JP2008074136A - Bearing device for wheel with built-in sensor in in-wheel motor - Google Patents

Bearing device for wheel with built-in sensor in in-wheel motor Download PDF

Info

Publication number
JP2008074136A
JP2008074136A JP2006252532A JP2006252532A JP2008074136A JP 2008074136 A JP2008074136 A JP 2008074136A JP 2006252532 A JP2006252532 A JP 2006252532A JP 2006252532 A JP2006252532 A JP 2006252532A JP 2008074136 A JP2008074136 A JP 2008074136A
Authority
JP
Japan
Prior art keywords
wheel
sensor
bearing device
hub
mounting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006252532A
Other languages
Japanese (ja)
Inventor
Tomoaki Makino
智昭 牧野
Minoru Suzuki
稔 鈴木
Tomoumi Ishikawa
智海 石河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006252532A priority Critical patent/JP2008074136A/en
Publication of JP2008074136A publication Critical patent/JP2008074136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for a wheel with a built-in sensor in an in-wheel motor, with low costs at the time of mass production, capable of installing a sensor for detecting a load to a vehicle compactly, and detecting a force acting on a ground point of a wheel and a road face with good sensitivity. <P>SOLUTION: In this bearing device for a wheel, an output shaft 24 of an electric motor B and a hub 2 of a wheel of a vehicle are connected with a same shaft via a decelerator C or directly, and a rolling-type bearing A supporting the hub 2 is provided. A sensor unit 51 for measuring a force of at least one of three axial forces in upward and downward, rightward and leftward, and forward and backward directions perpendicular to each other at a ground point of the wheel mounted to the hub 2 and the road by detecting distortion of a static side trajectory wheel 1 of the bearing A. The sensor unit 51 comprises a sensor mounting member 52, and a distortion sensor 53 mounted to the sensor mounting member 52, and both ends of the sensor mounting member 52 are mounted to two portions separated in perimeter direction of the static side trajectory wheel 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハブ軸受と減速機と電動モータとを組み合わせたインホイール型モータ内蔵車輪用軸受装置に関し、特にハブ軸受にかかる荷重を検出するセンサを設けたものに関する。   The present invention relates to an in-wheel motor-equipped wheel bearing device in which a hub bearing, a speed reducer, and an electric motor are combined, and more particularly to a device provided with a sensor that detects a load applied to the hub bearing.

電気自動車等の車両の車輪用軸受装置として、ハブ軸受と減速機と電動モータとを組み合わせたインホイール型モータ内蔵車輪用軸受装置が注目されている(例えば、特許文献1,2)。このインホイール型モータ内蔵車輪用軸受装置を電気自動車の駆動輪に用いると、各駆動輪を個別に回転駆動させることができるため、プロペラシャフトやデファレンシャル等の大がかりな動力伝達機構が不要となり、車両の軽量化やコンパクト化が図れる。
特開2005−7914号公報 特開平5−332401号公報(第1〜3図) 特表2003−530565号公報
As a wheel bearing device for a vehicle such as an electric vehicle, an in-wheel type motor-integrated wheel bearing device in which a hub bearing, a speed reducer, and an electric motor are combined has attracted attention (for example, Patent Documents 1 and 2). When this in-wheel type motor-equipped wheel bearing device is used as a driving wheel of an electric vehicle, each driving wheel can be individually driven to rotate, so that a large-scale power transmission mechanism such as a propeller shaft and a differential is not required. Can be made lighter and more compact.
JP 2005-7914 A JP-A-5-332401 (FIGS. 1-3) Special table 2003-530565 gazette

インホイール型モータ内蔵車輪用軸受装置を実用化する場合、走行速度制御等のため各車輪の回転速度を測定することが不可欠であるのは勿論であるが、車両の走行安全性確保のために、車両走行時に各車輪に作用する荷重を測定して、その測定結果から車両の姿勢制御を行うことも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。   When putting in-wheel motor-equipped wheel bearing devices into practical use, it is of course essential to measure the rotational speed of each wheel for traveling speed control, etc. It is also conceivable to measure the load acting on each wheel during vehicle travel and to control the vehicle attitude from the measurement result. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, the suspension control etc. is controlled in advance based on the detection result, thereby controlling the attitude during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future and the system becomes a system in which the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

なお、エンジン駆動の自動車に用いられる一般的な車輪用軸受においては、車輪に作用する荷重を測定するために、軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにしたものが既に提案されている(例えば特許文献3)。
しかし、車輪用軸受の外輪は、転走面を有し、強度が求められる部品であって、塑性加工や、旋削加工、熱処理、研削加工などの複雑な工程を経て生産される軸受部品であるため、特許文献3のように外輪に歪みゲージを貼り付けるのでは、生産性が悪く、量産時のコストが高くなるという問題点がある。また、外輪の歪みを感度良く検出することが難しく、その検出結果を車両走行時の姿勢制御に利用した場合、制御の精度が問題となる。
In addition, in general wheel bearings used in engine-driven automobiles, in order to measure the load acting on the wheels, a strain gauge is attached to the outer ring of the bearing to detect distortion. (For example, Patent Document 3).
However, the outer ring of the wheel bearing is a part that has a rolling surface and requires strength, and is a bearing part that is produced through complicated processes such as plastic working, turning, heat treatment, and grinding. For this reason, attaching a strain gauge to the outer ring as in Patent Document 3 has a problem of low productivity and high cost during mass production. In addition, it is difficult to detect the distortion of the outer ring with high sensitivity, and when the detection result is used for attitude control during vehicle travel, the accuracy of control becomes a problem.

この発明の目的は、車両にコンパクトに荷重検出用のセンサを設置できて、車輪と路面の接地点に作用する力を感度良く検出でき、量産時のコストが安価となるインホイール型モータ内蔵センサ付き車輪用軸受装置を提供することである。   An object of the present invention is to provide an in-wheel type motor built-in sensor in which a load detecting sensor can be compactly installed in a vehicle, and the force acting on the contact point between the wheel and the road surface can be detected with high sensitivity, and the cost during mass production is low. It is providing the bearing apparatus for a wheel with a wheel.

この発明のインホイール型モータ内蔵センサ付き車輪用軸受装置は、電動モータの出力軸と車両の車輪のハブとを減速機を介してまたは直接に同軸上に連結し、前記ハブを支持する転がり形式の軸受を設けた車輪用軸受装置において、前記軸受の静止側軌道輪の歪みを検出することにより、前記ハブに取付けられた車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力を測定するセンサユニットを設け、前記センサユニットは、センサ取付部材およびこのセンサ取付部材に取付けた歪みセンサからなるものであって、前記センサ取付部材の両端が前記静止側軌道輪の円周方向に離れた2箇所に取付けられるものとしたことを特徴とする。   The in-wheel motor-equipped sensor-equipped wheel bearing device according to the present invention is a rolling type in which an output shaft of an electric motor and a vehicle wheel hub are connected coaxially via a speed reducer or directly and support the hub. In the wheel bearing device provided with the above bearing, by detecting the distortion of the stationary-side bearing ring of the bearing, the wheel mounted on the hub and the ground contact point of the road surface are perpendicular to each other, right and left directions, and A sensor unit that measures force in at least one of the forces in the three axial directions in the front-rear direction is provided, and the sensor unit includes a sensor attachment member and a strain sensor attached to the sensor attachment member, Both ends of the sensor mounting member are mounted at two locations separated in the circumferential direction of the stationary side race.

車両走行に伴い車輪と路面の接地点に作用する外力が軸受に加わると、その外力による荷重が軸受の回転側軌道輪から静止側軌道輪に伝えられ、静止側軌道輪が変形する。その変形は、センサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと前記外力の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪と路面の接地点に作用する力を検出することができる。車輪と路面の接地点に作用する力は、前記接地点における互いに直交する上下方向、左右方向、および前後方向の3軸方向の力が複合されたものであるが、これら3軸方向の力のうちの少なくとも1つの方向の力を検出する。この検出した力を車両の姿勢制御に使用することができる。
軸受の静止側軌道輪は、円周方向の各部によって、上記力による変形の程度が異なる。センサ取付部材の両端を静止側軌道輪の円周方向に離れた2箇所に取付けると、センサ取付部材は、変形の小さい箇所に取付けられた側が支点となって、変形の大きい箇所に取付けられた側が大きく変形する。そのため、センサ取付部材の歪みセンサ取付部分がより一層大きな歪みを生じることとなり、歪みセンサにより、静止側軌道輪の歪みを感度良く検出することができる。
この車輪用軸受は、センサ取付部材およびこのセンサ取付部材に取付けた歪みセンサからなるセンサユニットを軸受の静止側軌道輪に取付ける構成としたため、荷重検出用のセンサを車両にコンパクトに設置できる。センサ取付部材は静止側軌道輪に取付けられる簡易な部品であるため、これに歪みセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。
When an external force acting on the contact point between the wheel and the road surface is applied to the bearing as the vehicle travels, a load due to the external force is transmitted from the rotating raceway of the bearing to the stationary raceway, and the stationary raceway is deformed. The deformation causes distortion in the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between the strain and the external force is obtained in advance through experiments and simulations, the force acting on the contact point between the wheel and the road surface can be detected from the output of the strain sensor. The force acting on the contact point between the wheel and the road surface is a combination of the forces in the three axial directions of the vertical direction, the left and right direction, and the front and rear direction orthogonal to each other at the contact point. A force in at least one of the directions is detected. This detected force can be used for vehicle attitude control.
The degree of deformation of the stationary bearing ring of the bearing varies depending on each part in the circumferential direction. When both ends of the sensor mounting member are mounted at two locations separated in the circumferential direction of the stationary side race, the sensor mounting member is mounted at a location where deformation is large, with the side mounted at a location where deformation is small serving as a fulcrum. The side is greatly deformed. For this reason, the strain sensor mounting portion of the sensor mounting member causes even greater strain, and the strain sensor can detect the strain of the stationary-side track ring with high sensitivity.
Since the wheel bearing has a configuration in which a sensor unit including a sensor mounting member and a strain sensor mounted on the sensor mounting member is mounted on the stationary-side raceway of the bearing, the load detection sensor can be compactly installed on the vehicle. Since the sensor mounting member is a simple part that can be mounted on the stationary-side bearing ring, mounting a strain sensor on the sensor mounting member can provide excellent mass productivity and reduce costs.

この発明において、前記車輪用軸受装置は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面が形成された内方部材と、両転走面間に介在する複列の転動体とを備えたものであって、前記外方部材が静止側軌道輪である場合、外方部材に前記センサユニットを設ける。   In the present invention, the wheel bearing device includes an outer member having a double-row rolling surface formed on the inner periphery, and an inner member having a rolling surface facing the rolling surface of the outer member. When the outer member is a stationary raceway, the sensor unit is provided on the outer member.

前記センサ取付部材の接触固定部のうち第1の接触固定部が、車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力によって、前記静止側軌道輪の他の箇所と比べてラジアル方向に大きく変形する箇所に固定されていることが好ましい。
静止側軌道輪は、円周方向の各部によって、車輪と路面の接地点に作用する力によるラジアル方向の変形の程度が異なる。解析結果によると、車輪と路面の接触点に作用する軸方向力による静止側軌道輪のラジアル方向の変形は、反路面側である真上位置および路面側である真下位置で最も大きくなる。第1の接触固定部が、上記のような静止側軌道輪における他の箇所と比べてラジアル方向に大きく変形する箇所に固定されていると、センサ取付部材は、変形の少ない第2の接触固定部が支点となって、第1の接触固定部が静止側軌道輪の大きな変形に伴い大きく変形する。そのため、センサ取付部材の歪みセンサの取付部分がより一層大きな歪みを生じることとなり、歪みセンサにより、静止側軌道輪の歪みをさらに感度良く検出することができる。
Of the contact fixing portions of the sensor mounting member, the first contact fixing portion is at least one of forces in three axial directions in the vertical direction, the horizontal direction, and the front-rear direction orthogonal to each other at the contact point between the wheel and the road surface. It is preferably fixed at a location that is greatly deformed in the radial direction as compared to other locations on the stationary side raceway due to directional force.
The degree of deformation in the radial direction due to the force acting on the ground contact point between the wheel and the road surface varies depending on each part in the circumferential direction. According to the analysis result, the radial deformation of the stationary-side raceway due to the axial force acting on the contact point between the wheel and the road surface is greatest at the directly above position on the opposite road surface side and the directly below position on the road surface side. When the first contact fixing portion is fixed at a location that is largely deformed in the radial direction as compared with other locations on the stationary side raceway as described above, the sensor mounting member is a second contact fixing that is less deformed. The first contact fixing part is greatly deformed with a large deformation of the stationary side race. For this reason, the strain sensor mounting portion of the sensor mounting member generates a larger strain, and the strain sensor can detect the strain of the stationary side race ring with higher sensitivity.

また、前記接触固定部のうちの第2の接触固定部の固定箇所は、第1の接触固定部の固定箇所とは、車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力によって生じるラジアル方向歪みの方向が正逆異なる箇所とされていてもよい。
第2の接触固定部の固定箇所と第1の接触固定部の固定箇所とが、静止側軌道輪のラジアル方向の歪みの方向が正逆異なる箇所とされていると、両方向の歪みが加算されることになって、静止側軌道輪の変形がセンサ取付部材により大きく伝わり、より一層大きな歪みを検出して、静止側軌道輪の歪みを感度良く検出することができる。
Of the contact fixing portions, the second contact fixing portion is fixed at a position where the first contact fixing portion is fixed at the ground contact point between the wheel and the road surface, and in a vertical direction, a horizontal direction, and The direction of the radial distortion generated by the force in at least one direction among the forces in the three axial directions in the front-rear direction may be different from the normal direction.
If the fixed part of the second contact fixing part and the fixed part of the first contact fixing part are different from each other in the direction of radial distortion of the stationary side race, the distortion in both directions is added. As a result, the deformation of the stationary side race ring is largely transmitted to the sensor mounting member, so that even greater strain can be detected and the strain of the stationary side race ring can be detected with high sensitivity.

前記センサユニットは複数としてもよい。
センサユニットが複数であると、静止側軌道輪の複数箇所の歪みが複数の歪みセンサによって検出され、その複数の歪みセンサの出力から車輪と路面の接地点に作用する力を検出することになるので、車輪と路面の接地点に作用する力の検出精度が向上する。
The sensor unit may be plural.
When there are a plurality of sensor units, a plurality of strain sensors detect a plurality of strains of the stationary-side track ring, and a force acting on a contact point between the wheel and the road surface is detected from the outputs of the plurality of strain sensors. Therefore, the detection accuracy of the force acting on the contact point between the wheel and the road surface is improved.

前記センサユニットは、前記静止側固定輪におけるアウトボード側の転走面よりもアウトボード側の位置に配置するのが好ましい。
解析および試験結果によると、静止側軌道輪のラジアル方向歪みおよび周方向歪みとも、車輪と路面の接地点に作用する力による荷重の正負によって歪みに正負の方向性を持つのは、静止側軌道輪におけるアウトボード側の部分のみであった。したがって、荷重の正負の方向を検出するには、センサユニットを静止側軌道輪におけるアウトボード側の位置に配置することが必要である。
The sensor unit is preferably arranged at a position on the outboard side with respect to the rolling surface on the outboard side in the stationary side fixed wheel.
According to the analysis and test results, both the radial strain and circumferential strain of the stationary side raceway have positive and negative directionality to the strain due to the positive and negative loads due to the force acting on the contact point between the wheel and the road surface. Only the part on the outboard side of the ring. Therefore, in order to detect the positive / negative direction of the load, it is necessary to arrange the sensor unit at a position on the outboard side of the stationary side race.

この発明のインホイール型モータ内蔵センサ付き車輪用軸受装置は、電動モータの出力軸と車両の車輪のハブとを減速機を介してまたは直接に同軸上に連結し、前記ハブを支持する転がり形式の軸受を設けた車輪用軸受装置において、前記軸受の静止側軌道輪の歪みを検出することにより、前記ハブに取付けられた車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力を測定するセンサユニットを設け、前記センサユニットは、センサ取付部材およびこのセンサ取付部材に取付けた歪みセンサからなるものであって、前記センサ取付部材の両端が前記静止側軌道輪の円周方向に離れた2箇所に取付けられるものとしたため、車両にコンパクトに荷重検出用のセンサを設置できて、車輪と路面の接地点に作用する力を感度良く検出できる。センサ取付部材は固定側部材に取付けられる簡易な部品であるため、これに歪みセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。   The in-wheel motor-equipped sensor-equipped wheel bearing device according to the present invention is a rolling type in which an output shaft of an electric motor and a vehicle wheel hub are connected coaxially via a speed reducer or directly and support the hub. In the wheel bearing device provided with the above bearing, by detecting the distortion of the stationary-side bearing ring of the bearing, the wheel mounted on the hub and the ground contact point of the road surface are perpendicular to each other, right and left directions, and A sensor unit that measures force in at least one of the forces in the three axial directions in the front-rear direction is provided, and the sensor unit includes a sensor attachment member and a strain sensor attached to the sensor attachment member, Since both ends of the sensor mounting member are mounted at two locations separated in the circumferential direction of the stationary-side track ring, the load detection center is compactly mounted on the vehicle. And can be installed to support, the force acting on the ground point of the wheels and the road surface with high sensitivity can be detected. Since the sensor mounting member is a simple part that can be mounted on the fixed side member, by attaching a strain sensor to the sensor mounting member, the sensor mounting member can be excellent in mass productivity, and the cost can be reduced.

この発明の第1の実施形態を図1ないし図5と共に説明する。このインホイール型モータ内蔵センサ付き車輪用軸受装置は、車輪のハブを回転自在に支持するハブ軸受Aと、回転駆動源としての電動モータBと、この電動モータBの回転を減速してハブに伝達する減速機Cとを組み合わせたものである。この実施形態では、ハブ軸受Aは、軸受の内方部材がハブの一部を構成する第3世代型の内輪回転タイプとされている。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   A first embodiment of the present invention will be described with reference to FIGS. This in-wheel type sensor-equipped wheel bearing device with a built-in in-wheel motor includes a hub bearing A that rotatably supports a wheel hub, an electric motor B as a rotational drive source, and a speed reduction of the rotation of the electric motor B. It is a combination of a reduction gear C that transmits. In this embodiment, the hub bearing A is a third generation type inner ring rotating type in which the inner member of the bearing forms part of the hub. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

図1に示すように、ハブ軸受Aは、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。このハブ軸受Aは、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1と内方部材2との間の軸受空間のアウトボード側端は、シール部材7でシールされている。   As shown in FIG. 1, the hub bearing A includes an outer member 1 in which double-row rolling surfaces 3 are formed on the inner periphery, and an inner member in which rolling surfaces 4 that face the respective rolling surfaces 3 are formed. 2 and double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the outer member 1 and the inner member 2. The hub bearing A is a double-row angular ball bearing type, and the rolling elements 5 are formed of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. The end of the bearing space between the outer member 1 and the inner member 2 is sealed with a seal member 7.

外方部材1は静止側軌道輪となるものであって、減速機Cのアウトボード側のケーシング33bに取付けるフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に取付孔14が設けられている。外方部材1は、取付孔14に挿通した取付ボルト15により前記ケーシング33bに取付けられる。
内方部材2は回転側軌道輪となるものであって、車輪取付用のハブフランジ9aを有するアウトボード側材9と、このアウトボード側材9の外周にアウトボード側が嵌合して加締めによってアウトボード側材9に一体化されたインボード側材10とでなる。これらアウトボード側材9およびインボード側材10に、前記各列の転走面4が形成されている。インボード側材10の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト16の挿入孔17が設けられている。アウトボード側材9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。このパイロット部13の内周には、前記貫通孔11のアウトボード側端を塞ぐキャップ18が取付けられている。
The outer member 1 is a stationary raceway, and has a flange 1a attached to the casing 33b on the outboard side of the speed reducer C on the outer periphery, and the whole is an integral part. The flange 1a is provided with mounting holes 14 at a plurality of locations in the circumferential direction. The outer member 1 is attached to the casing 33b by the attachment bolt 15 inserted through the attachment hole 14.
The inner member 2 serves as a rotating raceway, and the outboard side member 9 having a hub flange 9a for attaching a wheel and the outer side of the outboard side member 9 are fitted on the outer side of the outboard side member and caulked. And the inboard side material 10 integrated with the outboard side material 9. The rolling surface 4 of each said row | line | column is formed in these outboard side materials 9 and inboard side materials 10. FIG. A through hole 11 is provided at the center of the inboard side member 10. The hub flange 9a is provided with insertion holes 17 for hub bolts 16 at a plurality of locations in the circumferential direction. In the vicinity of the root portion of the hub flange 9a of the outboard side member 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side. A cap 18 that closes the outboard side end of the through hole 11 is attached to the inner periphery of the pilot portion 13.

電動モータBは、筒状のケーシング22に固定したステータ23と出力軸24に取付けたロータ25との間にアキシアルギャップを設けたアキシアルギャップ型のものである。出力軸24は、減速機Cのインボード側のケーシング33aの筒部に2つの軸受26で片持ち支持されている。出力軸24とケーシング33a間の隙間のインボード側端は、シール部材27でシールされている。また、ケーシング22のインボード側の開口にはキャップ28が装着されている。   The electric motor B is an axial gap type in which an axial gap is provided between a stator 23 fixed to a cylindrical casing 22 and a rotor 25 attached to an output shaft 24. The output shaft 24 is cantilevered by two bearings 26 on the cylindrical portion of the casing 33a on the inboard side of the reduction gear C. The inboard side end of the gap between the output shaft 24 and the casing 33 a is sealed with a seal member 27. A cap 28 is attached to the opening on the inboard side of the casing 22.

図1および図2に示すように、減速機Cはサイクロイド減速機として構成されている。すなわち、この減速機Cは、外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板34a,34bを、それぞれ軸受35を介して入力軸32の各偏心部32a,32bに装着し、インボード側とアウトボード側のケーシング33a,33b間に差し渡した複数の外ピン36で、各曲線板34a,34bの偏心運動を外周側で案内するとともに、内方部材2のインボード側材10に取付けた複数の内ピン38を、各曲線板34a,34bの内部に設けた複数の貫通孔39に嵌挿係合したものである。入力軸32は、電動モータBの出力軸24とスプライン結合されて一体に回転するようになっている。なお、入力軸32はインボード側のケーシング33aと内方部材2のインボード側材10の内径面とに2つの軸受40で両持ち支持されている。   As shown in FIGS. 1 and 2, the speed reducer C is configured as a cycloid speed reducer. That is, the speed reducer C has two curved plates 34a and 34b formed with wavy trochoidal curves with a smooth outer shape, mounted on the eccentric portions 32a and 32b of the input shaft 32 via bearings 35, respectively. A plurality of outer pins 36 interposed between the inboard side and the outboard side casings 33a and 33b guide the eccentric movement of the curved plates 34a and 34b on the outer peripheral side, and also the inboard side member 10 of the inner member 2. A plurality of inner pins 38 attached to is fitted into and engaged with a plurality of through holes 39 provided in the curved plates 34a and 34b. The input shaft 32 is spline-coupled with the output shaft 24 of the electric motor B so as to rotate integrally. The input shaft 32 is supported at both ends by two bearings 40 on the casing 33a on the inboard side and the inner diameter surface of the inboard side member 10 of the inner member 2.

電動モータBの出力軸24が回転すると、これと一体回転する入力軸32に取付けられた各曲線板34a,34bが偏心運動を行う。この各曲線板34a,34bの偏心運動が、内ピン38と貫通孔39との係合によって、車輪のハブである内方部材2に回転運動として伝達される。出力軸24の回転に対して内方部材2の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。   When the output shaft 24 of the electric motor B rotates, the curved plates 34a and 34b attached to the input shaft 32 that rotates integrally with the output shaft 24 perform an eccentric motion. The eccentric motion of each of the curved plates 34a and 34b is transmitted as rotational motion to the inner member 2 which is a wheel hub by the engagement of the inner pin 38 and the through hole 39. The rotation of the inner member 2 is decelerated with respect to the rotation of the output shaft 24. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.

前記2枚の曲線板34a,34bは、互いに偏心運動が打ち消されるように180°位相をずらして入力軸32の各偏心部32a,32bに装着され、各偏心部32a,32bの両側には、各曲線板34a,34bの偏心運動による振動を打ち消すように、各偏心部32a,32bの偏心方向と逆方向へ偏心させたカウンターウエイト41が装着されている。   The two curved plates 34a and 34b are mounted on the eccentric portions 32a and 32b of the input shaft 32 so as to cancel the eccentric motion with respect to each other, and are respectively attached to both sides of the eccentric portions 32a and 32b. A counterweight 41 that is eccentric in the direction opposite to the eccentric direction of each of the eccentric portions 32a and 32b is mounted so as to cancel the vibration caused by the eccentric movement of each of the curved plates 34a and 34b.

図3に示すように、前記各外ピン36と内ピン38には軸受42,43が装着され、これらの軸受42,43の外輪42a,43aが、それぞれ各曲線板34a,34bの外周と各貫通孔39の内周とに転接するようになっている。したがって、外ピン36と各曲線板34a,34bの外周との接触抵抗、および内ピン38と各貫通孔39の内周との接触抵抗を低減し、各曲線板34a,34bの偏心運動をスムーズに内方部材2に回転運動として伝達することができる。   As shown in FIG. 3, bearings 42 and 43 are mounted on the outer pins 36 and the inner pins 38. The outer rings 42a and 43a of the bearings 42 and 43 are respectively connected to the outer circumferences of the curved plates 34a and 34b and the outer rings 42a and 34b, respectively. It comes into rolling contact with the inner periphery of the through hole 39. Therefore, the contact resistance between the outer pin 36 and the outer periphery of each curved plate 34a, 34b and the contact resistance between the inner pin 38 and the inner periphery of each through hole 39 are reduced, and the eccentric motion of each curved plate 34a, 34b is smooth. Can be transmitted to the inner member 2 as a rotational motion.

この車輪用軸受装置は、減速機Cのケーシング33bもしくは電動モータBのケーシング22の外周部に取付けたナックル、サスペンション(図示せず)等を介して車体に固定される。   This wheel bearing device is fixed to the vehicle body via a knuckle, a suspension (not shown) or the like attached to the outer periphery of the casing 33b of the reduction gear C or the casing 22 of the electric motor B.

図1および図4に示すように、ハブ軸受Aの外方部材1の内周に、車輪と路面の接地点に作用する力を測定するためのセンサユニット51が設けられている。その軸方向位置は、シール部材7と転走面3との間とされる。図5に詳細に示すように、センサユニット51は、センサ取付部材52に、このセンサ取付部材52の歪みを測定する歪みセンサ53を取付けたものである。センサ取付部材52は、外方部材1の内周面に沿う周方向に細長い略円弧状とされ、その両端部に円弧の外周側に張り出した接触固定部52a,52bが形成されている。また、センサ取付部材52の中央部には円弧の外周側に開口する切欠部52cが形成され、この切欠部52cの背面に位置する円弧の内周側の面に歪みセンサ53が貼り付けられている。センサ取付部材52の断面形状は、例えば矩形状とされるが、この他に各種の形状とすることができる。   As shown in FIGS. 1 and 4, a sensor unit 51 is provided on the inner periphery of the outer member 1 of the hub bearing A for measuring the force acting on the contact point between the wheel and the road surface. The axial position is between the seal member 7 and the rolling surface 3. As shown in detail in FIG. 5, the sensor unit 51 includes a sensor mounting member 52 and a strain sensor 53 that measures the strain of the sensor mounting member 52. The sensor mounting member 52 has a substantially arc shape that is elongated in the circumferential direction along the inner peripheral surface of the outer member 1, and contact fixing portions 52 a and 52 b that project to the outer peripheral side of the arc are formed at both ends thereof. Further, a notch 52c that opens to the outer peripheral side of the arc is formed at the center of the sensor mounting member 52, and the strain sensor 53 is affixed to the inner peripheral surface of the arc that is located at the back of the notch 52c. Yes. The cross-sectional shape of the sensor mounting member 52 is, for example, a rectangular shape, but may be various other shapes.

このセンサユニット51は、センサ取付部材52の長手方向が外方部材1の周方向を向くように、センサ取付部材52の接触固定部52a,52bによって外方部材1の内周に固定される。これら接触固定部52a,52bの外方部材1への固定は、ボルトによる固定や、接着剤により接着等で行われる。センサ取付部材52の接触固定部52a,52b以外の箇所では、外方部材1の内周面との間に隙間を生じている。接触固定部52a,52bのいずれか一方である第1の接触固定部52aは、外方部材1に作用する荷重により外方部材1がラジアル方向に最も大きく変形する周方向箇所で外方部材1に固定される。第2の接触固定部52bは、前記固定箇所よりもラジアル方向の変形が少ない箇所で固定される。
この実施形態の場合、第1の接触固定部52aの固定箇所は、外方部材1の全周における真上の位置(反路面側位置)とされ、第2の接触固定部52bの固定箇所は、真上の位置から数十度、例えば30度ないし40度程度下方の位置とされる。
The sensor unit 51 is fixed to the inner periphery of the outer member 1 by the contact fixing portions 52 a and 52 b of the sensor mounting member 52 so that the longitudinal direction of the sensor mounting member 52 faces the circumferential direction of the outer member 1. The contact fixing portions 52a and 52b are fixed to the outer member 1 by fixing with bolts or bonding with an adhesive. At locations other than the contact fixing portions 52 a and 52 b of the sensor mounting member 52, a gap is generated between the sensor mounting member 52 and the inner peripheral surface of the outer member 1. The first contact fixing portion 52a, which is one of the contact fixing portions 52a and 52b, is the outer member 1 at a circumferential position where the outer member 1 is most greatly deformed in the radial direction by a load acting on the outer member 1. Fixed to. The second contact fixing portion 52b is fixed at a location where there is less deformation in the radial direction than the fixed location.
In the case of this embodiment, the fixing location of the first contact fixing portion 52a is the position directly above the entire circumference of the outer member 1 (the position on the opposite road surface side), and the fixing location of the second contact fixing portion 52b is The position is several tens of degrees from the position just above, for example, about 30 to 40 degrees below.

センサ取付部材52は、車輪と路面の接地点に作用する力の予想される最大値において、塑性変形しないものであることが好ましい。センサ取付部材52の材質としては、鋼材の他、銅、黄銅、アルミニウム等の金属材料を用いることができる。   The sensor mounting member 52 is preferably one that does not undergo plastic deformation at the maximum expected value of the force acting on the contact point between the wheel and the road surface. As a material of the sensor mounting member 52, a metal material such as copper, brass, aluminum or the like can be used in addition to a steel material.

歪みセンサ53としては、種々の形式のものを使用できるが、例えば金属箔ストレインゲージとされる。歪みセンサ53が金属箔ストレインゲージで構成されている場合、センサ取付部材52はハブ軸受Aに予想される最大の外力が印加された場合でも、金属箔ストレインゲージの耐久性を考慮すると、歪みセンサ53の歪み量が1500マイクロストレイン以下であることが好ましい。
また、歪みセンサ53が半導体ストレインゲージで構成されている場合、センサ取付部材52はハブ軸受Aに予想される最大の外力が印加された場合でも、半導体ストレインゲージの耐久性を考慮すると、歪みセンサ53の歪み量が1000マイクロストレイン以下であることが好ましい。
Various types of strain sensors 53 can be used. For example, a metal foil strain gauge is used. When the strain sensor 53 is composed of a metal foil strain gauge, the sensor mounting member 52 is a strain sensor in consideration of the durability of the metal foil strain gauge even when the maximum external force expected on the hub bearing A is applied. The strain amount of 53 is preferably 1500 microstrain or less.
In addition, when the strain sensor 53 is formed of a semiconductor strain gauge, the sensor mounting member 52 is a strain sensor in consideration of the durability of the semiconductor strain gauge even when the maximum external force expected on the hub bearing A is applied. It is preferable that the strain amount of 53 is 1000 microstrain or less.

図1に示すように、センサユニット21の歪みセンサ23の出力を処理する手段として、外力計算手段55および異常判定手段56が設けられている。これらの手段55,56は、このハブ軸受Aの外方部材1等に取付けられた回路基板等の電子回路装置(図示せず)に設けられたものであっても、また自動車の電気制御ユニット(ECU)に設けられたものであっても良い。   As shown in FIG. 1, external force calculation means 55 and abnormality determination means 56 are provided as means for processing the output of the strain sensor 23 of the sensor unit 21. These means 55 and 56 may be provided in an electronic circuit device (not shown) such as a circuit board attached to the outer member 1 or the like of the hub bearing A, or may be an electric control unit of an automobile. (ECU) may be provided.

上記構成のインホイール型モータ内蔵センサ付き車輪用軸受装置の作用を説明する。電動モータBを回転駆動すると、電動モータBの出力軸24の回転が、減速機Cを介して車輪のハブである内方部材2に減速して伝達され、車輪が回転して車両が走行する。車両走行時には、車輪と路面の接地点より、車輪に外力が加わる。その外力は、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力が複合されたものである。
上記車輪に加わる外力によりハブである内方部材2に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたセンサ取付部材52に伝わり、センサ取付部材52が変形する。そのセンサ取付部材52の歪みを歪みセンサ53により測定する。この際、センサ取付部材52は外方部材1におけるセンサ取付部材52の固定箇所のラジアル方向の変形に従って変形するが、外方部材1と比べてセンサ取付部材52は円弧状であり、かつ切欠部52cが設けられてこの切欠部52cの箇所で剛性が低下しているので、外方部材1の歪みよりも大きな歪みがセンサ取付部材52に現れる。このため、外方部材1のわずかな歪みも歪みセンサ53で正確に検出することができる。
The operation of the in-wheel motor-equipped sensor-equipped wheel bearing device having the above-described configuration will be described. When the electric motor B is driven to rotate, the rotation of the output shaft 24 of the electric motor B is decelerated and transmitted to the inward member 2 that is a wheel hub via the speed reducer C, and the vehicle rotates to rotate the wheel. . When the vehicle travels, external force is applied to the wheels from the contact points between the wheels and the road surface. The external force is a combination of forces in the three axial directions of the vertical direction, the horizontal direction, and the front-rear direction orthogonal to each other.
When a load is applied to the inner member 2 that is a hub by an external force applied to the wheel, the outer member 1 is deformed via the rolling elements 5, and the deformation is a sensor attached to the inner periphery of the outer member 1. The sensor mounting member 52 is deformed by being transmitted to the mounting member 52. The strain of the sensor mounting member 52 is measured by the strain sensor 53. At this time, the sensor mounting member 52 is deformed in accordance with the radial deformation of the fixing portion of the sensor mounting member 52 in the outer member 1, but the sensor mounting member 52 has an arc shape compared to the outer member 1 and has a notch portion. Since the rigidity is lowered at the position of the notch 52 c provided in the sensor mounting member 52, a strain larger than the strain of the outer member 1 appears. For this reason, even the slight distortion of the outer member 1 can be accurately detected by the distortion sensor 53.

センサ取付部材52の2箇所の接触固定部52a,52bのうち、第1の接触固定部52aは、車輪と路面の接地点に作用する力によって、外方部材1の他の箇所と比べてラジアル方向の変形が著しい箇所に取付けられていることが好ましい。外方部材1は、円周方向の各部によって、上記外力によるラジアル方向変形の程度が異なる。FEM(有限要素法)解析の結果によると、車輪と路面の接触点に作用する軸方向力に対する外方部材1のラジアル方向の変形は、反路面側および路面側の位置、つまり鉛直方向の真上位置および真下位置が最も大きくなる。この実施形態では、外方部材1のラジアル方向の変形の最も大きな位置となる鉛直方向の真上位置に第1の接触固定部52aを配置したため、感度良く、したがって精度良く、外方部材1の歪みを検出することができる。
すなわち、第1の接触固定部52aが外方部材1における他の箇所と比べてラジアル方向に大きく変形する箇所に取付けられていると、センサ取付部材52は、変形の少ない第2の接触固定部52bが支点となって、第1の接触固定部52aが外方部材1の大きな変形に伴い大きく変形する。そのため、センサ取付部材52の歪みセンサ53の取付位置がより一層大きな歪みを生じることになり、歪みセンサ53により、外方部材1の歪みをより一層感度良く検出することができる。
Of the two contact fixing portions 52a and 52b of the sensor mounting member 52, the first contact fixing portion 52a is radial compared to other portions of the outer member 1 due to the force acting on the ground contact point between the wheel and the road surface. It is preferable to be attached at a location where the directional deformation is significant. The outer member 1 differs in the degree of radial deformation due to the external force depending on each part in the circumferential direction. According to the result of FEM (finite element method) analysis, the radial deformation of the outer member 1 with respect to the axial force acting on the contact point between the wheel and the road surface is the true position in the opposite road surface side and the road surface side, that is, in the vertical direction. The upper position and the directly lower position are the largest. In this embodiment, since the first contact fixing portion 52a is arranged at the position directly above the vertical direction, which is the position where the radial deformation of the outer member 1 is greatest, the sensitivity of the outer member 1 is improved. Distortion can be detected.
That is, when the first contact fixing portion 52a is attached to a location that is greatly deformed in the radial direction as compared with other locations in the outer member 1, the sensor attachment member 52 is a second contact fixing portion that is less deformed. 52b becomes a fulcrum, and the first contact fixing portion 52a is greatly deformed as the outer member 1 is largely deformed. Therefore, the mounting position of the strain sensor 53 of the sensor mounting member 52 causes a greater strain, and the strain sensor 53 can detect the strain of the outer member 1 with higher sensitivity.

なお、前記接触固定部52a,52bのうちの第2の接触固定部52bは、第1の接触固定部52aとは、車輪と路面の接地点に作用する力によって生じるラジアル方向の歪みの方向が正逆異なる箇所としてもよい。例えば、外方部材1の真横位置(路面側位置から90度上方の位置)よりも上側の位置と、真横位置よりも下側(路面側に近い位置)とでは、車輪と路面の接地点に作用する軸方向力に対する外方部材1のラジアル方向の変形の方向が、正逆異なる方向となる。第1の接触固定部52aが外方部材1の真上位置(反路面側位置)の場合、第2の接触固定部52bを外方部材1の真横位置よりも下側位置とすると、両接触固定部52a,52bにおける外方部材1の変形の方向は正逆異なる方向となる。このように、第2の接触固定部52bと第1の接触固定部52aとが外方部材1のラジアル方向の歪みの方向が正逆異なる箇所とされていると、両側の歪みが加算されることになって、外方部材1の変形がセンサ取付部材52により大きく伝わり、より一層大きな歪みを検出して、外方部材1の歪みをさらに感度良く検出することができる。   Of the contact fixing portions 52a and 52b, the second contact fixing portion 52b is different from the first contact fixing portion 52a in the direction of radial distortion caused by the force acting on the contact point between the wheel and the road surface. It is good also as a place where forward and backward differ. For example, at the position above the right lateral position of the outer member 1 (position 90 degrees above the road surface position) and below the right lateral position (position close to the road surface), the grounding point of the wheel and the road surface The direction of the radial deformation of the outer member 1 with respect to the acting axial force is different in the forward and reverse directions. When the first contact fixing part 52a is located directly above the outer member 1 (on the opposite road surface side), if the second contact fixing part 52b is located below the right lateral position of the outer member 1, both contacts The directions of deformation of the outer member 1 in the fixing portions 52a and 52b are different from each other. As described above, when the second contact fixing portion 52b and the first contact fixing portion 52a are different from each other in the direction of the radial distortion of the outer member 1, the distortion on both sides is added. As a result, the deformation of the outer member 1 is largely transmitted to the sensor mounting member 52, so that a larger strain can be detected and the strain of the outer member 1 can be detected with higher sensitivity.

センサユニット51を外方部材1に取付ける軸方向位置は、実施形態におけるように外方部材1のアウトボード側の転走面3よりもアウトボード側位置としても、両列の転走面3,3間の位置としても、またインボード側の転走面3よりもインボード側位置としても良いが、アウトボード側の転走面3よりもアウトボード側位置であると、荷重の方向に応じて歪みに正負の方向性が生じ、荷重の正逆の方向を検出することができる。
FEM解析および試験結果によると、外方部材1のラジアル方向歪みおよび周方向歪みとも、前記外力による荷重の正負によって歪みに正負の方向性を持つのは、外方部材1における前記3箇所に区分した位置のうち、アウトボード側の部分のみであった。したがって、荷重の正負の方向を検出するには、センサユニット51を外方部材1におけるアウトボード側の位置に配置することが必要である。
センサユニトット51をアウトボード側位置に取付ける場合は、真上位置の周方向の両側で歪みの方向が正負逆になるため、第1の接触固定部52aと第2の接触固定部52bとを真上位置の両側に配置することによっても、感度良く歪みを検出することができる。
The axial position at which the sensor unit 51 is attached to the outer member 1 is the outer board side position of the outer member 1 as compared to the outer board side rolling surface 3 of the outer member 1, as in the embodiment. The position between the three and the inboard side rolling surface 3 may be the inboard side position, but if it is the outboard side position from the outboard side rolling surface 3, depending on the direction of the load Thus, positive and negative directionality occurs in the strain, and the positive and reverse directions of the load can be detected.
According to FEM analysis and test results, the radial strain and the circumferential strain of the outer member 1 are classified into the three locations on the outer member 1 that have positive and negative directions in the strain due to the positive / negative of the load due to the external force. Of the positions, only the part on the outboard side. Therefore, in order to detect the positive / negative direction of the load, it is necessary to arrange the sensor unit 51 at a position on the outboard side in the outer member 1.
When the sensor unit tot 51 is attached to the outboard side position, the direction of distortion is reversed on both sides in the circumferential direction at the position directly above, so the first contact fixing portion 52a and the second contact fixing portion 52b are connected to each other. Displacement can also be detected with high sensitivity by disposing them on both sides of the position directly above.

このようにして検出される歪みの値から、車輪と路面の接地点に作用する力(外力)を検出することができる。外力の方向や大きさによって歪みの変化が異なるため、予め歪みと外力の関係を実験やシミュレーションにて求めておけば、車輪と路面の接地点に作用する外力を算出することができる。外力計算手段55は、このように実験やシミュレーションにより予め求めて設定しておいた歪みと外力の関係から、歪センサ53の出力により、車輪と路面の接地点に作用する外力を算出する。   The force (external force) acting on the contact point between the wheel and the road surface can be detected from the strain value thus detected. Since the change in strain differs depending on the direction and magnitude of the external force, the external force acting on the contact point between the wheel and the road surface can be calculated if the relationship between the strain and the external force is obtained in advance through experiments and simulations. The external force calculation means 55 calculates the external force that acts on the contact point between the wheel and the road surface from the output of the strain sensor 53 based on the relationship between the strain and the external force that has been obtained and set in advance through experiments and simulations.

異常判定手段56は、このように算出した車輪と路面の接地点に作用する力が、設定された許容値を超えたと判断される場合に、外部に異常信号を出力する。この異常信号を、車両の姿勢制御に使用することができる。また、リアルタイムで車輪と路面の接地点に作用する力を出力すると、よりきめ細かな姿勢制御が可能となる。   The abnormality determination unit 56 outputs an abnormality signal to the outside when it is determined that the force acting on the wheel and the contact point of the road surface thus calculated exceeds a set allowable value. This abnormality signal can be used for vehicle attitude control. In addition, if a force acting on the contact point between the wheel and the road surface is output in real time, a finer attitude control is possible.

この車輪用軸受装置は、センサ取付部材52およびこのセンサ取付部材52に取付けた歪みセンサ53からなるセンサユニット51をハブ軸受Aの構成部品である外方部材1に取付ける構成としたため、荷重検出用のセンサを車両にコンパクトに設置できる。センサ取付部材52は外方部材1に取付けられる簡易な部品であるため、これに歪みセンサ53を取付けることで、量産性に優れたものとでき、コスト低下が図れる。   This wheel bearing device is configured to attach the sensor unit 51 including the sensor attachment member 52 and the strain sensor 53 attached to the sensor attachment member 52 to the outer member 1 which is a component of the hub bearing A. These sensors can be installed in a compact vehicle. Since the sensor attachment member 52 is a simple part that can be attached to the outer member 1, by attaching the strain sensor 53 to the sensor attachment member 52, the sensor attachment member 52 can be excellent in mass productivity, and the cost can be reduced.

図6に示すように、センサユニット51を2箇所に設けても良い。これにより、より精度の高い荷重の検出が可能となる。同様に、センサユニット51を3箇所以上の複数箇所に設けることにより、より一層精度の高い荷重の検出が可能となる。その際、スペース上の理由等により複数のセンサユニット21を設置することが困難な場合、図7に示すように、外方部材1の内周に接触固定される接触固定部を2つのセンサユニット51で共用するようにしてもよい。また、図8および図9に示すように、センサユニット51を外方部材1の外周に設けても良い。   As shown in FIG. 6, the sensor units 51 may be provided at two locations. This makes it possible to detect a load with higher accuracy. Similarly, by providing the sensor unit 51 at a plurality of three or more locations, it becomes possible to detect a load with higher accuracy. At that time, when it is difficult to install a plurality of sensor units 21 due to space reasons or the like, as shown in FIG. 7, the two contact sensor fixing parts fixed to the inner periphery of the outer member 1 are arranged as two sensor units. 51 may be shared. Further, as shown in FIGS. 8 and 9, the sensor unit 51 may be provided on the outer periphery of the outer member 1.

図10はこの発明の第2の実施形態を示す。この実施形態は、電動モータBを、ケーシング102に固定したステータ103と出力軸104に取付けたロータ105との間にラジアルギャップを設けたラジアルギャップ型としたものである。出力軸104は、減速機Cの入力軸32にスプライン結合されている。電動モータB以外は、第1の実施形態と同じ構成である。この第2の実施形態も、ハブ軸受Aの外方部材1の内周に、前記同様のセンサユニット51が設けられている。これにより、車輪と路面の接地点に作用する力を測定して、車両の姿勢制御を行うことができる。   FIG. 10 shows a second embodiment of the present invention. In this embodiment, the electric motor B is a radial gap type in which a radial gap is provided between a stator 103 fixed to the casing 102 and a rotor 105 attached to the output shaft 104. The output shaft 104 is splined to the input shaft 32 of the speed reducer C. Except for the electric motor B, the configuration is the same as that of the first embodiment. Also in the second embodiment, the sensor unit 51 similar to the above is provided on the inner periphery of the outer member 1 of the hub bearing A. As a result, it is possible to control the posture of the vehicle by measuring the force acting on the contact point between the wheel and the road surface.

第2の実施形態の場合も、図11に示すように、ハブ軸受Aの外方部材1の外周に、センサユニット51が設けてもよい。また、図示は省略するが、センサユニット51を複数箇所に設けてもよく、外方部材に接触固定される接触固定部を2つのセンサユニット51で共用するようにしてもよい。   Also in the case of the second embodiment, as shown in FIG. 11, a sensor unit 51 may be provided on the outer periphery of the outer member 1 of the hub bearing A. Although not shown, the sensor units 51 may be provided at a plurality of locations, and the two sensor units 51 may share a contact fixing portion that is contact-fixed to the outer member.

図12はこの発明の第3の実施形態を示す。この実施形態は、減速機Cを遊星減速機としたものである。電動モータBは、第2の実施形態と同様に、ラジアルギャップ型とされている。遊星減速機Cは、入力軸112の外周に太陽歯車113を一体に設け、この太陽歯車113と減速機のアウトボード側ケーシング33bの内周に設けた内歯114とに噛み合う複数の遊星歯車115を、内方部材2のインボード側材10に取付けた内ピン118で回転自在に支持させてある。この遊星減速機によっても、電動モータBの出力軸104の回転をハブである内方部材2に減速して伝達することができる。しかし、サイクロイド減速機ほど大きな減速比は得られない。この第3の実施形態も、ハブ軸受Aの外方部材1の外周部に、前記同様のセンサユニット51が設けられている。これにより、車輪と路面の接地点に作用する力を測定して、車両の姿勢制御を行うことができる。   FIG. 12 shows a third embodiment of the present invention. In this embodiment, the speed reducer C is a planetary speed reducer. The electric motor B is a radial gap type as in the second embodiment. In the planetary reduction gear C, a sun gear 113 is integrally provided on the outer periphery of the input shaft 112, and a plurality of planetary gears 115 meshing with the sun gear 113 and the inner teeth 114 provided on the inner periphery of the outboard casing 33b of the reduction gear. Is rotatably supported by an inner pin 118 attached to the inboard side member 10 of the inner member 2. Also with this planetary reduction gear, the rotation of the output shaft 104 of the electric motor B can be decelerated and transmitted to the inner member 2 that is a hub. However, the reduction ratio is not as great as that of the cycloid reducer. Also in the third embodiment, the same sensor unit 51 is provided on the outer peripheral portion of the outer member 1 of the hub bearing A. As a result, it is possible to control the posture of the vehicle by measuring the force acting on the contact point between the wheel and the road surface.

第3の実施形態の場合も、図13に示すように、ハブ軸受Aの外方部材1の外周に、センサユニット51が設けてもよい。また、図示は省略するが、センサユニット51を複数箇所に設けてもよく、外方部材に接触固定される接触固定部を2つのセンサユニット51で共用するようにしてもよい。   Also in the case of the third embodiment, as shown in FIG. 13, the sensor unit 51 may be provided on the outer periphery of the outer member 1 of the hub bearing A. Although not shown, the sensor units 51 may be provided at a plurality of locations, and the two sensor units 51 may share a contact fixing portion that is contact-fixed to the outer member.

なお、前記各実施形態では、センサユニット51が取付けられるハブ軸受Aの構成部品が外方部材1である場合につき説明したが、この発明は、ハブ軸受Aの他の構成部品、例えば内方部材2にセンサユニット51を取付けた車輪用軸受装置にも適用することができる。
また、減速機を設けずに、電動モータの出力軸と車輪のハブとを直接に連結する構成としてもよい。
さらに、前記各実施形態ではハブ軸受Aが第3世代型である車輪用軸受装置に適用した場合につき説明したが、この発明は、ハブ軸受Aの内方部材と車輪のハブとが互いに独立した第1または第2世代型の車輪用軸受装置にも適用することができる。さらに、ハブ軸受Aが各世代形式のテーパころタイプである車輪用軸受装置にも適用することができる。
In each of the above embodiments, the case where the component of the hub bearing A to which the sensor unit 51 is attached is the outer member 1, but the present invention is not limited to the other component of the hub bearing A, for example, the inner member. The present invention can also be applied to a wheel bearing device in which the sensor unit 51 is attached to 2.
Moreover, it is good also as a structure which connects directly the output shaft of an electric motor, and the hub of a wheel, without providing a reduction gear.
Further, in each of the above embodiments, the case where the hub bearing A is applied to a wheel bearing device of the third generation type has been described. However, in the present invention, the inner member of the hub bearing A and the wheel hub are independent from each other. The present invention can also be applied to a first or second generation type wheel bearing device. Further, the present invention can be applied to a wheel bearing device in which the hub bearing A is a tapered roller type of each generation type.

この発明の第1の実施形態にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a sensor with a built-in in-wheel type motor concerning 1st Embodiment of this invention. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 図2の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 同インホイール型モータ内蔵センサ付き車輪用軸受装置の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing apparatus with a sensor with a built-in in-wheel type motor. (A)は同インホイール型モータ内蔵センサ付き車輪用軸受装置のセンサユニットの平面図、(B)はその側面図である。(A) is a top view of the sensor unit of the in-wheel type motor-equipped sensor-equipped wheel bearing device, and (B) is a side view thereof. 第1の実施形態の別例であるインホイール型モータ内蔵センサ付き車輪用軸受装置の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the in-wheel type motor-equipped sensor-equipped wheel bearing device which is another example of 1st Embodiment. 第1の実施形態のさらなる別例であるインホイール型モータ内蔵センサ付き車輪用軸受装置の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the bearing apparatus for wheels with a sensor with a built-in in-wheel motor which is another example of 1st Embodiment. 第1の実施形態のさらなる別例であるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a sensor with a built-in in-wheel motor which is another example of 1st Embodiment. 同インホイール型モータ内蔵センサ付き車輪用軸受装置の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the bearing apparatus for wheels with a sensor with a built-in in-wheel type motor. この発明の第2の実施形態にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with an in-wheel type motor built-in sensor concerning 2nd Embodiment of this invention. 第2の実施形態の別例であるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with an in-wheel type motor built-in sensor which is another example of 2nd Embodiment. この発明の第3の実施形態にかかるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the bearing apparatus for wheels with a sensor with a built-in in-wheel type motor concerning 3rd Embodiment of this invention. 第3の実施形態の別例であるインホイール型モータ内蔵センサ付き車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with an in-wheel type motor built-in sensor which is another example of 3rd Embodiment.

符号の説明Explanation of symbols

1…外方部材(静止側軌道輪)
2…内方部材(ハブ)
5…転動体
51…センサユニット
52…センサ取付部材
52a…第1の接触固定部
52b…第2の接触固定部
53…歪みセンサ
A…ハブ軸受
B…電動モータ
C…減速機
1. Outer member (stationary raceway)
2 ... Inward member (hub)
DESCRIPTION OF SYMBOLS 5 ... Rolling body 51 ... Sensor unit 52 ... Sensor attachment member 52a ... 1st contact fixing | fixed part 52b ... 2nd contact fixing | fixed part 53 ... Strain sensor A ... Hub bearing B ... Electric motor C ... Reduction gear

Claims (6)

電動モータの出力軸と車両の車輪のハブとを減速機を介してまたは直接に同軸上に連結し、前記ハブを支持する転がり形式の軸受を設けた車輪用軸受装置において、
前記軸受の静止側軌道輪の歪みを検出することにより、前記ハブに取付けられた車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力を測定するセンサユニットを設け、
前記センサユニットは、センサ取付部材およびこのセンサ取付部材に取付けた歪みセンサからなるものであって、前記センサ取付部材の両端が前記静止側軌道輪の円周方向に離れた2箇所に取付けられるものとしたことを特徴とするインホイール型モータ内蔵センサ付き車輪用軸受装置。
In the wheel bearing device in which the output shaft of the electric motor and the wheel hub of the vehicle are connected coaxially via a speed reducer or directly, and provided with a rolling bearing that supports the hub,
By detecting the distortion of the stationary-side bearing ring of the bearing, of the forces in the three axial directions in the vertical direction, the horizontal direction, and the front-rear direction orthogonal to each other at the ground contact point between the wheel attached to the hub and the road surface A sensor unit for measuring force in at least one direction;
The sensor unit is composed of a sensor mounting member and a strain sensor mounted on the sensor mounting member, and both ends of the sensor mounting member are mounted at two locations separated in the circumferential direction of the stationary side race. An in-wheel motor-equipped sensor-equipped wheel bearing device, characterized in that
請求項1において、前記車輪用軸受装置は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面が形成された内方部材と、両転走面間に介在する複列の転動体とを備えたものであって、前記外方部材が静止側軌道輪であるインホイール型モータ内蔵センサ付き車輪用軸受装置。   2. The wheel bearing device according to claim 1, wherein the wheel bearing device includes an outer member having a double-row rolling surface formed on an inner periphery, and an inner surface having a rolling surface facing the rolling surface of the outer member. An in-wheel motor-equipped sensor-equipped wheel bearing device comprising a member and a double-row rolling element interposed between both rolling surfaces, wherein the outer member is a stationary raceway. 請求項1また請求項2において、前記センサ取付部材の接触固定部のうち第1の接触固定部が、車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力によって、前記静止側軌道輪の他の箇所と比べてラジアル方向に大きく変形する箇所に固定されているインホイール型モータ内蔵センサ付き車輪用軸受装置。   In Claim 1 and Claim 2, among the contact fixing portions of the sensor mounting member, the first contact fixing portion has three axes in the vertical direction, the horizontal direction, and the front-rear direction orthogonal to each other at the ground contact point of the wheel and the road surface. A sensor-equipped wheel bearing device with a built-in in-wheel motor, which is fixed at a location that is largely deformed in a radial direction as compared with other locations of the stationary raceway by a force in at least one of the directional forces. 請求項3において、前記接触固定部のうちの第2の接触固定部の固定箇所は、第1の接触固定部の固定箇所とは、車輪と路面の接地点における、互いに直交する上下方向、左右方向、および前後方向の3軸方向の力のうちの少なくとも1つの方向の力によって生じるラジアル方向歪みの方向が正逆異なる箇所としたインホイール型モータ内蔵センサ付き車輪用軸受装置。   4. The fixed portion of the second contact fixing portion of the contact fixing portions according to claim 3, wherein the fixing portion of the first contact fixing portion is the vertical direction and the right and left directions orthogonal to each other at the ground contact point of the wheel and the road surface. An in-wheel motor-equipped sensor-equipped bearing device in which the direction of radial distortion generated by the force in at least one of the direction and the force in the three axial directions in the front-rear direction is different. 請求項1ないし請求項4のいずれか1項において、前記センサユニットは複数であるインホイール型モータ内蔵センサ付き車輪用軸受装置。   5. The wheel bearing device with sensor according to claim 1, wherein the sensor unit includes a plurality of sensors. 請求項1ないし請求項5のいずれか1項において、前記センサユニットは、前記静止側固定輪におけるアウトボード側の転走面よりもアウトボード側の位置に配置したインホイール型モータ内蔵センサ付き車輪用軸受装置。   6. The in-wheel motor-equipped sensor-equipped wheel according to claim 1, wherein the sensor unit is disposed at a position closer to an outboard side than a rolling surface on the outboard side of the stationary side fixed wheel. Bearing device.
JP2006252532A 2006-09-19 2006-09-19 Bearing device for wheel with built-in sensor in in-wheel motor Pending JP2008074136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252532A JP2008074136A (en) 2006-09-19 2006-09-19 Bearing device for wheel with built-in sensor in in-wheel motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252532A JP2008074136A (en) 2006-09-19 2006-09-19 Bearing device for wheel with built-in sensor in in-wheel motor

Publications (1)

Publication Number Publication Date
JP2008074136A true JP2008074136A (en) 2008-04-03

Family

ID=39346663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252532A Pending JP2008074136A (en) 2006-09-19 2006-09-19 Bearing device for wheel with built-in sensor in in-wheel motor

Country Status (1)

Country Link
JP (1) JP2008074136A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065261A1 (en) * 2009-11-27 2011-06-03 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
CN103066740A (en) * 2011-10-21 2013-04-24 株式会社万都 In-wheel motor system
JP2014209843A (en) * 2014-06-11 2014-11-06 Ntn株式会社 Electric vehicle
CN104139698A (en) * 2013-05-08 2014-11-12 富士重工业株式会社 Wheel component force detecting apparatus
US9114711B2 (en) 2011-03-07 2015-08-25 Ntn Corporation Electric vehicle
DE102014106184B4 (en) * 2013-05-08 2019-10-10 Subaru Corporation Detecting device for wheel force components
CN110576736A (en) * 2018-06-11 2019-12-17 舍弗勒技术股份两合公司 Wheel hub drive arrangement and vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385900A (en) * 2009-11-27 2015-03-04 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
JP2011133101A (en) * 2009-11-27 2011-07-07 Ntn Corp Wheel bearing device with built-in in-wheel motor sensor
CN102686435A (en) * 2009-11-27 2012-09-19 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
WO2011065261A1 (en) * 2009-11-27 2011-06-03 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
US8581457B2 (en) 2009-11-27 2013-11-12 Ntn Corporation Wheel support bearing assembly with sensor and in-wheel motor integration
US9114711B2 (en) 2011-03-07 2015-08-25 Ntn Corporation Electric vehicle
CN103066740A (en) * 2011-10-21 2013-04-24 株式会社万都 In-wheel motor system
DE102014106183A1 (en) 2013-05-08 2014-11-13 Fuji Jukogyo Kabushiki Kaisha Detecting device for wheel force components
CN104139698A (en) * 2013-05-08 2014-11-12 富士重工业株式会社 Wheel component force detecting apparatus
US9157819B2 (en) 2013-05-08 2015-10-13 Fuji Jukogyo Kabushiki Kaisha Wheel component force detecting apparatus
DE102014106184B4 (en) * 2013-05-08 2019-10-10 Subaru Corporation Detecting device for wheel force components
DE102014106183B4 (en) 2013-05-08 2022-05-05 Subaru Corporation Detection device for wheel force components
JP2014209843A (en) * 2014-06-11 2014-11-06 Ntn株式会社 Electric vehicle
CN110576736A (en) * 2018-06-11 2019-12-17 舍弗勒技术股份两合公司 Wheel hub drive arrangement and vehicle

Similar Documents

Publication Publication Date Title
JP5052084B2 (en) Axle unit with in-wheel motor built-in sensor
JP5110854B2 (en) Wheel bearing device with in-wheel motor built-in sensor
JP4925624B2 (en) Wheel bearing with sensor
JP2008081090A (en) Bearing device for wheel with sensor containing in-wheel type motor
JP5089041B2 (en) Wheel bearing with sensor
JP4864441B2 (en) Wheel bearing with sensor
JP2007071280A (en) Wheel bearing with sensor
JP2008074136A (en) Bearing device for wheel with built-in sensor in in-wheel motor
JP2007046635A (en) Bearing for wheel with sensor
JP2007057302A (en) Wheel bearing with sensor
JP2007057300A (en) Wheel bearing with sensor
JP4931525B2 (en) Wheel bearing device with in-wheel motor built-in sensor
JP2007057259A (en) Wheel bearing with sensor
JP4931537B2 (en) Wheel bearing device with in-wheel motor built-in sensor
JP2007057258A (en) Wheel bearing with sensor
JP2008081089A (en) Bearing device for wheel with sensor containing in-wheel type motor
JP2008051283A (en) Wheel bearing with sensor
JP4879529B2 (en) Wheel bearing with sensor
JP2007057257A (en) Wheel bearing with sensor
JP2008051239A (en) Wheel bearing with sensor
JP2008075789A (en) Bearing device for wheel incorporating in-wheel motor and sensor
JP4911967B2 (en) Wheel bearing with sensor
JP5334370B2 (en) Wheel bearing with sensor
JP2007057301A (en) Wheel bearing with sensor
JP2008203119A (en) Bearing device for wheel with sensor