JP5112251B2 - Method for producing filter medium for air filter - Google Patents

Method for producing filter medium for air filter Download PDF

Info

Publication number
JP5112251B2
JP5112251B2 JP2008267249A JP2008267249A JP5112251B2 JP 5112251 B2 JP5112251 B2 JP 5112251B2 JP 2008267249 A JP2008267249 A JP 2008267249A JP 2008267249 A JP2008267249 A JP 2008267249A JP 5112251 B2 JP5112251 B2 JP 5112251B2
Authority
JP
Japan
Prior art keywords
support material
filter medium
air
porous membrane
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008267249A
Other languages
Japanese (ja)
Other versions
JP2009050851A (en
Inventor
栄三 川野
憲兼 名畑
拓也 前岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008267249A priority Critical patent/JP5112251B2/en
Publication of JP2009050851A publication Critical patent/JP2009050851A/en
Application granted granted Critical
Publication of JP5112251B2 publication Critical patent/JP5112251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Laminated Bodies (AREA)

Description

本発明はポリテトラフルオロエチレン(以下「PTFE」という)多孔質膜を用いたエアフィルタ用濾材に関し、さらに詳しくは半導体工業や薬品工業などのクリーンルームで使用される気体中の浮遊粒子の捕獲に適したPTFE多孔質膜を捕集層とするエアフィルタ用濾材に関するものである。   The present invention relates to a filter medium for an air filter using a polytetrafluoroethylene (hereinafter referred to as “PTFE”) porous membrane, and more particularly suitable for capturing suspended particles in a gas used in a clean room such as the semiconductor industry or the pharmaceutical industry. Further, the present invention relates to a filter medium for an air filter using a PTFE porous membrane as a collection layer.

従来、クリーンルームで使用されるエアフィルタ用濾材としては、ガラス繊維にバインダーを加えて抄紙したものが多く用いられてきた。しかし、このような濾材には、濾材中の付着小繊維の存在、加工による折曲げ時の自己発塵といった問題があった。さらにこの濾材には、フッ酸などある種の化学薬品と接触すると劣化し、発塵するという問題もあった。   Conventionally, as a filter medium for an air filter used in a clean room, paper made by adding a binder to glass fiber has been used in many cases. However, such filter media have problems such as the presence of adhering fibrils in the filter media and self-dusting during bending by processing. Further, this filter medium has a problem that it deteriorates and generates dust when it comes into contact with certain chemicals such as hydrofluoric acid.

PTFEはクリーンな材料であり、耐薬品性にも優れている。そこで近年、PTFE多孔質膜が、半導体工業のクリーンルームに用いられる高性能エアフィルタの濾材として使用されている。特開平5−202217公報に記載されているPTFE多孔質膜はその一例である。一般に、PTFE多孔質膜は、補強のために通気性を有する支持材とラミネートされて濾材とされる。この濾材は、連続したW字状にひだ折り加工(以下「プリーツ加工」ともいう)され、枠付けされてエアフィルタとして用いられる。
特開平5−202217号公報
PTFE is a clean material and has excellent chemical resistance. Therefore, in recent years, a PTFE porous membrane has been used as a filter medium for a high-performance air filter used in a clean room of the semiconductor industry. One example is the PTFE porous membrane described in JP-A-5-202217. In general, a porous PTFE membrane is laminated with a support material having air permeability for reinforcement to form a filter medium. This filter medium is fold-folded into a continuous W shape (hereinafter also referred to as “pleating”), and is attached to a frame to be used as an air filter.
Japanese Patent Laid-Open No. 5-202217

プリーツ加工の方法としては、通常、レシプロ方式またはロータリー方式が用いられる。ロータリー方式は生産性の点で有利であり、一方、レシプロ方式はプリーツ加工のきれいさの点で有利である。ところで、従来、PTFE多孔質膜を通気性支持材により補強した濾材をプリーツ加工した場合、濾材がダメージを受けてピンホールが発生し、得られたフィルタにリークが発生してしまうという問題があった。   As a pleating method, a reciprocating method or a rotary method is usually used. The rotary method is advantageous in terms of productivity, while the reciprocating method is advantageous in terms of the cleanliness of pleating. By the way, conventionally, when a pleating process is performed on a filter medium in which a PTFE porous membrane is reinforced with a breathable support material, the filter medium is damaged and pinholes are generated, resulting in a leak in the obtained filter. It was.

本発明は、上記従来の問題を解決するべくなされたものであって、プリーツ加工によりひだ折りしてもPTFE多孔質膜がダメージを受けず、クリーンルームに要求される清浄空間の提供に適したエアフィルタ用濾材を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and the PTFE porous membrane is not damaged even when pleated by pleating, and is suitable for providing a clean space required for a clean room. An object is to provide a filter medium for a filter.

上記目的を達成するために、本発明のエアフィルタ用濾材は、PTFE多孔質膜と通気性支持材との積層体を含むエアフィルタ用濾材であって、少なくとも一方の露出面が、最大摩擦抵抗を25gf以下とした上記通気性支持材の表面により構成されていることを特徴とする。   In order to achieve the above object, an air filter medium of the present invention is an air filter medium including a laminate of a PTFE porous membrane and a breathable support material, and at least one exposed surface has a maximum frictional resistance. It is comprised by the surface of the said air-permeable support material which made 25 gf or less.

ここで、上記最大摩擦抵抗は、Bowden-Leben型往復動摩擦試験機を用い、条件を以下のように設定して測定される最大負荷により定められるものである。
・相手材 :直径10mmの鋼球(JIS B 1501に規定される鋼球)
・摺動速度 :700mm/分
・荷重 :100gf
・移動距離 :40mm
このようにして、静摩擦抵抗および動摩擦抵抗が測定され、その最大値が最大摩擦抵抗として定められる。
Here, the maximum frictional resistance is determined by the maximum load measured using a Bowden-Leben type reciprocating friction tester and setting the conditions as follows.
-Opposite material: Steel ball with a diameter of 10 mm (steel ball specified in JIS B 1501)
・ Sliding speed: 700mm / min ・ Load: 100gf
・ Movement distance: 40mm
In this way, the static frictional resistance and the dynamic frictional resistance are measured, and the maximum value is determined as the maximum frictional resistance.

従来問題となっていた濾材のピンホールは、以下の1〜3に示すようなメカニズムで発生すると考えられる。
1.濾材に山部、谷部を形成するために濾材表面を部分的に押圧するブレードが濾材表面を擦って行く。
2.濾材とブレードとの間の摩擦力により、濾材内部に剪断応力が発生する。
3.この剪断応力は濾材内部のPTFE多孔質膜と通気性支持材との接着部に集中し、相対的に強度の低いPTFE多孔質膜の多孔質構造が破壊されてしまう。
It is thought that the pinhole of the filter medium which became a problem conventionally occurs by the mechanism as shown in the following 1-3.
1. A blade that partially presses the surface of the filter medium in order to form peaks and valleys in the filter medium rubs the filter medium surface.
2. A shearing stress is generated inside the filter medium due to the frictional force between the filter medium and the blade.
3. This shear stress concentrates on the adhesive portion between the PTFE porous membrane and the air-permeable support material inside the filter medium, and the porous structure of the PTFE porous membrane having a relatively low strength is destroyed.

しかしながら、本発明のエアフィルタ濾材によれば、少なくとも一方の露出面の最大摩擦抵抗が25gf以下、さらに好ましくは20gf以下であるために、レシプロタイプなどのプリーツ機によりプリーツ加工しても、ブレードと濾材との間の摩擦抵抗が過大とならない。その結果、濾材に作用する剪断応力が低減され、PTFE多孔質膜にピンホールが発生しにくくなる。なお、最大摩擦抵抗の下限は特に限定されるわけではないが、通常、2gfとされる。   However, according to the air filter medium of the present invention, the maximum frictional resistance of at least one exposed surface is 25 gf or less, more preferably 20 gf or less. The frictional resistance between the filter media is not excessive. As a result, shear stress acting on the filter medium is reduced, and pinholes are less likely to occur in the PTFE porous membrane. The lower limit of the maximum frictional resistance is not particularly limited, but is usually 2 gf.

また、上記目的を達成するために、本発明のエアフィルタ濾材の製造方法は、PTFE多孔質膜と通気性支持材との積層体を含むエアフィルタ用濾材の製造方法であって、前記通気性支持材を加熱する工程と、加熱された前記通気性支持材の表面を平滑化部材に押し当てる工程とを含むことを特徴とする。   In order to achieve the above object, the method for producing an air filter medium of the present invention is a method for producing a filter medium for an air filter including a laminate of a PTFE porous membrane and a breathable support material, wherein the breathability The method includes a step of heating the support material, and a step of pressing the heated air-permeable support material against the smoothing member.

本発明の製造方法によれば、表面が平滑化され、プリーツ加工によりひだ折りしても、PTFE多孔質膜がダメージを受けにくいエアフィルタ用濾材を提供することができる。通気性支持材の表面の平滑化の程度は、上記最大摩擦抵抗値により表示して、25gf以下、さらに好ましくは20gf以下である。この通気性支持材の表面は、平滑化の工程の前または後に行われる、PTFE多孔質膜との積層工程において、エアフィルタ用濾材の露出面に配置される。   According to the production method of the present invention, it is possible to provide a filter medium for an air filter in which the surface is smoothed and the PTFE porous membrane is hardly damaged even when pleated by pleating. The degree of smoothing of the surface of the breathable support material is 25 gf or less, more preferably 20 gf or less, expressed by the maximum frictional resistance value. The surface of the air-permeable support material is disposed on the exposed surface of the air filter medium in the lamination step with the PTFE porous membrane, which is performed before or after the smoothing step.

上記エアフィルタ用濾材の製造方法においては、通気性支持材の表面の凹凸が押圧されることより変形可能となる温度にまで加熱された状態で、通気性支持材が平滑化部材に押し当てられることが好ましい。従って、具体的には、通気性支持材を構成する少なくとも一つの材料の軟化点以上に加熱した状態で、通気性支持材を平滑化部材に押し当てることが好ましい。さらに、本発明は、PTFE多孔質膜と積層され、エアフィルタ用濾材として使用される通気性支持材として、少なくとも一方の表面の最大摩擦抵抗を25gf以下(好ましくは20gf以下)とした通気性支持材を提供する。後述するように、通気性支持材は、PTFE多孔質膜と積層してから表面を平滑化部材に押し当てて平滑化してもよく、上記のように、予め表面を平滑化してからPTFE多孔質膜と積層してもよい。なお、通気性支持材の少なくとも一方の表面の最大摩擦抵抗の下限は、特に限定されないが、通常、2gfとされる。   In the method for producing a filter medium for an air filter, the breathable support material is pressed against the smoothing member while being heated to a temperature at which the surface of the breathable support material is deformed by being pressed. It is preferable. Therefore, specifically, it is preferable to press the breathable support material against the smoothing member in a state of being heated to at least the softening point of at least one material constituting the breathable support material. Furthermore, the present invention provides a breathable support in which at least one surface has a maximum frictional resistance of 25 gf or less (preferably 20 gf or less) as a breathable support material laminated with a PTFE porous membrane and used as a filter medium for an air filter. Providing materials. As will be described later, the air-permeable support material may be smoothed by laminating the PTFE porous membrane and then pressing the surface against the smoothing member, and smoothing the surface in advance as described above. It may be laminated with a film. The lower limit of the maximum frictional resistance on at least one surface of the breathable support material is not particularly limited, but is usually 2 gf.

本発明によれば、プリーツ加工してもピンホールが生じにくくクリーンルームに要求される清浄空間の保持に適したエアフィルタ用濾材を提供することができる。   According to the present invention, it is possible to provide a filter medium for an air filter that is less likely to cause pinholes even when pleated, and that is suitable for maintaining a clean space required for a clean room.

本発明のエアフィルタ用濾材は、PTFE多孔質膜と、この膜を保護および補強するための通気性支持材との積層体を含んでいる。通気性支持材により、濾材にはプリーツ加工に必要なコシも与えられる。   The filter material for an air filter of the present invention includes a laminate of a PTFE porous membrane and a breathable support material for protecting and reinforcing the membrane. The breathable support material gives the filter medium the stiffness necessary for pleating.

PTFE多孔質膜は、従来から用いられてきた方法により得ることができる。この方法の一例としては、未焼成のPTFE粉末と液状潤滑剤(ナフサなど)との混和物を押出および/または圧延によりフィルム状に成形し、この未焼成フィルムから液状潤滑剤を除去し、次いで延伸して多孔質化する方法を挙げることができる。なお、通常、延伸後にPTFEの融点以上の温度に加熱して焼成することにより強度を向上させる。   The PTFE porous membrane can be obtained by a conventionally used method. As an example of this method, a mixture of unsintered PTFE powder and a liquid lubricant (such as naphtha) is formed into a film by extrusion and / or rolling, the liquid lubricant is removed from the unsintered film, The method of extending | stretching and making it porous can be mentioned. Usually, after stretching, the strength is improved by heating to a temperature equal to or higher than the melting point of PTFE and firing.

PTFE多孔質膜としては、使用用途に応じた捕集性能が発揮されるものであれば、孔径、厚さ、気孔率などを特に限定することなく用いることができる。ただし、半導体クリーンルームなどフィルタに使用される濾材とするためには、捕集性能を示すPF値(Performance of Filter)が20より大きいことが好ましい。なお、PF値は次の式で表される。
PF値={(−log透過率)/圧力損失}×100
As the PTFE porous membrane, any pore diameter, thickness, porosity and the like can be used without particular limitation as long as the collection performance corresponding to the intended use is exhibited. However, in order to obtain a filter medium used for a filter such as a semiconductor clean room, it is preferable that the PF value (Performance of Filter) indicating the collection performance is larger than 20. The PF value is expressed by the following formula.
PF value = {(− log permeability) / pressure loss} × 100

一方、通気性支持材は、材質、構造、形態が特に限定されるものではないが、PTFE多孔質膜より通気性に優れた材料、例えば不織布、織布、メッシュ(網目状シート)、その他の多孔質材料を用いることができる。ただし、強度、柔軟性、作業性の点からは不織布が好ましい。さらに、後述する操作により濾材表面の最大摩擦抵抗を小さくする場合には、不織布を構成する一部または全部の繊維が芯鞘構造の複合繊維であり、芯成分が鞘成分より相対的に融点が高い合成繊維であることが好ましい。なお、通気性支持材の材料としては、特に限定するものではないが、ポリオレフィン(ポリエチレン(PE)、ポリプロピレン(PP)など)、ポリアミド、ポリエステル(ポリエチレンテレフタレート(PET)など)、芳香族ポリアミド、あるいはこれらの複合材などからなるものを用いることができる。   On the other hand, the material, structure, and form of the breathable support material are not particularly limited. However, the breathable support material is more excellent in breathability than the PTFE porous membrane, for example, nonwoven fabric, woven fabric, mesh (mesh-like sheet), other Porous materials can be used. However, a nonwoven fabric is preferable from the viewpoint of strength, flexibility, and workability. Furthermore, when the maximum frictional resistance on the surface of the filter medium is reduced by an operation described later, some or all of the fibers constituting the nonwoven fabric are core-sheath structure composite fibers, and the core component has a melting point relatively higher than that of the sheath component. High synthetic fibers are preferred. The material of the breathable support material is not particularly limited, but polyolefin (polyethylene (PE), polypropylene (PP), etc.), polyamide, polyester (polyethylene terephthalate (PET), etc.), aromatic polyamide, or What consists of these composite materials etc. can be used.

また、上記積層体は、PTFE多孔質膜と通気性支持材とが交互に積層されていてもよいし、PTFE多孔質膜および通気性支持材のいずれか一方もしくは両方が連続して積層されている部分があってもよい。また、層の界面に接着のための材料が介在していてもよい。   Further, in the laminate, the PTFE porous membrane and the air-permeable support material may be alternately laminated, or one or both of the PTFE porous membrane and the air-permeable support material are continuously laminated. There may be some parts. Further, a material for adhesion may be interposed at the interface of the layers.

このような積層体からなるエアフィルタ用濾材の例を図2〜図5に示す。図示したように、エアフィルタ用濾材の最外層には通気性支持材1が配置されていることが好ましい。また、ピンホールの発生を効果的に抑制するためには、図3〜図5に示したように、PTFE多孔質膜2を2層以上含むことが好ましく、なかでも図5に示したように、PTFE多孔質膜2の間に通気性支持材1が挟み込まれた層構成を含むことが好ましい。プリーツ加工時の剪断応力を緩和するためである。なお、この積層体はPTFE多孔質膜の片面に通気性支持材を配置した2層構造のものであってもよい。これらの積層体の最外層の少なくとも一方、好ましくは両方の外側表面(積層体の露出面)の上記最大摩擦抵抗が25gf以下とされる。   Examples of air filter media comprising such a laminate are shown in FIGS. As shown in the figure, it is preferable that the air-permeable support material 1 is disposed on the outermost layer of the air filter medium. Further, in order to effectively suppress the occurrence of pinholes, it is preferable to include two or more layers of PTFE porous membrane 2 as shown in FIGS. 3 to 5, and in particular, as shown in FIG. It is preferable to include a layer structure in which the breathable support material 1 is sandwiched between the PTFE porous membrane 2. This is to relieve the shear stress during pleating. The laminate may have a two-layer structure in which a breathable support material is disposed on one side of a PTFE porous membrane. The maximum frictional resistance of at least one of the outermost layers of these laminates, preferably both outer surfaces (exposed surfaces of the laminate), is 25 gf or less.

このような積層体を製造する方法は、特に限定されないが、例えば接着剤ラミネート、熱ラミネートなどの方法を適用することができる。例えば、熱ラミネートにより積層する場合は、加熱により不織布などの通気性支持材の一部を溶融させて接着積層すればよい。また、ホットメルトパウダーのような融着剤を介在させて接着してもよい。一方、PTFE多孔質膜相互を積層する方法としては、成膜時に圧着積層する方法や熱融着する方法などがある。   The method for producing such a laminate is not particularly limited, and for example, methods such as adhesive lamination and thermal lamination can be applied. For example, in the case of laminating by heat lamination, a part of a breathable support material such as a nonwoven fabric may be melted by heating and laminated. Moreover, you may adhere | attach by interposing a fusing agent like hot melt powder. On the other hand, as a method of laminating PTFE porous membranes, there are a method of pressure laminating at the time of film formation, a method of heat fusion, and the like.

通気性支持材の表面の平滑化は、例えば、通気性支持材の表面に存在する凹凸が押圧されることにより変形しうる温度にまで通気性支持材を加熱する工程と、この通気性支持材の表面を平滑化部材に押し当てて平滑化する工程とを含む方法により実施することができる。   The smoothing of the surface of the air-permeable support material includes, for example, a step of heating the air-permeable support material to a temperature at which the unevenness present on the surface of the air-permeable support material can be deformed by pressing, and the air-permeable support material. And a step of smoothing the surface by pressing against the smoothing member.

通気性支持材を加熱する工程において、通気性支持材は、通気性支持材を構成する少なくとも1つの材料の軟化点以上(好ましくは融点以上)にまで加熱される。加熱温度の上限は、特に限定されないが、実用的には通気性支持材の融点よりも100度高い温度とすることが好ましい。通気性支持材の加熱温度は、通気性支持材の材質、加熱から平滑化までの時間などに応じて適宜定められればよい。例えば、通気性支持材が芯成分が鞘成分よりも融点が高い芯鞘構造の複合繊維を含む場合は、通気性支持材の加熱温度は鞘成分の軟化点以上(好ましくは融点以上)で芯成分の融点よりも低く設定することが好ましい。   In the step of heating the air-permeable support material, the air-permeable support material is heated to a temperature above the softening point (preferably above the melting point) of at least one material constituting the air-permeable support material. Although the upper limit of heating temperature is not specifically limited, Practically it is preferable to set it as a temperature 100 degree | times higher than melting | fusing point of a breathable support material. The heating temperature of the breathable support material may be appropriately determined according to the material of the breathable support material, the time from heating to smoothing, and the like. For example, when the breathable support material includes a composite fiber having a core-sheath structure in which the core component has a melting point higher than that of the sheath component, the heating temperature of the breathable support material is higher than the softening point of the sheath component (preferably higher than the melting point). It is preferable to set it lower than the melting point of the component.

通気性支持材の加熱は、例えば通気性支持材を所定温度にまで加熱したロールなどの加熱部材との接触により行うことができる。特に加熱ロールとの接触による方法は、加熱作業を連続して実施できるために好ましい。   The breathable support material can be heated, for example, by contact with a heating member such as a roll that has heated the breathable support material to a predetermined temperature. In particular, the method by contact with a heating roll is preferable because the heating operation can be carried out continuously.

加熱後、通気性支持材は平滑化部材に押し当てられる。この押し当てにより、通気性支持材の平滑化部材との接触面が押圧力によって平滑化される。平滑化部材は、通気性支持材の表面を平滑化しうる表面を備えたものであれば特に限定されないが、例えばシリコーン部材をその具体例として挙げることができる。平滑化部材をロール状とすれば、平滑化作業を連続して行うことができる。かようなロールとしては、例えばシリコーンロールを用いることができる。なお、平滑化部材は、温度調節機構を備えたものであってもよい。   After heating, the breathable support material is pressed against the smoothing member. By this pressing, the contact surface of the breathable support material with the smoothing member is smoothed by the pressing force. The smoothing member is not particularly limited as long as it has a surface capable of smoothing the surface of the air-permeable support material. For example, a silicone member can be given as a specific example. If the smoothing member has a roll shape, the smoothing operation can be performed continuously. As such a roll, for example, a silicone roll can be used. The smoothing member may be provided with a temperature adjustment mechanism.

通気性支持材が平滑化部材と接触するときの支持材の温度は、通気性支持材を構成する少なくとも1つの材料の軟化点以上とすることが好ましい。例えば、通気性支持材が芯成分が鞘成分よりも融点が高い芯鞘構造の複合繊維を含む場合は、平滑化時の通気性支持材の温度は、鞘成分の軟化点以上が好適である。なお、加熱から平滑化に至るまで温度降下を抑制するために、加熱から平滑化に至るまでの時間はできるだけ短いことが好ましい。   It is preferable that the temperature of the support material when the breathable support material is in contact with the smoothing member is equal to or higher than the softening point of at least one material constituting the breathable support material. For example, when the breathable support material includes a composite fiber having a core-sheath structure in which the core component has a higher melting point than the sheath component, the temperature of the breathable support material during smoothing is preferably equal to or higher than the softening point of the sheath component. . In order to suppress a temperature drop from heating to smoothing, the time from heating to smoothing is preferably as short as possible.

上記に説明した方法は、熱ラミネートによる積層体の製造方法と併用することが好ましい。PTFE多孔質膜と通気性支持材とを加熱を伴う工程により積層した後に、露出面となる通気性支持材の表面を平滑化部材に押し当てて平滑化すれば、効率的に摩擦抵抗が低い露出面を備えたエアフィルタ用濾材を製造できる。   The method described above is preferably used in combination with a method for producing a laminate by thermal lamination. After laminating the PTFE porous membrane and the breathable support material by a process involving heating, if the surface of the breathable support material to be the exposed surface is pressed against the smoothing member and smoothed, the frictional resistance is effectively low. A filter medium for an air filter having an exposed surface can be manufactured.

上記に説明した方法は、加熱ロールと、この加熱ロールに隣接して配置した(好ましくはシリコンロールである)平滑化ロールとを備えた装置により、効率的に実施することができる。また、熱ラミネートによりPTFE多孔質膜との積層体を製造する場合には、加熱ロールと対向する位置に積層体を圧着するためのロールを準備し、このロールと加熱ロールによって通気性支持材とPTFE多孔質膜とを熱ラミネートすることが好ましい。   The method described above can be efficiently performed by an apparatus including a heating roll and a smoothing roll (preferably a silicon roll) disposed adjacent to the heating roll. Moreover, when manufacturing the laminated body with a PTFE porous membrane by thermal lamination, the roll for crimping | bonding a laminated body to the position facing a heating roll is prepared, and air permeability support material and this roll and a heating roll are used. It is preferable to heat laminate the PTFE porous membrane.

このような方法を実施するための装置の例を図1に示す。図1には、図2に示した積層構造(通気性支持材/PTFE多孔質膜/通気性支持材)を有する濾材を連続的に製造する場合の例が示されている。図示したように、まず通気性支持材1とPTFE多孔質膜2とが、通気性支持材1がPTFE多孔質膜2を挟み込むようにガイドロール5に供給される。これらの材料は、重なり合った状態で加熱ロール3の外周上を進行しながら、例えば通気性支持材1の融点以上の温度にまで加熱され、ピンチロール6と加熱ロール3との間を通過する際に圧着される。さらにこの積層体は、加熱ロール3の近傍に配置された平滑化部材としてのシリコーンロール4の外周上を経て送り出される。このシリコーンロール4の表面は平滑であり、その平滑面との接触により、積層体の露出面は押圧されて平滑化される。   An example of an apparatus for carrying out such a method is shown in FIG. FIG. 1 shows an example in which a filter medium having the laminated structure (breathable support material / PTFE porous membrane / breathable support material) shown in FIG. 2 is continuously produced. As shown in the figure, the breathable support material 1 and the PTFE porous membrane 2 are first supplied to the guide roll 5 so that the breathable support material 1 sandwiches the PTFE porous membrane 2. These materials are heated to a temperature equal to or higher than the melting point of the breathable support material 1 while traveling on the outer periphery of the heating roll 3 in an overlapping state, and pass between the pinch roll 6 and the heating roll 3. Crimped to Furthermore, this laminated body is sent out through the outer periphery of the silicone roll 4 as a smoothing member disposed in the vicinity of the heating roll 3. The surface of the silicone roll 4 is smooth, and the exposed surface of the laminate is pressed and smoothed by contact with the smooth surface.

通気性支持材の表面の平滑化は、例えばカレンダーロールを利用した方法によっても実施することができる。また、予め通気性支持材の表面を平滑化し、この通気性支持材とPTFE多孔質膜とを積層してもよい。   The smoothing of the surface of the breathable support material can also be carried out by a method using a calendar roll, for example. Alternatively, the surface of the breathable support material may be smoothed in advance, and the breathable support material and the PTFE porous membrane may be laminated.

上記に説明したようなエアフィルタ用濾材を用いれば、レシプロタイプのプリーツ機で加工した場合にもブレードとの摩擦抵抗を小さく保持し、濾材に作用する剪断応力を低減することができる。従って捕集層であるPTFE多孔質膜へのダメージを緩和し、リーク発生のないエアフィルタを得ることができる。   When the air filter medium as described above is used, the frictional resistance with the blade can be kept small even when processed with a reciprocating type pleating machine, and the shear stress acting on the filter medium can be reduced. Therefore, damage to the PTFE porous membrane, which is the collection layer, can be mitigated, and an air filter free from leakage can be obtained.

以下、実施例および比較例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
焼成されたPTFE多孔質膜(厚さ:10μm、気孔率93%、平均孔径0.7μm、圧力損失:35mmH2O、捕集効率:99.999995%、PF値:21)と厚さ150μm、目付量30g/m2のPET/PE芯鞘不織布(ユニチカ社製「エルベスTO303WDO」、鞘部PEの融点:129℃、同PEの軟化点:74℃、芯部PETの融点:261℃)を、図1と同様の装置により、熱ラミネート方式(加熱ロール温度:160℃)により積層し、PTFE多孔質膜を中間に配設した3層構造の濾材を得た。なお、ピンチロールと加熱ロールの間を通して多孔質膜と不織布を圧着させた3層品が平滑化部材であるシリコーンロールと接触するときの不織布の温度は124℃であった。
Example 1
Baked PTFE porous membrane (thickness: 10 μm, porosity 93%, average pore diameter 0.7 μm, pressure loss: 35 mmH 2 O, collection efficiency: 99.999995%, PF value: 21) and thickness 150 μm, PET / PE core-sheath nonwoven fabric with a basis weight of 30 g / m 2 ("Elves TO303WDO" manufactured by Unitika Ltd., melting point of sheath PE: 129 ° C, softening point of PE: 74 ° C, melting point of core PET: 261 ° C) 1 was laminated by a heat laminating method (heating roll temperature: 160 ° C.) using the same apparatus as in FIG. In addition, the temperature of the nonwoven fabric was 124 ° C. when the three-layer product in which the porous film and the nonwoven fabric were pressed through the pinch roll and the heating roll was in contact with the silicone roll as the smoothing member.

また、上記不織布の軟化点はTMA(熱機械測定装置;Thermo Mechanical Analysis)による針入モード(Penetration Mode)にて測定した。装置としては、セイコーインストルメンツ株式会社製TMA/SS120Cを用い、条件を下記のように設定した。
プローブ針径:1mmφ
荷重 :4g
昇温速度 :5℃/min
Moreover, the softening point of the said nonwoven fabric was measured in the penetration mode (Penetration Mode) by TMA (Thermomechanical measurement apparatus; Thermo Mechanical Analysis). As the apparatus, TMA / SS120C manufactured by Seiko Instruments Inc. was used, and the conditions were set as follows.
Probe needle diameter: 1mmφ
Load: 4g
Temperature increase rate: 5 ° C / min

得られた濾材のシリコーンロール接触面およびシリコーンロール非接触面の最大摩擦抵抗を上記方法(Bowden-Leben型往復動摩擦試験機として株式会社エイ・アンド・デイ製のAFT−15Bを使用)により測定したところ、それぞれ9.9gf、27.0gfであった。   The maximum frictional resistance of the obtained filter medium on the silicone roll contact surface and the silicone roll non-contact surface was measured by the above method (using AFT-15B manufactured by A & D Co., Ltd. as a Bowden-Leben type reciprocating friction tester). However, they were 9.9 gf and 27.0 gf, respectively.

(実施例2)
加熱ロールの温度を150℃とした以外は実施例1と同様にして濾材を得た。なお、多孔質膜と不織布を圧着させた3層品が平滑化部材であるシリコーンロールと接触するときの不織布の温度は115℃であった。得られた濾材のシリコーンロール接触面およびシリコーンロール非接触面の最大摩擦抵抗を上記方法により測定したところ、それぞれ16.3gf、28.6gfであった。
(Example 2)
A filter medium was obtained in the same manner as in Example 1 except that the temperature of the heating roll was 150 ° C. The temperature of the nonwoven fabric was 115 ° C. when the three-layer product obtained by pressure-bonding the porous membrane and the nonwoven fabric was in contact with the silicone roll as the smoothing member. When the maximum frictional resistance of the obtained filter medium on the silicone roll contact surface and the silicone roll non-contact surface was measured by the above method, it was 16.3 gf and 28.6 gf, respectively.

(実施例3)
加熱ロールの温度を140℃とした以外は実施例1と同様にして濾材を得た。なお、多孔質膜と不織布を圧着させた3層品が平滑化部材であるシリコーンロールと接触するときの不織布の温度は104℃であった。得られた濾材のシリコーンロール接触面およびシリコーンロール非接触面の最大摩擦抵抗を上記方法により測定したところ、それぞれ22.3gf、28.1gfであった。
(Example 3)
A filter medium was obtained in the same manner as in Example 1 except that the temperature of the heating roll was 140 ° C. The temperature of the nonwoven fabric was 104 ° C. when the three-layer product obtained by pressure-bonding the porous membrane and the nonwoven fabric was in contact with the silicone roll as the smoothing member. When the maximum frictional resistance of the obtained filter medium on the silicone roll contact surface and the silicone roll non-contact surface was measured by the above method, they were 22.3 gf and 28.1 gf, respectively.

(実施例4)
実施例1で得た濾材の表裏を逆にする。そして再び図1と同様の装置のロール(ロール温度:160℃)に通し、次いでシリコーンロールに接触させて、2つの露出面が平滑化された濾材を得た。なお、平滑化部材であるシリコーンロールと接触するときの不織布の温度は122℃であった。得られた濾材の両面の最大摩擦抵抗を上記方法により測定したところ、それぞれ9.9gf(最初にシリコーンロールと接触させた面)、11.1gf(2回目にシリコーンロールと接触させた面)であった。
Example 4
The front and back of the filter medium obtained in Example 1 are reversed. And it passed again through the roll (roll temperature: 160 degreeC) of the apparatus similar to FIG. 1, and then was made to contact with a silicone roll, and the filter medium in which the two exposed surfaces were smoothed was obtained. In addition, the temperature of the nonwoven fabric when it contacts with the silicone roll which is a smoothing member was 122 degreeC. When the maximum frictional resistance of both sides of the obtained filter medium was measured by the above method, it was 9.9 gf (surface first contacted with the silicone roll) and 11.1 gf (second surface contacted with the silicone roll), respectively. there were.

(実施例5)
実施例1で用いたのと同じPTFE多孔質膜とPET/PE芯鞘不織布の各1枚を一対のロール間を通して積層した。なお、ロール温度は140℃に設定した。次に、図1の通気性支持材1、1に代えて、この2層品を不織布が外側になるように配置するとともに、PTFE多孔質膜2に代えてPET/PE芯鞘不織布(実施例1で用いたのと同じ)を配置した。そして、これらを熱ラミネート方式(ロール温度:160℃)により積層し、不織布/PTFE多孔質膜/不織布/PTFE多孔質膜/不織布の5層構造の濾材を得た。なお、シリコーンロールと接触するときの不織布の温度は121℃であった。得られた濾材のシリコーンロール接触面とシリコーンロール非接触面の最大摩擦抵抗を上記方法により測定したところ、それぞれ12.5gf、28.0gfであった。
(Example 5)
The same PTFE porous membrane as used in Example 1 and one each of PET / PE core-sheath nonwoven fabric were laminated through a pair of rolls. The roll temperature was set to 140 ° C. Next, in place of the breathable support materials 1 and 1 in FIG. 1, this two-layer product is disposed so that the nonwoven fabric is on the outside, and the PET / PE core-sheath nonwoven fabric (Example) instead of the PTFE porous membrane 2 1). These were laminated by a heat laminating method (roll temperature: 160 ° C.) to obtain a filter medium having a five-layer structure of nonwoven fabric / PTFE porous membrane / nonwoven fabric / PTFE porous membrane / nonwoven fabric. In addition, the temperature of the nonwoven fabric when contacting with the silicone roll was 121 ° C. When the maximum frictional resistance of the obtained filter medium on the silicone roll contact surface and the silicone roll non-contact surface was measured by the above method, they were 12.5 gf and 28.0 gf, respectively.

(実施例6)
まず、厚さ170μm、目付量32g/m2のPET不織布(三井石油化学工業社製「シンテックスMY R−200」、融点:256℃)をカレンダロールに通し、不織布の両面を平滑にした(なお、このときのロール温度は、100℃とした)。この不織布の片面に低密度ポリエチレンのパウダー(融点97.5℃、30メッシュパス)を10g/m2の割合で均一に散布し、これを120℃に加熱してパウダーを熱融着した。
(Example 6)
First, a PET nonwoven fabric having a thickness of 170 μm and a basis weight of 32 g / m 2 (“Syntex MY R-200” manufactured by Mitsui Petrochemical Industries, Ltd., melting point: 256 ° C.) was passed through a calender roll to smooth both sides of the nonwoven fabric ( The roll temperature at this time was 100 ° C.). Low density polyethylene powder (melting point 97.5 ° C., 30 mesh pass) was uniformly sprayed on one side of the nonwoven fabric at a rate of 10 g / m 2 , and this was heated to 120 ° C. to heat-fuse the powder.

次に、PTFE多孔質膜(実施例1で用いたのと同じ)の両面に表面を平滑化した不織布を配置し(パウダー散布面がPTFE多孔質膜側になるように配置し)、図1と同様の装置(ただし、シリコーンロール4は配置せず)により熱ラミネート(ロール温度:140℃)し、PTFE多孔質膜を中間層とする3層構造の濾材を得た。得られた濾材の両面の最大摩擦抵抗を上記方法により測定したところ、それぞれ13.5gf、14.6gfであった。   Next, a non-woven fabric having a smoothed surface is disposed on both sides of the PTFE porous membrane (the same as that used in Example 1) (placed so that the powder spreading surface is on the PTFE porous membrane side), and FIG. Was subjected to heat laminating (roll temperature: 140 ° C.) using the same apparatus as above (however, the silicone roll 4 was not disposed) to obtain a three-layer structure filter medium having a PTFE porous membrane as an intermediate layer. When the maximum frictional resistance of both sides of the obtained filter medium was measured by the above method, they were 13.5 gf and 14.6 gf, respectively.

(比較例1)
シリコーンロールと接触させないこと以外は実施例1と同様にして濾材を得た。得られた濾材の両面の最大摩擦抵抗を上記方法により測定したところ、それぞれ26.9gf、28.2gfであった。
(Comparative Example 1)
A filter medium was obtained in the same manner as in Example 1 except that it was not brought into contact with the silicone roll. When the maximum frictional resistance of both sides of the obtained filter medium was measured by the above method, they were 26.9 gf and 28.2 gf, respectively.

(比較例2)
カレンダーロールによる不織布表面の平滑化を行わなかったこと以外は実施例6と同様に作業して3層構造の濾材を得た。得られた濾材の両面の最大摩擦抵抗を上記方法により測定したところ、それぞれ29.0gf、27.6gfであった。
(Comparative Example 2)
A three-layer filter medium was obtained in the same manner as in Example 6 except that the surface of the nonwoven fabric was not smoothed with a calender roll. When the maximum frictional resistance of both sides of the obtained filter medium was measured by the above method, they were 29.0 gf and 27.6 gf, respectively.

上記実施例1〜6、比較例1〜2で得られたエアフィルタ用濾材をレシプロタイプのプリーツ機によりプリーツ加工し、各濾材についてそれぞれ30点づつ以下の方法により捕集性能を測定し、リークの有無を調べた。
1 エアフィルタ濾材(測定面積100cm2)を隔壁として、上流側と下流側を分離する。
2 上流側に試験粒子である cold DOP(ジオクチルフタレート)を導入し、面速5.3cm/秒で下流側から吸引する。
3 上流側の粒子濃度と濾材から漏洩した下流側の粒子濃度をレーザーパーティクルカウンター(LPC)にて測定する。
4 粒子サイズ0.1〜0.2μmの粒子透過率をP0.1、0.2〜0.3μmの粒子透過率をP0.2として、次の条件を満たす場合にリークと判断した。P0.2/P0.1>0.1リークの頻度を下表に示す。
Air filter media obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were pleated by a reciprocating type pleating machine, and the collection performance was measured by the following method for each filter media by 30 points or less. The presence or absence of was investigated.
1 Using an air filter medium (measurement area 100 cm 2 ) as a partition, separate the upstream side and the downstream side.
2 Introduce cold DOP (dioctyl phthalate), which is a test particle, on the upstream side, and suck it from the downstream side at a surface speed of 5.3 cm / sec.
3 Measure the upstream particle concentration and the downstream particle concentration leaked from the filter medium with a laser particle counter (LPC).
4 When the particle transmittance of 0.1 to 0.2 μm was P 0.1 and the particle transmittance of 0.2 to 0.3 μm was P 0.2 , it was judged that there was a leak when the following conditions were satisfied. The frequency of P 0.2 / P 0.1 > 0.1 leak is shown in the table below.

Figure 0005112251
Figure 0005112251

表1より、少なくとも一方の露出面の最大摩擦抵抗値が25gf以下であるエアフィルタ用濾材は、濾材にダメージを与えやすいレシプロ方式によりプリーツ加工しても、ピンホールが発生しにくいことがわかる。   From Table 1, it can be seen that the air filter medium having a maximum frictional resistance of 25 gf or less on at least one exposed surface is less likely to generate pinholes even when pleated by a reciprocating method that easily damages the filter medium.

本発明のエアフィルタ用濾材を製造するための装置の例の概略を示す図である。It is a figure which shows the outline of the example of the apparatus for manufacturing the filter medium for air filters of this invention. 本発明のエアフィルタ用濾材の例の構成を示す断面図である。It is sectional drawing which shows the structure of the example of the filter medium for air filters of this invention. 本発明のエアフィルタ用濾材の別の例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the filter medium for air filters of this invention. 本発明のエアフィルタ用濾材の別の例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the filter medium for air filters of this invention. 本発明のエアフィルタ用濾材の別の例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the filter medium for air filters of this invention.

符号の説明Explanation of symbols

1 通気性支持材
2 PTFE多孔質膜
3 加熱ロール
4 シリコーンロール
5 ガイドロール
6 ピンチロール
DESCRIPTION OF SYMBOLS 1 Breathable support material 2 PTFE porous membrane 3 Heating roll 4 Silicone roll 5 Guide roll 6 Pinch roll

Claims (4)

ポリテトラフルオロエチレン多孔質膜と通気性支持材との積層体を含み、両方の露出面が前記通気性支持材の表面により構成されている、プリーツ加工がなされたエアフィルタ用濾材の製造方法であって、
前記通気性支持材を前記ポリテトラフルオロエチレン多孔質膜と積層する前あるいは後に、前記通気性支持材を加熱し、前記通気性支持材の表面を平滑化部材に押し当てることにより、前記積層体の少なくとも一方の露出面を構成する前記通気性支持材の表面の最大摩擦抵抗を25gf以下にする平滑化工程と、
少なくとも一方の露出面が平滑化された前記積層体を、レシプロ方式のプリーツ機を用いて連続したW字状にひだ折りにするプリーツ加工工程とを含むことを特徴とするエアフィルタ用濾材の製造方法。
A pleated air filter filter medium manufacturing method comprising a laminate of a polytetrafluoroethylene porous membrane and a breathable support material, both exposed surfaces being constituted by the surface of the breathable support material. There,
Before or after laminating the air permeable support material with the polytetrafluoroethylene porous membrane, the air permeable support material is heated, and the surface of the air permeable support material is pressed against a smoothing member, thereby the laminate. A smoothing step of making the maximum frictional resistance of the surface of the breathable support material constituting at least one exposed surface of 25 gf or less,
A pleat processing step of fold-folding the laminated body , the exposed surface of which has been smoothed, into a continuous W-shape using a reciprocating pleating machine. Method.
前記平滑化工程において、前記積層体の両方の露出面を構成する前記通気性支持材が平滑化される請求項1に記載のエアフィルタ用濾材の製造方法。 The manufacturing method of the filter material for air filters of Claim 1 in which the said air permeable support material which comprises both the exposed surfaces of the said laminated body is smoothed in the said smoothing process. 前記通気性支持材は不織布である請求項1又は2に記載のエアフィルタ用濾材の製造方法。  The method for producing a filter medium for an air filter according to claim 1 or 2, wherein the breathable support material is a nonwoven fabric. 前記通気性支持材は、前記ポリテトラフルオロエチレン多孔質膜を保護および補強する請求項1〜3のいずれかの項に記載のエアフィルタ用濾材の製造方法。The said air-permeable support material is a manufacturing method of the filter material for air filters in any one of Claims 1-3 which protects and reinforces the said polytetrafluoroethylene porous membrane.
JP2008267249A 1998-06-11 2008-10-16 Method for producing filter medium for air filter Expired - Lifetime JP5112251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267249A JP5112251B2 (en) 1998-06-11 2008-10-16 Method for producing filter medium for air filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1998163879 1998-06-11
JP16387998 1998-06-11
JP2008267249A JP5112251B2 (en) 1998-06-11 2008-10-16 Method for producing filter medium for air filter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002276209A Division JP2003112021A (en) 1998-06-11 2002-09-20 Filtering medium for air filter

Publications (2)

Publication Number Publication Date
JP2009050851A JP2009050851A (en) 2009-03-12
JP5112251B2 true JP5112251B2 (en) 2013-01-09

Family

ID=40502414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267249A Expired - Lifetime JP5112251B2 (en) 1998-06-11 2008-10-16 Method for producing filter medium for air filter

Country Status (1)

Country Link
JP (1) JP5112251B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107503A1 (en) 2009-03-19 2010-09-23 Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
JP5713315B2 (en) * 2011-01-19 2015-05-07 栗田工業株式会社 Method for producing composite membrane
JP6219811B2 (en) 2011-04-01 2017-10-25 イー・エム・デイー・ミリポア・コーポレイシヨン Nanofiber-containing composite structure
JP6042431B2 (en) * 2011-07-21 2016-12-14 イー・エム・デイー・ミリポア・コーポレイシヨン Nanofiber-containing composite structure
JP6284818B2 (en) * 2014-04-24 2018-02-28 株式会社ダイセル Porous membrane laminate having micropores and handling strength and method for producing the same
WO2015200239A1 (en) 2014-06-26 2015-12-30 Emd Millipore Corporation Filter structure with enhanced dirt holding capacity
KR20170113638A (en) 2015-04-17 2017-10-12 이엠디 밀리포어 코포레이션 A method for purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operating in tangential flow filtration mode
CN110947241A (en) * 2019-12-04 2020-04-03 成都易态科技有限公司 Porous film and method for producing porous film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075311A (en) * 1983-09-30 1985-04-27 Daicel Chem Ind Ltd Manufacture of pleated semipermeable membrane
JPH031047Y2 (en) * 1985-07-19 1991-01-14
JPS6283012A (en) * 1985-10-08 1987-04-16 Japan Vilene Co Ltd Liquid filter
JPH05115720A (en) * 1991-10-31 1993-05-14 Mitsubishi Paper Mills Ltd Method for removing iron oxide fine particles in aqueous sulfuric acid solution
JPH08224412A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Nonwoven fabric, filter medium made from the same and these production
JP3605482B2 (en) * 1996-09-02 2004-12-22 日本無機株式会社 Processing method of air filter medium having polytetrafluoroethylene membrane

Also Published As

Publication number Publication date
JP2009050851A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP3365617B2 (en) Manufacturing method of filter medium for air filter
JP5112251B2 (en) Method for producing filter medium for air filter
CN111148561B (en) Air filter medium, filter pleat pack, and air filter unit
EP1266681B1 (en) Filter medium for turbine and methods of using and producing the same
JP5608323B2 (en) Filter medium, method for manufacturing the same, and filter unit
JP6292920B2 (en) Air filter medium manufacturing method, air filter medium and air filter pack
EP0970739A1 (en) Filter medium for air filters
JP2002273126A (en) Filter medium for air filter and method for manufacturing the same
JP2007160275A (en) Filter unit and its manufacturing method
JP4526693B2 (en) Polytetrafluoroethylene porous membrane, air-permeable laminate and filter unit using the same
JP2005095803A (en) Filter medium for air filter, and air filter unit using it
JP2003112021A (en) Filtering medium for air filter
EP4238635A1 (en) Filter pleat pack, and air filter unit
JP4007919B2 (en) Filter for dust collector
JP2007111697A (en) Air filter medium
JP3410019B2 (en) Method for forming filter medium for air filter and blade for forming filter medium
JP4224437B2 (en) Air filter medium and air filter unit using the same
KR20150079105A (en) PTFE filter media and production method thereof
KR100638499B1 (en) Filter medium for air filters
JP2003093815A (en) Method for producing air filter material
TW201429537A (en) Filter material and method for manufacturing filter material
KR20210106553A (en) Filter Fleet Pack and Air Filter Unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term