JP5110981B2 - Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device - Google Patents

Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device Download PDF

Info

Publication number
JP5110981B2
JP5110981B2 JP2007168641A JP2007168641A JP5110981B2 JP 5110981 B2 JP5110981 B2 JP 5110981B2 JP 2007168641 A JP2007168641 A JP 2007168641A JP 2007168641 A JP2007168641 A JP 2007168641A JP 5110981 B2 JP5110981 B2 JP 5110981B2
Authority
JP
Japan
Prior art keywords
transmission
rate
digital signal
signal
video signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007168641A
Other languages
Japanese (ja)
Other versions
JP2009010568A (en
Inventor
浩司 降旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2007168641A priority Critical patent/JP5110981B2/en
Publication of JP2009010568A publication Critical patent/JP2009010568A/en
Application granted granted Critical
Publication of JP5110981B2 publication Critical patent/JP5110981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Description

本発明は、テレビジョンカメラ装置等の撮像装置に用いる映像信号多重伝送装置における伝送方式の改良に関するものである。 The present invention relates to an improvement of a transmission method in a video signal multiplex transmission apparatus used for an imaging apparatus such as a television camera apparatus.

従来、テレビジョンカメラシステムでは撮像部(カメラヘッド)と制御部(Camera Control Unit:CCU)の間で本線映像信号,送り返し映像信号,音声信号,コントロール用シリアルデータ信号,及び電源の送受信の時分割双方向伝送を3重同軸(トライアックス)ケーブル1本の伝送路で行なっている。簡易方法として伝送路に通常の同軸ケーブルも用いることもある。通常、これらの信号は周波数変調され周波数多重伝送するか、デジタルで時分割多重伝送される。   Conventionally, in a television camera system, time division of transmission / reception of main line video signal, return video signal, audio signal, control serial data signal, and power supply between the imaging unit (camera head) and the control unit (Camera Control Unit: CCU). Bidirectional transmission is performed with a single triple coaxial (triax) cable. As a simple method, a normal coaxial cable may be used for the transmission line. Usually, these signals are frequency-modulated and frequency-multiplexed or digitally time-division multiplexed.

主な映像信号としてはSDTVとして有効走査線485本のNTSCと有効走査線575本のPAL、HDTVとして有効走査線720本と有効走査線1080本、SHDTVとして有効走査線2160本、UHDTVとして有効走査線4320本があり、以下代表として、NTSCで説明する。   Main video signals include NTSC with 485 effective scanning lines as SDTV and PAL with 575 effective scanning lines, 720 effective scanning lines and 1080 effective scanning lines as HDTV, 2160 effective scanning lines as SHDTV, and effective scanning as UHDTV. There are 4320 lines, and NTSC will be described as a representative.

カメラ部から出力されたNTSCの10bit4:2:2の放送用映像デジタル信号は270Mbpsのデータ量があり、送り返しの映像信号はデータ圧縮しても約50Mbpsのデータ量がある。時分割双方向伝送の場合、映像信号を時間圧縮し、約360Mbpsの信号にして短い時間で間欠的にカメラヘッドからカメラ制御装置に伝送する。そして時間圧縮により空いた期間に、カメラ制御装置からカメラヘッドの方向に360Mbpsに時間圧縮した送り返しの映像信号を短い時間で間欠的に伝送する。その処理を1秒間に数回の速度で入出力切換え器により切り替えを行なうことにより時分割双方向伝送を実現している(特許文献1)。   The NTSC 10-bit 4: 2: 2 broadcast video digital signal output from the camera unit has a data amount of 270 Mbps, and the video signal to be sent back has a data amount of about 50 Mbps even after data compression. In the case of time-division bidirectional transmission, the video signal is time-compressed to be a signal of about 360 Mbps, and is intermittently transmitted from the camera head to the camera control device in a short time. Then, during a period freed by time compression, a video signal for sending back time-compressed to 360 Mbps in the direction of the camera head from the camera control device is intermittently transmitted in a short time. The process is switched by an input / output switch at a rate of several times per second to realize time-division bidirectional transmission (Patent Document 1).

パルス波形の再生を行うことを波形等価という。通常、トライアックスケーブルの360MHzの減衰量は1kmで170dBと大きく、現状の波形等価では、約600m程度しかカメラヘッドとカメラコントロールユニットの間は延長できない。延長には、伝送された基準信号に基づき、デジタル映像信号のケーブル周波数特性の劣化を予め補正する必要がある(特許文献2)。   Performing pulse waveform reproduction is called waveform equivalence. Normally, the attenuation of 360 MHz of a triax cable is as large as 170 dB at 1 km, and with the current waveform equivalent, only about 600 m can be extended between the camera head and the camera control unit. For the extension, it is necessary to correct in advance the deterioration of the cable frequency characteristic of the digital video signal based on the transmitted reference signal (Patent Document 2).

従来の一実施例の概要と動作を図2で説明する。図2は、従来の一実施例のトライアックスカメラシステムを示すブロック図である。図2において、トライアックスカメラシステムは撮像部1とトライアックスケーブル2と制御部3で構成している。   The outline and operation of a conventional embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing a triax camera system of a conventional example. In FIG. 2, the triax camera system includes an imaging unit 1, a triax cable 2, and a control unit 3.

撮像部1の撮像素子103は、レンズ部101で結像され分解光学系102でRGBに分解された入射光を光電変換してデジタル映像信号処理部105に出力する。撮像素子103はCMOS撮像素子でも、CCD撮像素子と駆動回路とCDSとAGCとA/Dとの周辺回路でも構わない。デジタル映像信号処理部105は、映像信号のレベル増幅や輪郭強調等の処理を施し出力する。伝送路2が長い場合、映像圧縮部106で映像圧縮を行い、短い場合はそのまま時分割双方向切換部104に出力される。時分割双方向切換部104では、デジタル映像信号とデジタル音声信号とを時分割多重化し、双方向伝送する。撮像部4より出力されたシリアルデジタル信号は、トライアックスケーブル2を介して制御部5に伝送される。制御部5に伝送されたシリアルデジタル信号は、時分割双方向切換部108で分解され、もとのデジタル映像信号とデジタル音声信号とに復調し、映像伸張を行い、デジタル信号処理部141で信号処理後出力される。   The imaging element 103 of the imaging unit 1 photoelectrically converts incident light imaged by the lens unit 101 and decomposed into RGB by the separation optical system 102 and outputs the incident light to the digital video signal processing unit 105. The image sensor 103 may be a CMOS image sensor or a peripheral circuit of a CCD image sensor, a drive circuit, CDS, AGC, and A / D. The digital video signal processing unit 105 performs processing such as level amplification and edge enhancement of the video signal and outputs the result. When the transmission path 2 is long, the video compression unit 106 performs video compression. When the transmission path 2 is short, the video signal is output to the time division bidirectional switching unit 104 as it is. In the time division bidirectional switching unit 104, the digital video signal and the digital audio signal are time division multiplexed and bidirectionally transmitted. The serial digital signal output from the imaging unit 4 is transmitted to the control unit 5 via the triax cable 2. The serial digital signal transmitted to the control unit 5 is decomposed by the time-division bidirectional switching unit 108, demodulated into the original digital video signal and digital audio signal, decompressed, and the digital signal processing unit 141 Output after processing.

また、制御部5から入力し撮像部4から出力する外部映像信号も上記と同様に伝送される。   An external video signal that is input from the control unit 5 and output from the imaging unit 4 is also transmitted in the same manner as described above.

本システムでは、準備電源状態とメインオペレーション状態の2つの状態がある。準備電源状態では、インターカム回線のみが使える状態で、主に放送などを始める前に、準備段階としてカメラマンと操作卓などにいる人との通話を行う。このとき、消費電力など考慮し、DC36V程度の低電圧で電源を送っている。また、メインオペレーション状態では、電源をAC230V程度の高圧で送り運用している。   In this system, there are two states: a ready power state and a main operation state. In the ready power supply state, only the intercom line can be used, and before starting broadcasting, etc., a talk is made between the cameraman and the person at the console as a preparation stage. At this time, in consideration of power consumption and the like, the power is sent at a low voltage of about DC36V. In the main operation state, the power supply is operated at a high voltage of about 230 VAC.

ここで、一般にケーブルは周波数に応じて、減衰量が異なり、低レートで伝送を行った場合、減衰量が少ないため、ほとんと補正する必要はない。
特開平7−203399号公報 特開平8−317251号公報
Here, in general, cables have different attenuation amounts depending on the frequency, and when transmission is performed at a low rate, the attenuation amount is small, so that it is not necessary to make a correction.
Japanese Patent Laid-Open No. 7-203399 JP-A-8-317251

現行デジタルトライアックス伝送では、メインオペレーション状態時、高いレートで双方向伝送を行っているので、ケーブル長を伸ばしていったとき、けーブルの減衰特性によって、300m程度までのケーブルでしか運用できなかった。   In the current digital triax transmission, bi-directional transmission is performed at a high rate in the main operation state, so when the cable length is extended, it can be operated only with a cable up to about 300 m due to the cable attenuation characteristic. It was.

そこで、ケーブル長を伸ばすために、ケーブル長の減衰量を補正する補正回路を組み込んたシステムが望まれる。
ここで本システムは準備電源状態からメインオペレーション状態の2つの状態があり、準備電源状態からメインオペレーション状態に切り替わった時、一旦電源が切れてしまうことで、伝送状態として確立していた設定などがリセットされてしまう。
Therefore, in order to extend the cable length, a system incorporating a correction circuit that corrects the attenuation amount of the cable length is desired.
Here, this system has two states, from the ready power state to the main operation state. When the system is switched from the ready power state to the main operation state, the power is temporarily turned off, so the settings that were established as the transmission state, etc. It will be reset.

また、本システムでは消費電力低減のため、準備電源状態では低電圧で低クロックレート、メインオペレーション状態では高電圧で高クロックレートで伝送を行っている。高クロックレートではケーブルにおける減衰量が大きくなるため、ケーブル長に応じたアナログ回路ケーブル長補正回路を切り替える必要がある。しかし、準備電源状態とメインオペレーション状態では、カメラ制御部に送る電源が異なっており、準備電源状態からメインオペレーション状態に切り替わったとき、電源が一旦落ちて、異なった電源電圧に切り替わるため、カメラ制御部の回路状態も一旦リセットされてしまう。   Further, in this system, in order to reduce power consumption, transmission is performed at a low voltage and a low clock rate in the preparation power supply state, and at a high voltage and a high clock rate in the main operation state. Since the attenuation amount in the cable becomes large at a high clock rate, it is necessary to switch the analog circuit cable length correction circuit in accordance with the cable length. However, the power supply sent to the camera control unit is different between the ready power supply state and the main operation state, and when switching from the preparation power supply state to the main operation state, the power supply is temporarily turned off and the power supply voltage is switched to a different power supply voltage. The circuit state of the part is also reset once.

本発明は、上記の準備電源状態とメインオペレーション状態との双方向伝送レートの切替方法の改善を目的とする。   An object of the present invention is to improve a method for switching the bidirectional transmission rate between the above-described preparation power supply state and main operation state.

本発明は、上記の目的を達成するために、一つの伝送路を介してに、デジタル化した映像信号、音声信号、制御信号を含むデジタル信号を双方向伝送し、該デジタル信号のレートを可変する手段と準備電源と主電源の2つの電源を切り替える手段を有するデジタル映像信号多重伝送装置において、
準備電源時に低いレートで双方向伝送を行い、主電源に切り替えて再度低いレートで双方向伝送状態を確立してから、双方向伝送レートを高くする手段を具備することを特徴とする映像信号多重装置である。
In order to achieve the above object, the present invention bi-directionally transmits a digital signal including a digitized video signal, audio signal, and control signal via a single transmission line, and changes the rate of the digital signal. In a digital video signal multiplex transmission apparatus having means for switching between two power sources, a preparation power source and a main power source,
Video signal multiplexing comprising means for performing bidirectional transmission at a low rate at the time of a preparation power source, establishing a bidirectional transmission state at a low rate by switching to the main power source, and then increasing the bidirectional transmission rate Device.

また、上記において、前記デジタル信号波形の(プリブーストと波形等価との)アナログ補正手段と上記デジタル信号波形の(D/A前補正とA/D後補正との)デジタル補正手段と、前記伝送路の長さにより該アナログ補正手段と該デジタル補正手段とを可変する機能を有し、
低クロックレートで伝送状態を確立時に前記伝送路の長さを測定し、測定した前記伝送路の長さに応じて、該アナログ補正手段と該デジタル補正手段とを可変する事を特徴とする映像信号多重伝送装置である。
In the above, analog correction means (pre-boost and waveform equivalent) of the digital signal waveform, digital correction means (pre-D / A correction and post-A / D correction) of the digital signal waveform, and the transmission Having the function of varying the analog correction means and the digital correction means according to the length of the road;
An image characterized by measuring the length of the transmission line when establishing a transmission state at a low clock rate, and varying the analog correction unit and the digital correction unit according to the measured length of the transmission line This is a signal multiplex transmission apparatus.

つまり、本発明は、電源が切り替わったとき、一旦低い双方向伝送レートでリセットされたケーブル補正回路などの設定データをもう一度確立した後、高い双方向伝送レートの双方向伝送に切り替える事を特徴とする映像信号多重伝送装置である。   In other words, the present invention is characterized in that, when the power is switched, after setting data such as a cable correction circuit once reset at a low bidirectional transmission rate is established once again, switching to bidirectional transmission at a high bidirectional transmission rate is performed. This is a video signal multiplex transmission apparatus.

また、上記の映像信号多重伝送装置を具備する撮像装置である。   Moreover, it is an imaging device provided with said video signal multiplex transmission apparatus.

以上説明したように本発明によれば、電源電圧と双方向伝送のビットレートとが切り替わる起動時でもケーブル長が延びたときに生じる周波数補正と位相補正との信号劣化を送信側と受信側とで改善して正常に双方向伝送状態を確立することができ、デジタル映像信号多重伝送装置においてもケーブル長を延ばすことができる。   As described above, according to the present invention, the signal degradation between the frequency correction and the phase correction that occurs when the cable length is extended even at the start-up when the power supply voltage and the bit rate of bidirectional transmission are switched between the transmission side and the reception side. In this way, the bidirectional transmission state can be normally established and the cable length can be extended even in the digital video signal multiplex transmission apparatus.

以下、本発明の一実施例を、本発明の一実施例のトライアックスカメラシステムの全体を示すブロック図の図1を使って説明する。まず制御部3より圧縮された映像信号、CPUデータ、ユーティリティデータ(波形補正回路設定データ等)、音声信号が多重され、P/S144でシリアル信号化し、過補正回路133、時分割双方向多重部108とAC分離フィルタ129を通り、AC電源と重畳し、トライアックスケーブル2を通り、撮像部4に伝送される。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 which is a block diagram showing an entire triax camera system according to an embodiment of the present invention. First, the compressed video signal, CPU data, utility data (waveform correction circuit setting data, etc.) and audio signal are multiplexed by the control unit 3 and converted into a serial signal at P / S 144, and the overcorrection circuit 133, time-division bidirectional multiplexing unit 108 and the AC separation filter 129, superimposed on the AC power supply, passed through the triax cable 2, and transmitted to the imaging unit 4.

撮像部4では、AC分離フィルタ124でAC電源と伝送信号を分離する。分離された伝送信号は、アナログ波形補正回路119、デジタル波形補正回路118で、ケーブル劣化による波形整形を行い、クロック再生117でクロック再生され、S/P116でパレレル信号に戻され、映像信号は映像伸張部115から映像出力される。音声信号も同様に、音声処理部114で伸張されDAC111でアナログ音声となり、出力される。   In the imaging unit 4, the AC power supply and the transmission signal are separated by the AC separation filter 124. The separated transmission signal is subjected to waveform shaping due to cable deterioration by the analog waveform correction circuit 119 and the digital waveform correction circuit 118, is recovered by the clock recovery 117, and is returned to the parallel signal by the S / P 116. Video is output from the decompression unit 115. Similarly, the audio signal is expanded by the audio processing unit 114, converted to analog audio by the DAC 111, and output.

また、撮像部4からは、入射された光は、レンズ101を通り、色分解光学系(Prism)102で赤(R)、緑(G)、青(B)の3色に分光され、それぞれ撮像素子103によってデジタル映像信号に変換される。撮像素子103はCMOS撮像素子でも、CCD撮像素子と駆動回路とCDSとAGCとA/Dでも構わない。   The incident light from the imaging unit 4 passes through the lens 101 and is split into three colors of red (R), green (G), and blue (B) by the color separation optical system (Prism) 102, respectively. It is converted into a digital video signal by the image sensor 103. The image sensor 103 may be a CMOS image sensor, a CCD image sensor, a drive circuit, CDS, AGC, or A / D.

撮像素子103からのデジタル映像信号は、デジタル映像信号処理器105でブラックバランス、ホワイトバランス、γ補正等の信号処理が施される。デジタル映像信号処理器105からの出力信号は、映像圧縮部106で映像圧縮し、音声信号、CPUデータ、ユーティリティデータ(ケーブル補正回路設定データ等)と多重され、P/S107でシリアル信号化し、過補正回路109、時分割双方向多重部104とAC分離フィルタ124を通り、トライアックスケーブル2を通して制御部3に伝送される。   The digital video signal from the image sensor 103 is subjected to signal processing such as black balance, white balance, and γ correction by the digital video signal processor 105. The output signal from the digital video signal processor 105 is compressed by the video compression unit 106, multiplexed with audio signals, CPU data, utility data (cable correction circuit setting data, etc.), converted into a serial signal at P / S 107, The signal is transmitted to the control unit 3 through the triax cable 2 through the correction circuit 109, the time division bidirectional multiplexing unit 104, and the AC separation filter 124.

撮像部4より伝送された信号は、AC分離フィルタ129を通り、アナログ波形補正回路132、デジタル波形補正回路137でケーブルでの信号の伝送劣化を補正し、クロック再生部138でクロック再生され、S/P139でパレレル信号に戻され、映像信号は映像伸張部140で伸張され、デジタル映像信号処理部141で処理され、出力される。また音声信号もS/P146でパレレル信号に戻され、音声処理部150で音声処理を行い、DAC151を通って、アナログ音声として出力される。   The signal transmitted from the imaging unit 4 passes through the AC separation filter 129, the signal waveform deterioration is corrected by the analog waveform correction circuit 132 and the digital waveform correction circuit 137, and the clock is recovered by the clock recovery unit 138. / P139 returns the signal to the parallel signal, and the video signal is expanded by the video expansion unit 140, processed by the digital video signal processing unit 141, and output. The audio signal is also returned to the pareler signal at S / P 146, processed by the audio processing unit 150, and output as analog audio through the DAC 151.

本実施例では、大きく分けると準備電源モード(状態)とメインオペレーションモード(状態)という2つの状態がある。   In the present embodiment, there are two states: a preparation power supply mode (state) and a main operation mode (state).

電源を起動すると、まず準備電源モードで動作が始まる。準備電源モードでは制御部3のPOWER131からDC36Vが送られる。また、音声処理部148の音声信号とCPU156からの制御信号を合成した信号が、P/S144でシリアル信号化し、過補正回路133を通って、時分割双方向多重部108とAC分離フィルタ129を通った後、DC36Vに重畳され、TRIAXケーブル2を通って、撮像部4に送信される。このときの低い双方向伝送レートは本実施例では、27MHzの1/8の3.375MHz周波数相当を使用したが、水平同期周波数の整数倍等でも構わない。制御部3から送られてきた電源とデータは、撮像部4に入って、電源はLPF125を通って、POWER126でDC/DC変換され、内部電源に使われる。データは、AC分離フィルタ124を通って、アナログ波形補正回路119、波形補正回路(STBY)122を通って、クロック再生部121でロック再生し、S/P120でパレレル信号に戻され、音声処理部114で音声処理され、音声出力される。   When the power is turned on, the operation starts in the ready power mode. In the preparation power supply mode, DC36V is sent from the POWER 131 of the control unit 3. Further, a signal obtained by synthesizing the audio signal of the audio processing unit 148 and the control signal from the CPU 156 is converted into a serial signal at P / S 144, passes through the overcorrection circuit 133, and the time division bidirectional multiplexing unit 108 and the AC separation filter 129 are connected. After passing, it is superimposed on the DC 36 V and transmitted to the imaging unit 4 through the TRIAX cable 2. In this embodiment, the low bidirectional transmission rate at this time is equivalent to 3.75 MHz of 1/8 of 27 MHz, but may be an integer multiple of the horizontal synchronization frequency. The power source and data sent from the control unit 3 enter the imaging unit 4, and the power source passes through the LPF 125, is DC / DC converted by the POWER 126, and is used as an internal power source. The data passes through the AC separation filter 124, passes through the analog waveform correction circuit 119 and the waveform correction circuit (STBY) 122, is locked and reproduced by the clock reproduction unit 121, and is returned to the parallel signal by the S / P 120, and the audio processing unit Audio processing is performed at 114 and audio output is performed.

また、撮像部4側からも、同様に、P/S107でシリアル信号化し、過補正回路109と、時分割双方向多重部104とAC分離フィルタ124を通って、制御部3に送られる。   Similarly, from the imaging unit 4 side, the signal is converted into a serial signal at P / S 107 and sent to the control unit 3 through the overcorrection circuit 109, the time division bidirectional multiplexing unit 104, and the AC separation filter 124.

準備電源モードからメインオペレーションモードに移行したときは、制御部3のPOWER131がDC36VからAC230Vに切り替わる。   When the preparation power mode is shifted to the main operation mode, the POWER 131 of the control unit 3 is switched from DC 36V to AC 230V.

撮像部4と制御部3は、双方向で伝送をしているが、この電源が切り替わるという行為で、撮像部4の電源が一旦落ちてしまうことで、双方向で伝送を行っていたデータがリセットされてしまう。メインオペレーション状態での高い双方向伝送レートは360Mbpsであるが、映像信号を圧縮すれば低くできるが、HDTVを非圧縮伝送しようとすると1500Mbpsとなる。高い双方向伝送レートでは、ケーブル長に応じて、アナログ補正回路119,132、過補正回路109,133を設定する必要があるが、このリセットされてしまうという行為で、いきなり高い双方向伝送レートで伝送を行おうとしても、どのケーブル長に設定していいのか判断することができず、双方向伝送を確立させることができない。   The image capturing unit 4 and the control unit 3 transmit data in both directions. However, when the power of the image capturing unit 4 is temporarily turned off due to the action of switching the power source, the data that has been transmitted in both directions is transferred. It will be reset. The high bidirectional transmission rate in the main operation state is 360 Mbps, but it can be reduced by compressing the video signal, but it is 1500 Mbps when attempting to transmit HDTV uncompressed. At a high bidirectional transmission rate, it is necessary to set the analog correction circuits 119 and 132 and overcorrection circuits 109 and 133 according to the cable length. Even if transmission is to be performed, it cannot be determined which cable length should be set, and bidirectional transmission cannot be established.

そこで、メイン切替時電源はAC230Vに切り替わるが、伝送は低い双方向伝送レートで伝送を行い、ケーブル長の長さを再測定し、補正回路の設定条件を決める。ケーブル長の設定条件が決定したところで、ケーブル補正回路の設定を切り替えると同時に、高い双方向伝送レートでの伝送に切り替えるという処理を行うことで、電源が切れて、設定が一旦リセットされても、安定に双方向伝送を行うことができる。   Therefore, the main switching power source is switched to AC 230 V, but transmission is performed at a low bidirectional transmission rate, the length of the cable length is measured again, and the setting conditions of the correction circuit are determined. When the cable length setting condition is determined, the cable correction circuit setting is switched and at the same time the process is switched to transmission at a high bidirectional transmission rate, even if the power is turned off and the setting is reset once, Bidirectional transmission can be performed stably.

図3に本発明の一実施例の動作状態と撮像部4への送り電源電圧、双方向伝送ビットレートの関係を示す。横軸が経過時間で、縦軸は上図は、撮像部4への送り電源電圧、下図は双方向伝送ビットレートである。まず(a)で制御部3の電源を起動し、準備電源モードを開始し、低速伝送レートを開始する。このとき制御部3から撮像部4への送り電源電圧は低圧であり、また、双方向伝送レートは低い。この準備電源モードでは、映像信号は伝送されないが、インターカムでの通話が行える。また、このときケーブル長の長さの測定を行っている。(b)の状態で準備電源モードを終了し、低速伝送レートを終了する。このとき、Δt1間は電源が切れるため、伝送も不通となる。また、撮像部4の電源が切れることで、撮像部4の設定がリセットされる。   FIG. 3 shows the relationship between the operating state of one embodiment of the present invention, the power supply voltage supplied to the image pickup unit 4, and the bidirectional transmission bit rate. The horizontal axis is the elapsed time, the vertical axis is the power supply voltage supplied to the imaging unit 4, and the lower figure is the bidirectional transmission bit rate. First, in (a), the power supply of the control unit 3 is activated, the preparation power supply mode is started, and the low-speed transmission rate is started. At this time, the feed power supply voltage from the control unit 3 to the imaging unit 4 is low, and the bidirectional transmission rate is low. In this preparatory power mode, video signals are not transmitted, but intercom calls can be made. At this time, the length of the cable is measured. In the state of (b), the preparation power supply mode is terminated and the low-speed transmission rate is terminated. At this time, since the power is cut off during Δt1, the transmission is interrupted. Further, when the power of the imaging unit 4 is turned off, the setting of the imaging unit 4 is reset.

そこで、(c)で主電源モード開始し低速伝送レート再開始し、設定したデータを撮像部4に伝送し、再設定する。(d)の状態で、再設定ができたところで、高速伝送レートを開始し、映像信号など伝送を行う。(e)では、主電源モード終了し、高速伝送レート終了する。(f)で準備電源をモード開始し、低速伝送レート開始する。
Therefore, in (c), the main power supply mode is started and the low-speed transmission rate is restarted, and the set data is transmitted to the imaging unit 4 and reset. In the state of (d), when the resetting is completed, the high-speed transmission rate is started and the video signal and the like are transmitted. In (e), the main power supply mode ends and the high-speed transmission rate ends. In (f), the standby power supply mode is started and the low-speed transmission rate is started.

本発明の一実施例の全体構成を示すブロック図。1 is a block diagram showing the overall configuration of an embodiment of the present invention. 従来の一実施例の全体構成を示すブロック図。The block diagram which shows the whole structure of one conventional example. 本発明の一実施例の動作状態とカメラ装置への送り電源電圧、伝送ビットレートの関係を示す模式図 (a)制御部電源起動、準備電源モード開始、低速伝送レート開始 (b)準備電源モード終了、低速伝送レート終了 (c)主電源モード開始、低速伝送レート再開始 (d)高速伝送レート開始 (e)主電源モード終了、高速伝送レート終了 (f)準備電源モード開始、低速伝送レート開始4 is a schematic diagram showing the relationship between the operating state of one embodiment of the present invention, the power supply voltage to the camera device, and the transmission bit rate. (A) Control unit power activation, preparation power supply mode start, low-speed transmission rate start (b) preparation power supply mode End, low-speed transmission rate end (c) Main power supply mode start, low-speed transmission rate restart (d) High-speed transmission rate start (e) Main power supply mode end, high-speed transmission rate end (f) Preparation power supply mode start, low-speed transmission rate start

符号の説明Explanation of symbols

1、4:撮像部、2:トライアックスケーブル、3、5:制御部
101:レンズ部、102:色分解光学系、
103:撮像素子(CMOS撮像素子または、CCD撮像素子と駆動回路とCDSとAGCとA/D)、
104,108:時分割双方向切替部
113,152:ADC (A/Dコンバータ)、
105,141:映像信号処理部、
106,147:映像圧縮部、
111,151,:DAC(D/Aコンバータ)
124,129:AC分離フィルタ、125,130:LPF、126:POWER
119,132:アナログ波形補正回路、118,137:デジタル波形補正回路
109,133:過補正回路、112,134:波形補正回路
115,140:映像伸張部、156,157:CPU
110,149:補正回路設定処理部
158:遅延時間処理部
107,144:P/S(パラレル−シリアル変換部)
116,120,139,146:S/P(シリアル−パラレル変換部)
117,121,138,145:クロック再生部
114,150:音声処理部
1, 4: Imaging unit, 2: Triax cable, 3, 5: Control unit 101: Lens unit, 102: Color separation optical system,
103: Image sensor (CMOS image sensor or CCD image sensor and drive circuit, CDS, AGC and A / D),
104, 108: Time-division bidirectional switching units 113, 152: ADC (A / D converter),
105, 141: video signal processing unit,
106, 147: video compression unit,
111,151,: DAC (D / A converter)
124,129: AC separation filter, 125,130: LPF, 126: POWER
119,132: Analog waveform correction circuit, 118,137: Digital waveform correction circuit
109,133: Overcorrection circuit, 112,134: Waveform correction circuit
115,140: Video expansion unit, 156,157: CPU
110,149: Correction circuit setting processor
158: Delay time processing section
107,144: P / S (parallel-serial converter)
116, 120, 139, 146: S / P (serial-parallel converter)
117,121,138,145: Clock recovery unit
114,150: Audio processor

Claims (3)

一つの伝送路を介して、デジタル化した映像信号、音声信号、制御信号を含むデジタル信号を双方向伝送し、該デジタル信号の双方向伝送レートを可変する手段と準備電源と主電源の2つの電源を切り替える手段を有するデジタル映像信号多重伝送装置において、前記デジタル信号の低レート双方向伝送で前記伝送路の長さを測定する手段を具備し、前記デジタル信号波形の波形整形のアナログ補正手段と、前記伝送路の長さにより該アナログ補正手段を可変する機能を有し、前記準備電源時に、前記デジタル信号の双方向伝送レートを可変する手段により前記デジタル信号の低レート双方向伝送を行い、前記主電源に切り替えて前記デジタル信号を再度低レート双方向伝送し、前記長さを測定する手段により、前記再度低レート双方向伝送時に前記伝送路の長さを測定し、該測定した前記伝送路の長さに応じて、前記アナログ補正手段の波形整形を可変して双方向伝送状態を確立してから、前記デジタル信号の双方向伝送レートを可変する手段により、双方向伝送レートを高くすることを特徴とする映像信号多重装置。 A digital signal including a digitized video signal, audio signal, and control signal is bidirectionally transmitted through one transmission line, and means for changing the bidirectional transmission rate of the digital signal, a preparation power source, and a main power source. the digital image signal multiplex transmission system having a means for switching the power supply, comprising means for measuring the length of the transmission line at a low rate two-way transmission of the digital signals, and analog correction means of the waveform shaping of the digital signal waveform , Having a function of varying the analog correction means according to the length of the transmission path, and performing low-rate bidirectional transmission of the digital signal by means of varying the bidirectional transmission rate of the digital signal at the time of the preparation power supply, By switching to the main power source, the digital signal is again transmitted at a low rate bidirectionally, and the length is measured again by the means for measuring the length again. The length of the transmission line is measured, and in accordance with the measured length of the transmission line, the waveform shaping of the analog correction means is varied to establish a bidirectional transmission state, and both of the digital signals A video signal multiplexing apparatus characterized in that the bidirectional transmission rate is increased by means for varying the bidirectional transmission rate. 請求項1の映像信号多重装置において、前記デジタル信号波形の前記デジタル信号波形の波形整形のデジタル補正手段を有し、前記準備電源時に、前記デジタル信号の双方向伝送レートを可変する手段により前記デジタル信号の低レート双方向伝送を行い、前記主電源に切り替えて前記デジタル信号を再度低レート双方向伝送し、前記長さを測定する手段により、前記再度低レート双方向伝送で伝送時に前記伝送路の長さを測定し、該測定した前記伝送路の長さに応じて、前記アナログ補正手段と前記デジタル補正手段との波形整形を可変して双方向伝送状態を確立してから、前記デジタル信号の双方向伝送レートを可変する手段により双方向伝送レートを高くして、前記デジタル信号を双方向伝送する事を特徴とする映像信号多重伝送装置。   2. The video signal multiplexing apparatus according to claim 1, further comprising: a digital correction means for shaping the digital signal waveform of the digital signal waveform, wherein the digital signal is changed by means for changing a bidirectional transmission rate of the digital signal at the time of the preparation power supply. Performing low-rate bi-directional transmission of signals, switching to the main power source and re-transmitting the digital signal again at low-rate bi-directional transmission, and measuring the length of the transmission path at the time of transmission again by the low-rate bi-directional transmission And measuring the length of the transmission path and varying the waveform shaping between the analog correction means and the digital correction means to establish a bidirectional transmission state, and then the digital signal. Video signal multiplex transmission device characterized in that the digital signal is bidirectionally transmitted by increasing the bidirectional transmission rate by means for varying the bidirectional transmission rate 請求項1乃至請求項2のいずれか片方の映像信号多重伝送装置を具備することを特徴とする撮像装置。   An imaging apparatus comprising the video signal multiplex transmission apparatus according to any one of claims 1 and 2.
JP2007168641A 2007-06-27 2007-06-27 Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device Active JP5110981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168641A JP5110981B2 (en) 2007-06-27 2007-06-27 Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168641A JP5110981B2 (en) 2007-06-27 2007-06-27 Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device

Publications (2)

Publication Number Publication Date
JP2009010568A JP2009010568A (en) 2009-01-15
JP5110981B2 true JP5110981B2 (en) 2012-12-26

Family

ID=40325226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168641A Active JP5110981B2 (en) 2007-06-27 2007-06-27 Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device

Country Status (1)

Country Link
JP (1) JP5110981B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546745B (en) * 2013-08-13 2016-12-28 张春成 High-definition low-bit-rate network camera

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308767A (en) * 1998-04-20 1999-11-05 Matsushita Electric Ind Co Ltd Power transmission method and device thereof
JP4497584B2 (en) * 1999-07-13 2010-07-07 株式会社東芝 Interface device and button telephone system having the interface device
JP2003110893A (en) * 2001-09-27 2003-04-11 Hitachi Kokusai Electric Inc Communication method and power supply method, and television camera using the same

Also Published As

Publication number Publication date
JP2009010568A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP3356201B2 (en) Video camera and contour enhancement device
JP2005269482A (en) Signal transmission method and signal transmission device
WO2006041049A1 (en) Video signal processing device and image processing device
US6774937B1 (en) Image processing system and camera system
JPH08172565A (en) Video camera system
US6278492B1 (en) Method and apparatus for transmitting digital color signals to a camera
JP3740699B2 (en) Camera system
JP5110981B2 (en) Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device
JP4836891B2 (en) Video signal multiplex transmission device and imaging apparatus using video signal multiplex transmission device
JP3405609B2 (en) Television camera equipment
US20110321106A1 (en) Transmitter, receiver, communication equipment, communication system, transmission method and reception method
JP4819513B2 (en) Television camera and base station device
US5594499A (en) Apparatus for producing a video signal in the common intermediate format (CIF)
JPH11252438A (en) Image-pickup device
JP2000224464A (en) Television camera device
JP3555639B2 (en) Video camera
JPH09238277A (en) Camera controller
JP3348368B2 (en) Video camera and contour enhancement device
JP6796723B2 (en) Imaging device and its driving method
JP3101393B2 (en) Video signal processing device
JP3077814B2 (en) Video camera system
JPH11266442A (en) Video signal communication equipment
JP3846891B2 (en) Signal transmission method
JP2007215079A (en) Image signal multiplexer
JP2003298909A (en) Camera head unit, camera control unit and camera system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250