JP5110241B2 - Wave piezoelectric transducer - Google Patents

Wave piezoelectric transducer Download PDF

Info

Publication number
JP5110241B2
JP5110241B2 JP2005170071A JP2005170071A JP5110241B2 JP 5110241 B2 JP5110241 B2 JP 5110241B2 JP 2005170071 A JP2005170071 A JP 2005170071A JP 2005170071 A JP2005170071 A JP 2005170071A JP 5110241 B2 JP5110241 B2 JP 5110241B2
Authority
JP
Japan
Prior art keywords
piezoelectric
wave
flexible
complementary
piezoelectric transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005170071A
Other languages
Japanese (ja)
Other versions
JP2006315647A (en
Inventor
桂五郎 鴫山
剛一郎 長井
克幸 鳥谷
Original Assignee
桂五郎 鴫山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂五郎 鴫山 filed Critical 桂五郎 鴫山
Priority to JP2005170071A priority Critical patent/JP5110241B2/en
Publication of JP2006315647A publication Critical patent/JP2006315647A/en
Application granted granted Critical
Publication of JP5110241B2 publication Critical patent/JP5110241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、高分子材料で圧電特性を有する可撓性物質の応用の一環であり、これを薄板または膜面として用い、流体の移動や移動体の推進に適用する波動圧電変換装置に関する。The present invention relates to a wave piezoelectric transducer that is a part of application of a flexible material having a piezoelectric property as a polymer material, and that is used as a thin plate or a membrane surface, and that is applied to fluid movement or propulsion of a moving body.

従来のジェット機用エンジン、飛行機のプロペラ、ヘリコプターのローター等、また、船舶用のスクリューや水車、多種の風車や送風器等も殆どが回転式の変換器である。
古くからは櫓や櫂があり、一部には翼扇可動方式や吸入射出形のポンプ方式等がある。特例として海水専用の場合には、その導電性を利用した電磁誘導による推進方式がある。
Conventional jet engines, airplane propellers, helicopter rotors, marine screws, water turbines, various wind turbines, and blowers are almost all rotary converters.
Since ancient times, there have been spears and spears, some of which have wing fan movable systems and suction / injection pump systems. As a special case, in the case of exclusive use for seawater, there is a propulsion method using electromagnetic induction utilizing its conductivity.

従来のこれらの変換器においては、その殆どが動力源のエンジンやモータと、動力伝達のシャフトと、推進用のプロペラの羽根とは、必要不可欠のものとなっている。
高い高度での省資源飛行には当然軽量化が必要であり、その飛行機の、エンジン自体の重量や伝達機構、回転翼自体の重量等、いずれも軽量化が大きな問題である。
特開2004−276614 公報 (軽量移動体) 特開平 11−124095 : (高空滑空体) 「航空力学の基礎」産業図書発行 1987 牧野 光雄 著 「飛行力学」(第3版)養賢堂 発行 1993 前田 弘 著
In these conventional converters, most of them are a power source engine and motor, a power transmission shaft, and propeller blades for propulsion.
Naturally, weight saving is necessary for resource-saving flight at high altitudes, and weight reduction is a major problem for the weight of the aircraft itself, the transmission mechanism, the weight of the rotor blades, and so on.
JP, 2004-276614, A (Lightweight mobile body) Japanese Patent Laid-Open No. 11-124095: (High gliding body) "Basics of Aerodynamics" published by industrial books 1987 by Mitsuo Makino "Flying Mechanics" (3rd edition) Published by Yokendo 1993 Hiroshi Maeda

一方上記の[特許文献1]に開示された非常に高い高度用の空気より軽量のビークルは、液晶重合体繊維層の両側に配置されたPVDFの層を有し、軽量で大きな強度を有する。
このPVDF高分子誘電体膜面の製造方法や応用加工等については、次の背景技術がある。
特公昭 44−11656 公報 (PVDF製造方法) 特開昭 54−154383 : (PVDF電極蒸着) 特開昭 56−132533 : (PVDF折曲加工) 特願2005−145978 (同一出願人 関連要点出願) 「アドバンスト センサハンドブック」 高橋 清 共編 §6.4.4 圧電性高分子薄膜 (培風館発行 1994)佐々木昭夫‥ 「PVF▲2▼を用いた焦電型赤外線検出器」NTR Vol.26 No.3 1980 「PVDF Infrared detector and microphone for monitoring」(THE JOURNAL of the Acoustical Society of America)(ASA Vol.64,Suppliment No.1,s56. Fall 1978) 「焦電形赤外線検出器」(PbTiO▲3▼による検出)NTR Vol.18 No.2 1972
On the other hand, the vehicle, which is lighter than the air of very high altitude disclosed in the above [Patent Document 1], has PVDF layers disposed on both sides of the liquid crystal polymer fiber layer, and is lightweight and has high strength.
Regarding the manufacturing method and applied processing of the PVDF polymer dielectric film surface, there are the following background technologies.
Japanese Patent Publication No. 44-11656 (PVDF production method) JP-A-54-154383: (PVDF electrode deposition) JP-A-56-132533: (PVDF bending) Japanese Patent Application No. 2005-145978 (Application for relevant points of the same applicant) “Advanced Sensor Handbook” Kiyoshi Takahashi § 6.4.4 Piezoelectric polymer thin film (published by Bafukan 1994) Akio Sasaki… “Pyroelectric infrared detector using PVF 2”, NTR Vol. 26 No. 3 1980 “PVDF Infrared detector and microphone for monitoring” (THE JOURNAL of the Acoustic Society of America) (ASA Vol. 64, Supplement No. 1, s56. “Pyroelectric infrared detector” (detection by PbTiO 3) NTR Vol. No. 18 2 1972

現在の航空機の多くは、それ自体の推進用エンジン、プロペラ、それらを連結するためのシャフト、離着陸のみにしか用いない高速タイヤ、その飛行のための燃料等、これらを運ぶためにも大きなエネルギーを消費している。これらは、航空機共通の問題である。  Many of today's aircraft use a lot of energy to carry their own propulsion engines, propellers, shafts to connect them, high-speed tires that are only used for takeoff and landing, fuel for the flight, etc. Consuming. These are common problems for aircraft.

近年の地球規模での気象変化や災害の増加は大気汚染が大きな要因であり、温暖化ガス対策も国際的に懸命に行なわれている。この中で、成層圏における航空輸送の増加、CO排出量の増大も大きな問題である。これらの削減は大きな課題であり、急務である。Air pollution is a major factor in recent global changes in climate and disasters, and global warming countermeasures are also being carried out internationally. Among these, an increase in air transportation in the stratosphere and an increase in CO 2 emissions are also major problems. These reductions are major challenges and urgent matters.

本発明は従来のエンジンやモーター、伝達機構等の大部分を不要とするものであり、(1)圧電体の応用により、翼面自体を屈曲推進可能な[波動圧電面]とする。
(2)同応用で滑空体等に[波動圧電変換装置]を装着し、その推力で自力飛行をする。(3)翼面前縁に本発明の[波動圧電変換装置]を装着し、吹出し層流により揚力を得る。
(4)当該波動圧電変換装置以外の翼上面を太陽電池として[波動推進の動力源]とする。
他、所要の2次電池と電子回路を装着し[自己完結の飛行]を可能とするものである。
ここでは、先願「特許文献6」に記載の単一面の場合以外についての細部に関連する。
The present invention eliminates most of the conventional engine, motor, transmission mechanism, and the like. (1) By applying a piezoelectric body, the blade surface itself can be bent and propelled [wave piezoelectric surface].
(2) With the same application, attach a [ wave piezoelectric transducer ] to the glide body, etc., and fly by its own thrust. (3) The [wave piezoelectric transducer ] of the present invention is mounted on the front edge of the blade surface, and lift is obtained by blowing laminar flow.
(4) The blade upper surface other than the wave piezoelectric transducer is a solar cell, and is used as a [power source for wave propulsion].
In addition, a required secondary battery and electronic circuit are installed to enable [self-contained flight].
Here, it relates to details other than the case of the single surface described in the prior application “Patent Document 6”.

強誘電体の中にはチタン酸鉛等の焼結性で、圧電/焦電特性を有するものがあり、また、高分子誘電体の中にもPVDF等、同様の特性を有し、膜面加工の容易なものがある。
図2はPVDF (ポリフッカビニリデン)を用いた、音響/電気変換器の説明図である。図2(a)に示されたPVDF膜面1と、アーチ状のカーブを有する湾曲枠4の大きさは、1cmの有効面積を想定して作られた基本枠であり、厚さ20μmの膜の両面には、Ni−Crの薄膜電極を蒸着し、膜の前面は枠を介して筐体に取り付けられており、共通ア−スに接続され、膜の後面から信号を取り出す構造となっている。
スピーカとして使用する場合には、図2(b)の増幅器(Amp.)を逆向きに切り換え、PVDFの膜面を増幅器の出力により駆動する。
アーチカーブの半径が2cmの場合、共振周波数は約11kHzとなり、音圧に対する出力電圧は0.4×10−1V/hPaである。 入出力の音圧と電圧には可逆性がある。
前記[非特許文献5]に、音声入力に対する電気的出力の理論式、実際のマイクロホンとしての音圧感度20Hz〜20kHzにわたる周波数特性の実測データについての報告がある。
この共振点における感度は周波数に対して変動はするが、ピ−ク値における最高感度は

Figure 0005110241
が高い。この変換の際にも誘電体損失と電流損失は発生するが、大部分は音響出力と風損である。Some ferroelectrics have sinterability such as lead titanate and have piezoelectric / pyroelectric characteristics, and some polymer dielectrics have similar characteristics such as PVDF, and the film surface Some are easy to process.
FIG. 2 is an explanatory diagram of an acoustic / electrical converter using PVDF (polyfucavinylidene). The size of the PVDF membrane surface 1 shown in FIG. 2A and the curved frame 4 having an arch-shaped curve is a basic frame made assuming an effective area of 1 cm 2 and has a thickness of 20 μm. Ni-Cr thin film electrodes are vapor-deposited on both sides of the film, and the front side of the film is attached to the casing via a frame, connected to a common ground, and a signal is extracted from the back side of the film. ing.
When used as a speaker, the amplifier (Amp.) In FIG. 2B is switched in the reverse direction, and the PVDF film surface is driven by the output of the amplifier.
When the radius of the arch curve is 2 cm, the resonance frequency is about 11 kHz, and the output voltage with respect to the sound pressure is 0.4 × 10 −1 V / hPa. The input and output sound pressures and voltages are reversible.
In [Non-Patent Document 5], there is a report on a theoretical formula of an electrical output with respect to a voice input and actually measured data of frequency characteristics ranging from 20 Hz to 20 kHz in sound pressure sensitivity as an actual microphone.
The sensitivity at this resonance point varies with frequency, but the maximum sensitivity at the peak value is
Figure 0005110241
Is expensive. Even during this conversion, dielectric loss and current loss occur, but most are acoustic output and windage loss.

基本枠の大型化をはかることとして、この外形を相似的に100倍に拡大し、膜の面積を1m、アーチカーブの半径を2mとした場合、膜厚は2mmとなり、感度としての出力電圧は4V/hPaとなる。図3(a)は湾曲枠体4に張架された振動膜が上方に向っ て動いた際の上限、(b)は同振動膜が下方に向かって動いた際の下限の斜視図を示して いる
同図(c)は、その張架した横方向の中央部の振幅であ即ち図中、d:1m とし て示している横方向の中央部の、同図中のdを→(1.5m)とした場合の中央部各点で の振動状況を描いており、この場合の共振周波数は約110Hzとなる。この同図における記号→( )内の数字は、後述の実装算定の数字を示す。
この場合の音圧出力はPVDF1に加えた電圧による同膜面の伸縮によるもので、これに200Vの交流電圧を加えれば 50hPaの音圧出力が得られることとなる。
前述の通り、一般の音響変換器の変換効率は数%程度であるが、共振点近傍で変換すれば効率は向上し、この音圧の圧力差は大きい気流を発生させるものとして十分利用できる気圧差となる。ただし、音響出力も大きな騒音となるが後述のとおり相殺方式を利用した変換で、ほぼ完全な対処ができる。
In order to increase the size of the basic frame, if the outer shape is enlarged 100 times, the film area is 1 m 2 and the radius of the arch curve is 2 m, the film thickness is 2 mm, and the output voltage as sensitivity Is 4 V / hPa. FIG. 3A is a perspective view of the upper limit when the vibrating membrane stretched on the curved frame 4 is moved upward, and FIG. 3B is a perspective view of the lower limit when the vibrating membrane is moved downward. It is .
FIG (c) is Ru amplitude der the center of the horizontal direction and the stretching. That in Figure, d: the center of the horizontal direction are shown as 1 m, and depicts the vibration status of the central portion each point in the case of the the d in the drawing → (1.5 m), in this case The resonance frequency of is about 110 Hz. The numbers in the symbol → () in this figure indicate the numbers for mounting calculation described later.
The sound pressure output in this case is due to expansion and contraction of the film surface by the voltage applied to PVDF1, and if an AC voltage of 200V is applied thereto, a sound pressure output of 50 hPa can be obtained.
As described above, the conversion efficiency of a general acoustic transducer is about a few percent, but if converted near the resonance point, the efficiency is improved, and this pressure difference between the sound pressures can be used sufficiently to generate a large airflow. It makes a difference. However, although the sound output also becomes a loud noise, the conversion using the cancellation method can be dealt with almost completely as will be described later.

音圧→気流変換の手法として、この大型湾曲枠に張架した膜面をトンネル状に縦一列に並べ(図4(a))、膜面を順次収縮するよう多相交流電圧(図4(b)に示す6相)を加えれば圧電膜は同図(a)の(3)、(4)、(5)として描いているように収縮し、膜面の中央部は順次、同図(c)の様に上下する。それ故、この上下運動による絞りの移動する方向へ膜内の空気は移動し排出され、その対極側から新たな空気は吸入され、1連の流れとなる。
この吸入排出の移動速度は、膜面に加はる多相交流の走査速度と、それに対するトンネル状流路の形状寸法等から求められる流体抵抗により決まる。膜面を含むその理論式から見て、流路幅は極力広く、長さは、より短くする必要がある。
ここで湾曲枠4を取り外せば膜面1は張架のみとなる。図1(a)に示すように図示の 両側に「塀」状に延長する支持支柱4からなるダクト形状の側面支柱に、図示風洞9をつ くるように張架し、若干の張力を加えれば平面張架としての固有振動を持つ。これを図示 2(1)‥‥2(12)のように電極ごとに分割すれば、個々の素子は弦振動に近い固有振動を持つ。
As a method of sound pressure → air flow conversion, the membrane surfaces stretched on the large curved frame are arranged in a vertical line in a tunnel shape (FIG. 4A), and a multiphase AC voltage (FIG. 4 (FIG. 4 ( If the six phases shown in b) are added, the piezoelectric film contracts as depicted in (3), (4) and (5) of FIG. Move up and down as in c). Therefore, the air in the membrane is moved and discharged in the direction in which the diaphragm moves due to the up-and-down movement, and new air is sucked from the counter electrode side to form a continuous flow.
The moving speed of the suction and discharge is determined by the fluid resistance obtained from the scanning speed of the multiphase alternating current applied to the membrane surface and the shape dimension of the tunnel-like flow path with respect to the scanning speed. From the theoretical formula including the membrane surface, the flow path width is as wide as possible, and the length needs to be shorter.
Here, if the curved frame 4 is removed, the membrane surface 1 is only stretched. The side strut of the duct shape composed of support struts 4 to extend to form "walls" on both sides of the illustrated as shown in FIG. 1 (a), stretched to come illustrated wind tunnel 9 Wotsu, be added a slight tension It has natural vibration as a flat stretcher. If this is divided for each electrode as shown in FIG. 2 (1)... 2 (12) , each element has a natural vibration close to a string vibration.

流路拡大の方法としてはアーチ半径を3m、弦長を1.5mとすれば流路の断面積は2倍強。となる。流路長は、上記の圧電膜の中央の最も有効な部分の約1/4を残し、他3/4は全て枠ごと省略し、全長を約 1.5mになるよう短縮する。この流路膜内の圧力を若干高くして。上記同様の多相交流による駆動走査を行えば、膜面は図5(a)〜(d)のように波動状態となる。
この内圧状態、即ち風洞9内に内圧を加えた状態はパラグライダ−やバル−ンのように常に内面からの圧力が加わる場合で、実用面で多々あり、そのまま上記の波動走査が可能となる。
If the arch radius is 3 m and the chord length is 1.5 m, the cross-sectional area of the flow path is more than double. It becomes. The channel length is about 1/4 of the most effective portion at the center of the piezoelectric film, and all the other 3/4 are omitted together with the frame, and the total length is shortened to about 1.5 m. Increase the pressure in the channel membrane slightly. If drive scanning by the same multiphase alternating current as described above is performed, the film surface is in a wave state as shown in FIGS.
This internal pressure state, that is, the state in which the internal pressure is applied to the wind tunnel 9 is a case where pressure from the inner surface is constantly applied like a paraglider or balloon, and there are many practical aspects, and the above-described wave scanning can be performed as it is.

以下は、最大出力が得られる共振点近傍において、圧電面の伸縮を効率よく振幅運動に変換し、一連の振動子への振動の伝達を波動に変換し、その波動を2面の相補形、更には4面の協働動作形として流体の移動に変換し、出力の増大と効率を追求したものである。図1(a)〜(c)に代表例を、図2以降の説明図に続き、図11(a)〜(c)までに応用例を示す。In the following, near the resonance point where the maximum output can be obtained, the expansion and contraction of the piezoelectric surface is efficiently converted into amplitude motion, the transmission of vibration to a series of transducers is converted into waves, and the waves are complemented by two surfaces, Furthermore, it is converted into fluid movement as a four-sided cooperative operation type, pursuing increased output and efficiency . Representative examples are shown in FIGS. 1A to 1C, and application examples are shown in FIGS. 11A to 11C, following the explanatory diagrams of FIG .

本発明の波動圧電変換装置は、グライダ−やパラグライダ−の翼面に、そのまま翼面材として適用することができ、自力飛行を可能とする。
また、気球や飛行船等の内圧表面を当初から波動圧電面により構成し(または図1(b )に示すように表裏2面をもつ相補形波動推進器として構成して要所に装着し)駆動を行えば、能動的な操縦を行うことができる。
図1(c)に示すような相補協働形波動推進方式は、より強い推力を持っており、この装着により従来の軽飛行機やヘリコプタ−の役割を、また、スピ−ドを競わない航空輸送、農林漁業での上空からの監視役務、遊覧用の航空機用等として、騒音も少なく排ガスもなく、目的を遂行できる。
The wave piezoelectric transducer of the present invention can be directly applied as a wing surface material to a wing surface of a glider or paraglider, and enables self-flight.
Further, (attached to key points configured as or complementary wave thruster having front and rear two surfaces, as shown in FIG. 1 (b)) the internal pressure surface, such as balloons or airships initially constituted by wave piezoelectric surface from the drive If it performs, active maneuvering can be performed.
The complementary cooperative wave propulsion system as shown in FIG. 1 (c) has a stronger thrust, and by this installation, the role of a conventional light aircraft or helicopter, and air transportation that does not compete for speed. It can be used for monitoring services from the sky in agriculture, forestry and fisheries, for airplanes for sightseeing, etc., and with little noise and no exhaust gas.

波動圧電変換装置を、11図(b)のように横並びに併設し、順次拡張して航空機の翼上面を本装置の層流でカバ−するように装着することにより、その翼面の揚力は面積に比例して大きくなる。これは後述のように翼長を長くして翼面を広げるほど大きな揚力が得られ、太陽電池装着の余裕も増大し圧電面に可撓性の薄膜太陽電池を接着することもできる。
これに軽量の枠体機構と所要の2次電池、駆動用電子回路を搭載すれば、翼面荷重は比較的小さく、空気の希薄な高々度の飛行用としても容易に大型機を実現することができる。
図11(c)はこの波動圧電変換装置の応用例であり、高層偏西風の利用の場合問題となる「高空での無風の場合の問題]を克服することができ、高々度における長期滞空を実現することができる。
By installing the wave piezoelectric transducers side by side as shown in Fig. 11 (b) and expanding them in order to cover the upper surface of the aircraft wing with the laminar flow of this device , the lift of the wing surface is It increases in proportion to the area. As will be described later, the longer the blade length and the wider the blade surface, the larger the lift force is obtained. The margin for mounting the solar cell is increased, and the flexible thin-film solar cell can be bonded to the piezoelectric surface.
If this is equipped with a lightweight frame mechanism, the required secondary battery, and a driving electronic circuit, the wing surface load is relatively small, and it is possible to easily realize a large aircraft for high-level flight with lean air. it can.
FIG. 11C is an application example of this wave piezoelectric transducer, which can overcome the “problem in the case of no wind in the high sky”, which becomes a problem when using the high-rise westerly wind, and realizes long-term air suspension at high altitude. be able to.

これら構成上の大幅な簡略化と軽量化は、大型機での高々度の飛行を容易にするもので、南半球または北半球のジェット気流の有効利用が可能となる。この偏西風に乗る東廻りの特定ルートでは、現在の空輸に近い速さでの航空輸送を可能にする。
即ち、()地上と上空を往復する偏西風利用の昇降機、()偏西風を利用した上空での乗り換え用ホーム、()これと偏西風ル−ト上の要所を巡る波動圧電変換装置を装着した大型機、、この機構の構築ができる。
これらは、従来機のように燃料を消費することなく、大きな騒音を発することもなく、また、広い空港を要することもなく、大きな輸送の役割を果たすことが出来るであろう。
These significant simplifications and weight savings make it easier to fly at high altitudes, allowing effective use of the southern or northern hemisphere jet stream. This specific route around the east on the westerly wind enables air transport at a speed close to that of current air transport.
That is, ( a ) an elevator using a western wind that reciprocates between the ground and the sky, ( b ) a transfer platform using the western wind, and ( c ) a wave piezoelectric transducer that travels around the important points on the western wind route. This mechanism can be constructed, such as a large machine installed.
They will be able to play a major transportation role without consuming fuel, generating loud noises, and not requiring a large airport as in the conventional aircraft.

更に本装置の利用は、高層における風力や太陽エネルギーの開発利用の道を開くものであり、高空における太陽光発電や偏西風による風力発電の基地として、また通信や交通の監視、観測、展望観光等の基地として、新たな分野としての開拓が可能となる。
この高層偏西風による発電基地としての応用開発は、未着手の新たなエネルギーを生み出すものであり、常時晴天の高高度での太陽光発電は地上よりも遥かに効率がよく、日照の少ない冬期は偏西風の強い時期であり、風力発電の好期である。太陽光発電と風力発電の設備を搭載した当該機は、春夏秋冬を通して効率のよい発電が可能となる。
本波動圧電変換装置は、従来のエンジンおよびプロペラの一部に代わる軽量な推進変換装置を提供するものではあるが、その総合効果は、現在われわれが直面しているエネルギーの問題、大量輸送の問題、地球温暖化ガスの問題において、CO排出ガスの削減にも大きく貢献するものである。
Furthermore, the use of this device opens the way for the development and utilization of wind power and solar energy in high-rises, as a base for wind power generation by solar power generation and westerly winds in high skies, and for communications, traffic monitoring, observation, sightseeing, etc. As a base, new fields can be developed.
This high-rise westerly wind power generation base will generate new energy that has not yet been launched. Solar power generation at high altitudes that are always sunny is far more efficient than the ground, and in the winter when there is little sunshine, westerly winds This is a strong period for wind power generation. Equipped with solar power and wind power generation facilities, this machine will be able to generate power efficiently throughout the spring, summer and autumn.
Although this wave piezoelectric transducer provides a light-weight propulsion transducer that replaces some of the conventional engines and propellers, the overall effect is that we are facing energy problems and mass transport issues. In the problem of global warming gas, it greatly contributes to the reduction of CO 2 exhaust gas.

湾曲枠での張架に代わる方法としては、逆方向からの圧電面の湾曲懸架が考えられる。図6(a)は、電極を12個とした場合の圧電面で、この2面を並行に張架したものである。
これらの圧電面を相互に吊り天井のように懸架すれば、これらは図6(b)の圧電面1−1および1−2のように互いに背反する1対の湾曲面となる。この並行張架と相互懸架のために補助ネットを用いる。当該補助ネットとしては上下に配置した2枚の電極面に間 隔を与える相互懸架用の懸架線7、および電極横断の連携運動を円滑にするための数本の連携線8を設け(左右から張架した補助ネット3を横断する連携線8として)懸架線7を両面が僅かに湾曲するよう、双方背反の弧状に懸架する。
ここで、第1の圧電面1−1と第2の圧電面1−2とは、分極の極性を逆にしておく。これにより第1の圧電面が伸長するときは第2の圧電面が収縮し、逆に、第1の圧電面が収縮すれば第2の圧電面は伸長する。図6(c)(d)(e)は、その背反運動の動作状態を示す。
夫々の圧電面上での12個の各電極に、順次各電極の位置に対応する多相交流、即ち、位相差30°の12相交流電圧が加えられた場合、第1の圧電面、第2の圧電面の各素子は、その交流電圧の位相に沿った運動を繰り返し、各素子は位相差30°づつずれた背反運動を行う一連の振動子群となる。これら一連の、相互連携した繰り返し運動が、波動推進運動の基本動作である。
この背反運動は相補形の協働動作であり、協働動作での音圧出力は双方の和となる。
As a method of replacing the tension with the curved frame, a curved suspension of the piezoelectric surface from the opposite direction can be considered. FIG. 6A shows a piezoelectric surface with 12 electrodes, and these two surfaces are stretched in parallel.
If these piezoelectric surfaces are suspended like a suspended ceiling, they become a pair of curved surfaces opposite to each other like the piezoelectric surfaces 1-1 and 1-2 in FIG. 6B. An auxiliary net is used for this parallel stretch and mutual suspension . From several of the linkage line 8 provided (right and left to facilitate cooperation movement of the suspension wire 7, and the electrode cross a cross-suspension to give intervals in two electrode surfaces arranged vertically as the auxiliary net The suspension line 7 is suspended in a reverse arc shape so that both sides are slightly curved ( as a linkage line 8 traversing the stretched auxiliary net 3).
Here, the polarities of the polarization of the first piezoelectric surface 1-1 and the second piezoelectric surface 1-2 are reversed. As a result, when the first piezoelectric surface expands, the second piezoelectric surface contracts. Conversely, when the first piezoelectric surface contracts, the second piezoelectric surface expands. FIGS. 6C, 6D, and 6E show the operating state of the contradictory motion.
When 12-phase AC voltage corresponding to the position of each electrode is sequentially applied to each of the 12 electrodes on each piezoelectric surface, that is, a 12-phase AC voltage having a phase difference of 30 °, the first piezoelectric surface, Each element on the piezoelectric surface 2 repeats the movement along the phase of the AC voltage, and each element forms a series of vibrators that perform a reverse movement with a phase difference of 30 °. A series of these reciprocal motions that are linked together is the basic motion of the wave propulsion motion.
This anti-reverse movement is a complementary cooperative action, and the sound pressure output in the cooperative action is the sum of both.

ここでは多相交流により個々の電極を駆動するため、圧電面と直角方向への音圧出力は、位相差180°の対極の出力が必ず何れかにあり、この偶数分割の対極の出力により、全ての音響出力が何れかの対極の出力により必ず消去される。
即ち、この偶数個360°等分位相差は全音響出力の相殺消去方式そのものであり、流路の前後方向には走査速度と音速の差により生ずるドプラ−音が若干残るが、これは各対極で消去した消去位相のずれによるものである。 これと同時に移相に伴う振幅の移動方向への気流が発生する。
この振幅移動に伴う気流、即ち、気体の移動→運動量へのエネルギ−変換がここで行われる。

Figure 0005110241
順次に仕切り、準閉鎖の状態を走査で移動させ、一方向への送出工程の流れとしているからであり、指向性の少ない低周波においては、振幅利用の仕切り挿入形式で気体の振動を一方向への気体の移動として方向付けができ、気流に変換することが出来るからである。
これにより電気的入力は、殆ど誘電体損失と銅損以外は音響的出力または空気の移動に変換されるが、その音響出力も殆ど気流に変換され、消音された連続流となる。Here, since the individual electrodes are driven by polyphase alternating current, the sound pressure output in the direction perpendicular to the piezoelectric surface is always one of the counter electrode outputs having a phase difference of 180 °. All acoustic outputs are always canceled by the output of either counter electrode.
That is, this even-numbered 360 ° equally phase difference is the cancellation cancellation method of all acoustic outputs itself, and some Doppler sound generated by the difference between the scanning speed and the sound speed remains in the front-rear direction of the flow path. This is due to a shift in the erase phase erased in step (b). At the same time, an air flow is generated in the moving direction of the amplitude accompanying the phase shift.
The energy conversion from the air flow accompanying the amplitude movement, that is, the movement of the gas to the momentum is performed here.
Figure 0005110241
This is because partitioning is performed sequentially, and the quasi-closed state is moved by scanning, and the flow of the sending process in one direction is used. At low frequencies with little directivity, the vibration of the gas is unidirectional in the partition insertion type using amplitude. This is because it can be directed as the movement of the gas to and converted into an air current.
As a result, the electrical input is converted into an acoustic output or air movement except for the dielectric loss and copper loss, but the acoustic output is also almost converted into an air flow, resulting in a silenced continuous flow .

この場合の圧電面の素子の伸縮は個々の電極で異なり、個々の弦振動としての自由度を持たせて設定する必要がある。そのため電極ごとに若干の仕切りを設ける等、周波数調整の必要に応じて個々の素子の伸縮に自由度を持たせ、かつ、連携線により波動の伝達を助長する。
この場合、単一の弦振動としての当該弦振動の基本振動数fは、次の式で表すことがで きる

Figure 0005110241
In this case, the expansion and contraction of the element on the piezoelectric surface is different for each electrode, and needs to be set with a degree of freedom as individual string vibration. Therefore, a certain degree of partitioning is provided for each electrode, for example, the degree of freedom of expansion and contraction of individual elements is given as necessary for frequency adjustment, and the transmission of waves is facilitated by the cooperation line.
In this case, fundamental frequency f of the string vibration of a single string vibrations as possible out by the following expression.
Figure 0005110241

実用段階では波動をより滑らかにする必要があり、電源を48相、振動子も48個‥と、より多くする方が好ましい。これにより隣接素子間での電位差も少なくなる。一方、振動子の素子幅はその場合3cmと狭くなり、より弦振動に近い振動となる。
共振点は相互懸架により高域側に移行するが、9点で懸架し10区間に分割された場合、各部の共振周波数fは10倍となり、張力の変化により次のように移行する。

Figure 0005110241
上記、[数1]での張力は広幅での値であり、[表1]の値は3cm幅での張力である。
張力の調整は別途仕様の圧電素子で行ない、これも電圧駆動による調整が可能である。
ここで駆動電圧の周波数は発信器の走査速度の切り替え(調整)により任意に調整することができ、最大振幅は振幅制限回路により常に一定値を越えないよう規定しておく
これにより圧電面の振動数と駆動電圧の振動(周波)数を共振状態にすることになる。また、張架用の機構には伸縮自在の菱形枠体を用い、この伸縮を圧電体により制御する。上記の懸架分割しての張力範囲は、この制御に無理のない張力範囲で、翼面に必要な流速が得られる制御が可能なことを示している。これにより駆動電圧と振幅の位相を、帰還方式で自動調整を行うことができる。 In the practical stage, it is necessary to make the waves smoother, and it is preferable to increase the number of power sources to 48 phases and 48 vibrators. This also reduces the potential difference between adjacent elements. On the other hand, the element width of the vibrator is as narrow as 3 cm in that case, and the vibration becomes closer to the string vibration.
The resonance point shifts to the high frequency side by mutual suspension, but when suspended at 9 points and divided into 10 sections, the resonance frequency f of each part becomes 10 times, and shifts as follows due to the change in tension.
Figure 0005110241
The tension in [Equation 1] is a value in a wide range, and the value in [Table 1] is a tension in a width of 3 cm.
The tension is adjusted by a piezoelectric element with a separate specification, which can also be adjusted by voltage drive.
Here, the frequency of the drive voltage can be arbitrarily adjusted by switching (adjusting) the scanning speed of the transmitter, and the maximum amplitude is defined so as not to always exceed a certain value by the amplitude limiting circuit.
Thereby, the vibration frequency of the piezoelectric surface and the vibration (frequency) of the drive voltage are brought into a resonance state. Further, a stretchable rhombus frame is used for the tension mechanism, and this expansion and contraction is controlled by a piezoelectric body. The tension range obtained by dividing the suspension described above indicates that the control can be performed so that the flow velocity necessary for the blade surface can be obtained within the tension range that is not unreasonable for this control. As a result, the drive voltage and the phase of the amplitude can be automatically adjusted by a feedback method.

上記の相補圧電面を図7(a)のように2組、波動振動面を面対称に向かい合わせて配設し、双方の協働により流体移動をより定量的に工程化するのが、相補重畳方式であり、面対称に協働動作をすることにより出力は倍増し、より定量的に工程化された流量を送出する。
図7(b)に、相補重畳/対称駆動での静止状態、(c)に全開状態、(d)に閉止状態を示す。
これは相補形の協働動作であり、所謂、コンプレメンタリプッシュプル方式の、ダブルプッシュプルである。この方式では、当初のシングル単一面張架方式に比べて、約4倍の出力を得ることができる。
その側面から見た場合の相対する圧電面1−2と1−3の波動の一部(斜視図)を図8(a)に、また、この中央部の径時変化を、同図 (b)(c)(d)に示す。この中央部は、より定量的な流れとなる。
As shown in FIG. 7 (a), two sets of the above-mentioned complementary piezoelectric surfaces are arranged so that the wave vibration surfaces face each other in plane symmetry, and the fluid movement is more quantitatively processed by the cooperation of both. This is a superposition method, and the output is doubled by performing a collaborative operation symmetrically with the plane, and the flow rate is processed more quantitatively.
FIG. 7B shows a stationary state with complementary superimposition / symmetric driving, FIG. 7C shows a fully open state, and FIG. 7D shows a closed state.
This is a complementary cooperative operation, which is a so-called complementary push-pull type double push-pull. In this method, an output that is about four times that of the original single-plane stretch method can be obtained.
A part (perspective view) of the waves of the piezoelectric surfaces 1-2 and 1-3 facing each other when viewed from the side surface is shown in FIG. 8A, and the change with time in the diameter of the central portion is shown in FIG. ) (C) (d) This central part is a more quantitative flow.

この波動圧電変換装置を横一列に並べ、飛翔体の翼の前縁に搭載し、所定の6n相の交流電圧で駆動した場合、翼面にはその交流の角速度に応じた翼を覆う層流が発生する。この層流が効果的に翼面に作用すれば、翼面体は静止したままで揚力を得ることができる。
実際の翼面に対する効果は、これに対する翼形に大きく左右される。一例として、翼面に働く揚力計算の場合、揚力L は次の式で求められる。

Figure 0005110241
翼面上の実効流速(相対速度;v)が離陸速度(揚力>機体重量となる速度)
を越えれば、翼面体は滑走路を要せず離陸することができる。
この場合、圧電面の表と裏は相補対称形であり、単一面の動作では表と裏の流速は等しくなるが、周囲の状況で表裏の流速が異なれば、その差に応じた前述の[揚力同等の力]が働くため、表と裏の流速による圧力差を少なくするための構造上の配慮が必要である。
図9で、(a)は単1面、(b)は相補形、(c)は相補協働形に対応した機構で、膜面の張力調整と対称な流路、空電防護等を考慮したカバ−を備え、立体的拡張配設が容易である。 When the wave piezoelectric transducers are arranged in a horizontal row and mounted on the leading edge of a flying wing and driven by a predetermined 6n-phase AC voltage, a laminar flow covering the wing according to the AC angular velocity is applied to the wing surface. Will occur. If this laminar flow effectively acts on the blade surface, it is possible to obtain lift while the blade surface remains stationary.
The effect on the actual wing surface depends greatly on the airfoil shape. As an example, in the case of calculating the lift acting on the blade surface, the lift L is obtained by the following equation.
Figure 0005110241
Effective flow velocity (relative speed; v) on the wing surface is the take-off speed (speed where lift> aircraft weight)
The wings can take off without requiring a runway.
In this case, the front and back surfaces of the piezoelectric surface are complementary and symmetrical, and the flow velocity on the front and back surfaces is equal in single-surface operation. However, if the flow velocity on the front and back surfaces is different in the surrounding conditions, the above-mentioned [ Therefore, structural considerations are necessary to reduce the pressure difference between the front and back flow velocities.
In FIG. 9, (a) is a single surface, (b) is a complementary type, and (c) is a mechanism corresponding to a complementary cooperative type, taking into account the tension adjustment of the membrane surface, a symmetrical flow path, aeroelectric protection, etc. A three-dimensional expansion arrangement is easy.

補助ネットの役割は膜面の張架、相互懸架、共振点の調整とその点における出力の増大に寄与しているが、製造上に若干の工数を要し、コスト高になる可能性がある。とくに高速駆動を要しない場合は、補助ネットを、1点接着、3点接着、5点のハネカム状、等と用途に適した張架方法が考えられ、単なる接着の方が製作も容易である。
図10にその3例を示す。
The role of the auxiliary net contributes to the tensioning of the membrane surface, mutual suspension, adjustment of the resonance point, and increase of output at that point, but it requires some man-hours in manufacturing and may increase the cost. . Especially when high-speed driving is not required, a tensioning method suitable for the application such as one-point bonding, three-point bonding, five-point honeycomb, etc. can be considered, and simple bonding is easier to manufacture. .
FIG. 10 shows three examples.

図11はその応用例であり、(a)は単1面のパラググライダ−と同様であるが、自力飛行が可能である。(b)は推力倍増の相補形圧電面を並列に用いた例でこれも懸架式の操縦である。(c)は、主翼、尾翼に相補協働形の本装置を装着し、コアンダ効果での離着陸を可能とするものである。
これらの例は、駆動電極と軸方向、積層と接着、形状と表面処理等の基本形であり、これに電源と駆動回路を搭載すれば、翼面単体だけでの推進飛行ができ、翼長を長くすればそれに応じた太陽電池の装着ができる。翼面受光のエネルギ−による自己駆動、自己完結の航空機とすることができる。
FIG. 11 is an application example thereof, and FIG. 11A is similar to a single-sided paraglider, but can fly by itself. (B) is an example in which complementary piezoelectric surfaces of doubled thrust are used in parallel, and this is also a suspension type maneuver. In (c), the main wing and tail wing are equipped with this complementary and cooperating type device to enable take-off and landing by the Coanda effect.
These examples are basic shapes such as drive electrode and axial direction, stacking and bonding, shape and surface treatment, etc. If a power supply and drive circuit are mounted on this, propulsion flight can be performed with only the blade surface, and the wing length can be increased. If it is longer, the solar cell can be installed accordingly. A self-driving and self-contained aircraft using the energy received by the wing surface can be obtained.

本発明に対応する波動圧電変換装置についての、3例の斜視図 図1(a)波動圧電変換装置 (b) 同、相補形 (c) 同、相補協働形FIG. 1A is a perspective view of a wave piezoelectric transducer corresponding to the present invention. FIG. 1A is a complementary diagram of a wave piezoelectric transducer . FIG. PVDF(ポリフカビニリデン)圧電膜を用いた音響/電気変換の原理 図2(a) 変換素子外形図 (b) 変換回路図 (c) 等価回路図Principle of acoustic / electrical conversion using PVDF (Polyfucavinylidene) piezoelectric film Fig. 2 (a) External dimensions of conversion element (b) Conversion circuit diagram (c) Equivalent circuit diagram PVDF圧電面 図3(a) 圧電面の外形 (b) 同、最大信号時 (c) 振幅時の変化PVDF piezoelectric surface Fig. 3 (a) External shape of piezoelectric surface (b) Same as above, at maximum signal (c) Change at amplitude 圧電面の駆動による順次変動絞りと、音圧→気流変換の説明図 図4(a) トンネル状風洞 (b) 6相交流駆動電圧 (c) 膜面中央部の変動Fig. 4 (a) Tunnel-like wind tunnel (b) Six-phase AC drive voltage (c) Fluctuation at the center of the film surface 同圧電面を一面化して内圧を与え、6相交流による駆動をした場合 図5(a)〜(d) 駆動電圧(1)〜(6)の変化による膜面の変動When the piezoelectric surface is unified to give an internal pressure and driven by six-phase alternating current FIG. 5 (a) to (d) Changes in the film surface due to changes in the driving voltages (1) to (6) 圧電面の収縮を低周波振動に変換する形態(相補懸架駆動方式) 図6(a) 2面の圧電面の並行張架 (b) 同2面を相互に懸架し湾曲化 同図(c) 上面が収縮した場合 (d) 中間点 (e) 下面収縮の場合Form that converts contraction of piezoelectric surface into low frequency vibration (complementary suspension drive system) Fig. 6 (a) Parallel stretch of two piezoelectric surfaces (b) Curved by suspending the two surfaces to each other Fig. 6 (c) When the upper surface contracts (d) Intermediate point (e) When the lower surface contracts 相補駆動形を重畳した協働動作形 (a)1部分を斜視図としての説明図 同図(b) 初期状態、無信号時 (c) 中央風洞部最大 (d) 中央部最小Collaborative operation with superimposed complementary drive type (a) Explanatory drawing of part 1 as a perspective view (b) Initial state, no signal (c) Central wind tunnel maximum (d) Central minimum 側面から見た圧電面の動作 (a)内部の圧電面1−2,1−3 の動作斜視図 同図 (b)は順次吸入、(c)閉鎖、(d)放出の移動を → 印で示す。Operation of the piezoelectric surface as viewed from the side (a) Operational perspective view of the internal piezoelectric surfaces 1-2, 1-3 The same figure (b) shows the movement of inhalation, (c) closing, (d) release by → sign Show. 菱形構造によるカバ−兼、共振周波数制御機構の斜視図 図9(a)防護カバ−兼伸縮機構単一面 (b)同相補形 (c)相補協働形Cover / resonance frequency control mechanism perspective view with rhombus structure FIG. 9 (a) Protective cover / extension mechanism single surface (b) Complementary form (c) Complementary cooperative form 相補協働形圧電面の簡易化(低速用は懸架線を省略し、接着する) 図10(a) 1点接着の場合 (b) 3点接着 (c) 5点接着Simplification of complementary cooperating piezoelectric surface (for low speeds, the suspension line is omitted and bonding is performed) Fig. 10 (a) In case of one point bonding (b) Three point bonding (c) Five point bonding 波動圧電変換装置の移動体への応用、3例の斜視図 図11(a) ハンググライダー形式、(b) 並列多重使用使用の翼面体 (c) 航空機翼面に取り付けた場合の1例、斜視図Application of wave piezoelectric transducer to moving body, perspective view of three examples Fig. 11 (a) Hang glider type, (b) Wing plane body using parallel multiple use (c) One example when mounted on aircraft wing surface, perspective view Figure

1 可撓圧電膜/面
2 圧電面の電極
3 補助ネット
4 支柱、支持枠
5 接続配線
6 信号電源
7 懸架線
8 連携線
9 風洞、流路
10 カバ−
11 単一圧電面波動圧電変換装置
12 相補方式波動圧電変換装置
13 相補協働方式波動圧電変換装置
DESCRIPTION OF SYMBOLS 1 Flexible piezoelectric film / surface 2 Electrode of piezoelectric surface 3 Auxiliary net 4 Support | pillar, support frame 5 Connection wiring 6 Signal power supply 7 Suspension line 8 Coupling line 9 Wind tunnel, flow path 10 Cover
11 Single piezoelectric surface wave piezoelectric transducer 12 Complementary wave piezoelectric transducer 13 Complementary cooperative wave piezoelectric transducer

Claims (3)

可撓性のある圧電体の板面または同膜面の表裏に6個またはそれ以上の偶数個(6n個)の長方形の電極対を、圧電歪みが最も大きく現れる軸方向に沿って並列に設け、これらの電極に対応する6n相の多相交流電圧を位相順に各電極に加え、その圧電面の個々の電極部を圧電効果により個々に伸縮駆動することにより波動運動を行う可撓性圧電面を、2面そなえ、当該可撓性圧電面が対面するよう並行に配置し、夫々の可撓性圧電面の前記電極対の軸方向の中央部分が、互いに接触するように接合し、夫々の可撓性圧電面の一方側が伸張されるときに他方側が収縮されるよう前記多相交流電圧を印加した
ことを特徴とする波動圧電変換装置。
6 or more even number (6n) rectangular electrode pairs are provided in parallel along the axial direction in which the piezoelectric distortion is greatest, on the front and back surfaces of the flexible piezoelectric plate or film. A flexible piezoelectric surface that performs wave motion by applying a 6n-phase multi-phase AC voltage corresponding to these electrodes to each electrode in order of phase, and individually extending and contracting each electrode portion of the piezoelectric surface by a piezoelectric effect Are arranged in parallel so that the flexible piezoelectric surfaces face each other, and the axial central portions of the electrode pairs of the respective flexible piezoelectric surfaces are joined so that they are in contact with each other. The wave piezoelectric transducer characterized in that the multiphase AC voltage is applied so that when one side of the flexible piezoelectric surface is expanded, the other side contracts.
請求項1記載の波動圧電変換装置を相補形波動圧電変換装置と称してそなえ、
当該相補形波動圧電変換装置を、前記可撓性圧電面が互いに対面するように、少なくとも2セットを配置し、相補協働形波動圧電変換装置とした
ことを特徴とする請求項1記載の波動圧電変換装置。
The wave piezoelectric transducer according to claim 1 is referred to as a complementary wave piezoelectric transducer,
2. The wave according to claim 1, wherein at least two sets of the complementary wave piezoelectric transducers are arranged so that the flexible piezoelectric surfaces face each other to form complementary cooperative wave piezoelectric transducers. Piezoelectric transducer.
請求項1記載または請求項2記載の波動圧電変換装置が有する個々の可撓性圧電面に対して、当該個々の可撓性圧電面に加える張力を調節可能に支持し、
個々の可撓性圧電面に加える前記多相交流電圧の周波数と、個々の可撓性圧電面の振動周波数とが共振状態にされてなる
ことを特徴とする請求項1または請求項2記載の波動圧電変換装置。
Supporting each of the flexible piezoelectric surfaces of the wave piezoelectric transducer of claim 1 or claim 2 to adjust the tension applied to each of the flexible piezoelectric surfaces,
The frequency of the multiphase AC voltage applied to each flexible piezoelectric surface and the vibration frequency of each flexible piezoelectric surface are made to be in a resonance state. Wave piezoelectric transducer.
JP2005170071A 2005-05-16 2005-05-16 Wave piezoelectric transducer Expired - Fee Related JP5110241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170071A JP5110241B2 (en) 2005-05-16 2005-05-16 Wave piezoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170071A JP5110241B2 (en) 2005-05-16 2005-05-16 Wave piezoelectric transducer

Publications (2)

Publication Number Publication Date
JP2006315647A JP2006315647A (en) 2006-11-24
JP5110241B2 true JP5110241B2 (en) 2012-12-26

Family

ID=37536687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170071A Expired - Fee Related JP5110241B2 (en) 2005-05-16 2005-05-16 Wave piezoelectric transducer

Country Status (1)

Country Link
JP (1) JP5110241B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
EP3363731B1 (en) 2015-09-02 2021-06-30 Jetoptera, Inc. Ejector and airfoil configurations
CN111727312B (en) 2017-06-27 2023-07-14 杰拓普特拉股份有限公司 Configuration of a vertical take-off and landing system for an aircraft
CN112319840B (en) * 2020-11-04 2023-09-22 北京摩弈信息科技有限公司 Solar unmanned aerial vehicle battery laying method, device and equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569553B2 (en) * 1994-11-16 2004-09-22 財団法人神奈川科学技術アカデミー Method and apparatus for separating powder
JP2829575B2 (en) * 1995-09-12 1998-11-25 勝次 沖野 Boundary layer separation suppression device for moving objects

Also Published As

Publication number Publication date
JP2006315647A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
US8286909B2 (en) Boundary layer propulsion airship with related system and method
Pornsin-Sirirak et al. Microbat: A palm-sized electrically powered ornithopter
JP5110241B2 (en) Wave piezoelectric transducer
Pornsin-Sirirak et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application
US6471477B2 (en) Jet actuators for aerodynamic surfaces
US6109566A (en) Vibration-driven acoustic jet controlling boundary layer separation
Bilgen et al. Macro-fiber composite actuators for a swept wing unmanned aircraft
US6543719B1 (en) Oscillating air jets for implementing blade variable twist, enhancing engine and blade efficiency, and reducing drag, vibration, download and ir signature
CN105905297A (en) Bionic self-adaptive flapping-wing aircraft
US6845942B2 (en) Omni-directional air vehicle personal transportation system
CN106081103B (en) A kind of micro flapping wing air vehicle based on Lorentz force driving
McVeigh et al. Full-scale flight tests of active flow control to reduce tiltrotor aircraft download
JP2006300040A (en) Wave motion piezoelectric plane/wave motion propeller/wave motion propelling mover
Olivett et al. Flow control and separation delay in morphing wing aircraft using traveling wave actuation
CN105217031A (en) A kind of micro air vehicle with flapping-wing based on fans drive
CN103482065B (en) A kind of micro flapping wing air vehicle based on electrostatic self-excited driving principle
CN106351799B (en) A kind of horizontal axis wind-driven generator
CN102107730B (en) Dynamic controller of hinge-free aircraft
US5484257A (en) Wind energy device
AU2015345982B2 (en) An improved airship
Bilgen et al. Novel, bi-directional, variable camber airfoil via macro-fiber composite actuators
Noda et al. Development of Microstructured Low Noise Propeller for Aerial Acoustic Surveillance
Lu et al. An experimental investigation on the acoustic performance of a flapping wing Mirco-Air-Vehicle
Kovalev ‘Butterfly acoustical skin’–new method of reducing aero acoustical noise for a quiet propeller
KR20050061636A (en) Wing apparatus for micro aerial vehicle with elastic wing part

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110701

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20181019

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees