JP5110854B2 - Wheel bearing device with in-wheel motor built-in sensor - Google Patents

Wheel bearing device with in-wheel motor built-in sensor Download PDF

Info

Publication number
JP5110854B2
JP5110854B2 JP2006311385A JP2006311385A JP5110854B2 JP 5110854 B2 JP5110854 B2 JP 5110854B2 JP 2006311385 A JP2006311385 A JP 2006311385A JP 2006311385 A JP2006311385 A JP 2006311385A JP 5110854 B2 JP5110854 B2 JP 5110854B2
Authority
JP
Japan
Prior art keywords
sensor
wheel
force
measuring
inner member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006311385A
Other languages
Japanese (ja)
Other versions
JP2008126733A (en
Inventor
智昭 牧野
稔 鈴木
智海 石河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006311385A priority Critical patent/JP5110854B2/en
Publication of JP2008126733A publication Critical patent/JP2008126733A/en
Application granted granted Critical
Publication of JP5110854B2 publication Critical patent/JP5110854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車輪のリムの内周部に走行用電気モータを配置したインホイール型モータ内蔵車輪用軸受装置に関し、特に車輪と路面の接地点に作用する力を検出するセンサを設けたものに関する。   The present invention relates to an in-wheel motor-equipped wheel bearing device in which an electric motor for traveling is arranged on the inner peripheral portion of a wheel rim, and more particularly, to a device provided with a sensor for detecting a force acting on a contact point between a wheel and a road surface. .

電気自動車等の車両の車輪用軸受装置として、軸受と電気モータとを組み合わせたインホイール型モータ内蔵車輪用軸受装置が注目されている。このインホイール型モータ内蔵車輪用軸受装置を電気自動車の駆動輪に用いると、各駆動輪を個別に回転駆動させることができるため、プロペラシャフトやデファレンシャル等の大がかりな動力伝達機構が不要となり、車両の軽量化やコンパクト化が図れる。特に、電気モータを車輪の内周部に配置すると、車輪用軸受装置の車輪の軸方向内側への突出を少なくすることができ、さらにコンパクトなものとすることができる(例えば特許文献1)。   As a wheel bearing device for a vehicle such as an electric vehicle, an in-wheel type motor-equipped wheel bearing device in which a bearing and an electric motor are combined has attracted attention. When this in-wheel type motor-equipped wheel bearing device is used as a driving wheel of an electric vehicle, each driving wheel can be individually driven to rotate, so that a large-scale power transmission mechanism such as a propeller shaft and a differential is not required. Can be made lighter and more compact. In particular, when the electric motor is disposed on the inner peripheral portion of the wheel, the wheel bearing device can be prevented from protruding inward in the axial direction of the wheel, and can be made more compact (for example, Patent Document 1).

エンジン駆動の自動車に用いられる一般的な車輪用軸受では、車体の走行安定性確保のための制御技術として、サスペンション制御、ABS(アンチロック・ブレーキ・システム)制御等が利用されている。また、車体に取付けた様々なセンサにより車両の各種状態を測定し、その測定結果に基づきエンジン、ブレーキ、ステアリング等を制御することが行われている。
特開2006−57732号公報 特表2003−530565号公報
In general wheel bearings used in engine-driven automobiles, suspension control, ABS (anti-lock brake system) control, and the like are used as control techniques for ensuring the running stability of the vehicle body. Further, various states of the vehicle are measured by various sensors attached to the vehicle body, and the engine, brake, steering, and the like are controlled based on the measurement results.
JP 2006-57732 A Special table 2003-530565 gazette

モータ駆動はエンジン駆動と比較してトルクの応答性が速いため、前記サスペンション制御やABS制御をモータ駆動の車両に導入した場合、エンジン駆動の車両に導入した場合よりも、さらに高い車両の走行安定性が確保できる。サスペンション制御やABS制御の精度を向上させるには、車両に作用する力を正確に測定し、その測定結果に基づき制御を行う必要がある。   Since the motor drive has a faster torque response than the engine drive, when the suspension control or ABS control is introduced into a motor-driven vehicle, the running stability of the vehicle is higher than when it is introduced into an engine-driven vehicle. Sex can be secured. In order to improve the accuracy of suspension control and ABS control, it is necessary to accurately measure the force acting on the vehicle and perform control based on the measurement result.

車両に作用する力は主に車輪と路面間で発生する。車輪と路面の接地点に作用する作用力としては、上下方向(接地点における車輪の法線方向)の力、左右方向(車輪の軸方向)の力、および前後方向(進行方向)の力がある。車輪と路面間で発生する力以外には、走行速度に依存する空気抵抗や、自然風による空気力もあるが、これらは定常的には非常に小さい。従って、車両の走行安定性確保のための制御には、車輪と路面間に作用する上記3軸方向の力を応答性良く検知すればよい。   The force acting on the vehicle is mainly generated between the wheel and the road surface. The acting force acting on the contact point between the wheel and the road surface includes the force in the vertical direction (the normal direction of the wheel at the contact point), the force in the left and right direction (the wheel axial direction), and the force in the front and rear direction (traveling direction). is there. In addition to the force generated between the wheel and the road surface, there are also air resistance that depends on travel speed and aerodynamic force due to natural winds, but these are usually very small. Therefore, for the control for ensuring the running stability of the vehicle, it is only necessary to detect the forces in the three axial directions acting between the wheels and the road surface with good responsiveness.

しかし、従来のように車体に取付けたセンサで車両に作用する力を測定するのは、サスペンションやシャーシを介して車体に伝わった振動を測定することとなり、測定結果にタイムラグが生じる。そのため、その測定結果を制御に利用すると、制御の応答が遅くなるという問題がある。   However, measuring the force acting on the vehicle with a sensor attached to the vehicle body as in the prior art means measuring vibration transmitted to the vehicle body via the suspension or chassis, resulting in a time lag in the measurement result. Therefore, when the measurement result is used for control, there is a problem that the response of the control becomes slow.

この発明の目的は、車輪用軸受装置にコンパクトに設置した荷重検出用のセンサにより、車輪と路面の接地点に作用する力を感度良く検出できて、車体の走行安定性確保のための制御を精度良く行えるインホイール型モータ内蔵センサ付き車輪用軸受装置を提供することである。   The object of the present invention is to detect the force acting on the ground contact point between the wheel and the road surface with a load detecting sensor that is compactly installed on the wheel bearing device, and to control for ensuring the running stability of the vehicle body. It is an object to provide a wheel bearing device with a sensor with a built-in in-wheel motor that can be accurately performed.

この発明のインホイール型モータ内蔵センサ付き車輪用軸受装置は、内方部材と外方部材の間に複列の転動体を介在させ、前記内方部材に懸架装置のナックルを取付け、かつ前記外方部材に車輪を取付け、前記内方部材に電気モータのステータを設け、外方部材に前記電気モータのロータをそれぞれ設けた車輪用軸受装置において、前記内方部材の歪みを検出することにより、前記車輪と路面の接地点に作用する、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力を測定するセンサを設け、このセンサを内方部材の内周に固定したことを特徴とする。 The in-wheel motor-equipped sensor-equipped wheel bearing device according to the present invention includes a double row rolling element interposed between an inner member and an outer member, a knuckle of a suspension device attached to the inner member, and the outer member square member mounting a wheel on said provided electric motor stator inwardly member, the wheel bearing apparatus provided respectively b over data of the electric motor to the outer member, detecting the distortion of the inner member by, act on the grounding point of the wheel and the road surface, setting a sensor for measuring at least one force of the vertical direction, the lateral direction, and the longitudinal direction of the three axial directions forces perpendicular to each other, This sensor is fixed to the inner periphery of the inner member .

車両走行に伴い車輪と路面の接地点に外力が作用すると、外方部材に荷重がかかる。この荷重は、外方部材から転動体を介して内方部材に伝えられ、内方部材に歪みをもたらす。この内方部材の歪みをセンサが検出する。歪みと前記外力の関係を予め実験やシミュレーションで求めておけば、センサの出力から車輪と路面の接地点に作用する力を検出することができる。車輪と路面の接地点に作用する力は、前記接地点における互いに直交する上下方向、左右方向、および前後方向の3軸方向の力が複合されたものであり、これら3軸方向の力のうちの少なくとも1つの方向の力を検出する。この検出した力を、サスペンション制御やABS制御等の制御に使用することができる。   When an external force acts on the contact point between the wheel and the road surface as the vehicle travels, a load is applied to the outer member. This load is transmitted from the outer member to the inner member via the rolling elements, causing distortion of the inner member. A sensor detects the distortion of the inner member. If the relationship between the strain and the external force is obtained in advance by experiment or simulation, the force acting on the wheel and the ground contact point of the road surface can be detected from the output of the sensor. The force acting on the contact point between the wheel and the road surface is a combination of the forces in the vertical direction, the horizontal direction, and the front-rear direction at the contact point in the three axial directions. Detect a force in at least one direction. This detected force can be used for control such as suspension control and ABS control.

前記3軸方向の力を測定するセンサの一つとして、前記内方部材の径方向歪みを測定する径方向歪み測定用センサを設け、この径方向歪み測定用センサの出力から車輪と路面の接地点に作用する上下方向の力および左右方向の力を推定する推定手段を設けると良い。
車輪と路面の接地点に作用する上下方向の力および左右方向の力の大きさによって内方部材の径方向歪みの大きさが異なるため、予め上下方向の力および左右方向の力と径方向歪みとの関係を実験やシミュレーションにて求めておくことにより、上下方向の力および左右方向の力の大きさを算出することができる。推定手段は、このように実験やシミュレーションにより予め求めて設定しておいた上下方向の力および左右方向の力と径方向歪みとの関係から、径方向歪み測定用センサの出力により、車輪と路面の接地点に作用する上下方向の力および左右方向の力を算出する。この方法で上下方向の力および左右方向の力を求めることにより、上下方向の力および左右方向の力を感度良く検出することができる。
As one of the sensors for measuring the force in the three axial directions, a radial strain measuring sensor for measuring the radial strain of the inner member is provided, and the contact between the wheel and the road surface is determined from the output of the radial strain measuring sensor. It is preferable to provide estimation means for estimating the vertical force and the horizontal force acting on the point.
Since the magnitude of the radial distortion of the inner member differs depending on the magnitude of the vertical force and the horizontal force acting on the contact point between the wheel and the road surface, the vertical force and the horizontal force and radial distortion are determined in advance. , The magnitude of the vertical force and the horizontal force can be calculated. The estimation means determines the wheel and the road surface by the output of the radial strain measurement sensor based on the relationship between the vertical force and the horizontal force and the radial strain that have been previously determined through experiments and simulations. The vertical force and the horizontal force acting on the ground contact point are calculated. By obtaining the vertical force and the horizontal force by this method, the vertical force and the horizontal force can be detected with high sensitivity.

前記径方向歪み測定用センサは、センサ取付部材を介して前記内方部材に取付けられ、センサ取付部材の歪みを測定する歪みセンサであり、前記センサ取付部材は、前記内方部材に対して少なくとも周方向に離れた2箇所の接触固定部を有し、隣合う接触固定部の間で少なくとも1箇所の切欠部を有し、この切欠部に前記径方向歪み測定センサを配置したものであるのが好ましい。
センサ取付部材は、内方部材に対して少なくとも周方向に離れた2箇所の接触固定部を有し、隣合う接触固定部の間で少なくとも1箇所に切欠部を有するものとされ、この切欠部に径方向歪み測定用センサが配置されているので、センサ取付部材の径方向歪み測定用センサの配置箇所が、その剛性の低下により、内方部材よりも大きな歪みを生じる。このことにより、内方部材の歪みを感度良く検出することができる。
また、径方向歪み測定用センサをセンサ取付部材を介して内方部材に取付ける構成としたため、径方向歪み測定用センサを車輪用軸受装置にコンパクトに設置できる。センサ取付部材は内方部材に取付けられる簡易な部品であるため、これに径方向歪み測定用センサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。
The radial strain measurement sensor is a strain sensor that is attached to the inner member via a sensor attachment member and measures the strain of the sensor attachment member, and the sensor attachment member is at least relative to the inner member. It has two contact fixing parts separated in the circumferential direction, and has at least one notch part between adjacent contact fixing parts, and the radial strain measurement sensor is arranged in this notch part. Is preferred.
The sensor mounting member has at least two contact fixing portions separated from each other in the circumferential direction with respect to the inner member, and has at least one notch portion between adjacent contact fixing portions. Since the radial strain measuring sensor is disposed on the sensor mounting member, the radial strain measuring sensor is disposed at a location where the sensor mounting member has a larger strain than the inner member due to a decrease in rigidity. Thereby, the distortion of the inner member can be detected with high sensitivity.
In addition, since the radial strain measuring sensor is attached to the inner member via the sensor mounting member, the radial strain measuring sensor can be compactly installed in the wheel bearing device. Since the sensor mounting member is a simple part that can be mounted on the inner member, by attaching a radial strain measuring sensor to the sensor mounting member, the sensor mounting member can be excellent in mass productivity, and the cost can be reduced.

前記3軸方向の力を測定するセンサの一つとして、前記内方部材の径方向歪みを測定する径方向歪み測定用センサを設け、この径方向歪み測定用センサの出力から車輪と路面の接地点に作用する上下方向の力を推定する推定手段を設けると良い。
車輪と路面の接地点に作用する上下方向の力の大きさによって内方部材の径方向歪みの大きさが異なるため、予め上下方向の力と径方向歪みとの関係を実験やシミュレーションにて求めておくことにより、上下方向の力の大きさを算出することができる。推定手段は、このように実験やシミュレーションにより予め求めて設定しておいた上下方向の力と径方向歪みとの関係から、径方向歪み測定用センサの出力により、車輪と路面の接地点に作用する上下方向の力を算出する。この方法で上下方向の力を求めることにより、上下方向の力を感度良く検出することができる。
As one of the sensors for measuring the force in the three axial directions, a radial strain measuring sensor for measuring the radial strain of the inner member is provided, and the contact between the wheel and the road surface is determined from the output of the radial strain measuring sensor. It is preferable to provide estimation means for estimating the vertical force acting on the point.
Since the magnitude of the radial distortion of the inner member differs depending on the magnitude of the vertical force acting on the contact point between the wheel and the road surface, the relationship between the vertical force and radial distortion is obtained in advance through experiments and simulations. Thus, the magnitude of the vertical force can be calculated. The estimation means acts on the contact point between the wheel and the road surface by the output of the sensor for measuring the radial strain based on the relationship between the vertical force and the radial strain previously obtained and set through experiments and simulations. Calculate the vertical force. By obtaining the vertical force by this method, the vertical force can be detected with high sensitivity.

前記3軸方向の力を測定するセンサの一つとして、前記内方部材の軸方向歪みを測定する軸方向歪み測定用センサを設け、この軸方向歪み測定用センサの出力から車輪と路面の接地点に作用する左右方向の力を推定する推定手段を設けると良い。
車輪と路面の接地点に作用する左右方向の力の大きさによって内方部材の軸方向歪みの変化が異なるため、予め左右方向の力と軸方向歪みとの関係を実験やシミュレーションにて求めておくことにより、左右方向の力の大きさを算出することができる。推定手段は、このように実験やシミュレーションにより予め求めて設定しておいた左右方向の力と軸方向歪みとの関係から、軸方向歪み測定用センサの出力により、車輪と路面の接地点に作用する左右方向の力を算出する。この方法で左右方向の力を求めることにより、左右方向の力を精度良く検出することができる。
As one of the sensors for measuring the force in the three axial directions, an axial strain measuring sensor for measuring the axial strain of the inner member is provided, and the wheel and the road surface are connected from the output of the axial strain measuring sensor. It is preferable to provide an estimation means for estimating the lateral force acting on the point.
Since the change in the axial strain of the inner member differs depending on the magnitude of the lateral force acting on the contact point between the wheel and the road surface, the relationship between the lateral force and the axial strain is obtained in advance through experiments and simulations. By setting it, the magnitude of the force in the left-right direction can be calculated. The estimation means acts on the ground contact point between the wheel and the road surface by the output of the sensor for measuring the axial strain based on the relationship between the lateral force and the axial strain previously obtained and set by experiments and simulations. Calculate the left-right force. By obtaining the lateral force by this method, the lateral force can be detected with high accuracy.

前記内方部材および外方部材に、ブレーキのブレーキ輪およびブレーキパッドをそれぞれ設けた構成とすることができる。その場合、前記3軸方向の力を測定するセンサの一つとして、前記電気モータの電流量を測定する電流センサと、前記ブレーキに作用するブレーキ力を測定するブレーキ力センサとを設け、これら電流センサおよびブレーキ力センサの出力から車輪と路面の接地点に作用する前後方向の力を推定する推定手段を設けると良い。
車両走行時に車輪と路面の接地点に作用する前後方向の力の大きさによって、電気モータに流れる電流量が異なる。同様に、前記前後方向の力の大きさによって、ブレーキのブレーキ力も異なる。したがって、前後方向の力と電気モータの電流およびブレーキのブレーキ力との関係を予め実験やシミュレーションで求めておけば、電気モータの電流量およびブレーキのブレーキ力を測定することにより、前後方向の力を推定することができる。電気モータの電流量またはブレーキのブレーキ力の単独の測定結果からでも前後方向の力を推定することは可能であるが、両者を比較対照することで、前後方向の力を精度良く推定することができる。
The inner member and the outer member may be provided with brake wheels and brake pads, respectively. In that case, as one of the sensors for measuring the force in the three axial directions, a current sensor for measuring the current amount of the electric motor and a brake force sensor for measuring the braking force acting on the brake are provided, and these currents are provided. It is preferable to provide estimation means for estimating the longitudinal force acting on the contact points between the wheels and the road surface from the outputs of the sensor and the brake force sensor.
The amount of current flowing through the electric motor differs depending on the magnitude of the longitudinal force acting on the ground contact point between the wheel and the road surface when the vehicle is traveling. Similarly, the braking force of the brake varies depending on the magnitude of the force in the front-rear direction. Therefore, if the relationship between the longitudinal force and the electric motor current and the braking force of the brake is obtained in advance through experiments and simulations, the longitudinal force can be determined by measuring the electric motor current and the braking force of the brake. Can be estimated. It is possible to estimate the force in the front-rear direction even from a single measurement result of the electric motor current amount or the braking force of the brake, but by comparing and contrasting both, it is possible to accurately estimate the force in the front-rear direction. it can.

この発明のインホイール型モータ内蔵センサ付き車輪用軸受装置は、内方部材と外方部材の間に複列の転動体を介在させ、前記内方部材に懸架装置のナックルを取付け、かつ前記外方部材に車輪を取付け、前記内方部材に電気モータのステータを設け、外方部材に前記電気モータのロータをそれぞれ設けた車輪用軸受装置において、前記内方部材の歪みを検出することにより、前記車輪と路面の接地点に作用する、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力を測定するセンサを設け、このセンサを内方部材の内周に固定したため、車輪用軸受装置にコンパクトに設置した荷重検出用のセンサにより、車輪と路面の接地点に作用する力を感度良く検出できて、車体の走行安定性確保のための制御を精度良く行える。 The in-wheel motor-equipped sensor-equipped wheel bearing device according to the present invention includes a double row rolling element interposed between an inner member and an outer member, a knuckle of a suspension device attached to the inner member, and the outer member square member mounting a wheel on said provided electric motor stator inwardly member, the wheel bearing apparatus provided respectively b over data of the electric motor to the outer member, detecting the distortion of the inner member by, act on the grounding point of the wheel and the road surface, setting a sensor for measuring at least one force of the vertical direction, the lateral direction, and the longitudinal direction of the three axial directions forces perpendicular to each other, Since this sensor is fixed to the inner circumference of the inner member, the force acting on the ground contact point between the wheel and the road surface can be detected with high sensitivity by the load detection sensor installed compactly on the wheel bearing device. Ensure stability The control for enabling accurately.

この発明の実施形態を図1ないし図3と共に説明する。このインホイール型モータ内蔵センサ付き車輪用軸受装置は、車輪1の内周側に、この車輪1を回転自在に支持する軸受10と、走行用電気モータ20と、ブレーキ30とを設けたものである。なお、この明細書において、車輪用軸受装置を車両に取付けた状態で車両の車幅方向の外側(図1の右側)寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側(図1の左側)をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This in-wheel motor-equipped sensor-equipped wheel bearing device includes a bearing 10 that rotatably supports the wheel 1, an electric motor 20 for traveling, and a brake 30 on the inner peripheral side of the wheel 1. is there. In this specification, the side closer to the outer side (right side in FIG. 1) in the vehicle width direction of the vehicle with the wheel bearing device attached to the vehicle is called the outboard side, and the side closer to the center of the vehicle ( The left side of FIG. 1 is called the inboard side.

図1に示すように、車輪1は、円筒状のリム2と、このリム2の内周面に取付けたリング状のディスク3とからなるホイール4を備え、前記リム2の外周にタイヤ5を設けたものである。ディスク3は、リム2の軸方向幅のほぼ中央に取付けられている。   As shown in FIG. 1, the wheel 1 includes a wheel 4 including a cylindrical rim 2 and a ring-shaped disk 3 attached to the inner peripheral surface of the rim 2, and a tire 5 is attached to the outer periphery of the rim 2. It is provided. The disk 3 is attached to the approximate center of the axial width of the rim 2.

図2に示すように、軸受10は、内周に複列の転走面13を形成した外方部材11と、これら各転走面13に対向する転走面14を形成した内方部材12と、これら外方部材11および内方部材12の転走面13,14間に介在する複列の転動体15とで構成される。この軸受10は、複列のアンギュラ玉軸受型とされていて、転動体15はボールからなり、各列毎に図示しない保持器で保持されている。上記転走面13,14は断面円弧状であり、各転走面13,14は接触角が外向きとなるように形成されている。外方部材11と内方部材12との間の軸受空間のアウトボード側およびインボード側の端部は、それぞれシール部材16でシールされている。   As shown in FIG. 2, the bearing 10 includes an outer member 11 in which a double row rolling surface 13 is formed on the inner periphery, and an inner member 12 in which a rolling surface 14 facing each of the rolling surfaces 13 is formed. And a plurality of rolling elements 15 interposed between the rolling surfaces 13 and 14 of the outer member 11 and the inner member 12. The bearing 10 is a double-row angular ball bearing type, and the rolling elements 15 are formed of balls, and are held by a cage (not shown) for each row. The rolling surfaces 13 and 14 are arc-shaped in cross section, and each rolling surface 13 and 14 is formed so that the contact angle is outward. The end portions on the outboard side and the inboard side of the bearing space between the outer member 11 and the inner member 12 are respectively sealed with seal members 16.

外方部材11は回転側軌道輪となるものであって、アウトボード側の端部に前記ディスク3に取付けるフランジ11aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に取付孔11bが設けられており、外方部材11は、取付孔11bに挿通した取付ボルト・ナット6により前記ディスク3に取付けられる。   The outer member 11 serves as a rotation-side raceway, and has a flange 11a attached to the disk 3 at the end on the outboard side on the outer periphery, and is formed as an integral part. The flange 1a is provided with attachment holes 11b at a plurality of locations in the circumferential direction, and the outer member 11 is attached to the disk 3 with attachment bolts and nuts 6 inserted into the attachment holes 11b.

内方部材12は固定側軌道輪となるものであって、アウトボード側端近くの内周に円板部17aを有するベース輪17と、このベース輪17のインボード側端の外周に形成された小径部に嵌合する内輪18とでなる。これらベース輪17および内輪18に、前記各列の転走面14が形成されている。ベース輪17のアウトボード側端を加締めることにより、内輪18がベース輪17に固定一体化されている。ベース輪17の円板部17aには、ブレーキ取付穴17bが設けられている。   The inner member 12 serves as a fixed raceway, and is formed on the base ring 17 having a disk portion 17a on the inner periphery near the outboard side end, and on the outer periphery of the inboard side end of the base ring 17. The inner ring 18 is fitted to the small diameter portion. The rolling surfaces 14 of each row are formed on the base wheel 17 and the inner ring 18. The inner ring 18 is fixed and integrated with the base wheel 17 by caulking the end of the base wheel 17 on the outboard side. A brake mounting hole 17 b is provided in the disc portion 17 a of the base wheel 17.

走行用電気モータ20は、外方部材11および内方部材12間のインボード側転走面13,14よりもインボード側に設けられている。この実施形態の走行用電気モータ20は、内方部材12に固定したステータ21と、外方部材11に取付けたロータ22との間にラジアルギャップを設けたラジアルギャップ型とされているが、ステータ21とロータ22との間にアキシアルギャップを設けたアキシアルギャップ型としてもよい。外方部材11と内方部材12間のインボード側の開口にはキャップ23が装着されている。   The traveling electric motor 20 is provided closer to the inboard side than the inboard side rolling surfaces 13 and 14 between the outer member 11 and the inner member 12. The traveling electric motor 20 of this embodiment is of a radial gap type in which a radial gap is provided between a stator 21 fixed to the inner member 12 and a rotor 22 attached to the outer member 11. An axial gap type in which an axial gap is provided between the rotor 21 and the rotor 22 may be employed. A cap 23 is attached to the opening on the inboard side between the outer member 11 and the inner member 12.

ブレーキ30は、外方部材11と共にディスク3に取付けられたブレーキ輪31およびこのブレーキ輪31に摩擦接触可能なブレーキパッド32を有する作動部33と、ブレーキパッド32を作動させる駆動部34とを有し、この駆動部34の駆動源としてブレーキ用電気モータ35を用いた電動ブレーキとされている。ブレーキ輪31はブレーキディスクからなる。ブレーキパッド32は、ブレーキ輪31を挟み付けるように一対設けられている。片方のブレーキパッド32は、ブレーキフレーム36に固定され、もう片方のブレーキパッド32は、ブレーキフレーム36に直線的に進退自在に設置された進退部材37に取付けられている。進退部材37の進退可能方向はブレーキ輪31に対面する方向である。進退部材37は、ブレーキフレーム36に対して回り止めされている。ブレーキフレーム36は、内方部材ベース輪17の円板部17aに設けられたブレーキ取付穴17bに嵌合させ、固定部材38により円板部17aに固定されている   The brake 30 includes a brake wheel 31 attached to the disk 3 together with the outer member 11, an operation part 33 having a brake pad 32 capable of frictional contact with the brake wheel 31, and a drive part 34 for operating the brake pad 32. In addition, an electric brake using a brake electric motor 35 is used as a drive source of the drive unit 34. The brake wheel 31 is composed of a brake disc. A pair of brake pads 32 are provided so as to sandwich the brake wheel 31 therebetween. One brake pad 32 is fixed to the brake frame 36, and the other brake pad 32 is attached to an advancing / retracting member 37 that is linearly movable on the brake frame 36. The advancing / retracting direction of the advancing / retracting member 37 is a direction facing the brake wheel 31. The advance / retreat member 37 is prevented from rotating with respect to the brake frame 36. The brake frame 36 is fitted into a brake mounting hole 17b provided in the disc portion 17a of the inner member base wheel 17, and is fixed to the disc portion 17a by a fixing member 38.

駆動部34は、上記ブレーキ用電気モータ35と、この電気モータ35の回転出力を往復直線運動に変換してブレーキパッド32にブレーキ力として伝えるボールねじ39とを有し、電気モータ35の出力は減速伝達機構40を介してボールねじ39に伝達される。ボールねじ39は、ねじ軸41が軸受42を介してブレーキフレーム36に回転のみ自在に支持され、ナット43が上記進退部材37に固定されている。進退部材37とナット43とは、互いに一体の部材であっても良い。   The drive unit 34 includes the brake electric motor 35 and a ball screw 39 that converts the rotational output of the electric motor 35 into a reciprocating linear motion and transmits the brake pad 32 as a braking force. The output of the electric motor 35 is It is transmitted to the ball screw 39 via the deceleration transmission mechanism 40. In the ball screw 39, a screw shaft 41 is supported by the brake frame 36 through a bearing 42 so as to be rotatable only, and a nut 43 is fixed to the advance / retreat member 37. The advance / retreat member 37 and the nut 43 may be integral with each other.

ボールねじ39は、ねじ軸41およびナット43と、これらねじ軸41の外周面およびナット43の内周面に対向して形成されたねじ溝間に介在する複数のボール44とを有する。ナット43には、ねじ軸41とナット43の間に介在するボール44を無端の経路で循環させる循環手段(図示せず)を有している。循環手段は、リターンチューブやガイドプレートを用いた外部循環形式のものであっても、エンドチャップや駒を用いた内部循環形式のものであっても良い。また、このボールねじ39は、短い距離を往復動作させるものであるため、上記循環手段を有しない形式のもの、例えばねじ軸41とナット43間の複数のボール44をリテナ(図示せず)で保持したリテナ式のものであっても良い。   The ball screw 39 includes a screw shaft 41 and a nut 43, and a plurality of balls 44 interposed between screw grooves formed to face the outer peripheral surface of the screw shaft 41 and the inner peripheral surface of the nut 43. The nut 43 has a circulation means (not shown) for circulating the ball 44 interposed between the screw shaft 41 and the nut 43 through an endless path. The circulation means may be of an external circulation type using a return tube or a guide plate, or may be of an internal circulation type using an end cap or a piece. Since the ball screw 39 reciprocates over a short distance, the ball screw 39 does not have the circulating means, for example, a plurality of balls 44 between the screw shaft 41 and the nut 43 are retained by a retainer (not shown). A retained retainer type may be used.

減速伝達機構40は、ブレーキ用電気モータ35の回転をボールねじ39のねじ軸41に減速して伝える機構であり、ギヤ列で構成されている。減速伝達機構40は、この例では、電気モータ35の出力軸に設けられたギヤ45、およびねじ軸41に設けられて上記ギヤ45に噛み合うギヤ46からなる。減速伝達機構40は、この他に、例えばウォームおよびウォームホイル(図示せず)からなるものとしても良い。   The deceleration transmission mechanism 40 is a mechanism that decelerates and transmits the rotation of the brake electric motor 35 to the screw shaft 41 of the ball screw 39, and is constituted by a gear train. In this example, the speed reduction transmission mechanism 40 includes a gear 45 provided on the output shaft of the electric motor 35 and a gear 46 provided on the screw shaft 41 and meshing with the gear 45. In addition to this, the deceleration transmission mechanism 40 may be composed of, for example, a worm and a worm wheel (not shown).

このブレーキ30は、ブレーキペダル等の操作部材51の操作に従い上記電気モータ35を制御する操作部52を有する。この操作部52には、アンチロック制御手段55が設けられている。操作部52は、上記操作部材51と、この操作部材51の動作量および動作方向を検出可能な操作センサ54と、この操作センサ54の検出信号に応答して電気モータ35を制御する制御装置53とでなり、この制御装置53に上記アンチロック制御手段55が設けられている。制御装置53は、モータ制御信号を生成する手段およびそのモータ制御信号によりモータ電流を制御可能なモータ駆動回路(いずれも図示せず)を有している。   The brake 30 includes an operation unit 52 that controls the electric motor 35 in accordance with an operation of an operation member 51 such as a brake pedal. The operation unit 52 is provided with antilock control means 55. The operation unit 52 includes the operation member 51, an operation sensor 54 that can detect the operation amount and operation direction of the operation member 51, and a control device 53 that controls the electric motor 35 in response to a detection signal of the operation sensor 54. The control device 53 is provided with the antilock control means 55. The control device 53 includes means for generating a motor control signal and a motor drive circuit (none of which is shown) capable of controlling the motor current by the motor control signal.

アンチロック制御手段55は、操作部材51の操作による制動時に、車輪1の回転に応じて電気モータ35によるブレーキ力を調整することで、車輪1の回転ロックを防止する手段である。アンチロック制御手段55は、上記制動時に、車輪1の回転速度を検出し、検出速度から車輪1の回転ロックまたはその兆候が検出されると、電気モータ35の駆動電流を低下させ、または一時的に逆回転出力を発生するなどして、ブレーキ力、つまりブレーキパッド32の締め付け力を調整する処理を行う。車輪1の回転速度の検出には、例えば走行用電気モータ20のロータ22の回転数を検出する回転数センサ56の出力を利用できる。   The antilock control means 55 is a means for preventing the rotation lock of the wheel 1 by adjusting the braking force by the electric motor 35 according to the rotation of the wheel 1 at the time of braking by the operation of the operation member 51. The anti-lock control means 55 detects the rotational speed of the wheel 1 during the braking, and reduces the driving current of the electric motor 35 or temporarily when the rotational lock of the wheel 1 or its sign is detected from the detected speed. A process of adjusting the braking force, that is, the tightening force of the brake pad 32, is performed by generating a reverse rotation output at the same time. For detecting the rotational speed of the wheel 1, for example, the output of the rotational speed sensor 56 that detects the rotational speed of the rotor 22 of the traveling electric motor 20 can be used.

この車輪用軸受装置は、内方部材12の内周に取付けたナックル7等からなる懸架装置を介して車体に固定される。懸架装置には、車輪1と路面の接地点に作用する力を減衰して車体に伝えるダンパ、ショックアブソーバ等の減衰手段8が設けられている。   The wheel bearing device is fixed to the vehicle body via a suspension device including a knuckle 7 attached to the inner periphery of the inner member 12. The suspension device is provided with damping means 8 such as a damper or a shock absorber that attenuates and transmits the force acting on the wheel 1 and the ground contact point of the road surface to the vehicle body.

車輪1と路面の接地点に作用する力は、互いに直交する上下方向(接地点における車輪1の法線方向)の力Fzと、左右方向(車輪1の軸方向)の力Fyと、前後方向(進行方向)の力Fxとが複合されたものである。車輪用軸受装置には、これら3軸方向の力をそれぞれ測定するセンサが設けられている。上下方向の力Fzおよび左右方向の力Fyは、軸受10の固定側軌道輪である内方部材12の径方向歪みεzを検出する径方向歪み測定用センサ60の出力から求められる。前後方向の力Fxは、走行用電気モータ20の電流量Iを検出する電流センサ63およびブレーキ30のブレーキ力を検出するブレーキ力センサ64の出力εdから求められる。ブレーキ力センサ64としては、ブレーキパッド32の締付力を直接測定するセンサとすることも可能であるが、ブレーキ力を直接測定する代わりに前記アンチロック制御手段55の制御信号を利用できる。この他に、ブレーキパッド32を締め付けることによって生じるブレーキフレーム36の変形を歪みセンサで測定して、これをブレーキ力として利用してもよい。   The forces acting on the ground contact point of the wheel 1 and the road surface are the force Fz in the vertical direction (normal direction of the wheel 1 at the ground contact point), the force Fy in the left-right direction (the axial direction of the wheel 1), and the front-rear direction. The force Fx in the (traveling direction) is combined. The wheel bearing device is provided with sensors for measuring the forces in the three axial directions. The vertical force Fz and the horizontal force Fy are obtained from the output of the radial strain measurement sensor 60 that detects the radial strain εz of the inner member 12 that is the stationary raceway of the bearing 10. The force Fx in the front-rear direction is obtained from the output εd of the current sensor 63 that detects the current amount I of the traveling electric motor 20 and the brake force sensor 64 that detects the brake force of the brake 30. The brake force sensor 64 may be a sensor that directly measures the tightening force of the brake pad 32, but the control signal of the antilock control means 55 can be used instead of directly measuring the brake force. In addition, the deformation of the brake frame 36 caused by tightening the brake pad 32 may be measured by a strain sensor and used as a braking force.

図3に示すように、これら各センサ60,63,64は、各センサの出力を処理する推定手段65および異常判定手段66に接続されている。これら推定手段65および異常判定手段66は、例えば自動車の電気制御ユニット(ECU)67に設けられている。推定手段65および異常判定手段66は、アクスルユニットごとに設けた回路基板等の電子回路装置(図示せず)に組み込んだものであっても良い。電気制御ユニット67の出力側には、走行用電気モータ20、ブレーキ用電気モータ35、および懸架装置の減衰手段8が接続されている。   As shown in FIG. 3, these sensors 60, 63, 64 are connected to an estimation unit 65 and an abnormality determination unit 66 that process the output of each sensor. These estimation means 65 and abnormality determination means 66 are provided, for example, in an electric control unit (ECU) 67 of an automobile. The estimation means 65 and the abnormality determination means 66 may be incorporated in an electronic circuit device (not shown) such as a circuit board provided for each axle unit. On the output side of the electric control unit 67, the traveling electric motor 20, the brake electric motor 35, and the suspension device damping means 8 are connected.

車輪1と路面の接地点に作用する上下方向の力および左右方向の力の大きさによって固定側軌道輪である内方部材12の径方向歪みの変化が異なるため、予め上下方向の力および左右方向の力と径方向歪みとの関係を実験やシミュレーションにて求めておくことにより、上下方向の力および左右方向の力の大きさを算出することができる。推定手段65は、このように実験やシミュレーションにより予め求めて設定しておいた上下方向の力および左右方向の力と径方向歪みとの関係から、径方向歪み測定用センサ60の出力により、車輪1と路面の接地点に作用する上下方向の力および左右方向の力を算出する。   Since the change in the radial distortion of the inner member 12 that is the fixed side raceway is different depending on the magnitude of the vertical force and the horizontal force acting on the ground contact point between the wheel 1 and the road surface, the vertical force and the horizontal By obtaining the relationship between the directional force and the radial strain through experiments and simulations, the vertical force and the horizontal force can be calculated. The estimation means 65 determines the wheel based on the output of the radial strain measuring sensor 60 from the relationship between the vertical force and the horizontal force and the radial strain determined and set in advance through experiments and simulations. 1 and the vertical force and the horizontal force acting on the ground contact point of the road surface are calculated.

また、車輪1と路面の接地点に作用する前後方向の力の大きさによって走行用電気モータ20に流れる電流量およびブレーキ30に作用するブレーキ力の大きさが異なるため、予め前後方向の力と、電流量およびブレーキ力との関係を実験やシミュレーションにて求めておくことにより、前後方向の力の大きさを算出することができる。推定手段65は、このように実験やシミュレーションにより予め求めて設定しておいた前後方向の力と、電流量およびブレーキ力との関係から、ブレーキ用電気モータ35の出力により、車輪1と路面の接地点に作用する前後方向の力を算出する。走行用電気モータ20の電流量またはブレーキ30のブレーキ力の単独の測定結果からでも前後方向の力を推定することは可能であるが、両者を比較対照することで、前後方向の力を精度良く推定することができる。   Further, since the amount of current flowing through the traveling electric motor 20 and the magnitude of the braking force acting on the brake 30 differ depending on the magnitude of the longitudinal force acting on the ground contact point of the wheel 1 and the road surface, The magnitude of the force in the front-rear direction can be calculated by obtaining the relationship between the amount of current and the braking force through experiments and simulations. Based on the relationship between the force in the front-rear direction that has been obtained and set in advance through experiments and simulations, the amount of current, and the braking force, the estimating unit 65 determines whether the wheel 1 and the road surface Calculate the longitudinal force acting on the contact point. Although it is possible to estimate the force in the front-rear direction even from a single measurement result of the current amount of the electric motor 20 for traveling or the brake force of the brake 30, the force in the front-rear direction can be accurately determined by comparing and comparing the two. Can be estimated.

このようにして得られる各種情報に基づき、電気制御ユニット67から車両の姿勢制御用の出力が出される。例えば、旋回が円滑に行われるように、走行用電気モータ20に出力して左右の車輪1の回転速度を制御する。制動時に車輪1のロックが生じないように、ブレーキ用電気モータ35に出力して制動を制御する。旋回時に車体が左右に大きく傾いたり、加速時や制動時に車体が前後に大きく傾いたりするのを防止するために、懸架装置の減衰手段8に出力してサスペンション制御を行う。また、異常判定手段66は、前記3軸方向の力が許容値を超えたと判断される場合に、異常信号を出力する。この異常信号も、自動車の車両制御に使用することができる。さらに、リアルタイムで車輪と路面間の作用力を出力すると、よりきめ細かな姿勢制御が可能となる。   Based on the various information thus obtained, an output for controlling the attitude of the vehicle is output from the electric control unit 67. For example, the rotational speed of the left and right wheels 1 is controlled by outputting to the electric motor 20 for traveling so that the turning is performed smoothly. The braking is controlled by outputting to the brake electric motor 35 so that the wheel 1 is not locked during braking. In order to prevent the vehicle body from being greatly tilted to the left and right during turning and from being largely tilted back and forth during acceleration and braking, suspension control is performed by outputting to the damping means 8 of the suspension device. In addition, the abnormality determination unit 66 outputs an abnormality signal when it is determined that the force in the three-axis direction exceeds an allowable value. This abnormal signal can also be used for vehicle control of an automobile. Furthermore, if the action force between the wheel and the road surface is output in real time, more precise posture control becomes possible.

径方向歪み測定用センサ60は、例えば図4および図5に示すように設置する。すなわち、センサ取付部材72に径方向歪み測定用センサ60を取付けてセンサユニット71とし、このセンサユニット71を軸受10の内方部材12の内周に固定する。センサ取付部材72は、内方部材12の内周面に沿う周方向に細長い略円弧状とされ、その両端部に円弧の外周側に張り出した接触固定部72a,72bが形成されている。また、センサ取付部材72の中央部には円弧の外周側に開口する切欠部72cが形成され、この切欠部72cの背面に位置する円弧の内周側の面に歪みセンサからなる径方向歪み測定用センサ60が貼り付けられている。センサ取付部材72の断面形状は、例えば矩形状とされるが、この他に各種の形状とすることができる。   The radial strain measuring sensor 60 is installed as shown in FIGS. 4 and 5, for example. That is, the radial strain measuring sensor 60 is attached to the sensor attachment member 72 to form a sensor unit 71, and the sensor unit 71 is fixed to the inner periphery of the inner member 12 of the bearing 10. The sensor mounting member 72 has a substantially arc shape elongated in the circumferential direction along the inner peripheral surface of the inner member 12, and contact fixing portions 72 a and 72 b projecting to the outer peripheral side of the arc are formed at both ends thereof. In addition, a notch 72c that opens to the outer peripheral side of the arc is formed at the center of the sensor mounting member 72, and a radial strain measurement is made of a strain sensor on the inner peripheral surface of the arc located on the back of the notch 72c. Sensor 60 is affixed. The cross-sectional shape of the sensor mounting member 72 is, for example, a rectangular shape, but may be various other shapes.

センサユニット71は、センサ取付部材72の長手方向が内方部材12の周方向を向くように、センサ取付部材72の接触固定部72a,72bによって内方部材12の内周に固定される。これら接触固定部72a,72bの内方部材12への固定は、ボルトによる固定や、接着剤により接着等で行われる。センサ取付部材72の接触固定部72a,72b以外の箇所では、内方部材12の内周面との間に隙間を生じている。接触固定部72a,72bのいずれか一方である第1の接触固定部72aは、内方部材12に作用する荷重により内方部材12が径方向に最も大きく変形する周方向箇所で内方部材12に固定される。第2の接触固定部72bは、前記固定箇所よりも径方向の変形が少ない箇所で固定される。
この実施形態の場合、第1の接触固定部72aの固定箇所は、内方部材12の全周における真上の位置(反路面側位置)とされ、第2の接触固定部72bの固定箇所は、真上の位置から数十度、例えば30度ないし40度程度下方の位置とされる。
The sensor unit 71 is fixed to the inner periphery of the inner member 12 by the contact fixing portions 72 a and 72 b of the sensor mounting member 72 so that the longitudinal direction of the sensor mounting member 72 faces the circumferential direction of the inner member 12. The contact fixing portions 72a and 72b are fixed to the inner member 12 by fixing with bolts or bonding with an adhesive. At locations other than the contact fixing portions 72 a and 72 b of the sensor mounting member 72, a gap is generated between the inner surface of the inner member 12. The first contact fixing portion 72a, which is one of the contact fixing portions 72a and 72b, is the inner member 12 at a circumferential location where the inner member 12 is most greatly deformed in the radial direction by a load acting on the inner member 12. Fixed to. The second contact fixing portion 72b is fixed at a location where there is less deformation in the radial direction than the fixed location.
In the case of this embodiment, the fixing location of the first contact fixing portion 72a is the position directly above the entire circumference of the inner member 12 (the position opposite to the road surface), and the fixing location of the second contact fixing portion 72b is The position is several tens of degrees from the position just above, for example, about 30 to 40 degrees below.

センサ取付部材72は、車輪と路面の接地点に作用する力の予想される最大値において、塑性変形しないものであることが好ましい。センサ取付部材72の材質としては、鋼材の他、銅、黄銅、アルミニウム等の金属材料を用いることができる。   The sensor mounting member 72 is preferably one that does not undergo plastic deformation at the maximum expected value of the force acting on the contact point between the wheel and the road surface. As a material of the sensor mounting member 72, a metal material such as copper, brass, and aluminum can be used in addition to a steel material.

径方向歪み測定用センサ60に用いる歪みセンサとしては、種々の形式のものを使用できるが、例えば金属箔ストレインゲージとされる。歪みセンサが金属箔ストレインゲージで構成されている場合、センサ取付部材72は軸受10に予想される最大の外力が印加された場合でも、金属箔ストレインゲージの耐久性を考慮すると、歪みセンサの歪み量が1500マイクロストレイン以下であることが好ましい。
また、歪みセンサが半導体ストレインゲージで構成されている場合、センサ取付部材72は軸受10に予想される最大の外力が印加された場合でも、半導体ストレインゲージの耐久性を考慮すると、歪みセンサの歪み量が1000マイクロストレイン以下であることが好ましい。
As a strain sensor used for the radial strain measuring sensor 60, various types of strain sensors can be used. For example, a metal foil strain gauge is used. When the strain sensor is composed of a metal foil strain gauge, the sensor mounting member 72 is not limited to the strain of the strain sensor in consideration of the durability of the metal foil strain gauge even when the expected maximum external force is applied to the bearing 10. The amount is preferably 1500 microstrain or less.
In addition, when the strain sensor is constituted by a semiconductor strain gauge, the sensor mounting member 72 is not limited to the strain of the strain sensor in consideration of the durability of the semiconductor strain gauge even when the maximum expected external force is applied to the bearing 10. The amount is preferably 1000 microstrain or less.

車輪1と路面の接地点に作用する力により軸受10の回転側軌道輪である外方部材11に荷重が印加されると、転動体15を介して内方部材12が変形し、その変形は内方部材12の内周に取付けられたセンサ取付部材72に伝わり、センサ取付部材72が変形する。そのセンサ取付部材72の歪みを歪みセンサである径方向歪み測定用センサ60で測定する。この際、センサ取付部材72は内方部材12におけるセンサ取付部材72の固定箇所の径方向の変形に従って変形するが、内方部材12と比べてセンサ取付部材72は円弧状であり、かつ切欠部72cが設けられてこの切欠部72cの箇所で剛性が低下しているので、内方部材12の歪みよりも大きな歪みがセンサ取付部材72に現れる。このため、内方部材12のわずかな歪みも径方向歪み測定用センサ60で正確に検出することができる。   When a load is applied to the outer member 11, which is the rotating raceway of the bearing 10, by the force acting on the contact point between the wheel 1 and the road surface, the inner member 12 is deformed via the rolling elements 15. The sensor mounting member 72 is deformed by being transmitted to the sensor mounting member 72 mounted on the inner periphery of the inner member 12. The strain of the sensor mounting member 72 is measured by a radial strain measuring sensor 60 which is a strain sensor. At this time, the sensor mounting member 72 is deformed in accordance with the radial deformation of the fixing portion of the sensor mounting member 72 in the inner member 12, but the sensor mounting member 72 has an arc shape compared to the inner member 12, and the notch portion. Since 72c is provided and rigidity is reduced at the position of the notch 72c, a strain larger than the strain of the inner member 12 appears in the sensor mounting member 72. For this reason, a slight distortion of the inner member 12 can be accurately detected by the radial distortion measuring sensor 60.

センサ取付部材72の2箇所の接触固定部72a,72bのうち、第1の接触固定部72aは、車輪と路面の接地点に作用する力によって、内方部材12の他の箇所と比べて径方向の変形が著しい箇所に取付けられていることが好ましい。内方部材12は、円周方向の各部によって、車輪と路面の接地点に作用する上下方向の力および左右方向の力による径方向変形の程度が異なる。FEM(有限要素法)解析の結果によると、車輪と路面の接触点に作用する上下方向の力および左右方向の力に対する内方部材12の径方向の変形は、反路面側および路面側の位置、つまり鉛直方向の真上位置および真下位置が最も大きくなる。この実施形態では、内方部材12の径方向の変形の最も大きな位置となる鉛直方向の真上位置に第1の接触固定部72aを配置したため、感度良く、したがって精度良く、内方部材12の歪みを検出することができる。
すなわち、第1の接触固定部72aが内方部材12における他の箇所と比べて径方向に大きく変形する箇所に取付けられていると、センサ取付部材72は、変形の少ない第2の接触固定部72bが支点となって、第1の接触固定部72aが内方部材12の大きな変形に伴い大きく変形する。そのため、センサ取付部材72の径方向歪み測定用センサ60の取付位置がより一層大きな歪みを生じることになり、径方向歪み測定用センサ60により、内方部材12の歪みをより一層感度良く検出することができる。
Of the two contact fixing portions 72a and 72b of the sensor mounting member 72, the first contact fixing portion 72a has a diameter larger than that of the other portions of the inner member 12 due to the force acting on the ground contact point between the wheel and the road surface. It is preferable to be attached at a location where the directional deformation is significant. The inner member 12 differs in the degree of radial deformation caused by the vertical force and the horizontal force acting on the ground contact point between the wheel and the road surface, depending on each part in the circumferential direction. According to the result of FEM (finite element method) analysis, the vertical force acting on the contact point between the wheel and the road surface and the radial deformation of the inner member 12 with respect to the left-right force are the positions on the opposite road surface side and the road surface side. That is, the position directly above and below in the vertical direction is the largest. In this embodiment, since the first contact fixing portion 72a is arranged at a position directly above the vertical direction, which is the position where the radial deformation of the inner member 12 is the largest, the sensitivity of the inner member 12 is improved. Distortion can be detected.
That is, when the first contact fixing portion 72a is attached to a location that is greatly deformed in the radial direction as compared with other locations in the inner member 12, the sensor attachment member 72 is a second contact fixing portion that is less deformed. 72b becomes a fulcrum, and the first contact fixing portion 72a is greatly deformed as the inner member 12 is largely deformed. For this reason, the mounting position of the sensor 60 for measuring radial strain of the sensor mounting member 72 causes further distortion, and the sensor for measuring radial strain 60 detects the distortion of the inner member 12 with higher sensitivity. be able to.

なお、前記接触固定部72a,72bのうちの第2の接触固定部72bは、第1の接触固定部72aとは、車輪と路面の接地点に作用する力によって生じる径方向の歪みの方向が正逆異なる箇所としてもよい。例えば、内方部材12の真横位置(路面側位置から90度上方の位置)よりも上側の位置と、真横位置よりも下側(路面側に近い位置)とでは、車輪と路面の接地点に作用する左右方向の力に対する内方部材12の径方向の変形の方向が、正逆異なる方向となる。第1の接触固定部72aが内方部材12の真上位置(反路面側位置)の場合、第2の接触固定部72bを内方部材12の真横位置よりも下側位置とすると、両接触固定部72a,72bにおける内方部材12の変形の方向は正逆異なる方向となる。このように、第2の接触固定部72bと第1の接触固定部72aとが内方部材12の径方向の歪みの方向が正逆異なる箇所とされていると、両側の歪みが加算されることになって、内方部材12の変形がセンサ取付部材72により大きく伝わり、より一層大きな歪みを検出して、内方部材12の歪みをさらに感度良く検出することができる。   Of the contact fixing portions 72a and 72b, the second contact fixing portion 72b is different from the first contact fixing portion 72a in the direction of radial distortion caused by the force acting on the contact point between the wheel and the road surface. It is good also as a place where forward and backward differ. For example, at the position above the lateral position (position 90 degrees above the road surface position) of the inner member 12 and the position below the lateral position (position close to the road surface), the contact point between the wheel and the road surface The direction of the radial deformation of the inner member 12 with respect to the acting force in the left-right direction is a different direction. When the first contact fixing portion 72a is at a position directly above the inner member 12 (opposite road surface side position), if the second contact fixing portion 72b is at a position lower than the position directly below the inner member 12, both contacts The directions of deformation of the inner member 12 in the fixing portions 72a and 72b are different from each other. As described above, if the second contact fixing portion 72b and the first contact fixing portion 72a are different from each other in the direction of the radial distortion of the inner member 12, the distortion on both sides is added. As a result, the deformation of the inner member 12 is largely transmitted to the sensor mounting member 72, so that even greater strain can be detected, and the strain of the inner member 12 can be detected with higher sensitivity.

センサ取付部材72およびこのセンサ取付部材72に取付けた径方向歪み測定用センサ60からなるセンサユニット71を軸受10の内方部材12に取付ける構成としたため、左右方向荷重検出用のセンサを車両にコンパクトに設置できる。センサ取付部材72は内方部材12に取付けられる簡易な部品であるため、これに径方向歪み測定用センサ60を取付けることで、量産性に優れたものとでき、コスト低下が図れる。   Since the sensor unit 71 including the sensor mounting member 72 and the radial strain measuring sensor 60 mounted on the sensor mounting member 72 is mounted on the inner member 12 of the bearing 10, the sensor for detecting the lateral load is compact in the vehicle. Can be installed. Since the sensor attachment member 72 is a simple part attached to the inner member 12, by attaching the radial strain measurement sensor 60 to the sensor attachment member 72, it can be excellent in mass productivity, and the cost can be reduced.

図6に示すように、センサユニット71を2箇所に設けても良い。これにより、より精度の高い荷重の検出が可能となる。同様に、センサユニット71を3箇所以上の複数箇所に設けることにより、より一層精度の高い荷重の検出が可能となる。その際、スペース上の理由等により複数のセンサユニット71を設置することが困難な場合、図7に示すように、内方部材12の内周に接触固定される接触固定部を2つのセンサユニット71で共用するようにしてもよい。   As shown in FIG. 6, the sensor units 71 may be provided at two locations. This makes it possible to detect a load with higher accuracy. Similarly, by providing the sensor units 71 at a plurality of three or more locations, it becomes possible to detect a load with higher accuracy. At that time, when it is difficult to install a plurality of sensor units 71 due to space reasons or the like, as shown in FIG. 7, the contact fixing portion fixed to the inner periphery of the inner member 12 is divided into two sensor units. 71 may be shared.

図8は、車輪と路面の接地点に作用する3軸方向の力のうち上下方向の力および左右方向の力をそれぞれ測定するセンサとして、前記実施形態とは異なるセンサを設けた参考提案例に係る車輪用軸受装置を示している。図9は、この車輪用軸受装置の制御系のブロック図である。この車輪用軸受装置では、上下方向の力Fzを、軸受10の固定側軌道輪である内方部材12の径方向歪みεzを検出する径方向歪み測定用センサ61の出力から求め、かつ左右方向の力Fyを、軸受10の固定側軌道輪である内方部材12の軸方向歪みεyを検出する軸方向歪み測定用センサ62の出力から求めるようにしている。前後方向の力Fxは、前記実施形態と同様、走行用電気モータ20の電流量Iを検出する電流センサ63およびブレーキ30のブレーキ力を検出するブレーキ力センサ64の出力εdから求める。 FIG. 8 shows a reference proposal example in which sensors different from the above-described embodiment are provided as sensors for measuring the vertical force and the horizontal force among the three axial forces acting on the contact point between the wheel and the road surface. It shows a bearing device for a vehicle wheel according. FIG. 9 is a block diagram of a control system of the wheel bearing device. In this wheel bearing device, the force Fz in the vertical direction is obtained from the output of the radial strain measurement sensor 61 that detects the radial strain εz of the inner member 12 that is the stationary raceway of the bearing 10, and the horizontal direction The force Fy is obtained from the output of the axial strain measuring sensor 62 that detects the axial strain εy of the inner member 12 that is the stationary raceway of the bearing 10. The force Fx in the front-rear direction is obtained from the output εd of the current sensor 63 that detects the current amount I of the traveling electric motor 20 and the brake force sensor 64 that detects the brake force of the brake 30 as in the above embodiment.

車輪1と路面の接地点に作用する上下方向の力の大きさによって固定側軌道輪である内方部材12の径方向歪みの変化が異なるため、予め上下方向の力と径方向歪みとの関係を実験やシミュレーションにて求めておくことにより、上下方向の力の大きさを算出することができる。推定手段65は、このように実験やシミュレーションにより予め求めて設定しておいた上下方向の力と径方向歪みとの関係から、径方向歪み測定用センサ61の出力により、車輪1と路面の接地点に作用する上下方向の力を算出する。   Since the change in the radial strain of the inner member 12 that is the fixed side raceway is different depending on the magnitude of the vertical force acting on the ground contact point of the wheel 1 and the road surface, the relationship between the vertical force and the radial strain in advance. Can be calculated through experiments and simulations to calculate the magnitude of the vertical force. Based on the relationship between the vertical force and the radial strain previously determined and set through experiments and simulations, the estimating means 65 uses the output of the radial strain measuring sensor 61 to connect the wheel 1 and the road surface. Calculate the vertical force acting on the point.

また、車輪1と路面の接地点に作用する左右方向の力の大きさによって固定側軌道輪である内方部材12の軸方向歪みが異なるため、予め左右方向の力と軸方向歪みとの関係を実験やシミュレーションにて求めておくことにより、左右方向の大きさを算出することができる。推定手段65は、このように実験やシミュレーションにより予め求めて設定しておいた左右方向の力と軸方向歪みとの関係から、軸方向歪み測定用センサ62の出力により、車輪1と路面の接地点に作用する左右方向の力を算出する。   Further, since the axial distortion of the inner member 12 that is the stationary side raceway varies depending on the magnitude of the lateral force acting on the ground contact point between the wheel 1 and the road surface, the relationship between the lateral force and the axial distortion in advance. Can be calculated by experiments and simulations to calculate the size in the left-right direction. The estimation means 65 determines the contact between the wheel 1 and the road surface based on the output of the axial strain measuring sensor 62 based on the relationship between the lateral force and the axial strain previously obtained and set through experiments and simulations. The lateral force acting on the point is calculated.

径方向歪み測定用センサ61は、例えば図10および図11に示すように設置する。すなわち、センサ取付部材74に径方向歪み測定用センサ61を取付けてセンサユニット73とし、このセンサユニット73をナックル7に固定する。センサ取付部材74は先端が鉤状に屈曲した細長い部材で、このセンサ取付部材74の先端に変位センサからなる径方向歪みセンサ61が取付けられている。センサ取付部材74の基部は、ナックル7へ取付けるための接触固定部74aとなっている。   For example, the radial strain measuring sensor 61 is installed as shown in FIGS. That is, the sensor 61 for radial strain measurement is attached to the sensor attachment member 74 to form a sensor unit 73, and the sensor unit 73 is fixed to the knuckle 7. The sensor attachment member 74 is an elongated member having a distal end bent in a hook shape, and a radial strain sensor 61 including a displacement sensor is attached to the distal end of the sensor attachment member 74. The base portion of the sensor mounting member 74 is a contact fixing portion 74 a for mounting to the knuckle 7.

センサ取付部材74の接触固定部74aを接着剤等でナックル7に固定することにより、センサユニット73がナックル7に取付けられる。この参考提案例の場合、径方向歪み測定用センサ61は例えば渦電流式等の非接触型の変位センサであり、径方向歪み測定用センサ61は、内方部材12の内周面の径方向の変位を測定するように、内方部材12の内周面に対して所定の間隔を開けてセンサ取付部材74に取り付けられている。 The sensor unit 73 is attached to the knuckle 7 by fixing the contact fixing portion 74a of the sensor attachment member 74 to the knuckle 7 with an adhesive or the like. In the case of this reference proposal example , the radial strain measuring sensor 61 is a non-contact type displacement sensor such as an eddy current type, and the radial strain measuring sensor 61 is the radial direction of the inner peripheral surface of the inner member 12. In order to measure the displacement of the inner member 12, the inner member 12 is attached to the sensor attachment member 74 at a predetermined interval.

また、軸方向歪み測定用センサ62は、例えば図10および図12に示すように設置する。すなわち、センサ取付部材76に軸方向歪み測定用センサ62を取付けてセンサユニット75とし、このセンサユニット75をナックル7に固定する。センサ取付部材76は直線状の細長い部材で、このセンサ取付部材76の先端に変位センサからなる軸方向歪みセンサ62が取付けられている。センサ取付部材76の基部は、ナックル7へ取付けるための接触固定部76aとなっている。   The axial strain measuring sensor 62 is installed as shown in FIGS. 10 and 12, for example. That is, the sensor 62 for axial strain measurement is attached to the sensor attachment member 76 to form a sensor unit 75, and the sensor unit 75 is fixed to the knuckle 7. The sensor attachment member 76 is a linear and elongated member, and an axial strain sensor 62 made of a displacement sensor is attached to the tip of the sensor attachment member 76. A base portion of the sensor mounting member 76 is a contact fixing portion 76 a for mounting to the knuckle 7.

センサ取付部材76の接触固定部76aを接着剤等でナックル7に固定することにより、センサユニット75がナックル7に取付けられる。この参考提案例の場合、軸方向歪み測定用センサ62は例えば渦電流式等の非接触型の変位センサであり、軸方向歪み測定用センサ62は、内方部材12の円板部17aの表面の軸方向の変位を測定するように、前記円板部17aの表面に対して所定の間隔を開けてセンサ取付部材76に取り付けられている。 The sensor unit 75 is attached to the knuckle 7 by fixing the contact fixing portion 76a of the sensor attachment member 76 to the knuckle 7 with an adhesive or the like. In the case of this reference proposal example , the axial strain measuring sensor 62 is a non-contact type displacement sensor such as an eddy current type, and the axial strain measuring sensor 62 is the surface of the disk portion 17a of the inner member 12. Are attached to the sensor attachment member 76 at a predetermined interval with respect to the surface of the disk portion 17a.

径方向歪み測定用センサ61および軸方向歪み測定用センサ62に用いる変位センサとしては、渦電流式の他に、磁気式、光学式、超音波式、接触式等のセンサや、あるいはこれら以外の形式の変位を検出可能なセンサを用いることができる。各種条件に合わせて、適当なセンサを選択すれば良い。また、径方向歪み測定用センサ61および軸方向歪み測定用センサ62のセンサ取付部材74,76は、センサユニット73,75をナックル7に取付けた状態において、外力によって変形しない剛性をもつ材質で構成されている。   As a displacement sensor used for the radial strain measuring sensor 61 and the axial strain measuring sensor 62, in addition to the eddy current type, a magnetic type, an optical type, an ultrasonic type, a contact type sensor, etc. A sensor capable of detecting a type of displacement can be used. An appropriate sensor may be selected in accordance with various conditions. The sensor mounting members 74 and 76 of the radial strain measuring sensor 61 and the axial strain measuring sensor 62 are made of a material having rigidity that does not deform due to an external force when the sensor units 73 and 75 are mounted on the knuckle 7. Has been.

車輪1と路面の接地点に作用する上下方向の力により軸受10の回転側軌道輪である外方部材11に荷重が印加されると、転動体15を介して内方部材12が変形し、その変形による内方部材12の径方向の変位を、ナックル7に取付けられたセンサ取付部材74に設けた径方向歪み測定用センサ61により測定する。また、車輪1と路面の接地点に作用する左右方向の力により軸受10の回転側軌道輪である外方部材11に荷重が印加されると、転動体15を介して内方部材12が変形し、その変形による内方部材12の軸方向の変位を、ナックル7に取付けられたセンサ取付部材76に設けた軸方向歪み測定用センサ62により測定する。センサ取付部材74,76は接触固定部74a,76aによりナックル7に取付けられるため、内方部材12が変形した場合でも、センサ取付部材74,76はほとんど変形しない。このセンサ取付部材74,76に取付けた変位センサ61,62によって、内方部材12の表面の変位を測定するため、変位の測定精度が高く、この測定値から推定される上下方向の力および左右方向の力の精度も高くなる。   When a load is applied to the outer member 11 which is the rotating raceway of the bearing 10 due to the vertical force acting on the contact point between the wheel 1 and the road surface, the inner member 12 is deformed via the rolling elements 15, The displacement in the radial direction of the inner member 12 due to the deformation is measured by a radial strain measuring sensor 61 provided on the sensor mounting member 74 mounted on the knuckle 7. Further, when a load is applied to the outer member 11 that is the rotating raceway of the bearing 10 due to the lateral force acting on the ground contact point between the wheel 1 and the road surface, the inner member 12 is deformed via the rolling elements 15. Then, the axial displacement of the inner member 12 due to the deformation is measured by the axial strain measuring sensor 62 provided on the sensor attachment member 76 attached to the knuckle 7. Since the sensor attachment members 74 and 76 are attached to the knuckle 7 by the contact fixing portions 74a and 76a, even if the inner member 12 is deformed, the sensor attachment members 74 and 76 are hardly deformed. Since the displacement sensors 61 and 62 attached to the sensor attachment members 74 and 76 measure the displacement of the surface of the inner member 12, the displacement measurement accuracy is high. The accuracy of the directional force is also increased.

センサ取付部材74およびこのセンサ取付部材74に取付けた径方向歪み測定用センサ61からなるセンサユニット73を内方部材12に取付ける構成としたため、上下方向荷重検出用のセンサを車輪用軸受装置にコンパクトに設置できる。同様に、センサ取付部材76およびこのセンサ取付部材76に取付けた軸方向歪み測定用センサ62からなるセンサユニット75を内方部材12に取付ける構成としたため、左右方向荷重検出用のセンサを車輪用軸受装置にコンパクトに設置できる。センサ取付部材74,76は内方部材12に取付けられる簡易な部品であるため、これに径方向歪み測定用センサ61および軸方向歪み測定用センサ62を取付けることで、量産性に優れたものとでき、コスト低下が図れる。   Since the sensor mounting unit 74 including the sensor mounting member 74 and the radial strain measuring sensor 61 mounted on the sensor mounting member 74 is mounted on the inner member 12, the sensor for detecting the vertical load is compact in a wheel bearing device. Can be installed. Similarly, since the sensor unit 75 comprising the sensor mounting member 76 and the axial strain measuring sensor 62 mounted on the sensor mounting member 76 is mounted on the inner member 12, the sensor for detecting the lateral load is used as a wheel bearing. It can be installed in a compact device. Since the sensor attachment members 74 and 76 are simple parts that can be attached to the inner member 12, attaching the radial strain measurement sensor 61 and the axial strain measurement sensor 62 to the sensor attachment members 74 and 76 provides excellent mass productivity. And cost reduction can be achieved.

また、上記実施形態では、ブレーキ30を電動式としたが、ブレーキは油圧式としてもよい。図13は油圧式ブレーキの構成を示す図である。この油圧式ブレーキ80は、ブレーキキャリパ81内に設けられた一対のブレーキパッド85,85でブレーキ輪86を挟み付けることによりブレーキ力を作用させる。ブレーキキャリパ81は、懸架装置のナックル7に設置されている。ブレーキキャリパ81内は、ブレーキ液の液圧でピストン84を進退自在に収容したシリンダ室が設けられ、ブレーキパッド85,85は、ピストン84に取付けられている。ブレーキキャリパ81内のシリンダ室には、ブレーキペダル等の操作部材87の踏力をブレーキ液の液圧に片端するマスタシリンダ88から、ブレーキパイプ(あるいはブレーキホース)89を介してブレーキ液の液圧が与えられる。   In the above embodiment, the brake 30 is electrically operated, but the brake may be hydraulic. FIG. 13 is a diagram showing the configuration of the hydraulic brake. The hydraulic brake 80 applies a braking force by sandwiching a brake wheel 86 between a pair of brake pads 85 and 85 provided in a brake caliper 81. The brake caliper 81 is installed on the knuckle 7 of the suspension device. Inside the brake caliper 81 is provided a cylinder chamber that accommodates the piston 84 so as to be able to move forward and backward by the hydraulic pressure of the brake fluid, and the brake pads 85 and 85 are attached to the piston 84. In the cylinder chamber in the brake caliper 81, the hydraulic pressure of the brake fluid is supplied from the master cylinder 88, which has one end of the pedal force of the operation member 87 such as a brake pedal, to the hydraulic pressure of the brake fluid via the brake pipe (or brake hose) 89. Given.

マスタシリンダ88からブレーキパイプ89を介してブレーキキャリパ81内に至るブレーキ液の経路における任意箇所に、ブレーキ液の液圧を測定する液圧計82が設けられている。ブレーキ輪86とブレーキパッド85,85間の押付力と、ブレーキ液の液圧との関係を、予め実験やシミュレーションにより求めておくことで、液圧計82の測定結果から前記押付力を検出することができる。この場合、ブレーキ力センサ64の出力として、液圧計82の測定値を用いることにより、車輪1と路面の接地点に作用する前後方向の力を推定することができる。   A fluid pressure gauge 82 for measuring the fluid pressure of the brake fluid is provided at an arbitrary position in the brake fluid path from the master cylinder 88 through the brake pipe 89 into the brake caliper 81. The relationship between the pressing force between the brake wheel 86 and the brake pads 85 and 85 and the hydraulic pressure of the brake fluid is obtained in advance through experiments and simulations, so that the pressing force is detected from the measurement result of the hydraulic pressure gauge 82. Can do. In this case, the force in the front-rear direction acting on the contact point between the wheel 1 and the road surface can be estimated by using the measured value of the hydraulic pressure gauge 82 as the output of the brake force sensor 64.

この発明の実施形態にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。1 is a cross-sectional view of an in-wheel motor-equipped sensor-equipped wheel bearing device according to an embodiment of the present invention. 同車輪用軸受装置の要部を拡大して示す図と、ブレーキ制御系のブロック図とを組み合わせた説明図である。It is explanatory drawing which combined the figure which expands and shows the principal part of the bearing apparatus for wheels, and the block diagram of the brake control system. 同車輪用軸受装置の姿勢制御系のブロック図である。It is a block diagram of the attitude | position control system of the bearing apparatus for wheels. 径方向歪み測定用センサの取付例を示す内方部材および径方向歪み測定用センサの正面図である。It is a front view of the inward member and the sensor for radial direction distortion which shows the example of attachment of the sensor for radial direction distortion measurement. (A)は径方向歪み測定用センサの正面図、(B)はその底面図である。(A) is a front view of the radial strain measuring sensor, and (B) is a bottom view thereof. 径方向歪み測定用センサの異なる取付例を示す内方部材および径方向歪み測定用センサの正面図である。It is a front view of the inner member which shows the example of a different attachment of the sensor for radial direction strain measurement, and the sensor for radial direction strain measurement. 径方向歪み測定用センサのさらに異なる取付例を示す内方部材および径方向歪み測定用センサの正面図である。It is a front view of the inner member and the radial strain measuring sensor showing still another example of attachment of the radial strain measuring sensor. 参考提案例にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the bearing apparatus for wheels with a sensor with a built-in in-wheel type motor concerning a reference proposal example . 同車輪用軸受装置の姿勢制御系のブロック図である。It is a block diagram of the attitude | position control system of the bearing apparatus for wheels. 径方向歪み測定用センサおよび軸方向歪み測定用センサの取付例を示す内方部材、径方向歪み測定用センサ、および軸方向歪み測定用センサの正面図である。It is a front view of an inner member, a radial strain measuring sensor, and an axial strain measuring sensor showing an example of attachment of the radial strain measuring sensor and the axial strain measuring sensor. (A)は径方向歪み測定用センサの平面図、(B)はその側面図である。(A) is a plan view of the radial strain measuring sensor, and (B) is a side view thereof. (A)は軸方向歪み測定用センサの平面図、(B)はその側面図である。(A) is a top view of the sensor for axial distortion measurement, (B) is the side view. 油圧式ブレーキの構成を示す断面図である。It is sectional drawing which shows the structure of a hydraulic brake.

符号の説明Explanation of symbols

1…車輪
…ナックル
10…軸受
11…外方部材
12…内方部材
15…転動体
20…走行用電気モータ
21…ステータ
22…ロータ
30…ブレーキ
31…ブレーキ輪
32…ブレーキパッド
35…ブレーキ用電気モータ
60,61…径方向歪み測定用センサ
62…軸方向歪み測定用センサ
63…電流センサ
64…ブレーキ力センサ
65…推定手段
66…異常判定手段
71,73,75…センサユニット
72,74,76…センサ取付部材
72a…第1の接触固定部
72b…第2の接触固定部
72c…切欠部
74a,76a…接触固定部
1 ... wheel
DESCRIPTION OF SYMBOLS 7 ... Knuckle 10 ... Bearing 11 ... Outer member 12 ... Inner member 15 ... Rolling element 20 ... Electric motor 21 for driving | running | working ... Stator 22 ... Rotor 30 ... Brake 31 ... Brake wheel 32 ... Brake pad 35 ... Electric motor 60 for brake , 61 ... Sensor for measuring radial strain 62 ... Sensor for measuring axial strain 63 ... Current sensor 64 ... Brake force sensor 65 ... Estimating means 66 ... Abnormality determining means 71, 73, 75 ... Sensor units 72, 74, 76 ... Sensors Mounting member 72a ... 1st contact fixing | fixed part 72b ... 2nd contact fixing | fixed part 72c ... Notch part 74a, 76a ... Contact fixing | fixed part

Claims (7)

内方部材と外方部材の間に複列の転動体を介在させ、前記内方部材に懸架装置のナックルを取付け、かつ前記外方部材に車輪を取付け、前記内方部材に電気モータのステータを設け、外方部材に前記電気モータのロータをそれぞれ設けた車輪用軸受装置において、
前記内方部材の歪みを検出することにより、前記車輪と路面の接地点に作用する、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力を測定するセンサを設け、このセンサを内方部材の内周に固定したことを特徴とするインホイール型モータ内蔵センサ付き車輪用軸受装置。
A double row rolling element is interposed between the inner member and the outer member, a knuckle of a suspension device is attached to the inner member, a wheel is attached to the outer member, and a stator of an electric motor is attached to the inner member. In the wheel bearing device in which the outer member is provided with the rotor of the electric motor,
By detecting the distortion of the inward member, the force in at least one of the three axial forces in the vertical direction, the horizontal direction, and the front-rear direction perpendicular to each other acting on the contact point between the wheel and the road surface A sensor-equipped wheel bearing device with an in-wheel motor built-in sensor, characterized in that a sensor for measuring the sensor is provided and the sensor is fixed to the inner periphery of the inner member.
請求項1において、前記3軸方向の力を測定するセンサの一つとして、前記内方部材の径方向歪みを測定する径方向歪み測定用センサを設け、この径方向歪み測定用センサの出力から車輪と路面の接地点に作用する上下方向の力および左右方向の力を推定する推定手段を設けたインホイール型モータ内蔵センサ付き車輪用軸受装置。   In Claim 1, as one of the sensors for measuring the force in the three axial directions, a radial strain measuring sensor for measuring the radial strain of the inner member is provided, and the output of the radial strain measuring sensor is provided. A wheel bearing device with an in-wheel motor-equipped sensor provided with estimation means for estimating a vertical force and a horizontal force acting on a contact point between a wheel and a road surface. 請求項2において、前記径方向歪み測定用センサは、センサ取付部材を介して前記内方部材に取付けられ、センサ取付部材の歪みを測定する歪みセンサであり、前記センサ取付部材は、前記内方部材に対して少なくとも周方向に離れた2箇所の接触固定部を有し、隣合う接触固定部の間で少なくとも1箇所の切欠部を有し、この切欠部に前記径方向歪み測定用センサを配置したものであるインホイール型モータ内蔵センサ付き車輪用軸受装置。   3. The radial strain measurement sensor according to claim 2, wherein the radial strain measurement sensor is a strain sensor that is attached to the inner member via a sensor attachment member and measures the strain of the sensor attachment member. It has at least two contact fixing parts separated from each other in the circumferential direction with respect to the member, and has at least one notch part between adjacent contact fixing parts, and the radial strain measuring sensor is provided in this notch part. An in-wheel motor-equipped sensor-equipped wheel bearing device that is arranged. 請求項1において、前記3軸方向の力を測定するセンサの一つとして、前記内方部材の径方向歪みを測定する径方向歪み測定用センサを設け、この径方向歪み測定用センサの出力から車輪と路面の接地点に作用する上下方向の力を推定する推定手段を設けたインホイール型モータ内蔵センサ付き車輪用軸受装置。   In Claim 1, as one of the sensors for measuring the force in the three axial directions, a radial strain measuring sensor for measuring the radial strain of the inner member is provided, and the output of the radial strain measuring sensor is provided. A wheel bearing device with an in-wheel motor-equipped sensor provided with an estimation means for estimating a vertical force acting on a contact point between a wheel and a road surface. 請求項1において、前記3軸方向の力を測定するセンサの一つとして、前記内方部材の軸方向歪みを測定する軸方向歪み測定用センサを設け、この軸方向歪み測定用センサの出力から車輪と路面の接地点に作用する左右方向の力を推定する推定手段を設けたインホイール型モータ内蔵センサ付き車輪用軸受装置。   2. The axial strain measuring sensor for measuring the axial strain of the inner member is provided as one of the sensors for measuring the force in the three axial directions according to claim 1, and an output of the axial strain measuring sensor is provided. A wheel bearing device with an in-wheel motor-equipped sensor provided with estimation means for estimating a lateral force acting on a contact point between a wheel and a road surface. 請求項1において、前記内方部材および外方部材に、ブレーキのブレーキ輪およびブレーキパッドをそれぞれ設けたインホイール型モータ内蔵センサ付き車輪用軸受装置。   The wheel bearing device with an in-wheel motor-equipped sensor according to claim 1, wherein a brake wheel and a brake pad of a brake are provided on the inner member and the outer member, respectively. 請求項6において、前記3軸方向の力を測定するセンサの一つとして、前記電気モータの電流量を測定する電流センサと、前記ブレーキに作用するブレーキ力を測定するブレーキ力センサとを設け、これら電流センサおよびブレーキ力センサの出力から車輪と路面の接地点に作用する前後方向の力を推定する推定手段を設けたインホイール型モータ内蔵センサ付き車輪用軸受装置。 In Claim 6 , as one of the sensors for measuring the force in the three axial directions, a current sensor for measuring a current amount of the electric motor and a brake force sensor for measuring a braking force acting on the brake are provided, An in-wheel motor-equipped sensor-equipped bearing device provided with an estimation means for estimating a longitudinal force acting on a contact point between the wheel and the road surface from outputs of the current sensor and the brake force sensor.
JP2006311385A 2006-11-17 2006-11-17 Wheel bearing device with in-wheel motor built-in sensor Expired - Fee Related JP5110854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311385A JP5110854B2 (en) 2006-11-17 2006-11-17 Wheel bearing device with in-wheel motor built-in sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311385A JP5110854B2 (en) 2006-11-17 2006-11-17 Wheel bearing device with in-wheel motor built-in sensor

Publications (2)

Publication Number Publication Date
JP2008126733A JP2008126733A (en) 2008-06-05
JP5110854B2 true JP5110854B2 (en) 2012-12-26

Family

ID=39553033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311385A Expired - Fee Related JP5110854B2 (en) 2006-11-17 2006-11-17 Wheel bearing device with in-wheel motor built-in sensor

Country Status (1)

Country Link
JP (1) JP5110854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092743A2 (en) 2013-12-20 2015-06-25 Freni Brembo S.P.A. Wheel assembly with motor and vehicle braking device
CN110099826A (en) * 2016-10-26 2019-08-06 福乐尼·乐姆宝公开有限公司 For controlling the electronic system and correlation technique of traction and the braking of vehicle

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230128A (en) * 2009-03-27 2010-10-14 Aisin Seiki Co Ltd Brake device for in-wheel motor
US8476794B2 (en) 2009-05-27 2013-07-02 Empire Technology Development Llc Wheel motor with rotating outer rotor
DK2333325T3 (en) 2009-11-26 2015-08-24 Siemens Ag Brake system, wind turbine generator and
JP5809927B2 (en) * 2011-10-28 2015-11-11 Ntn株式会社 In-wheel motor drive device
JP6011105B2 (en) * 2012-07-25 2016-10-19 株式会社ジェイテクト Wheel load calculation method, vehicle travel control device having this calculation method, and vehicle travel device having this control device
DE102012108518A1 (en) * 2012-09-12 2014-03-13 Bpw Bergische Achsen Kg Wheel hub unit of vehicle axle in three-axle trailer vehicle, has pin-shaped uprights whose end is rotationally supported on circumference of wheel hub, such that hub flange of wheel hub is arranged behind vehicle interior stator
JP6084893B2 (en) 2013-05-08 2017-02-22 富士重工業株式会社 Wheel component detection device
DE102014210416A1 (en) * 2014-06-03 2015-12-03 Siemens Aktiengesellschaft drive wheel
JP5876564B2 (en) * 2014-12-24 2016-03-02 Ntn株式会社 Electric linear actuator
DE202016105939U1 (en) * 2016-10-21 2018-01-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Suspension and motor vehicle
DE102019107740A1 (en) * 2019-03-26 2020-10-01 Schaeffler Technologies AG & Co. KG Electric wheel drive unit for driving a wheel of a motor vehicle
CN110243524B (en) * 2019-07-15 2024-04-05 西南交通大学 Triaxial force performance testing device of high-thrust superconducting linear motor
JP7438028B2 (en) * 2020-06-08 2024-02-26 Ntn株式会社 Bearings for vehicle power units and wheels with generators
JP7349961B2 (en) * 2020-06-08 2023-09-25 Ntn株式会社 Bearings for vehicle power units and wheels with generators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557605U (en) * 1992-01-08 1993-07-30 アンリツ株式会社 Strain sensor assembly
JPH07174644A (en) * 1993-12-21 1995-07-14 Mitsubishi Electric Corp Strain gage, strain measuring device and manufacture of the device
JPH0961268A (en) * 1995-08-25 1997-03-07 Nippon Seiko Kk Load measuring apparatus for bearing
JP2003194119A (en) * 2001-12-28 2003-07-09 Nissan Motor Co Ltd Electric braking device
JP2003300420A (en) * 2002-04-10 2003-10-21 Hiroshi Shimizu In-wheel motor of electric automobile
EP1502805B1 (en) * 2002-05-07 2018-09-19 Kabushiki Kaisha Bridgestone Method and device for controlling vehicle
JP4135399B2 (en) * 2002-05-17 2008-08-20 株式会社ジェイテクト Hub unit with sensor
US7878411B2 (en) * 2004-07-29 2011-02-01 Ntn Corporation Wheel bearing device and its quality management method
JP4385296B2 (en) * 2004-08-27 2009-12-16 富士重工業株式会社 Traction control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092743A2 (en) 2013-12-20 2015-06-25 Freni Brembo S.P.A. Wheel assembly with motor and vehicle braking device
US10047808B2 (en) 2013-12-20 2018-08-14 Freni Brembo S.P.A. Wheel with motor and vehicle braking device
CN110099826A (en) * 2016-10-26 2019-08-06 福乐尼·乐姆宝公开有限公司 For controlling the electronic system and correlation technique of traction and the braking of vehicle
CN110099826B (en) * 2016-10-26 2021-11-30 福乐尼·乐姆宝公开有限公司 Electronic system for controlling traction and braking of a vehicle and related method

Also Published As

Publication number Publication date
JP2008126733A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5110854B2 (en) Wheel bearing device with in-wheel motor built-in sensor
JP5052084B2 (en) Axle unit with in-wheel motor built-in sensor
JP4925624B2 (en) Wheel bearing with sensor
WO2007066593A1 (en) Sensor-equipped bearing for wheel
JP4864441B2 (en) Wheel bearing with sensor
WO2007066482A1 (en) Sensor-equipped bearing for wheel
JP2007071280A (en) Wheel bearing with sensor
JP2007046635A (en) Bearing for wheel with sensor
WO2007023785A1 (en) Sensor-equipped bearing for wheel
WO2006100880A1 (en) Bearing for wheel with sensor
JP2008081090A (en) Bearing device for wheel with sensor containing in-wheel type motor
JP2008074136A (en) Bearing device for wheel with built-in sensor in in-wheel motor
JP2007057302A (en) Wheel bearing with sensor
JP2007057300A (en) Wheel bearing with sensor
JP2007057258A (en) Wheel bearing with sensor
JP2007057259A (en) Wheel bearing with sensor
JP4931537B2 (en) Wheel bearing device with in-wheel motor built-in sensor
JP2007153226A (en) Bearing device for wheel
JP2006292489A (en) Sensor device and rolling bearing device with sensor
JP2007057257A (en) Wheel bearing with sensor
JP2008081089A (en) Bearing device for wheel with sensor containing in-wheel type motor
JP2007064337A (en) Sensor-equipped bearing for wheel
JP4911967B2 (en) Wheel bearing with sensor
JP2008241359A (en) Bearing with sensor for wheel
JP5334370B2 (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees