(2)は垂直方向における座標点のY成分を示している。
First, the projection shape when the image projection device 51 is driven in a state where the shape distortion correction is not operated will be described. That is, the correction optical system 3a in FIG. 2 is not provided, and the high-speed rotation mechanism 10a in FIG. 3 does not receive the amplitude correction signal from the shape distortion correction calculation unit 7, and the drive waveform according to the steady amplitude line indicated by the one-dot chain line. Assume that it is driven.
In this case, the projection coordinate point of the light beam scanned and projected onto the projection surface 21a by the image projection apparatus 51 is based on the arrangement relationship and variable definition shown in the projection optical system of FIG. Thus, it can be formulated geometrically. Equation (1) represents the X component of the coordinate point in the horizontal direction, and Equation (2) represents the Y component of the coordinate point in the vertical direction.

Figure 0005112377
Figure 0005112377

Figure 0005112377
Figure 0005112377

図4は、形状歪み補正を動作させない状態で、画像投射装置51を駆動した時の投射領域の計算値を示す説明図である。
ここで、画像投射装置51の実用的な投射光学系として、反射面20aへの光束の入射角度θを45°と仮定する。また、実用的な投射条件として、高速回動機構10aの回動角度φ1の最大値φ1maxを13°、低速回動機構11aの回動角度φ2の最大値φ2maxを7°と仮定する。投射距離Dは任意の長さとする。
FIG. 4 is an explanatory diagram showing calculated values of the projection area when the image projection apparatus 51 is driven in a state where the shape distortion correction is not operated.
Here, as a practical projection optical system of the image projection apparatus 51, it is assumed that the incident angle θ of the light beam on the reflecting surface 20a is 45 °. Further, as practical projection conditions, it is assumed that the maximum value φ1max of the rotation angle φ1 of the high speed rotation mechanism 10a is 13 ° and the maximum value φ2max of the rotation angle φ2 of the low speed rotation mechanism 11a is 7 °. The projection distance D is an arbitrary length.

この時、投射面21a上へ走査投射される光束の投射領域25aは、図4で示すように
、垂直Y軸方向には弓なり形状の歪み、水平X軸方向には台形形状の歪み、という両軸に歪みを含んだ形状となる。光束の投射領域25aは、そのまま投射画像の形状に対応するため、このような形状歪み補正が無い状態での投射状態では、投射したい画像が歪んだまま表示されてしまう事となる。
なお、投射面21a上への投射領域25aの形状は、X軸方向とY軸方向の比のみに依存し、投射距離Dには依存しないため、Dを任意の長さとしても以下の説明では支障は無い。
At this time, as shown in FIG. 4, the projection area 25a of the light beam scanned and projected onto the projection surface 21a has both a bow-shaped distortion in the vertical Y-axis direction and a trapezoidal distortion in the horizontal X-axis direction. The shape includes distortion on the shaft. Since the projection area 25a of the luminous flux directly corresponds to the shape of the projection image, in the projection state without such shape distortion correction, the image to be projected is displayed with distortion.
In addition, since the shape of the projection area 25a on the projection surface 21a depends only on the ratio of the X-axis direction and the Y-axis direction and does not depend on the projection distance D, even if D is an arbitrary length, in the following description There is no hindrance.

続いて、図4に示す形状歪みに対するこの画像投射装置51の形状歪み補正機能について説明する。図5は、画像投射装置51で実現される形状歪み補正の様子を模式的に示す説明図である。
上述した2軸の形状歪みの内、Y軸方向の弓なり形状の歪みに対しては、本発明における画像投射装置51も、従来例における画像投射装置51と同様、任意の自由曲面反射鏡を組み合わせた補正光学系3aを用いることにより補正を行う。すなわち、図2で示すように、2次元偏向器2aの直後の位置に、適切な自由曲面反射鏡を組み合わせた補正光学系3aを配置し、偏向光束の垂直方向の偏向角度を微調整する事により、投射面21a上で投射されるY軸方向の光束の走査線形状を弓なり形状から直線形状へと補正する。このようにして、図4で見られた垂直Y軸方向の弓なり形状の歪みは、図5(a)で示すような投射領域25bの形状へと補正する事ができる。
Next, the shape distortion correction function of the image projection apparatus 51 for the shape distortion shown in FIG. 4 will be described. FIG. 5 is an explanatory diagram schematically showing the shape distortion correction realized by the image projection apparatus 51.
Among the biaxial shape distortions described above, the image projection apparatus 51 in the present invention is combined with an arbitrary free-form curved reflector in the same manner as the image projection apparatus 51 in the conventional example for the bow-shaped distortion in the Y-axis direction. Correction is performed by using the correction optical system 3a. That is, as shown in FIG. 2, the correction optical system 3a combined with an appropriate free-form surface reflecting mirror is disposed immediately after the two-dimensional deflector 2a, and the deflection angle in the vertical direction of the deflected light beam is finely adjusted. Thus, the scanning line shape of the light beam in the Y-axis direction projected on the projection surface 21a is corrected from a bow shape to a linear shape. In this way, the distortion of the bow shape in the vertical Y-axis direction seen in FIG. 4 can be corrected to the shape of the projection region 25b as shown in FIG.

図4に示す、回動角度が最大値を示す時(または描画範囲における回動角度が最大値を示す時)の投射点Pa1と投射点Pa2は、この補正光学系3aによる補正後、図5(a)で示すように投射点Pb1と投射点Pb2の位置へ移動する。
ここで便宜的に、図4におけるY座標軸上の投射点と原点からの距離をL0とすると、補正光学系3aによる補正後、投射点Pb1と投射点Pb2のY軸方向の原点からの距離もL0となる。
The projection point Pa1 and the projection point Pa2 shown in FIG. 4 when the rotation angle shows the maximum value (or when the rotation angle in the drawing range shows the maximum value) are corrected by the correction optical system 3a, and then shown in FIG. As shown in (a), it moves to the position of the projection point Pb1 and the projection point Pb2.
For the sake of convenience, if the distance from the projection point on the Y coordinate axis and the origin in FIG. 4 is L0, the distance from the origin in the Y axis direction of the projection point Pb1 and the projection point Pb2 is also corrected after correction by the correction optical system 3a. L0.

次に、水平方向(X軸方向)の形状の歪み補正方法について説明する。
水平X軸方向の形状歪みに対しては、本発明における画像投射装置51も、振幅補正信号に基づいて高速回動機構10aの駆動波形の振幅を増減させる方法で補正する、という点においては従来例と同様である。
Next, a distortion correction method for the shape in the horizontal direction (X-axis direction) will be described.
Conventionally, the image projection apparatus 51 according to the present invention corrects the shape distortion in the horizontal X-axis direction by a method of increasing or decreasing the amplitude of the drive waveform of the high-speed rotation mechanism 10a based on the amplitude correction signal. Similar to the example.

つまり、図3(b)における補正包絡線で示すように、低速回動機構11aの周期と同期した1画面描画期間の中で、高速回動機構10aの駆動波形の振幅を適切に増減させて、水平X軸方向の光束の偏向角度を調整する。これにより、図5(a)から図5(b)に示すように、投射面21a上へ走査投射されるX軸方向の光束の走査振幅を均一化させて、投射領域25bのX軸方向の形状歪みを無くす、という補正方法をこの画像投射装置51は採用している。
以下では、これらの具体的な演算手法、信号生成、補正処理の手順について説明する。
That is, as shown by the correction envelope in FIG. 3B, the amplitude of the drive waveform of the high-speed rotation mechanism 10a is appropriately increased or decreased during one screen drawing period synchronized with the cycle of the low-speed rotation mechanism 11a. The deflection angle of the light beam in the horizontal X-axis direction is adjusted. As a result, as shown in FIG. 5A to FIG. 5B, the scanning amplitude of the light beam in the X-axis direction scanned and projected onto the projection surface 21a is made uniform, and the X-axis direction of the projection region 25b in the X-axis direction is thereby made. The image projection apparatus 51 employs a correction method for eliminating the shape distortion.
Hereinafter, the specific calculation method, signal generation, and correction processing procedures will be described.

形状歪み補正を行わない場合、図4で示すように、式(1)および式(2)に基づいて計算された画像投射装置51の投射領域25aは、台形形状の歪みを有する。ここで、投射点Pa1と投射点Pa2を結ぶ線分は、厳密には直線形状ではなく複雑な曲線形状を描く。しかし、2次元偏向器2aの反射面20aへの光束の入射角度θが、実用的な投射光学系として直角からある程度離れた値の範囲内である限りにおいては、図4の2点鎖線Mで示すように、近似的に直線形状とみなす事ができる。この時、投射点Pa1のX成分(Y軸からの距離)をL1と定義し、投射点Pa2のX成分(Y軸からの距離)をL2と定義する。   When the shape distortion correction is not performed, as shown in FIG. 4, the projection area 25a of the image projection device 51 calculated based on the equations (1) and (2) has a trapezoidal distortion. Here, strictly speaking, the line segment connecting the projection points Pa1 and Pa2 draws a complicated curve shape instead of a linear shape. However, as long as the incident angle θ of the light beam on the reflecting surface 20a of the two-dimensional deflector 2a is within a range of a value somewhat apart from a right angle as a practical projection optical system, the two-dot chain line M in FIG. As shown, it can be approximately regarded as a linear shape. At this time, the X component (distance from the Y axis) of the projection point Pa1 is defined as L1, and the X component (distance from the Y axis) of the projection point Pa2 is defined as L2.

補正光学系3aは、前述したように、Y軸方向の形状歪みを独立して補正するため、図
5(a)に示す補正後の投射点Pb1のX成分は、図4に示す補正前の投射点Pa1のX成分L1に等しい。同様に、図5(a)に示す補正後の投射点Pb2のX成分は、図4に示す補正前の投射点Pa2のX成分L2に等しい。また、補正後の投射点Pb1と投射点Pb2を結ぶ線分は、補正前の投射点Pa1と投射点Pa2を結ぶ線分と同様に、近似的に直線形状とみなす事ができる。
As described above, since the correction optical system 3a independently corrects the shape distortion in the Y-axis direction, the X component of the projection point Pb1 after correction shown in FIG. 5A is the value before correction shown in FIG. It is equal to the X component L1 of the projection point Pa1. Similarly, the X component of the projection point Pb2 after correction shown in FIG. 5A is equal to the X component L2 of the projection point Pa2 before correction shown in FIG. Further, the line segment connecting the corrected projection point Pb1 and the projection point Pb2 can be approximately regarded as a linear shape like the line segment connecting the projection point Pa1 and the projection point Pa2 before correction.

以上述べたような直線形状の条件により、X軸方向の形状歪みに対して実施される補正演算では、図5(a)に示すように、投射点Pb1から投射点Pb2へ至る水平X軸方向の走査振幅を線形的に調整して、X成分L1、L2との差分ΔLを相殺し、L2に均一化すればよい事がわかる。
従って、調整されるべき高速回動機構10aの駆動波形の振幅は、図3の補正包絡線で示すように、Y軸方向の時間的な上下走査動作に対して、単純に線形的な漸減関数であって良い事が容易に理解される。
In the correction calculation performed on the shape distortion in the X-axis direction under the linear shape conditions as described above, as shown in FIG. 5A, the horizontal X-axis direction from the projection point Pb1 to the projection point Pb2 It can be seen that the scanning amplitude is linearly adjusted to cancel the difference ΔL between the X components L1 and L2 and equalize to L2.
Therefore, the amplitude of the drive waveform of the high-speed rotation mechanism 10a to be adjusted is simply a linear decreasing function with respect to the temporal vertical scanning operation in the Y-axis direction, as shown by the correction envelope in FIG. However, it is easy to understand what is good.

具体的には、図3(b)に示すように、高速回動機構10aの駆動波形における投射点Pa1の位置での振幅値を、定常振幅A0から所定の振幅差分比率αだけ増加させ、以降、高速回動機構10aによる水平X軸方向の回動周期に合わせて、所定の振幅減衰比率βで減衰させていけば良い。振幅差分比率αは、以下の式(3)で表される。
α=(L2−L1)/L1・・・(3)
こうする事で、線形的な駆動波形の振幅調整により、X軸方向の光束の走査振幅が投射点Pb2における振幅に均一化され、図5(b)の投射領域25cで示すように、所望の形状歪み補正が実現される事となる。
Specifically, as shown in FIG. 3B, the amplitude value at the position of the projection point Pa1 in the drive waveform of the high speed rotation mechanism 10a is increased from the steady amplitude A0 by a predetermined amplitude difference ratio α, and thereafter Then, it is sufficient to attenuate with a predetermined amplitude attenuation ratio β in accordance with the rotation cycle in the horizontal X-axis direction by the high-speed rotation mechanism 10a. The amplitude difference ratio α is expressed by the following equation (3).
α = (L2−L1) / L1 (3)
By doing this, the scanning amplitude of the light beam in the X-axis direction is made uniform to the amplitude at the projection point Pb2 by adjusting the amplitude of the linear drive waveform, and as shown by the projection area 25c in FIG. Shape distortion correction will be realized.

通常、このような振幅差分比率αや上述の補正包絡線関数を求める場合には、式(1)および式(2)で示した理論式から演算手段によって導出するか、若しくは、図10に示す従来技術の画像投射装置52のように、振幅補正信号参照部31へ予め所定の補正包絡線関数を記憶させておき、逐次その振幅補正信号を参照しながら偏向器制御部4aで乗算処理を行う、という手段が取られる。   Usually, when such an amplitude difference ratio α and the above-described correction envelope function are obtained, they are derived from the theoretical formulas shown in the formulas (1) and (2) by calculation means, or shown in FIG. Like the image projection apparatus 52 of the prior art, a predetermined correction envelope function is stored in advance in the amplitude correction signal reference unit 31, and multiplication processing is performed by the deflector control unit 4a while sequentially referring to the amplitude correction signal. Is taken.

しかしながら、前者の手段では、複雑な算出式による演算負荷が過大になる事から実効的な形状補正ができず、後者の手段では、先述したように、ある所定の投射条件(両軸の回動機構による偏向角度)のみに対応した振幅補正信号しか使用できないため、限られた投射条件下でしか用いる事ができない、という問題がある。   However, the former means cannot perform effective shape correction because the calculation load due to a complicated calculation formula becomes excessive, and the latter means, as described above, has a predetermined projection condition (rotation of both axes). Since only the amplitude correction signal corresponding only to the deflection angle of the mechanism) can be used, there is a problem that it can be used only under limited projection conditions.

このような問題に対する解決策として、本実施形態の画像投射装置51では、偏向器制御部4aからの偏向器状態信号に基づき、形状歪み補正演算部7の内部で適切な歪み補正率を自動的に推定演算し、補正に必要な振幅補正信号を生成するとともに、この振幅補正信号に基づいて偏向器制御部4aの内部での演算処理によって高速回動機構10aの駆動波形の振幅調整を実施する、という点が従来例と異なった特徴的機能である。   As a solution to such a problem, in the image projection apparatus 51 of this embodiment, an appropriate distortion correction rate is automatically set in the shape distortion correction calculation unit 7 based on the deflector state signal from the deflector control unit 4a. And an amplitude correction signal necessary for correction is generated, and the amplitude of the drive waveform of the high-speed rotation mechanism 10a is adjusted by calculation processing inside the deflector controller 4a based on the amplitude correction signal. This is a characteristic function different from the conventional example.

本実施形態の画像投射装置51が備える形状歪みの補正演算処理および偏向制御処理について以下に詳細に説明する。図6は、画像投射装置51の形状歪みの補正演算処理および偏向制御処理を示すフローチャートである。
まず画像投射装置51の駆動後、ユーザにより、画像の投射画角などの投射条件が投射条件設定部15に設定される。投射条件の設定後、投射条件設定部15から投射条件信号が偏向器制御部4aに送信される。偏向器制御部4aは、この投射条件信号に基づいて、2次元偏向器2aの駆動状態を設定する。
The shape distortion correction calculation processing and deflection control processing included in the image projection apparatus 51 of the present embodiment will be described in detail below. FIG. 6 is a flowchart showing the shape distortion correction calculation processing and deflection control processing of the image projection device 51.
First, after driving the image projection device 51, the user sets a projection condition such as a projection angle of view of the image in the projection condition setting unit 15. After setting the projection conditions, a projection condition signal is transmitted from the projection condition setting unit 15 to the deflector control unit 4a. The deflector control unit 4a sets the driving state of the two-dimensional deflector 2a based on the projection condition signal.

また、形状歪み補正演算部7は、投射条件設定部15から、設定された投射条件に基づく低速回動機構11aの偏向角度の最大値φ2maxを受信する〔処理1〕。その後、形状歪
み補正演算部は、以下の式(4)により、振幅差分比率αを求める〔処理2〕。
α=C×φ2max・・・(4)
定数Cは、画像投射装置51の投射光学系に応じて定まり、予め形状歪み補正演算部7に記憶される。
Further, the shape distortion correction calculation unit 7 receives from the projection condition setting unit 15 the maximum value φ2max of the deflection angle of the low-speed rotation mechanism 11a based on the set projection condition [Process 1]. Thereafter, the shape distortion correction calculation unit obtains the amplitude difference ratio α by the following equation (4) [processing 2].
α = C × φ2max (4)
The constant C is determined according to the projection optical system of the image projection apparatus 51 and is stored in the shape distortion correction calculation unit 7 in advance.

ここで、定数Cの導出方法について説明する。図7は定数Cの導出の説明図であり、式(1)および式(3)を用い、低速回動機構11aの偏向角度の最大値φ2maxを0°から7.5°(0.13rad)まで変化させた時の理想的な振幅差分比率αiを三角点でプロットして示している。   Here, a method for deriving the constant C will be described. FIG. 7 is an explanatory diagram for deriving the constant C. The maximum value φ2max of the deflection angle of the low-speed rotation mechanism 11a is set from 0 ° to 7.5 ° (0.13 rad) using the equations (1) and (3). The ideal amplitude difference ratio αi when changed is plotted with triangular points.

この理想的な振幅差分比率αiの値は、入射角度θ(ここでは45°)が固定されている場合、φ1maxの値には殆ど依存せず、φ2maxの値にのみ依存する。この三角点のプロット線は、φ2maxが実用的な範囲内である場合、近似的に線形関数としてみなす事ができる。そこで、線形関数の最小2乗法計算(図7中の実線)により、関数プロット線の傾き係数Cを算出し、C=1.0537と求める事ができる。
なお、投射条件A.Bについては後述する。
The value of the ideal amplitude difference ratio αi hardly depends on the value of φ1max when the incident angle θ (45 ° in this case) is fixed, and only depends on the value of φ2max. The triangular plot line can be approximated as a linear function when φ2max is within a practical range. Therefore, the slope coefficient C of the function plot line can be calculated by the least square method calculation of the linear function (solid line in FIG. 7) to obtain C = 1.0537.
Note that the projection conditions A. B will be described later.

図6の説明に戻る。形状歪み補正演算部7は、振幅差分比率αを求めた後、以下の式(5)に示すように、1画面描画期間に高速回動機構10aが光束を偏向する走査数n(垂直方向の解像度)で振幅差分比率αを除算し、振幅減衰比率βを算出する〔処理3〕。
β=α/n・・・(5)
その後、形状歪み補正演算部7は、振幅差分比率αと振幅減衰比率βを振幅補正信号として偏向器制御部4aの高速駆動信号生成部12aへ送る。ここまでが、形状歪み補正演算部7の処理である。
Returning to the description of FIG. After obtaining the amplitude difference ratio α, the shape distortion correction calculation unit 7 calculates the number of scans n (vertical direction) in which the high-speed rotation mechanism 10a deflects the light beam during one screen drawing period as shown in the following equation (5). The amplitude difference ratio α is divided by (resolution) to calculate the amplitude attenuation ratio β [processing 3].
β = α / n (5)
Thereafter, the shape distortion correction calculation unit 7 sends the amplitude difference ratio α and the amplitude attenuation ratio β as amplitude correction signals to the high-speed drive signal generation unit 12a of the deflector control unit 4a. The processing up to this point is the processing of the geometric distortion correction calculation unit 7.

振幅差分比率αと振幅減衰比率βが入力された偏向器制御部4aは、所定のφ2max、定常最大値φ1max、走査数n等の数値的条件によって、描画に対応した2次元偏向器2aの回動を開始する〔処理4〕。回動の開始後、図3で示す投射点Pb1(走査回数i=0)の位置において、高速回動機構10aの駆動波形の定常振幅A0に対して、上記処理2で算出した振幅差分比率αの分だけ増大させる〔処理5〕。   The deflector control unit 4a, to which the amplitude difference ratio α and the amplitude attenuation ratio β are input, performs the rotation of the two-dimensional deflector 2a corresponding to drawing according to numerical conditions such as a predetermined φ2max, a steady maximum value φ1max, and the number of scans n. The process starts [Process 4]. After the start of the rotation, the amplitude difference ratio α calculated in the above process 2 with respect to the steady amplitude A0 of the drive waveform of the high-speed rotation mechanism 10a at the position of the projection point Pb1 (scanning number i = 0) shown in FIG. [Process 5].

以後、高速回動機構10aの回動による光束の水平X軸方向への偏向走査が行われる度に、駆動振幅から振幅減衰比率βの分だけ減衰処理〔処理6〕を行うとともに、走査回数iの単純加算を行うことで、高速回動機構10aの駆動波形の振幅に対して、線形的な漸減処理が実施される。そして、走査回数iが所定の走査数n、すなわち投射点Pb2の位置に達し、駆動波形の振幅が定常振幅まで戻った段階で、1画面描画が終了する。以上、〔処理4〕〜〔処理6〕が偏向器制御部4aで行われる処理である。   Thereafter, every time deflection scanning of the light beam in the horizontal X-axis direction by rotation of the high-speed rotation mechanism 10a is performed, attenuation processing [Process 6] is performed from the drive amplitude by the amplitude attenuation ratio β, and the number of scans i. By performing this simple addition, linear gradual reduction processing is performed on the amplitude of the drive waveform of the high-speed rotation mechanism 10a. Then, when the number of scans i reaches the predetermined scan number n, that is, the position of the projection point Pb2, and the amplitude of the drive waveform returns to the steady amplitude, the one-screen drawing ends. [Process 4] to [Process 6] are processes performed by the deflector control unit 4a.

次に、上述した投射条件(画像の投射画角)として具体的な2つの画角を仮定し、本実施形態の画像投射装置51の形状歪み補正の精度について、数値的な比較検証を行う。   Next, assuming two specific angles of view as the above-described projection conditions (projection angle of view of the image), numerical comparison verification is performed on the accuracy of the shape distortion correction of the image projection device 51 of the present embodiment.

反射面20aへの光束の入射角度をθ=45°とする。投射条件Aとして、φ1max=13°、φ2max=7°(0.122rad)を想定し、この条件Aに対し投射画角が半分以下になる投射条件Bとして、φ1max=5.8°、φ2max=3°(0.052rad)を想定する。
図8は、図5と同様に、画像投射装置51で実現される形状歪み補正の様子を模式的に示す説明図であり、図8(a)は補正前の投射領域を示し、図8(b)は補正後の投射領域を示す。また、投射領域25b、25cは投射条件Aの投射領域を示し、投射領域25d、25fは投射条件Bの投射領域を示す。
図9は、図3と同様に、画像投射装置51における偏向器制御部4aが、2次元偏向器2aの2つの回動機構を駆動する際の駆動波形の時間的な変化を示す説明図である。図9
(b)は投射条件Aの高速回動の偏向振幅を示し、図9(c)は投射条件Bの高速回動の偏向振幅を示す。
The incident angle of the light beam on the reflecting surface 20a is θ = 45 °. As projection condition A, φ1max = 13 ° and φ2max = 7 ° (0.122 rad) are assumed. As projection condition B in which the projection angle of view is less than half of this condition A, φ1max = 5.8 °, φ2max = 3 Assume ° (0.052rad).
FIG. 8 is an explanatory diagram schematically showing the shape distortion correction realized by the image projection apparatus 51, as in FIG. 5, and FIG. 8A shows a projection area before correction, and FIG. b) shows the projection area after correction. The projection areas 25b and 25c indicate the projection areas under the projection condition A, and the projection areas 25d and 25f indicate the projection areas under the projection condition B.
FIG. 9 is an explanatory diagram showing temporal changes in drive waveforms when the deflector control unit 4a in the image projection apparatus 51 drives the two rotation mechanisms of the two-dimensional deflector 2a, as in FIG. is there. FIG.
FIG. 9B shows the deflection amplitude for high-speed rotation under the projection condition A, and FIG. 9C shows the deflection amplitude for high-speed rotation under the projection condition B.

図7より算出した係数を定数C=1.0537として、この2つの投射条件A、Bに対して、形状歪み補正演算部7における前掲の振幅差分比率計算〔処理2〕(図6)を実施すると、投射条件Aに対する振幅差分比率αA1=C×φ2max=0.129、投射条件Bに対する振幅差分比率αB1=C×φ2max =0.055、と求められる。 Assuming that the coefficient calculated from FIG. 7 is a constant C = 1.0537, the above-described amplitude difference ratio calculation [Process 2] (FIG. 6) in the shape distortion correction calculation unit 7 is performed for these two projection conditions A and B. Then, the amplitude difference ratio α A1 = C × φ2max = 0.129 for the projection condition A and the amplitude difference ratio α B1 = C × φ2max = 0.055 for the projection condition B are obtained.

ここで比較のため、式(1)および式(3)を用いて、投射条件A、Bの最適な振幅差分比率αを算出する。投射条件Aの場合、図8(a)の投射点Pb2と投射点Pb2のX成分は式(1)より、L1=1.239×L0、L2=1.400×L0と算出される。よって、式(3)より、αA2=0.130と求められる。同様に、投射条件Bの場合、式(1)よりL1’=1.333×L0’、L2’=1.404×L0’と算出され、式(3)より、αB2=0.054と求められる。 Here, for comparison, the optimum amplitude difference ratio α of the projection conditions A and B is calculated using the equations (1) and (3). In the case of the projection condition A, the X components of the projection point Pb2 and the projection point Pb2 in FIG. 8A are calculated as L1 = 1.239 × L0 and L2 = 1.400 × L0 from Equation (1). Therefore, it is calculated | required with (alpha) A2 = 0.130 from Formula (3). Similarly, in the case of the projection condition B, L1 ′ = 1.333 × L0 ′ and L2 ′ = 1.404 × L0 ′ are calculated from Equation (1), and α B2 = 0.054 is obtained from Equation (3).

よって、本実施形態の画像投射装置51の補正演算によって算出された、投射条件A、Bについての振幅差分比率αA1、αB1ともに、式(1)および式(3)を用いて算出したαA2、αB2に対して、2%以下の精度範囲で一致した結果が得られる事が分かる。この精度範囲は、投射領域25b、25dの水平方向の振幅差分に対する値であり、投射領域全体に対する比率としては、極めて微小である事が分かる。
すなわち、定式化した式(1)のような複雑な関数を用いずとも、図9に示すような線形近似で求めた係数Cとφ2maxとの積を求めることで、理想値に近い振幅差分比率αの値を求める事が可能となる。
Therefore, both the amplitude difference ratios α A1 and α B1 for the projection conditions A and B calculated by the correction calculation of the image projection apparatus 51 of the present embodiment are calculated using the equations (1) and (3). A2, relative alpha B2, that consistent results with an accuracy range of 2% or less is obtained is found. This accuracy range is a value with respect to the horizontal amplitude difference between the projection areas 25b and 25d, and it can be seen that the ratio to the entire projection area is extremely small.
That is, the amplitude difference ratio close to the ideal value can be obtained by obtaining the product of the coefficient C and φ2max obtained by linear approximation as shown in FIG. 9 without using a complicated function such as the formula (1) formulated. It is possible to determine the value of α.

これらの振幅差分比率αA1、αB1を用いて、図9に示すように、図6の〔処理3〕〜〔処理7〕を実施する事で、それぞれの投射条件A、Bにおいて、極めて簡潔な比例演算処理機能に基づいて、高速回動機構10aの駆動波形の振幅に対する適切な振幅調整を行う事ができる。そして、最終的に、図8(b)に示すように、投射条件A、Bという表示画面の画角が倍以上異なる両条件においても、水平X軸方向の形状歪みに対する補正が正常に行われ、歪みが無い投射領域25c、25fを実現する事が可能となる。 Using these amplitude difference ratios α A1 and α B1 , as shown in FIG. 9, by performing [Process 3] to [Process 7] in FIG. 6, the projection conditions A and B are extremely simple. Based on such a proportional calculation processing function, it is possible to perform appropriate amplitude adjustment with respect to the amplitude of the drive waveform of the high-speed rotation mechanism 10a. Finally, as shown in FIG. 8B, the correction for the shape distortion in the horizontal X-axis direction is normally performed even under both conditions where the viewing angles of the display screens are different from each other by the projection conditions A and B. It is possible to realize the projection areas 25c and 25f having no distortion.

また、必要とされる振幅差分比率αの値は、高速回動機構10aの偏向角度の最大値φ1max(図7に示す、駆動波形における定常振幅A0に対応する)に殆ど影響しないため、振幅差分比率α算出にφ1maxを使用しない点も本発明による画像投射装置51の特徴である。   Further, since the required value of the amplitude difference ratio α hardly affects the maximum value φ1max of the deflection angle of the high-speed rotation mechanism 10a (corresponding to the steady amplitude A0 in the drive waveform shown in FIG. 7), the amplitude difference Another feature of the image projection apparatus 51 according to the present invention is that φ1max is not used for calculating the ratio α.

なお、上記では、高速回動機構10aと低速回動機構11aの偏向角度の比は、補正後の投射領域25c、25fの縦横比が両条件において、相互に略等しくなるように設定した例を示した。しかし、高速回動機構10aと低速回動機構11aの偏向角度の比、すなわち、投射領域の縦横比が異なっていたとしても、低速回動機構11aの偏向角度の最大値φ2maxと投射光学系に応じて定まる定数Cの積で振幅差分比率αを求め、この振幅差分比率αを用いて形状歪み補正を行うことにより、本画像投射装置51は同様の効果を発揮する。   In the above example, the ratio of the deflection angles of the high-speed rotation mechanism 10a and the low-speed rotation mechanism 11a is set so that the aspect ratios of the corrected projection areas 25c and 25f are substantially equal to each other under both conditions. Indicated. However, even if the ratio of the deflection angles of the high-speed rotation mechanism 10a and the low-speed rotation mechanism 11a, that is, the aspect ratio of the projection area is different, the maximum value φ2max of the deflection angle of the low-speed rotation mechanism 11a and the projection optical system The image projection device 51 exhibits the same effect by obtaining the amplitude difference ratio α by the product of the constant C determined accordingly and performing the shape distortion correction using the amplitude difference ratio α.

以上に示すように、本実施形態の画像投射装置51は、従来例の画像投射装置52で問題となっていた、投射条件(画像の投射画角)の違いによって対応できない歪みが生じる、という事態(図13)を回避する事ができ、異なる投射条件において、歪みの無い正常な投射領域に光束を偏向走査し、表示画像を描出する事が可能となる。すなわち、投射条件(画像の投射画角)に応じて、その投射条件下で生じる形状歪みを自動的に推定し、比例係数演算という簡潔な補正演算手段によって、適切に形状歪み補正を実施する事が可能
となる。従って、表示画像の画角を任意に変化させるような、より幅広い用途で使用可能な画像投射装置を提供すること事が可能となる。
As described above, the image projection apparatus 51 of the present embodiment has a problem that distortion that cannot be dealt with due to a difference in projection conditions (projection angle of view of an image), which has been a problem in the image projection apparatus 52 of the conventional example. (FIG. 13) can be avoided, and the display image can be rendered by deflecting and scanning the light beam in a normal projection area without distortion under different projection conditions. That is, according to the projection condition (projection angle of view of the image), the shape distortion generated under the projection condition is automatically estimated, and the shape distortion correction is appropriately performed by a simple correction calculation means called proportional coefficient calculation. Is possible. Therefore, it is possible to provide an image projection apparatus that can be used in a wider range of applications such as arbitrarily changing the angle of view of a display image.

1a 光源
2a 2次元偏向器
3a 補正光学系
4a 偏向器制御部
5a 画像処理部
6a 光源駆動部
7 形状歪み補正演算部
8a 信号処理系
10a 高速回動機構
11a 低速回動機構
12a 高速駆動信号生成部
13a 低速駆動信号生成部
14a 偏向器動作状態検出部
15 投射条件設定部
20a 反射面
21b 投射面
25a〜25f 投射領域
DESCRIPTION OF SYMBOLS 1a Light source 2a Two-dimensional deflector 3a Correction | amendment optical system 4a Deflector control part 5a Image processing part 6a Light source drive part 7 Shape distortion correction calculating part 8a Signal processing system 10a High speed rotation mechanism 11a Low speed rotation mechanism 12a High speed drive signal generation part 13a Low-speed drive signal generation unit 14a Deflector operation state detection unit 15 Projection condition setting unit 20a Reflection surface 21b Projection surface 25a to 25f Projection region

Claims (3)

光束を出射する光源と、
互いに直交する第1および第2の軸を中心に回動し、前記光源から出射した光束を反射する反射面を有する偏向器と、
前記偏向器の反射面を前記第1の軸を中心に高速に回動するとともに前記第2の軸を中心に低速に回動させ、前記光束を2次元に偏向させる偏向器制御部と、
補正演算部と、を備え、
前記補正演算部は、前記第2の軸の最大回動角度に基づいて補正信号を生成し、
前記偏向器制御部は、前記補正信号に基づいて、1画面描画期間内で前記第1の軸の回動振幅を漸次変化させる
ことを特徴とする画像投射装置。
A light source that emits a luminous flux;
A deflector having a reflecting surface that rotates about first and second axes orthogonal to each other and reflects a light beam emitted from the light source;
A deflector controller that rotates the reflecting surface of the deflector at a high speed around the first axis and at a low speed around the second axis to deflect the light beam in two dimensions;
A correction calculation unit,
The correction calculation unit generates a correction signal based on a maximum rotation angle of the second axis,
The deflector control unit gradually changes the rotation amplitude of the first axis within one screen drawing period based on the correction signal.
前記偏向器の反射面の前記第2の軸を中心とした回動は、前記第1の軸を中心とした回動から独立であり、
前記第2の軸と前記光源の光束の出射方向とが略直角をなす
ことを特徴とする請求項1に記載の画像投射装置。
The rotation about the second axis of the reflecting surface of the deflector is independent of the rotation about the first axis,
The image projection apparatus according to claim 1, wherein the second axis and a light emission direction of the light source form a substantially right angle.
前記第2の軸の最大回動角度をφ2maxとし、Cを定数としたとき、前記補正演算部は、α=C×φ2maxで算出した振幅差分比率αに基づいて前記補正信号を生成する
ことを特徴とする請求項1または2に記載の画像投射装置。
When the maximum rotation angle of the second axis is φ2max and C is a constant, the correction calculation unit generates the correction signal based on the amplitude difference ratio α calculated by α = C × φ2max. The image projection apparatus according to claim 1, wherein the image projection apparatus is characterized.
JP2009098515A 2009-04-15 2009-04-15 Image projection device Expired - Fee Related JP5112377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098515A JP5112377B2 (en) 2009-04-15 2009-04-15 Image projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098515A JP5112377B2 (en) 2009-04-15 2009-04-15 Image projection device

Publications (2)

Publication Number Publication Date
JP2010250028A JP2010250028A (en) 2010-11-04
JP5112377B2 true JP5112377B2 (en) 2013-01-09

Family

ID=43312433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098515A Expired - Fee Related JP5112377B2 (en) 2009-04-15 2009-04-15 Image projection device

Country Status (1)

Country Link
JP (1) JP5112377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8111336B2 (en) * 2009-07-17 2012-02-07 Microvision, Inc. Correcting scanned projector distortion by varying the scan amplitude
JP7441714B2 (en) * 2020-04-22 2024-03-01 スタンレー電気株式会社 light deflection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199251A (en) * 2006-01-25 2007-08-09 Canon Inc Optical scanner and scanning type image forming apparatus having the same
JP5318359B2 (en) * 2007-03-29 2013-10-16 コニカミノルタ株式会社 Image projection device
JP5292880B2 (en) * 2007-05-15 2013-09-18 コニカミノルタ株式会社 Image display device
JP4407727B2 (en) * 2007-07-06 2010-02-03 セイコーエプソン株式会社 Scanning image display device

Also Published As

Publication number Publication date
JP2010250028A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP6694772B2 (en) Laser projection display
US10944945B2 (en) Projection device and projection method, projection module, electronic device, and program
US9251730B2 (en) Image display apparatus and image scanning apparatus
JP5157835B2 (en) Image display device
US9245482B2 (en) Image display device
US10187620B2 (en) Display device
US8866803B2 (en) Image display device displaying image by applying laser light
US20180192018A1 (en) Projection device and projection method, projection module, electronic device, and program
JP6287808B2 (en) Image display apparatus and image correction method
JP2010079198A (en) Image projection device
JP2012145755A (en) Image display device
JP2009198988A (en) Image display device
TW201229984A (en) Image display device
JP5112377B2 (en) Image projection device
JP2012003051A (en) Scanning type image display device
WO2011125495A1 (en) Image display device
JP2010026443A (en) Scanning method and image display device
TW200909975A (en) Device and method for compensating at least one non-linearity and laser projection system
JP2013037324A (en) Optical scanner
JP5426939B2 (en) Display device
JP5565270B2 (en) Scanning method, video projection device, and image acquisition device
JP5842388B2 (en) Electromagnetic wave scanning method, video projection device, and image acquisition device
JP7001455B2 (en) Optical scanning device
JP2021182103A (en) Laser scan module and MEMS mirror drive control method
JP2007334162A (en) Optical scanning apparatus, image display device and retina scanning type image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees