JP5110965B2 - High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method - Google Patents

High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method Download PDF

Info

Publication number
JP5110965B2
JP5110965B2 JP2007137032A JP2007137032A JP5110965B2 JP 5110965 B2 JP5110965 B2 JP 5110965B2 JP 2007137032 A JP2007137032 A JP 2007137032A JP 2007137032 A JP2007137032 A JP 2007137032A JP 5110965 B2 JP5110965 B2 JP 5110965B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
rolled steel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007137032A
Other languages
Japanese (ja)
Other versions
JP2008001984A (en
Inventor
一也 君島
哲夫 十代田
幸博 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007137032A priority Critical patent/JP5110965B2/en
Publication of JP2008001984A publication Critical patent/JP2008001984A/en
Application granted granted Critical
Publication of JP5110965B2 publication Critical patent/JP5110965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば980MPa級以上の引張強度を有すると共に、伸びフランジ性に優れた高強度熱延鋼板とその製法に関するものであり、この熱延鋼板は、例えば自動車用のメンバーやバンパー、ピラーなどの補強用素材として有用である。   The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of, for example, a 980 MPa class or more and excellent in stretch flangeability and a method for producing the same, and the hot-rolled steel sheet includes, for example, automobile members, bumpers, pillars, etc. It is useful as a reinforcing material.

最近、引張強度で980MPa級以上の高強度を有すると共に、成形加工性の観点から伸びフランジ性の高められた熱延鋼板の開発が進められている。高い伸びフランジ性を得るための手段としては、金属組織をフェライトやベイニティックフェライト等の単相組織とする方法や、フェライト・ベイナイトの複合組織としつつ二相間の強度差を極力抑えた組織とする方法があり、こうした組織を確保しつつ高強度を得るため、マイクロアロイによる析出強化を利用した技術が知られている。例えば特許文献1〜5には、析出強化元素であるTi等を添加することで、高強度化を図っている。   Recently, a hot-rolled steel sheet having a high tensile strength of 980 MPa or more and an improved stretch flangeability from the viewpoint of forming processability has been developed. Means for obtaining high stretch flangeability include a method in which the metal structure is a single phase structure such as ferrite and bainitic ferrite, and a structure in which the strength difference between the two phases is suppressed as much as possible while using a composite structure of ferrite and bainite. In order to obtain high strength while securing such a structure, a technique using precipitation strengthening by microalloy is known. For example, Patent Documents 1 to 5 attempt to increase the strength by adding Ti, which is a precipitation strengthening element.

また特許文献6には、合金元素の析出強化を利用するのではなく、熱間圧延直後から急冷することでマルテンサイト主体の金属組織とし、高強度化と加工性の両立を図る技術が開示されている。   Patent Document 6 discloses a technique for achieving both high strength and workability by using a martensite-based metal structure by quenching immediately after hot rolling rather than using precipitation strengthening of alloy elements. ing.

しかし、これらの方法には幾つかの問題が残されている。即ち、上記のうち特許文献1〜5等に開示されたマイクロアロイの添加による析出強化を利用した方法では、Ti等を多量に添加するため、熱間圧延前のスラブ加熱温度を高めねばならず、熱エネルギー上の難点がある。しかも、Ti等を添加し析出強化により高強度化を図った場合は、降伏比が著しく高くなるため、プレス加工後の形状凍結性が劣悪になる。
特開2000−109951号公報 特開2002−180189号公報 特開2003−89848号公報 特開2004−204326号公報 特開2004−285420号公報 特開2003−105446号公報
However, some problems remain with these methods. That is, in the method using precipitation strengthening by addition of microalloy disclosed in Patent Documents 1 to 5 among the above, Ti and the like are added in a large amount, so the slab heating temperature before hot rolling must be increased. , There are difficulties in thermal energy. In addition, when Ti or the like is added to increase the strength by precipitation strengthening, the yield ratio becomes remarkably high, and the shape freezing property after press working becomes poor.
JP 2000-109951 A JP 2002-180189 A JP 2003-89848 A JP 2004-204326 A JP 2004-285420 A JP 2003-105446 A

本発明は上記の様な従来技術の問題点に鑑みてなされたものであり、その目的は、析出強化を利用するのではなく、マルテンサイト主体の金属組織とすることで高強度を確保しつつ、高レベルの伸びフランジ特性も同時に満足し得る様な熱延鋼板とその有用な製法を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is not to use precipitation strengthening but to ensure a high strength by using a martensite-based metal structure. Another object of the present invention is to provide a hot-rolled steel sheet and a useful manufacturing method thereof that can simultaneously satisfy a high level of stretch flange characteristics.

上記課題を解決することのできた本発明の高強度熱延鋼板とは、化学成分が
C:0.03〜0.10%(化学成分の場合は質量%を表す、以下同じ)、
Si:0.2〜2.0%、
Mn:0.5〜2.5%、
Al:0.02〜0.10%、
Cr:0.2〜1.5%、
Mo:0.1〜0.5%、
を満足し、残部が鉄および不可避不純物よりなる鋼からなり、縦断面組織中に占める80面積%以上がマルテンサイト組織であるところに特徴を有している。
The high-strength hot-rolled steel sheet of the present invention that was able to solve the above-mentioned problems is that the chemical component is C: 0.03 to 0.10% (in the case of a chemical component, it represents mass%, the same applies hereinafter),
Si: 0.2-2.0%,
Mn: 0.5 to 2.5%
Al: 0.02 to 0.10%,
Cr: 0.2 to 1.5%
Mo: 0.1 to 0.5%,
In which the balance is made of steel made of iron and inevitable impurities, and 80% by area or more of the longitudinal cross-sectional structure is a martensitic structure.

本発明に係る上記鋼は、他の成分として、B:0.0050%以下(0%を含まない)を含み、あるいは更に、Ni:2.0%以下(0%を含まない)やCa:0.0050%以下(0%を含まない)を含有するものであってもよい。また本発明に係る上記高強度熱延鋼板の強度レベルは、引張強度で980MPa以上を有するものであることが望ましい。   The steel according to the present invention contains, as other components, B: 0.0050% or less (not including 0%), or Ni: 2.0% or less (not including 0%) or Ca: It may contain 0.0050% or less (excluding 0%). The strength level of the high-strength hot-rolled steel sheet according to the present invention preferably has a tensile strength of 980 MPa or more.

更に、本発明の製法は、上記特性を備えた高強度熱延鋼板の有用な製法として位置付けられる発明であり、その要旨は、上記成分組成の要件を満足する鋼鋳片を加熱してから熱間圧延を行う際に、Ar変態点以上の仕上げ温度で熱間圧延を終了した後、30℃/sec以上の平均冷却速度で冷却して400℃未満の温度で巻き取るところに特徴を有している。 Further, the production method of the present invention is an invention that is positioned as a useful production method of a high-strength hot-rolled steel sheet having the above-mentioned characteristics, and the gist thereof is that after heating a steel slab that satisfies the above-mentioned compositional requirements, When hot rolling is performed, after hot rolling is finished at a finishing temperature not lower than the Ar 3 transformation point, cooling is performed at an average cooling rate of 30 ° C./sec or higher, and winding is performed at a temperature lower than 400 ° C. is doing.

本発明によれば、Ti,Nb,V等の析出強化元素を利用するのではなく、フェライトやベイナイト組織に比べて強度の高いマルテンサイト組織を主相とし、鋼材の主としてCとMoの含有量を適正範囲に制御することによって、引張強度で980MPa級以上の高強度を確保しつつ、特に伸びフランジ性が良好で成形加工性に優れた高強度熱延鋼板を比較的安価に提供できる。   According to the present invention, rather than using precipitation strengthening elements such as Ti, Nb, and V, the main phase is a martensite structure that is stronger than ferrite and bainite structures, and the contents of mainly C and Mo in the steel material. Is controlled to an appropriate range, and a high-strength hot-rolled steel sheet having particularly good stretch flangeability and excellent formability can be provided at a relatively low cost while securing a high strength of 980 MPa or higher in tensile strength.

本発明者らは前述した様な解決課題の下で、金属組織をマルテンサイト主体の組織とすることで高強度化を果たしつつ、同時に加工性[伸びフランジ性(λ)および伸び特性(全伸び)]、特に伸びフランジ特性を改善すべく鋭意研究を重ねてきた。その結果、マルテンサイト主体の金属組織を有する鋼において伸びフランジ性を高めるには、まず第1の要件として、従来のマルテンサイト鋼よりもC含有量を低めに抑え、なお且つ鋼中に適量のMoを含有させてやれば、マルテンサイト主体の組織でありながら、伸びフランジ特性においても優れたものになることを知り、上記本発明に想到したものである。   Under the above-mentioned problems, the present inventors have achieved a high strength by making the metal structure a martensite-based structure, and at the same time, workability [stretch flangeability (λ) and elongation characteristics (total elongation )], Especially in order to improve the stretch flange characteristics. As a result, in order to improve stretch flangeability in a steel having a martensite-based metal structure, the first requirement is to keep the C content lower than that of conventional martensite steel, and an appropriate amount in the steel. It is known that if Mo is contained, the structure is mainly martensite, but also has excellent stretch flange characteristics, and the present invention has been conceived.

以下、鋼材の化学成分および金属組織を定めた理由を追って、本発明の具体的な構成を明らかにしていく。   Hereinafter, the specific configuration of the present invention will be clarified following the reasons for determining the chemical composition and the metal structure of the steel material.

まず、鋼材の化学成分を定めた理由について説明する。   First, the reason for determining the chemical composition of the steel material will be described.

C:0.03%以上、0.10%以下
Cは、焼入れ性を高め、低温変態相であるマルテンサイトを生成させて高強度化を増進する上で欠くことのできない元素であり、本発明で規定する量のマルテンサイト組織を確保して980MPa級以上の引張強度を得るには、少なくとも0.03%以上のCが必要であり、好ましくは0.04%以上含有させるのがよい。しかし、C含有量が0.10%を超えると、強度は向上するものの、本発明のもう1つの目的である伸びフランジ性が急激に低下し加工性が劣化するので、0.10%以下、好ましくは0.08%以下に抑えるのがよい。
C: 0.03% or more and 0.10% or less C is an element indispensable for enhancing hardenability and generating martensite which is a low-temperature transformation phase to promote high strength. In order to secure the amount of martensite structure specified in (1) and to obtain a tensile strength of 980 MPa class or higher, at least 0.03% or more of C is required, preferably 0.04% or more. However, if the C content exceeds 0.10%, the strength is improved, but the stretch flangeability, which is another object of the present invention, sharply decreases and the workability deteriorates. Preferably it is good to restrain to 0.08% or less.

Si:0.2%以上、2.0%以下
Siは鋼中に固溶して強度を高める元素であり、必要強度に応じて添加される。また、伸びフランジ性を劣化させるセメンタイトの生成を抑制する効果もあることから、少なくとも0.2%以上のSiが必要であり、好ましくは0.5%以上含有させるのがよい。しかし、2.0%を超えると表面欠陥が生じ易くなり、酸洗性や塗装性などを劣化させるので、上限を2.0%とする。
Si: 0.2% or more and 2.0% or less Si is an element that increases the strength by solid solution in steel, and is added according to the required strength. Moreover, since it also has the effect of suppressing the formation of cementite that deteriorates stretch flangeability, at least 0.2% or more of Si is necessary, and preferably 0.5% or more is contained. However, if it exceeds 2.0%, surface defects are liable to occur and the pickling property and paintability are deteriorated, so the upper limit is made 2.0%.

Mn:0.5%以上、2.5%以下
Mnは、焼入れ性を高めて低温変態生成物の生成を容易にする作用を有しており、980MPa級以上の引張強度を確保するには、少なくとも0.5%以上含有させねばならない。しかし、その効果は約2.5%で飽和し、それ以上の効果が発揮されなくなるばかりか、凝固偏析によってバンド状組織を形成し、加工性や耐遅れ破壊性を劣化させるので、多くとも2.5%以下に抑えるべきである。Mnのより好ましい含有量は1.0%以上、2.0%以下である。
Mn: 0.5% or more, 2.5% or less Mn has the effect of enhancing the hardenability and facilitating the generation of a low-temperature transformation product, and in order to ensure a tensile strength of 980 MPa class or more, It must be contained at least 0.5% or more. However, the effect saturates at about 2.5%, and not only the further effect is not exhibited, but also a band-like structure is formed by solidification segregation, and the workability and delayed fracture resistance are deteriorated. Should be kept below 5%. A more preferable content of Mn is 1.0% or more and 2.0% or less.

Al:0.02%以上、0.10%以下
Alは、脱酸剤として作用する他、鋼中に不可避的に混入するN(窒素)を固定し、加工性を高める上で欠くことのできない元素であり、少なくとも0.02%以上含有させる必要がある。しかし、Al含有量が多くなり過ぎると、非金属系の介在物源となって表面性状を劣化させるので、0.10%を上限とする。より好ましいAl含有量は、0.03%以上、0.05%以下である。
Al: 0.02% or more and 0.10% or less In addition to acting as a deoxidizer, Al is indispensable for fixing N (nitrogen) inevitably mixed in steel and improving workability. It is an element and needs to be contained at least 0.02% or more. However, if the Al content becomes too large, it becomes a non-metallic inclusion source and deteriorates the surface properties, so the upper limit is made 0.10%. A more preferable Al content is 0.03% or more and 0.05% or less.

Cr:0.2%以上、1.5%以下
Crは、焼入れ性を高め、熱延終了後の冷却中にフェライトやベイナイト組織の生成を抑えてマルテンサイト組織の生成を助長する作用を有しており、これらの作用を有効に発揮させるには0.2%以上含有させる必要がある。しかし、その効果は約1.5%で飽和し、それ以上に添加すると化成処理性が劣化するので、1.5%を上限とする。Crのより好ましい含有量は0.5%以上、1.0%以下である。
Cr: 0.2% or more, 1.5% or less Cr has the effect of enhancing the hardenability and suppressing the formation of ferrite and bainite structures during the cooling after hot rolling to promote the formation of martensite structures. In order to effectively exhibit these actions, it is necessary to contain 0.2% or more. However, the effect is saturated at about 1.5%, and if it is added more than that, the chemical conversion processability deteriorates, so 1.5% is made the upper limit. The more preferable content of Cr is 0.5% or more and 1.0% or less.

Mo:0.1%以上、0.5%以下
Moは本発明において最も重要な元素であり、高い伸びフランジ性を備えたマルテンサイト主体の組織を得る上で欠くことのできない元素である。例えばC,Mn,Cr等の如く、焼入れ性を向上させる他の元素によってもマルテンサイト主体の金属組織を得ることは可能である。しかし、Mo以外の元素では、高強度と優れた伸びフランジ性を両立させることができず、目的達成のためには適量のMoを添加することが必須となる。
Mo: 0.1% or more and 0.5% or less Mo is the most important element in the present invention, and is an element indispensable for obtaining a martensite-based structure having high stretch flangeability. For example, a martensite-based metal structure can be obtained by other elements that improve the hardenability, such as C, Mn, and Cr. However, elements other than Mo cannot achieve both high strength and excellent stretch flangeability, and it is essential to add an appropriate amount of Mo to achieve the purpose.

Moを使用することで、高い伸びフランジ性を備えたマルテンサイト組織が得られる理由は、現在のところ未だ明確にされていないが、本発明鋼はC含有量が少ないためMs点が高く、熱間圧延後の冷却中に比較的高い温度でマルテンサイト変態が起こった鋼板は、巻取り温度までの冷却中にセルフテンパー状態となって析出物が生成し、伸びフランジ性を劣化させると考えられ、Moは該セルフテンパー状態での析出物の生成を抑制し、伸びフランジ性の劣化を抑制するのではないかと考えている。   The reason why a martensitic structure with high stretch flangeability can be obtained by using Mo has not yet been clarified yet, but the steel of the present invention has a high Ms point due to its low C content, Steel sheets that have undergone martensitic transformation at a relatively high temperature during cooling after hot rolling are considered to be in a self-tempered state during cooling to the coiling temperature, producing precipitates and deteriorating stretch flangeability. , Mo is considered to suppress the formation of precipitates in the self-tempered state and suppress the deterioration of stretch flangeability.

こうした効果を有効に発揮させるには、Moを0.1%以上含有させねばならないが、その効果は約0.5%の添加で飽和するので、それ以上の添加は経済的に無駄である。Moのより好ましい含有量は0.2%以上、0.4%以下である。   In order to exhibit such an effect effectively, Mo must be contained in an amount of 0.1% or more. However, since the effect is saturated by the addition of about 0.5%, the addition of more than that is economically wasteful. A more preferable content of Mo is 0.2% or more and 0.4% or less.

本発明で用いる鋼の必須構成元素は以上の通りであり、残部は実質的にFeである。「実質的に」とは不可避的に混入してくる元素、例えばP(リン),S(硫黄),N(窒素),O(酸素)などの不可避不純物の混入を許容するという意味である。上記元素が含まれることによる障害を抑えるには、例えば、Pは0.015%以下、Sは0.01%以下、Nは0.006%以下、Oは0.003%以下に抑えるのがよい。   The essential constituent elements of the steel used in the present invention are as described above, and the balance is substantially Fe. “Substantially” means that inevitable contamination of elements inevitably mixed, such as P (phosphorus), S (sulfur), N (nitrogen), and O (oxygen) is allowed. In order to suppress obstacles due to the inclusion of the above elements, for example, P is 0.015% or less, S is 0.01% or less, N is 0.006% or less, and O is 0.003% or less. Good.

ちなみにPは、鋼中に固溶して強度を高める作用を有しているが、多すぎると結晶粒界に偏析して部品の衝撃特性や冷間加工性を低下させるので、できるだけ少なく抑えるのがよく、多くとも0.015%以下、好ましくは0.010%以下に抑えるのがよい。   By the way, P has the effect of increasing the strength by solid solution in steel, but if it is too much, it segregates at the grain boundaries and lowers the impact properties and cold workability of the parts, so keep it as small as possible. It is good to keep it at most 0.015% or less, preferably 0.010% or less.

Sは、MnSなどの非金属系介在物源となって加工性を劣化させるので、可及的に少なく抑えるのがよい。尚こうしたSの弊害は、後述する如く適量のCaを添加し、加工性阻害要因であるS系介在物の形態を制御することである程度抑制できるが、その場合でも、Sによる加工性の劣化を確実に抑えるには、S含有量を0.01%以下に抑えるべきである。   Since S becomes a source of non-metallic inclusions such as MnS and deteriorates workability, it is preferable to suppress S as much as possible. Such adverse effects of S can be suppressed to some extent by adding an appropriate amount of Ca as will be described later, and controlling the form of S-based inclusions, which is a factor that hinders workability, but even in this case, deterioration of workability due to S is prevented. In order to suppress it reliably, S content should be suppressed to 0.01% or less.

その他、NやOは溶製時の雰囲気ガスから不可避的に微量含まれてくるが、これらは何れも非金属系介在物の生成源となって加工性などに悪影響を及ぼす。そのため、Nを好ましくは0.004%以下、より好ましくは0.003%以下、更により好ましくは0.001%以下に抑えるのがよい。また、Oを好ましくは0.003%以下、より好ましくは0.002%以下、更により好ましくは0.001%以下に抑えるのがよい。   In addition, N and O are inevitably contained in a small amount from the atmosphere gas at the time of melting, but both of these become a generation source of non-metallic inclusions and adversely affect workability. Therefore, N is preferably 0.004% or less, more preferably 0.003% or less, and even more preferably 0.001% or less. O is preferably 0.003% or less, more preferably 0.002% or less, and even more preferably 0.001% or less.

また本発明で用いる鋼材には、上記元素に加えて、所望に応じて更なる付加的特性を与えるため、下記の様な選択元素を含有させることも有効であり、それらの元素を添加したものも本発明の技術的範囲に含まれる。   In addition to the above elements, the steel material used in the present invention is effective to contain the following selective elements in order to give further additional characteristics as desired. Is also included in the technical scope of the present invention.

B:0.005%以下
Bは、CrやMoと同様に焼入れ性を高め、フェライトまたはベイナイト変態を抑えてマルテンサイト変態を促進する。こうした効果は数ppm程度の極微量で発揮されるが、約0.005%でその効果は飽和するので、経済性を考慮するとそれ以下に抑えるのがよい。
B: 0.005% or less B, like Cr and Mo, enhances hardenability, suppresses ferrite or bainite transformation, and promotes martensitic transformation. Such an effect is exhibited in a very small amount of about several ppm. However, since the effect is saturated at about 0.005%, it is better to keep it below that in consideration of economy.

Ni:2.0%以下
Niは、強度やベイナイト変態には殆ど影響を及ぼさないが、遅れ破壊を抑える効果を有しているので、特に耐遅れ破壊性の向上が求められる場合は適量添加するのがよい。しかしその効果は約2.0%で飽和するので、経済性を考慮すると2.0%以下に抑えるべきである。
Ni: 2.0% or less Ni has little effect on strength and bainite transformation, but has an effect of suppressing delayed fracture, so an appropriate amount is added especially when improvement in delayed fracture resistance is required. It is good. However, since the effect is saturated at about 2.0%, it should be suppressed to 2.0% or less in consideration of economy.

Ca:0.0050%以下
Caは、不可避的に混入することのあるS系介在物の形態を制御し、加工性に与える悪影響を軽減する作用を有しているが、多過ぎてもその効果は飽和し、コストアップを招くだけであるから、経済性考えると0.0050%以下に抑えるべきである。
Ca: 0.0050% or less Ca has the effect of controlling the form of S-based inclusions that may inevitably be mixed and reducing adverse effects on processability, but the effect is too large. Saturates and causes only an increase in cost, so it should be suppressed to 0.0050% or less in view of economy.

本発明の鋼板は、上記化学成分組成からなり、特にC含有量を抑えた状態で適量のMoと、その他、適量のSiやCrを含有させることで、TiやNb,Vなどの析出強化を利用することなく、フェライトやベイナイト組織に比べて強度の高いマルテンサイト主体の金属組織とし、980MPa級レベル以上の引張強度を確保しつつ、伸びフランジ性の高められた熱延鋼板とするのであるが、本発明で意図するレベルの強度と伸びフランジ性を得るには、全金属組織中に占めるマルテンサイト面積率が少なくとも80%以上でなければならず、好ましくは90%以上、更に好ましくは、ほぼ100%がマルテンサイト組織であることが望ましい。   The steel sheet of the present invention is composed of the above-mentioned chemical composition, and in particular, by containing an appropriate amount of Mo in a state where the C content is suppressed, and other appropriate amounts of Si and Cr, precipitation strengthening of Ti, Nb, V, and the like can be achieved. Without using it, it is a martensite-based metal structure having a strength higher than that of ferrite or bainite, and a hot-rolled steel sheet with enhanced stretch flangeability while ensuring a tensile strength of 980 MPa level or higher. In order to obtain the strength and stretch flangeability intended by the present invention, the martensite area ratio in the total metal structure must be at least 80% or more, preferably 90% or more, more preferably about It is desirable that 100% has a martensite structure.

20面積%未満の量で混入が許容されるマルテンサイト以外の組織の種類は特に制限されず、例えばフェライト組織、ベイナイト組織、残留オーステナイト組織などが挙げられ、これらの1種もしくは2種以上が含まれていても構わない。なお、上記金属組織は、鋼板の縦方向断面をレペラー腐食し、日本電子社製の真空蒸着装置「JEE−4X」によるC蒸着処理を施した後、日本電子社製のEPMA「JXA−8100」を用いて観察した組織写真(倍率:1000倍)を基に、NIRECO社製の画像解析装置「LUZEX−F」によって求めた。   The type of structure other than martensite allowed to be mixed in an amount of less than 20% by area is not particularly limited, and examples thereof include ferrite structure, bainite structure, retained austenite structure, etc., including one or more of these. It does not matter. In addition, the metallographic structure corrodes the longitudinal section of the steel plate with a repeller, and after performing a C vapor deposition process using a vacuum vapor deposition apparatus “JEE-4X” manufactured by JEOL Ltd., EPMA “JJA-8100” manufactured by JEOL Ltd. Was obtained by an image analysis apparatus “LUZEX-F” manufactured by NIRECO on the basis of a tissue photograph (magnification: 1000 times) observed using the above.

次に、上記金属組織を得るための条件を主体にして、本発明に係る熱延鋼板の製造方法について説明する。   Next, a method for producing a hot-rolled steel sheet according to the present invention will be described based on the conditions for obtaining the metal structure.

本発明の熱延鋼板は、上記成分組成の要件を満たす鋼片を加熱(均熱)してから熱間圧延し、冷却・巻取りすることによって製造されるが、この際の鋳片加熱温度(SRT)は、上記添加元素が固溶するのに必要な温度であればよく、通常は、おおむね、1000℃以上、1250℃以下の温度が採用される。生産コストなどを考慮すると、SRTの上限は約1200℃であることが好ましい。即ち、通常の析出強化元素であるTi,Nb,V等では、オーステナイト組織中に固溶させるのに1200〜1300℃以上の高温加熱を必要とするが、上記成分系の鋼材であれば、1000℃以上、1200℃レベル以下の加熱温度で添加元素を十分に固溶させることができる。均熱時間は特に制限されず、前述した添加元素は120分程度で固溶するが、確実を期して200〜240分程度とするのがよく、300分以上の加熱は生産性を落とすだけであるので無駄である。   The hot-rolled steel sheet of the present invention is manufactured by heating (soaking) a steel slab that satisfies the above-mentioned component composition, followed by hot rolling, cooling, and winding. (SRT) may be at a temperature necessary for the additive element to be dissolved, and generally, a temperature of 1000 ° C. or higher and 1250 ° C. or lower is generally employed. Considering production costs and the like, the upper limit of SRT is preferably about 1200 ° C. That is, in the case of Ti, Nb, V, etc., which are ordinary precipitation strengthening elements, high temperature heating of 1200 to 1300 ° C. or higher is required to make a solid solution in the austenite structure. The additive element can be sufficiently dissolved at a heating temperature of not lower than 1200 ° C. and not higher than 1200 ° C. The soaking time is not particularly limited, and the above-mentioned additive elements are dissolved in about 120 minutes, but it is better to be about 200 to 240 minutes for the sake of certainty, and heating for 300 minutes or more only reduces productivity. It is useless.

均熱後の熱間圧延に当っては、仕上げ温度(FDT)をAr変態点以上とし、その後、30℃/sec以上の平均冷却速度で巻取り温度まで冷却し、400℃未満の温度で巻取りを行う。ちなみに、熱間圧延の仕上げ温度がAr変態点未満になるとフェライトの生成量が増え、このフェライト相は加工を受けたまま残ってしまうため、延性を劣化させるばかりか、面内異方性を高めて材質劣化を生じるからである。熱間圧延のより好ましい仕上げ温度は「Ar変態点+30℃以上」である。仕上げ温度の上限は規定しないが、熱効率や生産性などを総合的に考えると「Ar変態点+80℃程度」が上限と考えられる。 In hot rolling after soaking, the finishing temperature (FDT) is set to the Ar 3 transformation point or higher, and then cooled to the coiling temperature at an average cooling rate of 30 ° C./sec or higher, and at a temperature of less than 400 ° C. Take up. Incidentally, when the finishing temperature of hot rolling becomes less than the Ar 3 transformation point, the amount of ferrite produced increases, and this ferrite phase remains processed, so that not only the ductility is deteriorated but also the in-plane anisotropy is reduced. It is because it raises and material deterioration occurs. A more preferable finishing temperature of the hot rolling is “Ar 3 transformation point + 30 ° C. or higher”. Although the upper limit of the finishing temperature is not specified, “Ar 3 transformation point + about 80 ° C.” is considered as the upper limit when comprehensively considering thermal efficiency and productivity.

本明細書において、Ar変態点は、下記式で算出される。
Ar
910-203√[C]+44.7[Si]+31.5[Mo]-30[Mn]-11[Cr]+700[P]+400[Al]-15.2[Ni]+104[V]-20[Cu]+400[Ti]
式中、[ ]は、各元素の含有量(質量%)を意味する。
In the present specification, the Ar 3 transformation point is calculated by the following formula.
Ar 3 =
910-203√ [C] +44.7 [Si] +31.5 [Mo] -30 [Mn] -11 [Cr] +700 [P] +400 [Al] -15.2 [Ni] +104 [V] -20 [ Cu] +400 [Ti]
In the formula, [] means the content (% by mass) of each element.

熱間圧延後の平均冷却速度は、ポリゴナルフェライトやベイナイトなどの低温変態生成物の生成を極力抑えてマルテンサイト組織分率を高めるため、30℃/sec以上、より好ましくは50℃/sec以上を採用すべきである。ちなみに、熱間圧延後の平均冷却速度が30℃/sec未満では、冷却工程で生成するポリゴナルフェライトやベイナイトの量が無視できなくなり、本発明で意図するマルテンサイト面積率(少なくとも80面積%以上)を確保できなくなる。   The average cooling rate after hot rolling is 30 ° C./sec or more, more preferably 50 ° C./sec or more, in order to suppress the formation of low-temperature transformation products such as polygonal ferrite and bainite as much as possible to increase the martensite structure fraction. Should be adopted. Incidentally, if the average cooling rate after hot rolling is less than 30 ° C./sec, the amount of polygonal ferrite and bainite produced in the cooling process cannot be ignored, and the martensite area ratio intended by the present invention (at least 80 area% or more) ) Cannot be secured.

熱間圧延を終了し冷却後に残ったオーステナイトはマルテンサイトに変態するが、本発明で規定する前掲の成分系では、冷却後の巻取り温度を400℃未満とし、より好ましくは350℃以下とすることで、オーステナイトをマルテンサイトに変態させることができ、その結果として希望するマルテンサイト面積率を確保できる。この時の温度が400℃以上になると、オーステナイトの20%以上がベイナイトに変態し、それ以上の高温になるとフェライト変態やパーライト変態が起こり、80%以上のマルテンサイト面積率を確保できなくなる。   The austenite remaining after cooling after finishing the hot rolling is transformed into martensite. In the above-mentioned component system defined in the present invention, the coiling temperature after cooling is less than 400 ° C, more preferably 350 ° C or less. Thus, austenite can be transformed into martensite, and as a result, a desired martensite area ratio can be secured. If the temperature at this time is 400 ° C. or higher, 20% or more of austenite is transformed into bainite, and if the temperature is higher than that, ferrite transformation or pearlite transformation occurs, and it becomes impossible to secure a martensite area ratio of 80% or more.

本発明の高強度熱延鋼板は、上記の様に化学成分の特定された鋼材を使用し、且つ熱間圧延時の仕上げ温度やその後の冷却速度、更には巻取り温度などを適正に制御することで、980MPa級以上の高強度を有すると共に、特に伸びフランジ性が良好で優れた成形性を有する高強度熱延鋼板を安価に提供できる。   The high-strength hot-rolled steel sheet of the present invention uses a steel material having a specified chemical component as described above, and appropriately controls the finishing temperature during hot rolling, the subsequent cooling rate, and the coiling temperature. Thus, a high-strength hot-rolled steel sheet having high strength of 980 MPa class or more, particularly good stretch flangeability and excellent formability can be provided at low cost.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実験例
表1に示す成分組成の鋼材を真空溶解法により溶製してから鋳造し、得られた各鋳片を用いて表2〜表4に示す条件で熱間圧延を行うことにより熱延鋼板を得た。表1の鋼材において、O量はおおむね、0.001〜0.002%である。得られた熱延鋼板の金属組織を下記の方法で確認すると共に、機械的特性を下記の方法で測定し、結果を表2〜表4に併記した。表2〜表4には、使用した表1の鋼種No.を併記している。
Experimental Example A steel material having the composition shown in Table 1 was cast after being melted by a vacuum melting method, and hot rolling was performed by performing hot rolling under the conditions shown in Tables 2 to 4 using the obtained slabs. A steel plate was obtained. In the steel materials of Table 1, the amount of O is approximately 0.001 to 0.002%. While confirming the metal structure of the obtained hot-rolled steel sheet by the following method, the mechanical characteristics were measured by the following method, and the results are shown in Tables 2 to 4. Tables 2 to 4 show the steel type No. of Table 1 used. Is also written.

[金属組織]
組織同定法;鋼板の縦方向断面をレペラー腐食し、マルテンサイト相とその他の相とを見た目で区別できる様にする。次いで、日本電子社製の真空蒸着装置「JEE−4X」によるC蒸着処理を行った後、日本電子社製のEPMA「JXA−8100」を用いて組織観察(倍率:1000倍)し、これを基に、NIRECO社製の画像解析装置「LUZEX−F」によってマルテンサイト面積率を求めた。後記する表2〜表4の「組織分率」の欄において、Mはマルテンサイトであり、「その他」は、フェライト、ベイナイト、残留オーステナイトである。
[Metal structure]
Structural identification method: The longitudinal section of the steel sheet is repeller-corroded so that the martensite phase and other phases can be visually distinguished. Next, after performing a C deposition process using a vacuum deposition apparatus “JEE-4X” manufactured by JEOL Ltd., the structure was observed (magnification: 1000 times) using EPMA “JXA-8100” manufactured by JEOL Ltd. Based on the image analysis apparatus “LUZEX-F” manufactured by NIRECO, the martensite area ratio was determined. In the column of “structure fraction” in Tables 2 to 4 to be described later, M is martensite, and “others” is ferrite, bainite, and retained austenite.

[引張強度(TS:MPa)、降伏強度(YS:MPa)、伸び率(El:%)、降伏比(YR=YS/TS)]:各供試鋼板からJIS 5号引張試験片を作成し、島津製作所製の引張試験機「AG−100」によって求めた。本実施例では、引張強度が980MPa以上を合格(○)とし、980MPa未満を不合格(×)とした。   [Tensile strength (TS: MPa), yield strength (YS: MPa), elongation (El:%), yield ratio (YR = YS / TS)]: JIS No. 5 tensile test piece was prepared from each test steel plate. The tensile tester “AG-100” manufactured by Shimadzu Corporation was used. In this example, a tensile strength of 980 MPa or more was regarded as acceptable (◯), and a tensile strength of less than 980 MPa was regarded as unacceptable (x).

[穴拡げ率(λ;%)]:各供試鋼板に、初期穴径(d)として直径10mmの打抜き穴を明け、頂角60°の円錐ポンチを用いて該打抜き穴を拡げる。そして、打抜き穴部分に生じたクラックが板圧を貫通した時の穴径(d)を測定し、下記式によって穴拡げ率(λ;%)を求める。この値は、成形加工性の1つである伸びフランジ性の評価指標として一般的に採用されている。本実施例では、伸びフランジ性が、おおむね、70%以上を合格(○)とし、おおむね、70%未満を不合格(×)とした。
穴拡げ率(λ;%)=(d−d)×100/d
[Hole expansion ratio (λ;%)]: A punched hole having a diameter of 10 mm is formed as an initial hole diameter (d 1 ) in each test steel sheet, and the punched hole is expanded using a conical punch having a vertex angle of 60 °. The crack generated in the punched hole portion measures the diameter (d 2) when passed through the plate thickness, rate hole expansion by the following equation; Request (lambda%). This value is generally adopted as an evaluation index of stretch flangeability, which is one of the moldability. In this example, the stretch flangeability was generally 70% or more as acceptable (O), and generally less than 70% as unacceptable (X).
Hole expansion rate (λ;%) = (d 2 −d 1 ) × 100 / d 1

これらの表より、次の様に考えることができる。   From these tables, we can think as follows.

表2の実験No.1〜7は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.1を用い、主に、巻取り温度(CT)の影響を検討した例である。表2より、本発明で規定する温度範囲(400℃未満)で巻き取った実験No.1〜4は、いずれも、所望の強度が確保され、且つ、伸びフランジ特性も良好であることが分かる。これに対し、No.5〜7は巻取り温度が本発明の規定範囲を超えているため、マルテンサイト組織量が80%未満で穴拡げ率(λ)が低い。   Experiment No. 2 in Table 2 Nos. 1 to 7 satisfy the components in the steel of the present invention and contain steel elements Nos. 1 is an example in which the influence of the coiling temperature (CT) is mainly examined. From Table 2, the experiment No. 1 was wound up in the temperature range (less than 400 ° C.) defined in the present invention. As for 1-4, as for all, it turns out that desired intensity | strength is ensured and the stretch flange characteristic is also favorable. In contrast, no. In Nos. 5 to 7, since the coiling temperature exceeds the specified range of the present invention, the martensite texture is less than 80% and the hole expansion rate (λ) is low.

表2のNo.8および9は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.2を用い、主に、巻取り温度(CT)を本発明の範囲内で変えた例であるが、いずれも、強度および伸びフランジ性の両方に優れている。同様に、表2のNo.10〜12は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.3を用い、主に、巻取り温度(CT)を本発明の範囲内で変えた例であるが、いずれも、強度および伸びフランジ性の両方に優れている。   No. in Table 2 Nos. 8 and 9 satisfy the components in the steel of the present invention and include steel type Nos. 2 is mainly an example in which the coiling temperature (CT) is changed within the scope of the present invention, and both are excellent in both strength and stretch flangeability. Similarly, no. Nos. 10 to 12 satisfy the components in the steel of the present invention and contain the preferable selection elements of steel types No. 1 in Table 1. 3 is mainly an example in which the coiling temperature (CT) is changed within the scope of the present invention, and both are excellent in both strength and stretch flangeability.

表2の実験No.13および14は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.4を用い、主に、熱間圧延終了後の平均冷却速度(CR)の影響を検討した例であり、本発明で定める冷却条件(CR:30℃/s以上)を満足するNo.13は、上記の冷却条件を満足しないNo.14に比べて多くのマルテンサイト量が得られるため、所望の引張強度および穴拡げ率(λ)が確保されている。同様に、表2の実験No.19および20は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.7を用い、主に、熱間圧延終了後の平均冷却速度(CR)の影響を検討した例であり、本発明で定める冷却条件を満足するNo.19は、上記の冷却条件を満足しないNo.20に比べて多くのマルテンサイト量が得られるため、所望の引張強度および穴拡げ率(λ)が確保されている。   Experiment No. 2 in Table 2 Nos. 13 and 14 satisfy the components in the steel of the present invention and contain steel type Nos. 4 is an example in which the influence of the average cooling rate (CR) after the end of hot rolling was mainly examined, and No. 4 satisfying the cooling condition (CR: 30 ° C./s or more) defined in the present invention. No. 13 is a No. 13 that does not satisfy the above cooling conditions. Since a larger amount of martensite than 14 can be obtained, the desired tensile strength and hole expansion rate (λ) are ensured. Similarly, in Experiment No. 2 of Table 2. Nos. 19 and 20 satisfy the components in the steel of the present invention and contain steel type Nos. 7 is an example in which the influence of the average cooling rate (CR) after the hot rolling is finished is mainly examined, and No. 7 satisfying the cooling condition defined in the present invention. No. 19 is a No. 19 that does not satisfy the above cooling conditions. Since a larger amount of martensite than 20 can be obtained, desired tensile strength and hole expansion ratio (λ) are ensured.

表2の実験No.15〜17は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.5を用い、主に、スラブの加熱温度(SRT)の影響を検討した例であり、1000℃以上の加熱温度であれば、本発明で意図するレベルの強度と伸びフランジ性を兼ね備えた鋼板が得られることが分かる。   Experiment No. 2 in Table 2 Nos. 15 to 17 satisfy the steel components of the present invention and contain steel elements Nos. 5 is mainly an example in which the influence of the heating temperature (SRT) of the slab was examined. If the heating temperature is 1000 ° C. or higher, a steel plate having the strength and stretch flangeability intended by the present invention can be obtained. You can see that

表2のNo.18は、本発明の鋼中成分を満足し、且つ、好ましい選択元素を含む表1の鋼種No.6を用い、本発明で規定する条件で製造した例であり、強度および伸びフランジ性に優れた鋼板が得られた。   No. in Table 2 No. 18 is a steel type No. 18 in Table 1 that satisfies the components in the steel of the present invention and contains preferred selective elements. 6 was produced under the conditions specified in the present invention, and a steel sheet excellent in strength and stretch flangeability was obtained.

表3の実験No.21〜23は、本発明の鋼中成分を満足する表1の鋼種No.8を用い、主に、熱延仕上げ温度(FDT)の影響を検討した例であり、FDTがAr変態点以上を満足するNo.21および22では所定のマルテンサイト量が確保されているため、所望の強度と伸びフランジ性を満たす鋼板が得られているのに対し、FDTがAr変態点未満のNo.23では所定のマルテンサイト量が得られず、強度および伸びフランジ性が低下した。 Experiment No. 1 in Table 3 Nos. 21 to 23 are steel types No. 1 in Table 1 that satisfy the components in steel of the present invention. 8 is an example in which the influence of hot rolling finishing temperature (FDT) is mainly examined, and No. 8 in which FDT satisfies the Ar 3 transformation point or higher. In Nos. 21 and 22, since a predetermined martensite amount is ensured, a steel sheet satisfying the desired strength and stretch flangeability is obtained, whereas the FDT is lower than the Ar 3 transformation point. In 23, a predetermined amount of martensite could not be obtained, and the strength and stretch flangeability deteriorated.

表3の実験No.24は、本発明の鋼中成分を満足する表1の鋼種No.9を用い、本発明で規定する条件で製造した例であり、強度および伸びフランジ性に優れた鋼板が得られた。   Experiment No. 1 in Table 3 No. 24 is a steel type No. 24 in Table 1 that satisfies the components in the steel of the present invention. 9 is an example of the steel sheet manufactured under the conditions specified in the present invention, and a steel sheet excellent in strength and stretch flangeability was obtained.

表3の実験No.25、およびNo.26〜28は、それぞれ、C量が本発明範囲未満である表1の鋼種No.10、およびNo.11を用いた例であり、いずれも、マルテンサイト量が不足し、引張強度と穴拡げ率(λ)が共に低い。   Experiment No. 1 in Table 3 25, and no. Nos. 26 to 28 are steel types No. 1 in Table 1 whose C amount is less than the range of the present invention. 10 and no. 11 is an example in which the amount of martensite is insufficient and both the tensile strength and the hole expansion rate (λ) are low.

表3の実験No.29は、C量が本発明の規定範囲を超える表1の鋼種No.12を用いたため、穴拡げ率(λ)が低い。表3の実験No.30〜32は、Moを含まない表1の鋼種No.13を用いた例であり、穴拡げ率(λ)が低い。表3の実験No.33は、C量が本発明の規定範囲を超えており且つMoが未添加の表1の鋼種No.14を用いたため、穴拡げ率(λ)が低い。   Experiment No. 1 in Table 3 No. 29 is a steel grade No. in Table 1 whose C amount exceeds the specified range of the present invention. Since 12 was used, the hole expansion rate (λ) was low. Experiment No. 1 in Table 3 30 to 32 are steel types No. 1 in Table 1 that do not contain Mo. In this example, the hole expansion rate (λ) is low. Experiment No. 1 in Table 3 No. 33 is a steel type No. in Table 1 in which the C amount exceeds the specified range of the present invention and Mo is not added. 14 is used, the hole expansion rate (λ) is low.

表3の実験No.34および35は、Si含有量が本発明の規定範囲未満である表1の鋼種No.15を用いたため、セメンタイトの生成を十分に抑制できず、穴拡げ率(λ)が低い。   Experiment No. 1 in Table 3 Nos. 34 and 35 are steel types No. 1 in Table 1 whose Si content is below the specified range of the present invention. 15 was used, the formation of cementite could not be sufficiently suppressed, and the hole expansion rate (λ) was low.

表3の実験No.36は、Si含有量およびMn含有量の両方が本発明の規定範囲未満である表1の鋼種No.16を用いたため、マルテンサイト量が不足し、引張強度と穴拡げ率(λ)が共に低い。表3の実験No.37〜39は、Cr含有量が本発明の規定範囲未満である表1の鋼種No.17を用いたため、マルテンサイト量が不足し、引張強度および穴拡げ率(λ)が共に低い。   Experiment No. 1 in Table 3 No. 36 is a steel type No. 36 in Table 1 in which both the Si content and the Mn content are less than the specified range of the present invention. Since No. 16 was used, the amount of martensite was insufficient, and both the tensile strength and the hole expansion rate (λ) were low. Experiment No. 1 in Table 3 Nos. 37 to 39 are steel types No. 1 in Table 1 whose Cr content is less than the specified range of the present invention. 17 was used, the amount of martensite was insufficient, and both the tensile strength and the hole expansion rate (λ) were low.

表4の実験No.40〜45は、それぞれ、表1の鋼種No.18〜23(いずれも、本発明の鋼中成分または好ましい選択成分を含有している)を用い、本発明で規定する条件で製造した例であり、強度および伸びフランジ性に優れた鋼板が得られた。   Experiment No. 4 in Table 4 40 to 45 are steel types No. 1 in Table 1, respectively. 18-23 (both of which contain the components in the steel of the present invention or preferred selection components) and are manufactured under the conditions specified in the present invention, and a steel sheet excellent in strength and stretch flangeability is obtained. It was.

更に図1〜5は、上記実験データを基に、引張強度(TS)と伸びフランジ特性(λ)に及ぼすマルテンサイト量、C含有量、Mo含有量、巻取り温度(CT)、および熱延後の平均冷却速度(CR)の影響を整理して示したグラフである。各図において、横軸の項目が本発明の規定要件を満たすもの(太実線領域)であっても、鋼の化学成分や熱延条件が本発明の規定要件を外れるものは×印で示している。各図には、参考のため、引張強度(TS)と伸びフランジ特性(λ)の積(TS×λ)に及ぼすマルテンサイト量などの影響も示している。「TS×λ」の値が大きいほど、引張強度と伸びフランジ特性とのバランスに優れていることを意味している。   Further, FIGS. 1 to 5 show, based on the above experimental data, the martensite amount, the C content, the Mo content, the coiling temperature (CT), and the hot rolling that affect the tensile strength (TS) and the stretch flange characteristic (λ). It is the graph which arranged and showed the influence of later average cooling rate (CR). In each figure, even if the items on the horizontal axis satisfy the requirements of the present invention (thick solid line region), those where the chemical composition of steel and the hot rolling conditions deviate from the requirements of the present invention are indicated by x Yes. In each figure, for reference, the effect of the amount of martensite on the product (TS × λ) of tensile strength (TS) and stretch flange characteristic (λ) is also shown. The larger the value of “TS × λ”, the better the balance between tensile strength and stretch flange characteristics.

詳細には、図1は、引張強度と伸びフランジ特性に及ぼすマルテンサイト量の影響を示したグラフであり、グラフ中の×印は、化学成分や熱延条件が本発明の範囲外であるため、マルテンサイト量が面積率で80%を超えていても穴拡げ率(λ)は低い。   Specifically, FIG. 1 is a graph showing the effect of the amount of martensite on tensile strength and stretch flange characteristics, and the x mark in the graph indicates that the chemical composition and hot rolling conditions are outside the scope of the present invention. Even if the amount of martensite exceeds 80% in area ratio, the hole expansion ratio (λ) is low.

図2は、引張強度と伸びフランジ特性に及ぼすC含有量の影響を示したグラフであり、グラフ中の×印は、C以外の化学成分や熱延条件が本発明の規定要件を外れているため、C含有量が本発明の規定範囲内であっても穴拡げ率(λ)は低い。   FIG. 2 is a graph showing the influence of the C content on the tensile strength and stretch flange characteristics. In the graph, the X mark indicates that chemical components other than C and hot rolling conditions are outside the requirements of the present invention. Therefore, even if the C content is within the specified range of the present invention, the hole expansion rate (λ) is low.

図3は、引張強度と伸びフランジ特性に及ぼすMo含有量の影響を示したグラフであり、グラフ中の×印は、Mo以外の化学成分や熱延条件が本発明の規定要件を外れているため、Mo含有量が本発明の規定範囲内であっても穴拡げ率(λ)は低い。   FIG. 3 is a graph showing the influence of the Mo content on the tensile strength and stretch flange characteristics. In the graph, the X mark indicates that chemical components other than Mo and hot rolling conditions are outside the requirements of the present invention. Therefore, even if the Mo content is within the specified range of the present invention, the hole expansion ratio (λ) is low.

図4は、引張強度と伸びフランジ特性に及ぼす巻取り温度(CT)の影響を示したグラフであり、グラフ中の×印は、化学成分や巻取り温度(CT)以外の熱延条件が本発明の規定要件を外れているため、巻取り温度(CT)が規定範囲内であっても穴拡げ率(λ)が低い。   Fig. 4 is a graph showing the influence of the coiling temperature (CT) on the tensile strength and stretch flange characteristics. The x marks in the graph indicate the hot rolling conditions other than the chemical composition and coiling temperature (CT). Since it deviates from the requirement of the invention, the hole expansion rate (λ) is low even when the coiling temperature (CT) is within the specified range.

図5は、引張強度と伸びフランジ特性に及ぼす熱延後の平均冷却速度(CR)の影響を示したグラフであり、グラフ中の×印は、化学成分や平均冷却速度(CR)以外の熱延条件が本発明の規定要件を外れているため、平均冷却速度(CR)が規定範囲内であっても穴拡げ率(λ)は低い。   FIG. 5 is a graph showing the influence of the average cooling rate (CR) after hot rolling on the tensile strength and stretch flange characteristics, and the x marks in the graph indicate heat other than chemical components and average cooling rate (CR). Since the extending condition is out of the specified requirement of the present invention, the hole expansion rate (λ) is low even if the average cooling rate (CR) is within the specified range.

そして上記各図において、×印を除いた○印のデータを見ると、何れのグラフにおいても、本発明の規定範囲内で高い強度と伸びフランジ特性が得られ、且つ、強度と伸びフランジ特性の積バランスが得られることを確認できる。   In each of the above figures, when the data of the ○ mark excluding the X mark is seen, in any graph, high strength and stretch flange characteristics can be obtained within the specified range of the present invention, and the strength and stretch flange characteristics can be obtained. It can be confirmed that product balance is obtained.

なお図6は、実験No.3と同31について、透過型電子顕微鏡により観察したミクロ組織を示す図であり、巻取り温度(CT)が同じ(300℃)でも、適量のMoを添加したNo.3では析出物が殆ど生成していないのに対し、Mo添加なしのNo.31では析出物が多数生成しており、これが伸びフランジ性(λ)に悪影響を及ぼしているものと思われる。   Note that FIG. 3 and 31 are diagrams showing a microstructure observed by a transmission electron microscope, even when the coiling temperature (CT) is the same (300 ° C.), No. 3 to which an appropriate amount of Mo was added. No precipitate was generated in No. 3, while No. No Mo addition. In No. 31, a large number of precipitates are formed, which seems to have an adverse effect on stretch flangeability (λ).

実施例における、引張強度と伸びフランジ特性に及ぼすマルテンサイト量の影響を示すグラフである。It is a graph which shows the influence of the amount of martensite which affects the tensile strength and the stretch flange characteristic in an Example. 実施例における、引張強度と伸びフランジ特性に及ぼすC含有量の影響を示すグラフである。It is a graph which shows the influence of C content which has on the tensile strength and the stretch flange characteristic in an Example. 実施例における、引張強度と伸びフランジ特性に及ぼすMo含有量の影響を示すグラフである。It is a graph which shows the influence of Mo content which has on the tensile strength and stretch flange characteristic in an Example. 実施例における、引張強度と伸びフランジ特性に及ぼす巻取り温度(CT)の影響を示すグラフである。It is a graph which shows the influence of coiling temperature (CT) which has on the tensile strength and stretch flange characteristic in an Example. 実施例における、引張強度と伸びフランジ特性に及ぼす熱延後の平均冷却速度(CR)の影響を示すグラフである。It is a graph which shows the influence of the average cooling rate (CR) after hot rolling which has on the tensile strength and the stretch flange characteristic in an Example. 実施例の実験No.3および31について、透過型電子顕微鏡により観察した結果のミクロ組織を示す図である。Experiment No. in Example It is a figure which shows the microstructure of the result of having observed about 3 and 31 with the transmission electron microscope.

Claims (6)

C:0.03〜0.10%(化学成分の場合は質量%を表す、以下同じ)、
Si:0.2〜2.0%、
Mn:0.5〜2.5%、
Al:0.02〜0.10%、
Cr:0.2〜1.5%、
Mo:0.1〜0.5%、
を満足し、残部が鉄および不可避不純物よりなる鋼からなり、縦断面組織中に占める80面積%以上がマルテンサイト組織であることを特徴とする伸びフランジ性に優れた高強度熱延鋼板。
C: 0.03 to 0.10% (in the case of chemical components, represents mass%, the same shall apply hereinafter),
Si: 0.2-2.0%,
Mn: 0.5 to 2.5%
Al: 0.02 to 0.10%,
Cr: 0.2 to 1.5%
Mo: 0.1 to 0.5%,
A high-strength hot-rolled steel sheet excellent in stretch flangeability, characterized in that the balance is made of steel consisting of iron and inevitable impurities, and 80% by area or more of the longitudinal cross-sectional structure is a martensite structure.
前記鋼が、他の成分として、B:0.0050%以下(0%を含まない)を含むものである請求項1に記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to claim 1, wherein the steel contains B: 0.0050% or less (not including 0%) as another component. 前記鋼が、更に他の元素として、Ni:2.0%以下(0%を含まない)を含有するものである請求項1または2に記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to claim 1 or 2, wherein the steel further contains Ni: 2.0% or less (not including 0%) as another element. 前記鋼が、更に他の元素として、Ca:0.0050%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to any one of claims 1 to 3, wherein the steel further contains Ca: 0.0050% or less (not including 0%) as another element. 引張強度が980MPa以上である請求項1〜4のいずれかに記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to any one of claims 1 to 4, having a tensile strength of 980 MPa or more. 請求項1〜4のいずれかに記載の成分組成を満足する鋼鋳片を加熱してから熱間圧延を行う際に、Ar変態点以上の仕上げ温度で熱間圧延を終了した後、30℃/sec以上の平均冷却速度で冷却して400℃未満の温度で巻き取り、前記請求項1〜5のいずれかに記載の高強度熱延鋼板を得ることを特徴とする伸びフランジ性に優れた高強度熱延鋼板の製法。 When hot rolling is performed after heating the steel slab satisfying the component composition according to any one of claims 1 to 4, after hot rolling is finished at a finishing temperature not lower than the Ar 3 transformation point, 30 The steel sheet is cooled at an average cooling rate of at least ° C / sec and wound at a temperature of less than 400 ° C to obtain a high-strength hot-rolled steel sheet according to any one of claims 1 to 5, and has excellent stretch flangeability A high strength hot-rolled steel sheet.
JP2007137032A 2006-05-24 2007-05-23 High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method Expired - Fee Related JP5110965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137032A JP5110965B2 (en) 2006-05-24 2007-05-23 High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006144594 2006-05-24
JP2006144594 2006-05-24
JP2007137032A JP5110965B2 (en) 2006-05-24 2007-05-23 High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2008001984A JP2008001984A (en) 2008-01-10
JP5110965B2 true JP5110965B2 (en) 2012-12-26

Family

ID=39006610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137032A Expired - Fee Related JP5110965B2 (en) 2006-05-24 2007-05-23 High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5110965B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657363A (en) * 2022-02-28 2022-06-24 河南中原特钢装备制造有限公司 Method for improving 42CrMoA crankshaft band-shaped structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194209A (en) * 1981-05-25 1982-11-29 Nippon Kokan Kk <Nkk> Production of hot rolled high tensile steel plate or high forming property
JPH05311244A (en) * 1992-05-01 1993-11-22 Kobe Steel Ltd Manufacture of galvannealed steel sheet excellent in stretch flanging property using high strength hot rolled original steel sheet
JPH07197186A (en) * 1993-12-30 1995-08-01 Kobe Steel Ltd Hot-rolled steel sheet having >=980n/mm2 strength represented by excellent delayed fracture resistant characteristic and its production
JP3440894B2 (en) * 1998-08-05 2003-08-25 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same
JP3551064B2 (en) * 1999-02-24 2004-08-04 Jfeスチール株式会社 Ultra fine grain hot rolled steel sheet excellent in impact resistance and method for producing the same
JP3915460B2 (en) * 2001-09-26 2007-05-16 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2008001984A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP5667472B2 (en) High-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method
JP5029749B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
KR100987877B1 (en) High strength hot rolled steel sheet with excellent press workability and method for manufacturing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP4460343B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JP6223905B2 (en) High strength galvannealed steel sheet with excellent yield strength and workability
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
CA2805834A1 (en) High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
JP5699860B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
US7846275B2 (en) High strength hot rolled steel sheet having excellent stretch flangeability and its production method
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP2011508085A (en) High strength thin steel sheet with excellent weldability and method for producing the same
JP2006274335A (en) Method for producing superhigh strength hot rolled steel sheet
US20220186335A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
KR101482342B1 (en) High-strength hot-rolled steel plate having execellent weldability and bending workbility and method for manufacturing tereof
JP5110965B2 (en) High strength hot-rolled steel sheet with excellent stretch flangeability and its manufacturing method
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP6275560B2 (en) Super high strength steel plate with excellent impact characteristics
CN114829656A (en) High-strength steel sheet having excellent workability and method for producing same
JP6541504B2 (en) High strength high ductility steel sheet excellent in production stability, method for producing the same, and cold rolled base sheet used for production of high strength high ductility steel sheet
CN114008232B (en) High-strength structural steel having excellent corrosion resistance and method for producing same
JP7348947B2 (en) Structural steel material with excellent brittle fracture resistance and its manufacturing method
CN114846167A (en) High-strength steel sheet having excellent workability and method for producing same
KR101505270B1 (en) Cold-rolled steel sheet and method of manufacturing the same
CN114846166A (en) High-strength steel sheet having excellent workability and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees