JP5110348B2 - Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell - Google Patents

Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell Download PDF

Info

Publication number
JP5110348B2
JP5110348B2 JP2006221012A JP2006221012A JP5110348B2 JP 5110348 B2 JP5110348 B2 JP 5110348B2 JP 2006221012 A JP2006221012 A JP 2006221012A JP 2006221012 A JP2006221012 A JP 2006221012A JP 5110348 B2 JP5110348 B2 JP 5110348B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solid polymer
polymer electrolyte
side electrolyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006221012A
Other languages
Japanese (ja)
Other versions
JP2008047388A (en
Inventor
雄一郎 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006221012A priority Critical patent/JP5110348B2/en
Publication of JP2008047388A publication Critical patent/JP2008047388A/en
Application granted granted Critical
Publication of JP5110348B2 publication Critical patent/JP5110348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電気化学反応によって電気エネルギを得る固体高分子型燃料電池に用いられる固体高分子電解質膜及びその製造方法に関するものである。   The present invention relates to a solid polymer electrolyte membrane used in a solid polymer fuel cell that obtains electric energy by an electrochemical reaction and a method for producing the same.

上記した固体高分子型燃料電池としては、例えば、イオン交換機能を持つ固体高分子電解質膜の両側に、触媒を担持した導電性担体及びイオン伝導性を持つ電解質ポリマーを含む触媒層と、多孔質部材からなるガス拡散層とをそれぞれ積層し、固体高分子電解質膜の一方側に燃料ガス(通常は水素)流路を有するセパレータを積層すると共に、他方側に酸化剤ガス(通常は空気)流路を有するセパレータを積層して成るものがある。   As the above-mentioned solid polymer fuel cell, for example, on both sides of a solid polymer electrolyte membrane having an ion exchange function, a catalyst carrier containing a catalyst carrying a catalyst and an electrolyte polymer having ion conductivity, and a porous A gas diffusion layer made of a member is laminated, a separator having a fuel gas (usually hydrogen) channel is laminated on one side of the solid polymer electrolyte membrane, and an oxidant gas (usually air) flow is made on the other side. Some of them are formed by laminating separators having paths.

このような固体高分子型燃料電池では、固体高分子電解質膜が乾燥すると、イオン伝導性が悪くなることから、従来において、例えば、カソード側の電解質成分のイオン交換基当量重量(EW値)を大きくすることで、固体高分子電解質膜の湿潤状態を維持するようにしているほか、固体高分子電解質膜のクラスター領域においてクラスターの径を配向させることで、イオン伝導性の向上を図かるようにしている。
特開2004−349180号公報 特開2005−294271号公報
In such a polymer electrolyte fuel cell, when the polymer electrolyte membrane is dried, the ionic conductivity deteriorates. Therefore, conventionally, for example, the ion exchange group equivalent weight (EW value) of the electrolyte component on the cathode side has been set. In addition to maintaining the wet state of the solid polymer electrolyte membrane by increasing the size, the ion conductivity is improved by orienting the cluster diameter in the cluster region of the solid polymer electrolyte membrane. ing.
JP 2004-349180 A JP 2005-294271 A

ところが、従来にあっては、固体高分子電解質膜のカソード側における電解質成分のイオン交換基当量重量(EW値)を大きくすると、親水部分が減少することから、氷点下において、カソード側で生成した水分を膜内に素早く吸収させることが困難になり、一方、固体高分子電解質膜のクラスターの径を配向させると、イオン伝導性を高めることはできるものの、上記と同様に、氷点下において、カソード側で生成した水分を膜内に素早く吸収させることが困難であり、膜内のクラスターに保持された水の凝固点降下を用いて生成水の凍結を防ぐことができないという問題があり、この問題を解決することが従来の課題となっていた。   However, conventionally, when the ion exchange group equivalent weight (EW value) of the electrolyte component on the cathode side of the solid polymer electrolyte membrane is increased, the hydrophilic portion is reduced, so that moisture generated on the cathode side below freezing point. In the same way as above, the ion conductivity can be improved by orienting the cluster diameter of the solid polymer electrolyte membrane. The problem is that it is difficult to quickly absorb the generated moisture into the membrane, and it is impossible to prevent freezing of the generated water using the freezing point depression of the water retained in the clusters in the membrane. This has been a conventional problem.

本発明は、上記した従来の課題に着目してなされたものであり、氷点下における起動時において、膜内のクラスターに保持された水分が凍結するのを防ぎつつ、カソード側で生成した水分を膜内に素早く吸収することができ、その結果、氷点下における起動性を高めることが可能である固体高分子電解質膜及びその製造方法並びに固体高分子型燃料電池を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and at the time of start-up under freezing, the moisture generated on the cathode side is prevented from freezing while the moisture retained in the clusters in the membrane is prevented from freezing. It is an object of the present invention to provide a solid polymer electrolyte membrane, a method for producing the same, and a solid polymer fuel cell that can be quickly absorbed into the inside thereof, and as a result, can improve the startability below freezing point.

本発明は、カソード触媒層及びアノード触媒層に挟持される固体高分子型燃料電池用の固体高分子電解質膜であって、少なくともカソード側電解質膜部及びアノード側電解質膜部を具備した積層構造を成し、カソード側電解質膜部からアノード側電解質膜部にかけて水分を含有するクラスターの径を漸次大きくしてあると共に、クラスター領域を形成するスルホン酸基のイオン交換容量をカソード側電解質膜部からアノード側電解質膜部にかけて漸次小さくしてある構成としたことを特徴としており、この固体高分子電解質膜の構成を前述した従来の課題を解決するための手段としている。
The present invention relates to a solid polymer electrolyte membrane for a polymer electrolyte fuel cell sandwiched between a cathode catalyst layer and an anode catalyst layer, and has a laminated structure including at least a cathode side electrolyte membrane portion and an anode side electrolyte membrane portion. The diameter of the water-containing cluster is gradually increased from the cathode side electrolyte membrane part to the anode side electrolyte membrane part, and the ion exchange capacity of the sulfonic acid group forming the cluster region is increased from the cathode side electrolyte membrane part to the anode. It is characterized in that the structure gradually becomes smaller over the side electrolyte membrane portion, and the configuration of the solid polymer electrolyte membrane is used as a means for solving the above-described conventional problems.

本発明の固体高分子電解質膜において、積層構造を成すカソード側電解質膜部からアノード側電解質膜部にかけて、クラスターの径が漸次大きくなるようにし、さらにクラスター領域を形成するスルホン酸基のイオン交換容量が漸次小さくなるようにしているので、氷点下起動時における含水量がより多くなり、したがって、凍結し易い膜内での水分の凍結を阻止しつつ、生成水をアノード側に速やかに輸送し得るパスが確保されることとなる、すなわち、カソード側で生成した水分を膜内に素早く吸収し得ることとなる。また、電解質膜の機械的強度が維持されて耐久性が向上することとなる。
In the solid polymer electrolyte membrane of the present invention, the cluster diameter is gradually increased from the cathode side electrolyte membrane part to the anode side electrolyte membrane part forming the laminated structure, and the ion exchange capacity of the sulfonic acid group forming the cluster region. since There has been so gradually decreases, becomes more and more water content at subzero start, therefore, while preventing freezing of water in the frozen easy film may rapidly transported water produced on the anode side path In other words, the moisture generated on the cathode side can be quickly absorbed into the membrane. Further, the mechanical strength of the electrolyte membrane is maintained and the durability is improved.

本発明によれば、上記した構成としているので、氷点下における起動時において、膜内のクラスターに保持された水分が凍結するのを防ぎながら、カソード側で生成した水分を膜内に素早く吸収することができ、その結果、氷点下における起動性の向上を実現することが可能であるという非常に優れた効果がもたらされる。   According to the present invention, since it is configured as described above, the moisture generated on the cathode side can be quickly absorbed into the membrane while preventing the moisture held in the clusters in the membrane from freezing at the time of starting below freezing. As a result, it is possible to achieve an excellent effect that it is possible to realize an improvement in startability below freezing point.

本発明の固体高分子電解質膜において、クラスター領域を形成するスルホン酸基のイオン交換容量をカソード側電解質膜部からアノード側電解質膜部にかけて漸次小さくしてある構成を採用することができる。   In the solid polymer electrolyte membrane of the present invention, a configuration can be adopted in which the ion exchange capacity of the sulfonic acid group forming the cluster region is gradually reduced from the cathode side electrolyte membrane portion to the anode side electrolyte membrane portion.

ここで、イオン交換容量は、EW値(Equivalent Weight)の逆数である。このEW値は、イオン交換基1mol当たりのイオン交換樹脂乾燥重量を表す値であり、EW値が小さければ、イオン交換基の含有mol数が大きくなって膜のイオン伝導性が高くなり、一方、EW値が大きければ、イオン交換基の含有mol数が小さくなってイオン伝導性が低くなる。   Here, the ion exchange capacity is the reciprocal of the EW value (Equivalent Weight). This EW value is a value representing the dry weight of the ion exchange resin per 1 mol of ion exchange groups. If the EW value is small, the number of mols contained in the ion exchange group is increased and the ion conductivity of the membrane is increased. If the EW value is large, the number of mols contained in the ion exchange group is decreased, and the ion conductivity is decreased.

つまり、カソード側電解質膜部からアノード側電解質膜部にかけてEW値を漸次大きくすると、氷点下における起動時において、膜内の水分が凍結するのを防ぎながら、カソード側で生成した水分を膜内に素早く吸収することができ、したがって、氷点下における起動性の向上に寄与し得ることとなり、加えて、アノード側電解質膜部のEW値が大きいので、電解質膜の機械的強度が維持されて耐久性が向上することとなる。   In other words, when the EW value is gradually increased from the cathode side electrolyte membrane part to the anode side electrolyte membrane part, the moisture generated on the cathode side is quickly brought into the film while preventing the moisture in the film from freezing at the time of starting below freezing point. Therefore, since the EW value of the anode side electrolyte membrane part is large, the mechanical strength of the electrolyte membrane is maintained and the durability is improved. Will be.

また、本発明の固体高分子電解質膜において、固体高分子電解質成分に無機材料からなるフィラーを添加した複合材料でカソード側電解質膜部を形成してある構成を採用することができる。   In the solid polymer electrolyte membrane of the present invention, a structure in which the cathode side electrolyte membrane portion is formed of a composite material in which a filler made of an inorganic material is added to the solid polymer electrolyte component can be adopted.

この構成を採用すると、膜内の親水性が向上し、氷点下において、凝固点降下によって凍結することなく膜内にて保持される水分の量が増大することとなり、氷点下における起動性のより一層の向上が図られることとなる。   By adopting this configuration, the hydrophilicity in the membrane is improved, and the amount of moisture retained in the membrane without freezing due to the freezing point depression is increased below freezing point, so that the startability under freezing point is further improved. Will be achieved.

ここで、固体高分子電解質膜のクラスターの径は、氷点下において小さく、膜に保持される水分の量の増加とともに大きくなるが、クラスターの径の増加の程度は、弾性率が低いほど大きくなる。その一方で、クラスターの径が大きくなると、凝固点降下が減ることによって膜内の水分が凍結し易くなる。   Here, the cluster diameter of the solid polymer electrolyte membrane is small below freezing point and increases with an increase in the amount of moisture retained in the membrane, but the degree of increase in the cluster diameter increases as the elastic modulus decreases. On the other hand, when the diameter of the cluster is increased, the freezing point drop is reduced, so that the moisture in the film is easily frozen.

この際、カソード側を低弾性率化すると、保水量の増大に伴って膜内の水分が凍結し易くなるが、例えば、自動車用の燃料電池において、氷点下における起動時には、時間の経過とともに膜の温度が上昇することから、膜内の水分の凍結が緩和される。   At this time, if the elastic modulus of the cathode side is lowered, the moisture in the membrane easily freezes as the water retention amount increases.For example, in a fuel cell for an automobile, at the time of starting below freezing point, Since the temperature rises, freezing of moisture in the film is alleviated.

そこで、本発明の固体高分子電解質膜において、弾性率をカソード側電解質膜部からアノード側電解質膜部にかけて漸次大きくしてある構成を採用することができ、この場合には、氷点下起動時の温度上昇を利用することで、膜内に保持された水分が凍結するのを防ぎつつ、カソード側で生成した多くの水分を膜内に素早く吸収し得ることとなり、その結果、氷点下における起動性の向上が実現することとなる。   Therefore, in the solid polymer electrolyte membrane of the present invention, a configuration in which the elastic modulus is gradually increased from the cathode side electrolyte membrane portion to the anode side electrolyte membrane portion can be adopted. By utilizing the rise, it is possible to quickly absorb a large amount of moisture generated on the cathode side while preventing the moisture retained in the membrane from freezing, and as a result, the startability under freezing point is improved. Will be realized.

一方、本発明の固体高分子電解質膜を製造するに際しては、互いに異なる温度で且つ互いに異なる圧力下で複数の電解質膜部を形成した後、これらの電解質膜部を積層して一体化する構成を採用することができ、具体的には、高温で且つ高圧下でカソード側電解質膜部を形成すると共に、低温で且つ低圧下でアノード側電解質膜部を形成した後、カソード側電解質膜部及びアノード側電解質膜部を互いに積層して一体化する構成を採用することができる。   On the other hand, when producing the solid polymer electrolyte membrane of the present invention, after forming a plurality of electrolyte membrane portions at different temperatures and under different pressures, these electrolyte membrane portions are laminated and integrated. Specifically, the cathode side electrolyte membrane portion is formed at a high temperature and under a high pressure, and the anode side electrolyte membrane portion is formed at a low temperature and under a low pressure, and then the cathode side electrolyte membrane portion and the anode are formed. A configuration in which the side electrolyte membrane portions are stacked and integrated with each other can be employed.

この固体高分子電解質膜の製造方法では、カソード側電解質膜部からアノード側電解質膜部にかけてクラスターの径を漸次大きくした固体高分子電解質膜を製造し得るのに加えて、異なる特性の電解質膜部を一体化し得ることとなり、その結果、氷点下における起動性に優れていると共に、常温性能及び耐吸性能に優れた固体高分子電解質膜を製造し得ることとなる。   In this method for producing a solid polymer electrolyte membrane, in addition to being able to produce a solid polymer electrolyte membrane having a cluster diameter gradually increasing from the cathode side electrolyte membrane portion to the anode side electrolyte membrane portion, electrolyte membrane portions having different characteristics can be produced. As a result, it is possible to produce a solid polymer electrolyte membrane that is excellent in startability below freezing point and excellent in room temperature performance and absorption resistance.

そして、本発明の固体高分子型燃料電池において、固体高分子電解質膜を備え、この固体高分子電解質膜の一方の面に、カソード触媒層と、ガス拡散層と、ガス流路を具備したセパレータを順次積層すると共に、固体高分子電解質膜の他方の面に、アノード触媒層と、ガス拡散層と、ガス流路を具備したセパレータを順次積層して成る固体高分子型燃料電池において、固体高分子電解質膜が、少なくともカソード側電解質膜部及びアノード側電解質膜部を具備した積層構造を成していて、カソード側電解質膜部からアノード側電解質膜部にかけて水分を含有するクラスターの径を漸次大きくしてある構成とすることが可能である。   In the polymer electrolyte fuel cell of the present invention, the separator includes a solid polymer electrolyte membrane, and a cathode catalyst layer, a gas diffusion layer, and a gas flow path are provided on one surface of the solid polymer electrolyte membrane. In the polymer electrolyte fuel cell, the anode catalyst layer, the gas diffusion layer, and the separator having the gas flow path are sequentially laminated on the other surface of the solid polymer electrolyte membrane. The molecular electrolyte membrane has a laminated structure including at least a cathode-side electrolyte membrane portion and an anode-side electrolyte membrane portion, and the diameter of the water-containing cluster gradually increases from the cathode-side electrolyte membrane portion to the anode-side electrolyte membrane portion. It is possible to have a configuration.

この固体高分子型燃料電池では、積層構造を成す固体高分子電解質膜のカソード側電解質膜部からアノード側電解質膜部にかけて、クラスターの径が漸次大きくなるようにしているので、氷点下起動時における含水量がより多くなり、したがって、凍結し易い膜内での水分の凍結を阻止しつつ、カソード側で生成した水分を膜内に素早く吸収し得ることとなり、その結果、氷点下における起動性の向上が図られることとなる。   In this polymer electrolyte fuel cell, the diameter of the cluster gradually increases from the cathode side electrolyte membrane part to the anode side electrolyte membrane part of the solid polymer electrolyte membrane having a laminated structure. The amount of water is increased, and therefore moisture generated on the cathode side can be quickly absorbed into the membrane while preventing freezing of moisture in the membrane that is easily frozen, and as a result, the startability under freezing point is improved. Will be illustrated.

また、本発明の固体高分子型燃料電池において、クラスター領域を形成するスルホン酸基のイオン交換容量をカソード側電解質膜部からアノード側電解質膜部にかけて漸次小さくした構成としたり、固体高分子電解質成分に無機材料からなるフィラーを添加した複合材料でカソード側電解質膜部を形成してある構成としたり、弾性率をカソード側電解質膜部からアノード側電解質膜部にかけて漸次大きくしてある構成としたりすることができ、いずれの場合も、氷点下における起動性のより一層の向上が図られることとなる。   Further, in the polymer electrolyte fuel cell of the present invention, the ion exchange capacity of the sulfonic acid group forming the cluster region is gradually reduced from the cathode side electrolyte membrane part to the anode side electrolyte membrane part, or the solid polymer electrolyte component The cathode side electrolyte membrane part is formed of a composite material in which a filler made of an inorganic material is added, or the elastic modulus is gradually increased from the cathode side electrolyte membrane part to the anode side electrolyte membrane part. In any case, the starting performance under freezing can be further improved.

以下、本発明の一実施例を図面に基づいて詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although one Example of this invention is described in detail based on drawing, this invention is not limited to a following example.

[実施例1]
図1に示すように、この固体高分子電解質膜1は、カソード側電解質膜部2及びアノード側電解質膜部3を互いに積層して成っており、カソード側電解質膜部2にはカソード触媒層12が積層され、アノード側電解質膜部3にはアノード触媒層13が積層されるようになっている。この場合、アノード側電解質膜部3におけるクラスターの径をカソード側電解質膜部2におけるクラスターの径よりも大きくしてある。
[Example 1]
As shown in FIG. 1, the solid polymer electrolyte membrane 1 is formed by laminating a cathode side electrolyte membrane portion 2 and an anode side electrolyte membrane portion 3, and a cathode catalyst layer 12 is formed on the cathode side electrolyte membrane portion 2. Are stacked, and an anode catalyst layer 13 is stacked on the anode-side electrolyte membrane portion 3. In this case, the diameter of the cluster in the anode side electrolyte membrane part 3 is made larger than the diameter of the cluster in the cathode side electrolyte film part 2.

この固体高分子電解質膜1を製造するに際しては、まず、図2に示すように、工程101において、電解質成分を十分に圧縮して径の小さなクラスターを形成し得る製膜条件、すなわち、高温で且つ高圧下でカソード側電解質膜部2を製膜する。   When producing this solid polymer electrolyte membrane 1, first, as shown in FIG. 2, in step 101, the membrane is formed under conditions that allow the electrolyte component to be sufficiently compressed to form a cluster having a small diameter, that is, at a high temperature. And the cathode side electrolyte membrane part 2 is formed into a film under high pressure.

次いで、工程102において、電解質成分を軽めに圧縮して径の大きなクラスターを形成し得る製膜条件、すなわち、低温で且つ低圧下でアノード側電解質膜部3を製膜する。   Next, in step 102, the anode-side electrolyte membrane portion 3 is formed under conditions for forming a cluster having a large diameter by lightly compressing the electrolyte component, that is, at a low temperature and a low pressure.

続いて、カソード側電解質膜部2を乾燥させて固体膜とした後、アノード側電解質膜部3が変質しないようにして、工程103において、ホットプレスにより低温で且つ低圧下でカソード側電解質膜部2及びアノード側電解質膜部3を互いに積層して一体化して、この実施例の固体高分子電解質膜1を得る。   Subsequently, after the cathode side electrolyte membrane part 2 is dried to form a solid film, the cathode side electrolyte membrane part 3 is subjected to hot pressing at a low temperature and a low pressure in step 103 so that the anode side electrolyte membrane part 3 is not altered. 2 and the anode side electrolyte membrane part 3 are laminated and integrated with each other to obtain the solid polymer electrolyte membrane 1 of this embodiment.

[実施例2]
この実施例では、カソード側電解質膜部2の製膜時において、高分子溶液のEW値を低下させてカソード側電解質膜部2を製膜することで、カソード側電解質膜部2のEW値をアノード側電解質膜部3のEW値よりも小さくした固体高分子電解質膜1を得た。すなわち、アノード側電解質膜部3におけるクラスターの径がカソード側電解質膜部2におけるクラスターの径よりも大きく、且つ、アノード側電解質膜部3におけるスルホン酸基のイオン交換容量がカソード側電解質膜部2におけるスルホン酸基のイオン交換容量よりも小さい固体高分子電解質膜1を得た。
[Example 2]
In this embodiment, when the cathode side electrolyte membrane part 2 is formed, the EW value of the polymer solution is reduced to lower the EW value of the polymer solution, thereby forming the EW value of the cathode side electrolyte membrane part 2. A solid polymer electrolyte membrane 1 having an EW value smaller than that of the anode side electrolyte membrane portion 3 was obtained. That is, the diameter of the cluster in the anode side electrolyte membrane part 3 is larger than the diameter of the cluster in the cathode side electrolyte membrane part 2, and the ion exchange capacity of the sulfonic acid group in the anode side electrolyte membrane part 3 is the cathode side electrolyte membrane part 2. A solid polymer electrolyte membrane 1 smaller than the ion exchange capacity of the sulfonic acid group was obtained.

[実施例3]
この実施例では、カソード側電解質膜部2の製膜時において、高分子溶液中に無機材料からなるフィラーを添加してカソード側電解質膜部2を製膜することで、複合材料から成るカソード側電解質膜部2を有する固体高分子電解質膜1を得た。
[Example 3]
In this embodiment, when the cathode side electrolyte membrane part 2 is formed, the cathode side electrolyte membrane part 2 is formed by adding a filler made of an inorganic material into the polymer solution, thereby forming the cathode side made of the composite material. A solid polymer electrolyte membrane 1 having an electrolyte membrane portion 2 was obtained.

[実施例4]
この実施例では、電解質膜部2,3の製膜時において、高分子溶液の種類を変化させ、疎水部の分子構造に変化を起こさせることで、カソード側電解質膜部2の弾性率のみを低くした固体高分子電解質膜1を得た。
[Example 4]
In this embodiment, only the elastic modulus of the cathode side electrolyte membrane part 2 is obtained by changing the kind of the polymer solution and causing the molecular structure of the hydrophobic part to change during the formation of the electrolyte membrane parts 2 and 3. A lowered solid polymer electrolyte membrane 1 was obtained.

そこで、従前より周知の単一膜構造の固体高分子電解質膜を比較例として用意し、この比較例の固体高分子電解質膜及び上記した実施例1〜4の固体高分子電解質膜1に対して、温度−20℃の一定条件下における零下起動性評価試験Aと、温度−20℃から零下起動時の発電で生じるジュール熱による温度上昇を伴う零下起動性評価試験Bを実施した。   Therefore, a solid polymer electrolyte membrane having a well-known single membrane structure has been prepared as a comparative example, and the solid polymer electrolyte membrane of this comparative example and the solid polymer electrolyte membranes 1 of Examples 1 to 4 described above are prepared. A sub-zero startability evaluation test A under a constant temperature of −20 ° C. and a sub-zero startability evaluation test B accompanied by a temperature increase due to Joule heat generated during power generation from the temperature −20 ° C. to the subzero start were performed.

この際、零下起動性は、
{(電流密度×水の分子量×発電時間)/2×ファラデー定数}×1000
の式に基づいて得られる単位面積あたりの保水量(mg/cm)で評価することとした。但し、発電時間は、発電開始から電圧値が0Vになるまでの時間と定義する。また、この零下起動性評価試験において、温度−20℃でも凍結しないエチレングリコールを冷却液として使用し、この冷却液を流すか否かで温度を制御した。
At this time, below zero startability is
{(Current density × water molecular weight × power generation time) / 2 × Faraday constant} × 1000
The water retention amount per unit area (mg / cm 2 ) obtained based on the formula was evaluated. However, the power generation time is defined as the time from the start of power generation until the voltage value becomes 0V. Further, in this sub-zero startability evaluation test, ethylene glycol that does not freeze even at a temperature of −20 ° C. was used as a coolant, and the temperature was controlled by whether or not this coolant was allowed to flow.

すなわち、図3に示すように、手順201において、固体高分子電解質膜1のカソード側電解質膜部2及びアノード側電解質膜部3に対して相対湿度30%の窒素を流して含水量を一定とした後、手順202において、冷却液を流して温度−20℃まで冷却し、次いで、零下起動性評価試験Aでは、手順203において、冷却液を流して温度を−20℃に維持しつつ一定電流密度で発電させ、一方、零下起動性評価試験Bでは、手順204において、冷却液を流さずにジュール熱による自然な温度上昇を許容しつつ一定電流密度で発電させるようにした。上記零下起動性評価試験A,Bの評価A,Bを表1に示す。   That is, as shown in FIG. 3, in step 201, nitrogen with a relative humidity of 30% is flowed through the cathode side electrolyte membrane part 2 and the anode side electrolyte membrane part 3 of the solid polymer electrolyte membrane 1 to keep the water content constant. After that, in step 202, cooling liquid is flowed to cool to −20 ° C. Then, in sub-zero startability evaluation test A, in step 203, cooling liquid is flowed to maintain the temperature at −20 ° C. while maintaining a constant current. On the other hand, in the sub-zero startability evaluation test B, in step 204, power was generated at a constant current density while allowing a natural temperature increase due to Joule heat without flowing a coolant. Table 1 shows the evaluations A and B of the below-zero startability evaluation tests A and B.

Figure 0005110348
Figure 0005110348

表1に示すように、実施例1の固体高分子電解質膜1は、比較例と比べて、評価Aにおいて零下起動性が20%、評価Bにおいて零下起動性が30%強向上することが確認された。これは、カソード側電解質膜部2におけるクラスターの径をアノード側電解質膜部3よりも小さくしたことで、凝固点降下により膜内の水分が凍結し難くなったためであり、実施例1の固体高分子電解質膜1が、優れた零下起動性を有していることが実証できた。   As shown in Table 1, it is confirmed that the solid polymer electrolyte membrane 1 of Example 1 is improved by 20% in starting A below 20% in evaluation A and slightly over 30% in starting B in evaluation B. It was done. This is because the water in the membrane is difficult to freeze due to the lowering of the freezing point because the diameter of the cluster in the cathode side electrolyte membrane portion 2 is smaller than that of the anode side electrolyte membrane portion 3. It was proved that the electrolyte membrane 1 had excellent subzero starting properties.

また、実施例2の固体高分子電解質膜1は、比較例と比べて、評価Aにおいて零下起動性が50%、評価Bにおいて零下起動性が100%向上することが確認された。これは、カソード側電解質膜部2のEW値をアノード側電解質膜部3のEW値よりも小さくしたことで、膜内の水分が凍結するのを防ぎながら、カソード側で生成した多くの水分を膜内に素早く吸収し、そして、保水することができるからであり、実施例2の固体高分子電解質膜1も、優れた零下起動性を有していることが実証できた。   In addition, it was confirmed that the solid polymer electrolyte membrane 1 of Example 2 was improved by 50% in below-zero startability in Evaluation A and 100% in under evaluation B compared to Comparative Example. This is because the EW value of the cathode side electrolyte membrane part 2 is made smaller than the EW value of the anode side electrolyte membrane part 3, while the moisture in the membrane is prevented from freezing, and much moisture generated on the cathode side is removed. This is because the solid polymer electrolyte membrane 1 of Example 2 can also be demonstrated to have excellent subzero starting properties because it can be quickly absorbed into the membrane and retained.

さらに、実施例3の固体高分子電解質膜1は、実施例2の固体高分子電解質膜1と同様に、比較例と比べて、評価Aにおいて零下起動性が50%、評価Bにおいて零下起動性が100%向上することが確認された。これは、無機フェラーの添加によって親水性が増したことで、カソード側で生成した多くの水分を膜内に素早く吸収し、そして、保水することができるからであり、実施例3の固体高分子電解質膜1も、優れた零下起動性を有していることが実証できた。   Furthermore, the solid polymer electrolyte membrane 1 of Example 3 is 50% lower than zero in evaluation A and lower than zero in evaluation B as compared with the comparative example, similarly to the solid polymer electrolyte membrane 1 of example 2. Was confirmed to improve by 100%. This is because the hydrophilicity is increased by the addition of the inorganic ferrule, so that a large amount of water generated on the cathode side can be quickly absorbed into the membrane and retained, and the solid polymer of Example 3 can be retained. It was proved that the electrolyte membrane 1 also has excellent sub-zero startability.

さらにまた、実施例4の固体高分子電解質膜1は、比較例と比べて、評価Aにおいて零下起動性が10%、評価Bにおいて零下起動性が100%向上することが確認された。これは、カソード側電解質膜部2の弾性率のみを低くしたため、温度を−20℃に維持した場合(評価A)には、零下起動時に膜内に水分が保持されて、クラスターの径の変化が大きくなって膜内の水分が凍結し易くなるが、零下起動時に温度上昇が伴う場合(評価B)には、膜内の水分の凍結が緩和されて膜内に十分に水分を保持可能となるからであり、実施例4の固体高分子電解質膜1も、優れた零下起動性を有していることが実証できた。   Furthermore, it was confirmed that the solid polymer electrolyte membrane 1 of Example 4 was improved by 10% in below-zero startability in evaluation A and 100% in under evaluation B compared with the comparative example. This is because only the elastic modulus of the cathode-side electrolyte membrane part 2 is lowered, so that when the temperature is maintained at −20 ° C. (Evaluation A), moisture is retained in the membrane when starting below zero, and the change in the diameter of the cluster However, if the temperature rises at the time of starting below zero (Evaluation B), the freezing of the water in the film is alleviated and the water can be sufficiently retained in the film. Thus, it was proved that the solid polymer electrolyte membrane 1 of Example 4 also has excellent subzero starting properties.

[実施例5]
図4は、本発明の固体高分子型燃料電池の一実施例を示しており、図4に示すように、この固体高分子型燃料電池11は、固体高分子電解質膜1の両側に、触媒を担持した導電性担体及びイオン伝導性を持つ電解質ポリマーを含む触媒層12,13と、多孔質部材からなるガス拡散層14,15とをそれぞれ積層し、固体高分子電解質膜1の一方側に酸化剤ガス(通常は空気)流路16aを有するカソード側セパレータ16を積層すると共に、他方側に燃料ガス(通常は水素)流路17aを有するアノード側セパレータ17を積層して成っている。
[Example 5]
FIG. 4 shows an embodiment of the polymer electrolyte fuel cell according to the present invention. As shown in FIG. 4, the polymer electrolyte fuel cell 11 has a catalyst on both sides of the polymer electrolyte membrane 1. Catalyst layers 12 and 13 containing an electrolyte polymer having a conductive carrier and ionic conductivity, and gas diffusion layers 14 and 15 made of a porous member are laminated, respectively, on one side of the solid polymer electrolyte membrane 1 A cathode side separator 16 having an oxidant gas (usually air) flow path 16a is laminated, and an anode side separator 17 having a fuel gas (usually hydrogen) flow path 17a is laminated on the other side.

この場合、固体高分子電解質膜1は、図4の拡大部分に示すように、カソード側電解質膜部2,中間電解質膜部4及びアノード側電解質膜部3を順次積層して成っており、水分を含有するクラスターの径がカソード側電解質膜部2からアノード側電解質膜部3にかけて漸次大きくなるようにして形成してあると共に、EW値がカソード側電解質膜部2からアノード側電解質膜部3にかけて漸次大きくなるようにして(スルホン酸基のイオン交換容量が漸次小さくなるようにして)形成してある。   In this case, the solid polymer electrolyte membrane 1 is formed by sequentially laminating the cathode side electrolyte membrane portion 2, the intermediate electrolyte membrane portion 4 and the anode side electrolyte membrane portion 3 as shown in the enlarged portion of FIG. And the EW value increases from the cathode side electrolyte membrane part 2 to the anode side electrolyte membrane part 3 and from the cathode side electrolyte membrane part 2 to the anode side electrolyte membrane part 3. It is formed so as to gradually increase (so that the ion exchange capacity of the sulfonic acid group gradually decreases).

この固体高分子型燃料電池11では、上記した積層構造を成す固体高分子電解質膜1を備えているので、氷点下起動時における含水量がより多くなり、したがって、凍結し易い膜内での水分の凍結を阻止しつつ、カソード側で生成した水分を固体高分子電解質膜1内に素早く吸収し得ることとなり、その結果、氷点下における起動性の向上が図られることとなる。   Since the solid polymer fuel cell 11 includes the solid polymer electrolyte membrane 1 having the above-described laminated structure, the water content at the time of starting below freezing is higher, and therefore, the moisture content in the membrane that is easily frozen is increased. Moisture generated on the cathode side can be quickly absorbed into the solid polymer electrolyte membrane 1 while preventing freezing, and as a result, the startability under freezing can be improved.

本発明の固体高分子電解質膜の一実施例を示す断面説明図である。(実施例1)It is a section explanatory view showing one example of a solid polymer electrolyte membrane of the present invention. Example 1 図1の固体高分子電解質膜の製造工程説明図である。(実施例1)FIG. 2 is an explanatory diagram of a manufacturing process of the solid polymer electrolyte membrane of FIG. 1. Example 1 実施例の固体高分子電解質膜及び比較例の固体高分子電解質膜に対して行った零下起動性評価試験の実施手順説明図である。It is execution procedure explanatory drawing of the zero zero starting property evaluation test done with respect to the solid polymer electrolyte membrane of an Example, and the solid polymer electrolyte membrane of a comparative example. 本発明の固体高分子型燃料電池の一実施例を示す断面説明図である。(実施例5)It is a section explanatory view showing one example of a polymer electrolyte fuel cell of the present invention. (Example 5)

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 カソード側電解質膜部
3 アノード側電解質膜部
11 固体高分子型燃料電池
12 カソード触媒層
13 アノード触媒層
14,15 ガス拡散層
16,17 セパレータ
16a,17a ガス流路
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Cathode side electrolyte membrane part 3 Anode side electrolyte membrane part 11 Solid polymer fuel cell 12 Cathode catalyst layer 13 Anode catalyst layer 14, 15 Gas diffusion layer 16, 17 Separator 16a, 17a Gas flow path

Claims (8)

カソード触媒層及びアノード触媒層に挟持される固体高分子型燃料電池用の固体高分子電解質膜であって、少なくともカソード側電解質膜部及びアノード側電解質膜部を具備した積層構造を成し、カソード側電解質膜部からアノード側電解質膜部にかけて水分を含有するクラスターの径を漸次大きくしてあると共に、クラスター領域を形成するスルホン酸基のイオン交換容量をカソード側電解質膜部からアノード側電解質膜部にかけて漸次小さくしてあることを特徴とする固体高分子電解質膜。 A solid polymer electrolyte membrane for a polymer electrolyte fuel cell sandwiched between a cathode catalyst layer and an anode catalyst layer, comprising a laminated structure including at least a cathode side electrolyte membrane portion and an anode side electrolyte membrane portion, The diameter of the water-containing cluster is gradually increased from the side electrolyte membrane portion to the anode side electrolyte membrane portion, and the ion exchange capacity of the sulfonic acid group forming the cluster region is changed from the cathode side electrolyte membrane portion to the anode side electrolyte membrane portion. A solid polymer electrolyte membrane characterized by being gradually reduced in size . 固体高分子電解質成分に無機材料からなるフィラーを添加した複合材料でカソード側電解質膜部を形成してある請求項1に記載の固体高分子電解質膜。   2. The solid polymer electrolyte membrane according to claim 1, wherein the cathode side electrolyte membrane portion is formed of a composite material in which a filler made of an inorganic material is added to the solid polymer electrolyte component. 弾性率をカソード側電解質膜部からアノード側電解質膜部にかけて漸次大きくしてある請求項1又は2に記載の固体高分子電解質膜。   3. The solid polymer electrolyte membrane according to claim 1, wherein the elastic modulus is gradually increased from the cathode side electrolyte membrane portion to the anode side electrolyte membrane portion. 請求項1〜のいずれかに記載の固体高分子電解質膜を製造するに際して、互いに異なる温度で且つ互いに異なる圧力下で複数の電解質膜部を形成した後、これらの電解質膜部を積層して一体化することを特徴とする固体高分子電解質膜の製造方法。 In producing the solid polymer electrolyte membrane according to any one of claims 1 to 3 , after forming a plurality of electrolyte membrane portions at different temperatures and under different pressures, the electrolyte membrane portions are laminated. A method for producing a solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane is integrated. 請求項1〜のいずれかに記載の固体高分子電解質膜を製造するに際して、高温で且つ高圧下でカソード側電解質膜部を形成すると共に、低温で且つ低圧下でアノード側電解質膜部を形成した後、カソード側電解質膜部及びアノード側電解質膜部を互いに積層して一体化することを特徴とする固体高分子電解質膜の製造方法。 Formed in manufacturing the solid polymer electrolyte membrane according to any one of claims 1 to 3 and to form the cathode-side electrolyte membrane portion under high pressure at high temperature, an anode-side electrolyte membrane unit under low pressure and at low temperature Thereafter, the cathode side electrolyte membrane part and the anode side electrolyte membrane part are laminated and integrated with each other. 固体高分子電解質膜を備え、この固体高分子電解質膜の一方の面に、カソード触媒層と、ガス拡散層と、ガス流路を具備したセパレータを順次積層すると共に、固体高分子電解質膜の他方の面に、アノード触媒層と、ガス拡散層と、ガス流路を具備したセパレータを順次積層して成る固体高分子型燃料電池において、固体高分子電解質膜は、少なくともカソード側電解質膜部及びアノード側電解質膜部を具備した積層構造を成し、カソード側電解質膜部からアノード側電解質膜部にかけて水分を含有するクラスターの径を漸次大きくしてあると共に、クラスター領域を形成するスルホン酸基のイオン交換容量をカソード側電解質膜部からアノード側電解質膜部にかけて漸次小さくしてあることを特徴とする固体高分子型燃料電池。 A solid polymer electrolyte membrane, and a cathode catalyst layer, a gas diffusion layer, and a separator having a gas flow path are sequentially laminated on one surface of the solid polymer electrolyte membrane, and the other side of the solid polymer electrolyte membrane In the polymer electrolyte fuel cell in which an anode catalyst layer, a gas diffusion layer, and a separator having a gas flow path are sequentially laminated on the surface, the polymer electrolyte membrane includes at least a cathode side electrolyte membrane portion and an anode. The sulfonic acid group ions that form a laminated structure with a side electrolyte membrane part, and gradually increase the diameter of the water-containing cluster from the cathode side electrolyte membrane part to the anode side electrolyte membrane part. A solid polymer fuel cell characterized in that the exchange capacity is gradually reduced from the cathode side electrolyte membrane part to the anode side electrolyte membrane part . 固体高分子電解質成分に無機材料からなるフィラーを添加した複合材料でカソード側電解質膜部を形成してある請求項に記載の固体高分子型燃料電池。 7. The polymer electrolyte fuel cell according to claim 6 , wherein the cathode side electrolyte membrane part is formed of a composite material in which a filler made of an inorganic material is added to the solid polymer electrolyte component. 弾性率をカソード側電解質膜部からアノード側電解質膜部にかけて漸次大きくしてある請求項6又は7に記載の固体高分子型燃料電池。 8. The polymer electrolyte fuel cell according to claim 6, wherein the elastic modulus is gradually increased from the cathode side electrolyte membrane part to the anode side electrolyte membrane part.
JP2006221012A 2006-08-14 2006-08-14 Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell Expired - Fee Related JP5110348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221012A JP5110348B2 (en) 2006-08-14 2006-08-14 Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221012A JP5110348B2 (en) 2006-08-14 2006-08-14 Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell

Publications (2)

Publication Number Publication Date
JP2008047388A JP2008047388A (en) 2008-02-28
JP5110348B2 true JP5110348B2 (en) 2012-12-26

Family

ID=39180921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221012A Expired - Fee Related JP5110348B2 (en) 2006-08-14 2006-08-14 Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP5110348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565344B2 (en) 2009-07-02 2013-10-22 Panasonic Corporation Transmission circuit and communication device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304132B2 (en) * 2008-09-22 2013-10-02 凸版印刷株式会社 Manufacturing method of membrane electrode assembly
JP5475318B2 (en) * 2009-05-12 2014-04-16 学校法人大同学園 Polymer electrolyte fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498321B2 (en) * 1992-09-25 2004-02-16 田中貴金属工業株式会社 Polymer solid oxide fuel cell
JP3382654B2 (en) * 1993-02-03 2003-03-04 旭硝子株式会社 Solid polymer electrolyte fuel cell
JPH11176456A (en) * 1997-12-15 1999-07-02 Aisin Seiki Co Ltd Solid high polymer electrolyte fuel cell
JP4810726B2 (en) * 2000-10-17 2011-11-09 株式会社豊田中央研究所 Method for producing solid polymer electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565344B2 (en) 2009-07-02 2013-10-22 Panasonic Corporation Transmission circuit and communication device

Also Published As

Publication number Publication date
JP2008047388A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US6902839B2 (en) Polymer electrolyte membrane for fuel cell and method for producing the same
JP5362144B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
US8835076B2 (en) Electrolyte membrane and fuel cell using the same
CN107180986B (en) Membrane electrode assembly and fuel cell including the same
US20090209668A1 (en) Reinforced composite membrane for polymer electrolyte fuel cell
JP2011243314A (en) Film electrode structure for polymer electrolyte fuel cell
JP5110348B2 (en) Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell
KR102563567B1 (en) Polymer electrolyte membrane for fuel cell and manufacturing method thereof
US7115333B2 (en) High temperature composite proton exchange membranes
KR101342597B1 (en) Polymer electrolyte membrane for fuel cell, manufacturing method thereof, and fuel cell employing the same
KR101865941B1 (en) Sulfonated poly(phenylene sulfide sulfone nitrile) and Membrane for Fuel Cell Application using it
US20140093792A1 (en) Solid polymer electrolyte membrane and fuel cell using the same
KR20170069590A (en) Membrane electrode assembly and fuel cell comprising the same
JP2007165077A (en) Hydrocarbon system polymer electrolyte membrane for fuel cell
KR101912006B1 (en) Separator plate for a fuel cell and method for manufacturing same
JP2006059634A (en) Membrane electrode composite
KR102546869B1 (en) Method for manufacturing the membrane, the membrane, membrane-electorode assembly and the fuel cell comprising the same
JP5990448B2 (en) Fuel cell
Amin et al. An overview of chemical and mechanical stabilities of polymer electrolytes membrane
JP6747013B2 (en) Membrane electrode assembly and fuel cell
KR102136167B1 (en) Polymer Electrolyte Membrane Applicable to Low Humidity Conditions and a Manufacturing Method Thereof
WO2005020362A1 (en) Composite polymer electrolytes for proton exchange membrane fuel cells
JP2021182531A (en) Membrane electrode assembly for fuel battery cell
JP2014099412A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees