JP5111535B2 - Permanent magnet type rotating electric machine - Google Patents

Permanent magnet type rotating electric machine Download PDF

Info

Publication number
JP5111535B2
JP5111535B2 JP2010023951A JP2010023951A JP5111535B2 JP 5111535 B2 JP5111535 B2 JP 5111535B2 JP 2010023951 A JP2010023951 A JP 2010023951A JP 2010023951 A JP2010023951 A JP 2010023951A JP 5111535 B2 JP5111535 B2 JP 5111535B2
Authority
JP
Japan
Prior art keywords
permanent magnet
angle
armature
yoke
type rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010023951A
Other languages
Japanese (ja)
Other versions
JP2011166868A (en
Inventor
祥子 川崎
裕之 秋田
公康 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010023951A priority Critical patent/JP5111535B2/en
Publication of JP2011166868A publication Critical patent/JP2011166868A/en
Application granted granted Critical
Publication of JP5111535B2 publication Critical patent/JP5111535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、界磁が電機子の外周側に配置され、界磁の構造に特徴がある永久磁石型回転電機(ブラシ付DCモータ)に関する。   The present invention relates to a permanent magnet type rotating electrical machine (DC motor with brush) having a field magnet arranged on the outer peripheral side of an armature and having a characteristic field structure.

従来、ポール数(磁極数)Pが4以上の偶数である永久磁石式ロータと、スロット数SがPの倍数でないステータとを有し、永久磁石がロータ中心に対して張るマグネット角度を約67.5°とし、1周あたりのコギングトルクの数を、ポール数Pとスロット数Sの最小公倍数LCMの2倍以上の整数倍にすることにより、コギングトルクを著しく小さくすることができる永久磁石型回転電機が提案されている(例えば、特許文献1参照)。   Conventionally, a permanent magnet rotor having an even number of poles (the number of magnetic poles) P of 4 or more and a stator having a slot number S that is not a multiple of P, the magnet angle at which the permanent magnet stretches with respect to the rotor center is about 67. .5 ° and the number of cogging torques per round is an integral multiple of twice or more the least common multiple LCM of the number of poles P and the number of slots S, so that the cogging torque can be remarkably reduced. A rotating electrical machine has been proposed (see, for example, Patent Document 1).

特開2003−134772号公報(段落番号[0013]、図2等)JP 2003-134772 (paragraph number [0013], FIG. 2 etc.)

近年、あらゆる製品への適用が増えつつある永久磁石型回転電機において、低コスト化・高品質化が求められている傾向にある。特に、生産台数が多く、構成部品点数の多い自動車などにおいては、電動パワーステアリング装置、排ガス循環装置などにも永久磁石型回転電機を用いる例が多く、構成部品そのものの低コスト化に加え、操舵性や装置の動作性などから低コギング化も同時に求められている。   In recent years, there has been a tendency for cost reduction and quality improvement in permanent magnet type rotating electrical machines that are increasingly applied to various products. Especially in automobiles with many production units and a large number of components, there are many examples of using permanent magnet type rotating electrical machines for electric power steering devices, exhaust gas circulation devices, etc. In addition to lowering the cost of the components themselves, steering The cogging reduction is also demanded at the same time from the viewpoint of performance and device operability.

低コギング化の手段としては、以下に示すものが従来からよく知られている。
(1)界磁石のスキュー(段スキュー、スキュー着磁)、界磁石の端部カット、円弧形状などにより磁束密度分布(厳密には磁束密度の二乗の分布)を滑らかにする手段;
(2)電機子のティース先端のダミースロット設置、端部のカットなど、パーミアンス分布を滑らかにする手段。
As means for reducing cogging, the following are well known.
(1) Means for smoothing magnetic flux density distribution (strictly speaking, distribution of square of magnetic flux density) by field magnet skew (step skew, skew magnetization), field magnet end cut, arc shape, etc .;
(2) Means for smoothing the permeance distribution, such as installing a dummy slot at the tip of the armature tooth and cutting the end.

また、分布巻を採用して電機子スロット数が多い場合には、コギングの次数が高くなるため、集中巻でスロット数が少ない場合に比べ、コギングが小さい傾向にある。   Further, when distributed winding is used and the number of armature slots is large, the order of cogging becomes high, and therefore cogging tends to be smaller than when concentrated slots are used and the number of slots is small.

しかしながら、上記(1)の磁束密度分布を滑らかにする手段は、部品点数が多くなったり、着磁装置が複雑になることなどにより、磁石コストが高くなる傾向にあった。   However, the means (1) for smoothing the magnetic flux density distribution tends to increase the magnet cost due to an increase in the number of parts and a complicated magnetizing device.

さらに、上記特許文献1のように、電機子コアのスロット数Sとポール数(磁極数)Pの最小公倍数LCMの2倍以上のコギング数になるように、永久磁石がロータ中心に対して張る角度を設定しただけでは、パーミアンスの変化が比較的大きい電機子コア(例えば、スロット開口部が広い場合など)においては、コギングトルクを十分に低減できない可能性があった。   Further, as in Patent Document 1, the permanent magnet is stretched with respect to the rotor center so that the cogging number is twice or more the least common multiple LCM of the number of slots S and the number of poles (number of magnetic poles) P of the armature core. There is a possibility that the cogging torque cannot be sufficiently reduced in an armature core (for example, when the slot opening is wide) with a relatively large change in permeance only by setting the angle.

また、上記(2)のパーミアンス分布を滑らかにする手段は、ダミースロットや端部カットにより、等価的なギャップが大きくなり、電機子と界磁を組み込んだときの磁束が低下する、すなわち、トルク特性が落ちやすい傾向にあった。さらに、ダミースロットは特定の次数のコギング成分を低減するのには効果があるが、界磁側の磁束密度の高調波分布が多岐にわたるような場合には、合計のコギング(p−p(ピーク・トゥ・ピーク))が低減しないこともあった。   Further, the means for smoothing the permeance distribution of (2) described above is that the equivalent gap is increased by the dummy slot and the end cut, and the magnetic flux when the armature and the field are incorporated is reduced. There was a tendency for the characteristics to fall. Furthermore, although the dummy slot is effective in reducing the cogging component of a specific order, when the harmonic distribution of the magnetic flux density on the field side is diversified, the total cogging (pp (peak・ To-peak)) may not be reduced.

また、製品の寸法ばらつきによるコギングのばらつきの低減も、上記のような製品については重要な課題である。永久磁石であれば、磁石の幅・厚み、取り付け位置のばらつき、電機子コアにおいては、ダミースロットを設ける位置や寸法のばらつきなどが、コギングのばらつきに影響していた。   In addition, reduction of cogging variation due to product size variation is also an important issue for such products. In the case of a permanent magnet, variations in the width and thickness of the magnet and the mounting position, and in the armature core, variations in the position and dimensions of the dummy slot have affected cogging variations.

この発明は、上記のような課題を解決するためになされたもので、コギングの各成分を最小限にしつつ、製品ばらつきによるコギングのばらつきも抑えられるような、界磁を備える永久磁石型回転電機を提供する。   The present invention has been made to solve the above-described problems, and is a permanent magnet type rotating electric machine having a field magnet that can suppress cogging variations due to product variations while minimizing each component of cogging. I will provide a.

この発明に係る永久磁石型回転電機は、電機子と、前記電機子の外周側もしくは内周側に空隙を介して設けられる界磁と、を有する永久磁石型回転電機において、
界磁は、
断面が略円筒状のヨークと、
ヨークの内周面もしくは外周面に設けられ、磁極数分の永久磁石と、を備え、
永久磁石は、電機子中心軸から見た磁極角αが電気角で130〜135°であり、
さらに永久磁石は、電機子と対向面側の磁石表面角度βが約125°となるように、永久磁石の周方向端部の電機子と対向面側の角に、所定の形状の面取り部が形成されることを特徴とする。
A permanent magnet type rotating electrical machine according to the present invention is a permanent magnet type rotating electrical machine having an armature and a field provided on the outer peripheral side or inner peripheral side of the armature via a gap,
The field is
A yoke having a substantially cylindrical cross section;
Provided on the inner peripheral surface or outer peripheral surface of the yoke, provided with permanent magnets for the number of magnetic poles,
The permanent magnet has a magnetic pole angle α viewed from the central axis of the armature of 130 to 135 ° in electrical angle,
Further, the permanent magnet has a chamfered portion of a predetermined shape at the corner on the armature facing the armature at the circumferential end of the permanent magnet so that the magnet surface angle β on the armature facing surface is about 125 °. It is formed.

この発明に係る永久磁石型回転電機は、永久磁石の電機子中心軸から見た磁極角αが電気角で130〜135°であり、さらに永久磁石の電機子と対向面側の磁石表面角度βが約125°となるように、永久磁石の周方向端部の電機子と対向面側の角に、所定の形状の面取り部が形成されるようにしたので、コギングトルクの各成分を最小限にし、製品の寸法ばらつきによるコギングトルクのばらつきを抑えることができる。   In the permanent magnet type rotating electric machine according to the present invention, the magnetic pole angle α viewed from the armature central axis of the permanent magnet is 130 to 135 ° in electrical angle, and the magnet surface angle β on the side facing the armature of the permanent magnet. Since the chamfered portion of a predetermined shape is formed at the corner on the surface facing the armature at the circumferential end of the permanent magnet so that the angle is about 125 °, each component of the cogging torque is minimized. In addition, variation in cogging torque due to variation in product dimensions can be suppressed.

実施の形態1を示す図で、永久磁石型回転電機100の横断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the permanent magnet type rotating electric machine 100. 図1の界磁10の横断面図。FIG. 2 is a cross-sectional view of the field 10 of FIG. 実施の形態1を示す図で、永久磁石11の拡大図。FIG. 5 shows the first embodiment and is an enlarged view of a permanent magnet 11. 図3のA部拡大図。The A section enlarged view of FIG. 図2のヨーク12の横断面図。FIG. 3 is a cross-sectional view of the yoke 12 of FIG. 2. 図5のB部拡大図。The B section enlarged view of FIG. 実施の形態1を示す図で、変形例のヨーク112の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a yoke 112 according to a modification. 図1の電機子30の横断面図。FIG. 3 is a cross-sectional view of the armature 30 of FIG. 1. 図8の電機子鉄心31の横断面図。FIG. 9 is a cross-sectional view of the armature core 31 in FIG. 8. 実施の形態1を示す図で、図9のスロット33の拡大図。FIG. 10 shows the first embodiment and is an enlarged view of the slot 33 of FIG. 9. 実施の形態1を示す図で、磁極角α(電気角)に対するコギング成分及び磁束量の変化を示す図。FIG. 5 shows the first embodiment and shows changes in cogging component and magnetic flux amount with respect to magnetic pole angle α (electrical angle). 実施の形態1を示す図で、磁極角α(電気角)が130°で、面取り角度θが30°のときの面取り第1辺の長さLとコギング成分(振幅)との関係を示す図。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a relationship between the length L of the first chamfer side and the cogging component (amplitude) when the magnetic pole angle α (electrical angle) is 130 ° and the chamfer angle θ is 30 °. . 実施の形態1を示す図で、磁極角α(電気角)が130°で、面取り角度θが45°のときの面取り第1辺の長さLとコギング成分(振幅)との関係を示す図。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a relationship between the length L of the first chamfer side and the cogging component (amplitude) when the magnetic pole angle α (electrical angle) is 130 ° and the chamfer angle θ is 45 °. . 実施の形態1を示す図で、磁極角α(電気角)が130°で、磁石表面角度βがコギング最小となる角度になる面取り部11dの形状を示す図。The figure which shows Embodiment 1 and is a figure which shows the shape of the chamfer part 11d used as the angle where the magnetic pole angle (alpha) (electrical angle) is 130 degrees and the magnet surface angle (beta) becomes the minimum cogging. 実施の形態1を示す図で、磁極角α(電気角)が135°で、磁石表面角度βがコギング最小となる角度になる面取り部11dの形状を示す図。The figure which shows Embodiment 1, and is a figure which shows the shape of the chamfer part 11d used as the angle where the magnetic pole angle (alpha) (electrical angle) is 135 degrees and the magnet surface angle (beta) becomes the minimum cogging. 実施の形態1を示す図で、磁性体部13aの有無で、各コギング成分におけるB(磁束密度)^2を表す図。FIG. 5 shows the first embodiment, and shows B (magnetic flux density) ^ 2 in each cogging component with or without a magnetic body portion 13a.

実施の形態1.
本実施の形態では、電機子がロータ(回転子)、界磁がステータ(固定子)であるインナーロータ形のブラシ付DCモータ(永久磁石型回転電機)を対象とする(但し、電機子がステータ(固定子)、界磁がロータ(回転子)であるアウターロータ形のブラシ付DCモータでも良い)。
Embodiment 1 FIG.
In this embodiment, an inner rotor type brushed DC motor (permanent magnet type rotating electric machine) whose armature is a rotor (rotor) and whose field is a stator (stator) is an object (provided that the armature is A stator (stator) and a DC motor with a brush of an outer rotor type whose field is a rotor (rotor) may be used).

図1乃至図10は実施の形態1を示す図で、図1は永久磁石型回転電機100の横断面図、図2は図1の界磁10の横断面図、図3は永久磁石11の拡大図、図4は図3のA部拡大図、図5は図2のヨーク12の横断面図、図6は図5のB部拡大図、図7は変形例のヨーク112の横断面図、図8は図1の電機子30の横断面図、図9は図8の電機子鉄心31の横断面図、図10は図9のスロット33の拡大図である。   1 to 10 show the first embodiment. FIG. 1 is a cross-sectional view of the permanent magnet type rotating electric machine 100, FIG. 2 is a cross-sectional view of the field 10 of FIG. 1, and FIG. 4 is an enlarged view of a portion A in FIG. 3, FIG. 5 is a transverse sectional view of the yoke 12 in FIG. 2, FIG. 6 is an enlarged view of a portion B in FIG. 8 is a cross-sectional view of the armature 30 of FIG. 1, FIG. 9 is a cross-sectional view of the armature core 31 of FIG. 8, and FIG. 10 is an enlarged view of the slot 33 of FIG.

本実施の形態の永久磁石型回転電機100は、例えば、以下に示す仕様のブラシ付DCモータである。
(1)出力:10〜20W;
(2)外径:φ50[mm];
(3)永久磁石厚:4[mm];
(4)極数:4極;
(5)電機子のスロット数:6。
The permanent magnet type rotating electrical machine 100 of the present embodiment is, for example, a brushed DC motor having the following specifications.
(1) Output: 10-20W;
(2) Outer diameter: φ50 [mm];
(3) Permanent magnet thickness: 4 [mm];
(4) Number of poles: 4 poles;
(5) Number of armature slots: 6.

図1乃至図8により、永久磁石型回転電機100の構成について説明する。永久磁石型回転電機100は、少なくとも界磁10と、界磁10の内側に空隙を介して配置される電機子30とを備える。   The configuration of the permanent magnet type rotating electrical machine 100 will be described with reference to FIGS. The permanent magnet type rotating electric machine 100 includes at least a field magnet 10 and an armature 30 disposed inside the field magnet 10 through a gap.

界磁10は、断面が略円筒状のヨーク12と、ヨーク12の内周面に沿って、周方向に略等間隔に設けられる円弧状の永久磁石11とを備える。永久磁石11のヨーク12への固定方法は、接着、樹脂モールド等である。   The field magnet 10 includes a yoke 12 having a substantially cylindrical cross section, and arc-shaped permanent magnets 11 provided at substantially equal intervals in the circumferential direction along the inner peripheral surface of the yoke 12. A method for fixing the permanent magnet 11 to the yoke 12 is adhesion, resin molding, or the like.

永久磁石11は、1磁極つき1個設けられる。図2の例は、4極の界磁10であるので、4個の永久磁石11を使用している。   One permanent magnet 11 with one magnetic pole is provided. Since the example of FIG. 2 is a four-pole field 10, four permanent magnets 11 are used.

永久磁石11には、本実施の形態の永久磁石型回転電機100が、低出力(10〜20W)のブラシ付DCモータであるので、フェライト焼結磁石を用いる。フェライト焼結磁石は、Fe(酸化第2鉄)とBaCO(炭酸バリウム)もしくはSrCO(炭酸ストロンチュウム)を主原料とし、粉末冶金法により製造されるコストパフォーマンスの優れたマグネットである。 Since the permanent magnet type rotating electrical machine 100 of the present embodiment is a low output (10 to 20 W) brushed DC motor, a ferrite sintered magnet is used for the permanent magnet 11. Ferrite sintered magnet is a magnet with excellent cost performance manufactured by powder metallurgy using Fe 2 O 3 (ferric oxide) and BaCO 3 (barium carbonate) or SrCO 3 (strontium carbonate) as main raw materials. It is.

永久磁石11は、同心円の円弧を持つセグメント(分割、ここでは4分割)磁石であり、ラジアル方向に配向あるいは着磁されている。図3に示すように、永久磁石11の内周面11aは断面が円弧であり、永久磁石11の外周面11bも、断面が内周面11aの円弧と同心円の円弧である。永久磁石11の側面11c(周方向の端面)は、ラジアル方向(径方向)を向いている。   The permanent magnet 11 is a segment (divided, here divided into four) magnet having a concentric circular arc, and is oriented or magnetized in the radial direction. As shown in FIG. 3, the inner peripheral surface 11a of the permanent magnet 11 has an arc in cross section, and the outer peripheral surface 11b of the permanent magnet 11 has an arc concentric with the arc of the inner peripheral surface 11a. The side surface 11c (circumferential end surface) of the permanent magnet 11 faces the radial direction (radial direction).

永久磁石11の磁極角(界磁10の中心から見た角度)をαとする。後述するように、この磁極角αを、本実施の形態では、電気角で130〜135°とする(機械角は、4極であれば65〜67.5deg)。   The magnetic pole angle of the permanent magnet 11 (angle seen from the center of the field 10) is α. As will be described later, in the present embodiment, the magnetic pole angle α is set to 130 to 135 ° in electrical angle (the mechanical angle is 65 to 67.5 deg if there are four poles).

また、永久磁石11の磁極表面角(内周面11a)をβとする。後述するように、この磁極表面角βを、本実施の形態では、電気角で約125°とする(機械角は、4極であれば約62.5°)。   Further, the magnetic pole surface angle (inner peripheral surface 11a) of the permanent magnet 11 is β. As will be described later, in this embodiment, the magnetic pole surface angle β is set to about 125 ° in electrical angle (the mechanical angle is about 62.5 ° in the case of 4 poles).

さらに、磁極角αが電気角で130〜135°であり、且つ磁極表面角βが電気角で約125°の条件を満たすために、永久磁石11の側面11cにおける内周面11a側の角に、面取り加工を施して面取り部11dを形成している。   Further, in order to satisfy the condition that the magnetic pole angle α is 130 to 135 ° in electrical angle and the magnetic pole surface angle β is approximately 125 ° in electrical angle, the angle on the inner peripheral surface 11a side of the side surface 11c of the permanent magnet 11 is set. The chamfered portion is formed by chamfering.

永久磁石11の両端の面取り部11dは、例えば、金型成形時に形成するようにしてもよい。   You may make it form the chamfer 11d of the both ends of the permanent magnet 11 at the time of metal mold | die shaping | molding, for example.

また、永久磁石の両端の面取り部11dは、焼結後の追加工により形成するようにしてもよい。   Moreover, you may make it form the chamfer 11d of the both ends of a permanent magnet by the additional process after sintering.

図4に示すように、面取り部11dの面取り角度をθ、面取り第1辺の長さをLとする。面取り部11dの面取り角度θは、面取り部11dと永久磁石11の側面11cの延長線とのなす角度である。面取り第1辺は、永久磁石11の側面11cの延長線上における辺である。   As shown in FIG. 4, the chamfering angle of the chamfered portion 11d is θ, and the length of the chamfered first side is L. The chamfering angle θ of the chamfered portion 11d is an angle formed by the chamfered portion 11d and an extension line of the side surface 11c of the permanent magnet 11. The chamfered first side is a side on an extension line of the side surface 11 c of the permanent magnet 11.

永久磁石11は、その他のエッジも、割れ・欠け防止のため全て面取りあるいは丸取りされているが、C面取り(45deg)でも良い。   The other edges of the permanent magnet 11 are all chamfered or rounded to prevent cracking and chipping, but may be C chamfered (45 deg).

図5に示すように、ヨーク12は、例えば、鋼板製(磁性体であればよい)の略円筒状のもので、永久磁石11の間に内側に所定の長さ陥没(突出)する凸部13が、周方向に略等間隔に形成されている。凸部13の周方向両端は、永久磁石11に当接(隣接)している。この部分を、磁性体部13aとする。   As shown in FIG. 5, the yoke 12 is, for example, a substantially cylindrical shape made of a steel plate (which may be a magnetic material), and a convex portion that is recessed (projected) by a predetermined length between the permanent magnets 11. 13 are formed at substantially equal intervals in the circumferential direction. Both ends in the circumferential direction of the convex portion 13 are in contact with (adjacent to) the permanent magnet 11. This portion is referred to as a magnetic body portion 13a.

図5の場合は、極間を間にする二つの磁性体部13aが、凸部13に一体に形成されているが、図7に示す変形例のヨーク112のように、極間を間にする二つの磁性体部113aが、別々に形成されている鋼板を円筒状に曲げたものでもよい。この場合は、界磁10が4極であれば、8箇所に磁性体部113aが設けられる。   In the case of FIG. 5, the two magnetic body parts 13 a that are between the poles are formed integrally with the convex part 13. However, like the yoke 112 of the modified example shown in FIG. The two magnetic body parts 113a may be formed by bending a separately formed steel plate into a cylindrical shape. In this case, if the field 10 is 4 poles, the magnetic body part 113a is provided in 8 places.

磁性体部13aの径方向内部への突出量N(図6参照)は、永久磁石11の厚さM(図6参照)の慨略半分程度が好ましい。永久磁石11の端部の漏れ磁束を抑制するためである。   The protrusion amount N (see FIG. 6) of the magnetic part 13a in the radial direction is preferably about half the thickness M of the permanent magnet 11 (see FIG. 6). This is for suppressing the leakage magnetic flux at the end of the permanent magnet 11.

ヨーク12は、例えば、平板上の薄板(例えば、厚さ2mm程度の鋼板)を環状にまげて、端部を溶接や事前に設けたアリ溝を嵌め合わせて形成する。   The yoke 12 is formed by, for example, winding a thin plate (for example, a steel plate having a thickness of about 2 mm) in a ring shape, and welding the end portion or fitting a dovetail groove provided in advance.

一方、電機子30は、図8に示すように、少なくとも電機子鉄心31と、スロット33内に絶縁材(図示せず)を介して挿入される電機子巻線34と、回転軸35と、を備える。尚、整流子、ブラシ等は省略している。   On the other hand, as shown in FIG. 8, the armature 30 includes at least an armature core 31, an armature winding 34 inserted into the slot 33 via an insulating material (not shown), a rotating shaft 35, Is provided. Note that commutators, brushes, and the like are omitted.

電機子鉄心31は、図9に示すように、外周縁に沿って周方向に略等間隔に配置される6個のスロット33が形成されている。スロット33の間は、鉄心部でここをティース32と呼ぶ。ティース32は、径方向に周方向の幅が略一定になるように形成されている。スロット33が6個であるから、その間に形成されるティース32の数も6個である。6個のティース32は、電機子鉄心31の内部において、環状のコアバック36に連結している。コアバック36の内側に、回転軸35が嵌合する軸孔37を有する。   As shown in FIG. 9, the armature core 31 is formed with six slots 33 that are arranged at substantially equal intervals in the circumferential direction along the outer peripheral edge. Between the slots 33, this is called a tooth 32 in the iron core. The teeth 32 are formed so that the circumferential width is substantially constant in the radial direction. Since there are six slots 33, the number of teeth 32 formed therebetween is also six. The six teeth 32 are connected to an annular core back 36 inside the armature core 31. A shaft hole 37 into which the rotary shaft 35 is fitted is provided inside the core back 36.

スロット33は、図10に示すように、電機子鉄心31の外周縁に開口している。この部分をスロット開口部33a(スロットオープニング)と呼ぶ。電機子巻線34は、スロット開口部33aから、絶縁材(図示せず)が施されたスロット33に挿入される。   As shown in FIG. 10, the slot 33 opens at the outer peripheral edge of the armature core 31. This portion is called a slot opening 33a (slot opening). The armature winding 34 is inserted into the slot 33 provided with an insulating material (not shown) from the slot opening 33a.

図11は実施の形態1を示す図で、磁極角α(電気角)に対するコギング成分及び磁束量の変化を示す図である。図11では、コギング成分については、12調波、24調波、36調波、48調波について図示している。また、磁束量は、磁極角α(電気角)が180°のときを100%としている。   FIG. 11 is a diagram showing the first embodiment and is a diagram showing changes in the cogging component and the magnetic flux amount with respect to the magnetic pole angle α (electrical angle). In FIG. 11, for the cogging component, 12 harmonics, 24 harmonics, 36 harmonics, and 48 harmonics are illustrated. The amount of magnetic flux is 100% when the magnetic pole angle α (electrical angle) is 180 °.

図11に示すように、磁石表面角度β(電機子30に対向する面の磁極角αを磁石表面角度βとして区別する)は、略125°(電気角)において、コギング成分が最小となる。従って、永久磁石11の磁極角αを125°(電気角)に設定すればコギング成分は小さくできるが、一方で永久磁石11の磁束量は、磁極角αが小さくなるとともに低下する。   As shown in FIG. 11, the cogging component is minimized when the magnet surface angle β (the magnetic pole angle α of the surface facing the armature 30 is distinguished as the magnet surface angle β) is approximately 125 ° (electrical angle). Therefore, if the magnetic pole angle α of the permanent magnet 11 is set to 125 ° (electrical angle), the cogging component can be reduced. On the other hand, the amount of magnetic flux of the permanent magnet 11 decreases as the magnetic pole angle α decreases.

そこで、永久磁石11の磁極角αを、磁束量が余り低下しない、130°〜135°(電気角)に設定する。しかし、磁極角αが130°〜135°(電気角)であると、図11に示すように、磁石表面角度βの狙い値である略125°(電気角)からずれて、コギング成分が大きくなる。この傾向は、低次の12調波や24調波で顕著である。   Therefore, the magnetic pole angle α of the permanent magnet 11 is set to 130 ° to 135 ° (electrical angle) at which the amount of magnetic flux does not decrease so much. However, when the magnetic pole angle α is 130 ° to 135 ° (electrical angle), as shown in FIG. 11, the magnetic surface angle β deviates from the target value of approximately 125 ° (electrical angle), and the cogging component is large. Become. This tendency is conspicuous at low-order 12th harmonics and 24th harmonics.

本実施の形態の永久磁石型回転電機100は、永久磁石11の磁極角αを磁束量を確保できる130°〜135°(電気角)に設定するとともに、永久磁石11の側面11cにおける内周面11a側の角に、面取り加工を施して面取り部11dを形成することにより、電機子30に対向する磁石表面角度βを磁石表面角度βの狙い値である略125°(電気角)に近づけるようにしている。このとき、面取り部11dの面取り角度θは、30°程度が好ましい。   In the permanent magnet type rotating electrical machine 100 of the present embodiment, the magnetic pole angle α of the permanent magnet 11 is set to 130 ° to 135 ° (electrical angle) that can secure the amount of magnetic flux, and the inner peripheral surface of the side surface 11c of the permanent magnet 11 is set. By chamfering the corner on the 11a side to form the chamfered portion 11d, the magnet surface angle β facing the armature 30 is brought close to approximately 125 ° (electrical angle), which is the target value of the magnet surface angle β. I have to. At this time, the chamfering angle θ of the chamfered portion 11d is preferably about 30 °.

図12、図13は実施の形態1を示す図で、図12は磁極角α(電気角)が130°で、面取り角度θが30°のときの面取り第1辺の長さLとコギング成分(振幅)との関係を示す図、図13は磁極角α(電気角)が130°で、面取り角度θが45°のときの面取り第1辺の長さLとコギング成分(振幅)との関係を示す図である。   12 and 13 show the first embodiment, and FIG. 12 shows the length L of the first chamfered side and the cogging component when the magnetic pole angle α (electrical angle) is 130 ° and the chamfering angle θ is 30 °. FIG. 13 is a diagram showing the relationship with (amplitude). FIG. 13 shows the relationship between the length L of the chamfer first side and the cogging component (amplitude) when the magnetic pole angle α (electrical angle) is 130 ° and the chamfer angle θ is 45 °. It is a figure which shows a relationship.

図12に示すように、例えば、磁極角α(電気角)が130°で、面取り角度θが30°のとき、面取り第1辺の長さLが約0.75mmで、コギング成分(振幅)が最小となる。また、面取り第1辺の長さLが長くなっても、低次のコギング成分(12調波、24調波)においても、面取り第1辺の長さLが2.0mmでもコギング成分(振幅)は0.01程度である。即ち、面取り部11dの寸法のばらつきによるコギングのばらつきを、小さくすることができる。   As shown in FIG. 12, for example, when the magnetic pole angle α (electrical angle) is 130 ° and the chamfer angle θ is 30 °, the length L of the first side of the chamfer is about 0.75 mm, and the cogging component (amplitude) Is minimized. Further, even when the length L of the chamfered first side becomes long, even in the low-order cogging components (12 harmonics and 24 harmonics), the cogging component (amplitude) even if the length L of the chamfered first side is 2.0 mm. ) Is about 0.01. That is, the cogging variation due to the dimensional variation of the chamfered portion 11d can be reduced.

これに対し、図13に示すように、磁極角α(電気角)が130°で、面取り角度θが45°のときは、面取り第1辺の長さLが約0.5mmで、コギング成分(振幅)が最小となる。そして、面取り第1辺の長さLが1.0mmより大きくなると、特に低次のコギング成分(12調波、24調波)において、コギング成分(振幅)が大きくなり、図12の面取り角度θが30°のときより、例えば、12調波のコギング成分(振幅)は、面取り第1辺の長さLが約2.0mmで、2倍にもなる。従って、面取り部11dの面取り角度θは、30°程度が好ましいと言える。   On the other hand, as shown in FIG. 13, when the magnetic pole angle α (electrical angle) is 130 ° and the chamfering angle θ is 45 °, the length L of the chamfered first side is about 0.5 mm, and the cogging component (Amplitude) is minimized. When the length L of the first side of the chamfer is greater than 1.0 mm, the cogging component (amplitude) increases particularly in the low-order cogging components (12 harmonics and 24 harmonics), and the chamfer angle θ in FIG. For example, the cogging component (amplitude) of the 12th harmonic is twice as long as the length L of the chamfered first side is about 2.0 mm. Therefore, it can be said that the chamfering angle θ of the chamfered portion 11d is preferably about 30 °.

図14、図15は実施の形態1を示す図で、図14は磁極角α(電気角)が130°で、磁石表面角度βがコギング最小となる角度になる面取り部11dの形状を示す図、図15は磁極角α(電気角)が135°で、磁石表面角度βがコギング最小となる角度になる面取り部11dの形状を示す図である。   14 and 15 are diagrams showing the first embodiment, and FIG. 14 is a diagram showing the shape of the chamfered portion 11d in which the magnetic pole angle α (electrical angle) is 130 ° and the magnet surface angle β is an angle that minimizes cogging. FIG. 15 is a diagram showing the shape of the chamfered portion 11d where the magnetic pole angle α (electrical angle) is 135 ° and the magnet surface angle β is an angle at which cogging is minimized.

図14に示すように、磁極角α(電気角)が130°で、磁石表面角度β(電気角)がコギング最小となる角度(約125°)にするのは、面取り部11dの形状を以下に示すようにする。
(1)面取り角度θ=30°;
(2)面取り第1辺の長さL=0.75mm。
As shown in FIG. 14, the magnetic pole angle α (electrical angle) is 130 ° and the magnet surface angle β (electrical angle) is set to an angle (about 125 °) at which cogging is minimized. As shown in.
(1) Chamfer angle θ = 30 °;
(2) Chamfered first side length L = 0.75 mm.

また、図15に示すように、磁極角α(電気角)が135°で、磁石表面角度β(電気角)がコギング最小となる角度(約125°)にするのは、面取り部11dの形状を以下に示すようにする。
(1)面取り角度θ=30°;
(2)面取り第1辺の長さL=1.5mm。
Further, as shown in FIG. 15, the shape of the chamfered portion 11 d is such that the magnetic pole angle α (electrical angle) is 135 ° and the magnet surface angle β (electrical angle) is an angle (about 125 °) that minimizes cogging. As shown below.
(1) Chamfer angle θ = 30 °;
(2) Chamfered first side length L = 1.5 mm.

図16は実施の形態1を示す図で、磁性体部13aの有無で、各コギング成分におけるB^2(磁束密度の二乗)を表す図である。図16において、横軸はコギング成分(12調波、24調波、36調波、48調波、60調波、72調波)で、縦軸は磁束密度の二乗(B^2(FFT(Fast Fourier Transform、高速フーリエ変換)の振幅)である。   FIG. 16 is a diagram showing the first embodiment, and is a diagram showing B ^ 2 (the square of magnetic flux density) in each cogging component with or without the magnetic body portion 13a. In FIG. 16, the horizontal axis is the cogging component (12 harmonics, 24 harmonics, 36 harmonics, 48 harmonics, 60 harmonics, 72 harmonics), and the vertical axis is the square of the magnetic flux density (B ^ 2 (FFT ( (Fast Fourier Transform, fast Fourier transform) amplitude).

永久磁石11の両端に隣接するように磁性体部13a,113a(図6、図7参照)を設けることにより、永久磁石11の側面11C付近の磁路がラジアル配向より外角よりに向くため、空隙磁束密度分布がより滑らかになり、コギング各成分をより低減することができる。   By providing the magnetic body portions 13a and 113a (see FIGS. 6 and 7) so as to be adjacent to both ends of the permanent magnet 11, the magnetic path near the side surface 11C of the permanent magnet 11 is directed to the outer angle from the radial orientation. Magnetic flux density distribution becomes smoother and each component of cogging can be further reduced.

以上のように、本実施の形態の永久磁石型回転電機100は、界磁10の一周当たり、スロット33の数Sと磁極数Pの最小公倍数LCMの整数倍の数のコギングが発生する(例えば、6スロット4極であれば、12、24、36、48・・・の成分)が、永久磁石11の磁極角αを130°〜135°にすることで、モータ特性(磁束量)を確保しつつ、永久磁石11の周方向端部の面取り(面取り部11d)によって磁石表面の角度βを125°にすることにより、各コギング成分(例えば、6スロット4極であれば、12、24、36、48・・・の成分)ともに最小となる(図11参照)。   As described above, in the permanent magnet type rotating electrical machine 100 of the present embodiment, cogging occurs in a number that is an integral multiple of the least common multiple LCM of the number S of slots 33 and the number of magnetic poles P per round of the field 10 (for example, In the case of 6 slots and 4 poles, the components 12, 24, 36, 48... Ensure the motor characteristics (magnetic flux amount) by setting the magnetic pole angle α of the permanent magnet 11 to 130 ° to 135 °. However, by setting the angle β of the magnet surface to 125 ° by chamfering the chamfered edge (the chamfered portion 11d) of the permanent magnet 11, each cogging component (for example, 12, 24, 36, 48,...) Are minimum (see FIG. 11).

永久磁石11の端部の面取り部11dの面取り角度θを約30°にすることにより、面取り寸法のばらつきによるコギングのばらつきを小さくすることができる(図12、図13参照)。   By setting the chamfering angle θ of the chamfered portion 11d at the end of the permanent magnet 11 to about 30 °, variation in cogging due to variation in chamfer dimensions can be reduced (see FIGS. 12 and 13).

永久磁石11の両端に隣接するように磁性体部13a,113aを設けることにより、永久磁石11の側面11c付近の磁路がラジアル配向より外角よりに向くため、空隙磁束密度分布がより滑らかになり、コギング各成分をより低減することができる。   By providing the magnetic parts 13a and 113a so as to be adjacent to both ends of the permanent magnet 11, the magnetic path in the vicinity of the side surface 11c of the permanent magnet 11 faces more outward than the radial orientation, so that the air gap magnetic flux density distribution becomes smoother. Each component of cogging can be further reduced.

磁性体部13a,113aの径方向内部への突出量Mは、永久磁石11の厚さNの半分程度にすることにより、永久磁石11の端部の漏れ磁束を抑制することができる。   The amount M of the magnetic body portions 13a and 113a protruding inward in the radial direction can be reduced to about half of the thickness N of the permanent magnet 11, whereby the leakage magnetic flux at the end of the permanent magnet 11 can be suppressed.

永久磁石11の端部の角度30°の面取り第1辺の長さLを、磁石角αが135°であれば1.5mm、磁石角αが130°であれば0.75mm程度にすることによって、磁石表面角度βがコギング最小となる角度になる磁石表面角度βを約125°とすることができる。   The length L of the chamfered first side of the end of the permanent magnet 11 with an angle of 30 ° is set to 1.5 mm when the magnet angle α is 135 °, and about 0.75 mm when the magnet angle α is 130 °. Thus, the magnet surface angle β at which the magnet surface angle β becomes an angle at which cogging is minimized can be set to about 125 °.

10 界磁、11 永久磁石、11a 内周面、11b 外周面、11c 側面、11d 面取り部、12 ヨーク、13 凸部、13a 磁性体部、30 電機子、31 電機子鉄心、32 ティース、33 スロット、33a スロット開口部、34 電機子巻線、35 回転軸、36 コアバック、100 永久磁石型回転電機、112 ヨーク、113a 磁性体部。   10 field magnet, 11 permanent magnet, 11a inner peripheral surface, 11b outer peripheral surface, 11c side surface, 11d chamfered portion, 12 yoke, 13 convex portion, 13a magnetic body portion, 30 armature, 31 armature iron core, 32 teeth, 33 slot , 33a Slot opening, 34 Armature winding, 35 Rotating shaft, 36 Core back, 100 Permanent magnet type rotating electrical machine, 112 Yoke, 113a Magnetic body part.

Claims (6)

電機子と、前記電機子の外周側もしくは内周側に空隙を介して設けられる界磁と、を有する永久磁石型回転電機において、
前記界磁は、
断面が略円筒状のヨークと、
前記ヨークの内周面もしくは外周面に設けられた永久磁石であって、磁極数分の永久磁石と、を備え、
前記永久磁石は、前記電機子中心軸から見た永久磁石側面同士が成す磁極角αが電気角で130〜135°であり、
さらに前記永久磁石は、前記電機子と対向面側の円弧の両端が成す角度である磁石表面角度βが電気角で125°となるように、前記永久磁石の周方向端部の前記電機子と対向面側の角に、前記永久磁石の側面に対して30°の角度の面取り部が形成されることを特徴とする永久磁石型回転電機。
In a permanent magnet type rotating electrical machine having an armature and a field provided on the outer peripheral side or inner peripheral side of the armature via a gap,
The field is
A yoke having a substantially cylindrical cross section;
A permanent magnet provided on the inner peripheral surface or the outer peripheral surface of the yoke, the permanent magnet for the number of magnetic poles,
In the permanent magnet, the magnetic pole angle α formed by the sides of the permanent magnet viewed from the armature central axis is 130 to 135 ° in electrical angle,
Further, the permanent magnet has an armature at an end portion in the circumferential direction of the permanent magnet such that a magnet surface angle β, which is an angle formed by both ends of the arc on the side facing the armature , is 125 ° in electrical angle. A permanent magnet type rotating electrical machine, wherein a chamfered portion having an angle of 30 ° with respect to a side surface of the permanent magnet is formed at a corner on the opposite surface side.
前記ヨークは、前記永久磁石の両側面に隣接する部分に、前記ヨーク内径より内周側に突出する磁性体部が設けられ、前記磁性体部の径方向の突出量Nは、前記永久磁石の厚さMの半分であることを特徴とする請求項に記載の永久磁石型回転電機。 The yoke is provided with a magnetic part that protrudes from the inner diameter of the yoke to the inner peripheral side at a portion adjacent to both side surfaces of the permanent magnet, and the amount of protrusion N in the radial direction of the magnetic part is determined by the amount of the permanent magnet. permanent magnet rotating electric machine according to claim 1, half, characterized in der Rukoto thickness M. 前記永久磁石は、ラジアル配向またはラジアル着磁されていることを特徴とする請求項1又は2に記載の永久磁石型回転電機。 The permanent magnet, the permanent magnet rotating electric machine according to claim 1 or 2, characterized in that it is radially aligned or radially magnetized. 前記ヨークと前記磁性体とは、一体に形成されることを特徴とする請求項に記載の永久磁石型回転電機。 The permanent magnet type rotating electric machine according to claim 2 , wherein the yoke and the magnetic body portion are integrally formed. 前記磁性体は、前記ヨークの前記永久磁石の間の部分を内径側に陥没させて形成される凸部に設けられることを特徴とする請求項4に記載の永久磁石型回転電機。 5. The permanent magnet type rotating electric machine according to claim 4, wherein the magnetic body portion is provided on a convex portion formed by recessing a portion between the permanent magnets of the yoke toward an inner diameter side. 前記ヨークは、平板状の磁性材料の一部を陥没させて前記凸部を形成し、さらに環状に成形して端部同士を接合することで構成されることを特徴とする請求項5記載の永久磁石型回転電機。 The yoke according to claim 5, characterized in that it is constituted by by recessed portions of the plate-like magnetic material to form the convex portion, joining the ends and further formed into a ring Permanent magnet type rotating electric machine.
JP2010023951A 2010-02-05 2010-02-05 Permanent magnet type rotating electric machine Active JP5111535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023951A JP5111535B2 (en) 2010-02-05 2010-02-05 Permanent magnet type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023951A JP5111535B2 (en) 2010-02-05 2010-02-05 Permanent magnet type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2011166868A JP2011166868A (en) 2011-08-25
JP5111535B2 true JP5111535B2 (en) 2013-01-09

Family

ID=44596883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023951A Active JP5111535B2 (en) 2010-02-05 2010-02-05 Permanent magnet type rotating electric machine

Country Status (1)

Country Link
JP (1) JP5111535B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095267B2 (en) 2012-02-24 2017-03-15 株式会社クリーンクラフト Three-phase permanent magnet synchronous motor
JP5596074B2 (en) * 2012-03-29 2014-09-24 株式会社東芝 Permanent magnet type rotating electric machine
CN105471132B (en) * 2014-05-29 2019-09-17 德昌电机(深圳)有限公司 Motor permanent magnet poles and motor including it
JP6530956B2 (en) 2015-04-28 2019-06-12 株式会社ミツバ Electric motor
JP6508863B1 (en) * 2018-10-26 2019-05-08 株式会社e−Gle Outer rotor type motor and electric vehicle
KR102652587B1 (en) * 2019-03-27 2024-03-28 미쓰비시덴키 가부시키가이샤 rotating electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125078U (en) * 1984-07-17 1986-02-14 松下精工株式会社 DC machine field device
JP3143632B2 (en) * 1992-09-03 2001-03-07 住友特殊金属株式会社 motor
JP2003047223A (en) * 2001-08-02 2003-02-14 Jidosha Denki Kogyo Co Ltd Rotary electric machine

Also Published As

Publication number Publication date
JP2011166868A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP6667084B2 (en) Surface magnet type motor
JP5111535B2 (en) Permanent magnet type rotating electric machine
JP5762569B2 (en) Rotor of embedded permanent magnet motor and compressor, blower and refrigeration air conditioner using the same
US20120267975A1 (en) Embedded permanent magnet electric motor
US10122231B2 (en) Rotor and rotary electric machine
US10680475B2 (en) Rotor for rotary electric machine
JP2008245336A (en) Rotor, and permanent magnet type rotary electric machine
JP2008029078A (en) Permanent magnet type synchronous motor
JP5403794B2 (en) Small motor
CN101944787B (en) Outer surface structure of magnetic steel embedded rotor
US10756584B2 (en) Electric motor
JP5326326B2 (en) Motor, electrical equipment
US11901773B2 (en) Rotating electric machine
JP2007097290A (en) Permanent magnet type reluctance dynamo-electric machine
JP2011172359A (en) Split rotor and electric motor
JP5959616B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP2014113033A (en) Embedded magnet dynamo-electric machine
JP2006320088A (en) Permanent-magnet rotary electric machine
JP2017212762A (en) Brushless motor
JP2010057313A (en) Electric motor
JP2014161206A (en) Interior magnet type rotating electrical machine
JP2014143797A (en) Magnet embedded rotary electric machine
JP2006333584A (en) Motor
US10069358B2 (en) Rotor of electric motor with permanent magnets
CN214506684U (en) Stator-rotor core structure for brushless direct current motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250