JP5110139B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5110139B2
JP5110139B2 JP2010218185A JP2010218185A JP5110139B2 JP 5110139 B2 JP5110139 B2 JP 5110139B2 JP 2010218185 A JP2010218185 A JP 2010218185A JP 2010218185 A JP2010218185 A JP 2010218185A JP 5110139 B2 JP5110139 B2 JP 5110139B2
Authority
JP
Japan
Prior art keywords
heat storage
storage tank
compressor
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010218185A
Other languages
Japanese (ja)
Other versions
JP2012072960A (en
Inventor
幸隆 三柳
広治 栗須谷
順市 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010218185A priority Critical patent/JP5110139B2/en
Publication of JP2012072960A publication Critical patent/JP2012072960A/en
Application granted granted Critical
Publication of JP5110139B2 publication Critical patent/JP5110139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽と、蓄熱材と熱交換を行う蓄熱熱交換器とを備えた空気調和機に関する。   The present invention relates to an air conditioner including a heat storage tank that stores a heat storage material that stores heat generated by a compressor, and a heat storage heat exchanger that exchanges heat with the heat storage material.

従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   Conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   Accordingly, a heat storage device is provided in the compressor provided in the outdoor unit, and the one that is defrosted using the waste heat of the compressor stored in the heat storage tank during the heating operation has been proposed (for example, Patent Document 1).

図16は、このような除霜方式を採用した冷凍サイクル装置の一例を示しており、室外機に設けられた圧縮機100と四方弁102と室外熱交換器104とキャピラリチューブ106と、室内機に設けられた室内熱交換器108とを冷媒配管で接続するとともに、キャピラリチューブ106をバイパスする第1バイパス回路110と、圧縮機100の吐出側から四方弁102を介して室内熱交換器108へ至る配管に一端を接続し他端をキャピラリチューブ106から室外熱交換器104へ至る配管に接続した第2バイパス回路112が設けられている。また、第1バイパス回路110には、二方弁114と逆止弁116と蓄熱熱交換器118が設けられ、第2バイパス回路112には、二方弁120と逆止弁122が設けられている。   FIG. 16 shows an example of a refrigeration cycle apparatus that employs such a defrosting method. The compressor 100, the four-way valve 102, the outdoor heat exchanger 104, the capillary tube 106, and the indoor unit provided in the outdoor unit. Is connected to the indoor heat exchanger 108 provided by the refrigerant pipe, the first bypass circuit 110 for bypassing the capillary tube 106, and the discharge side of the compressor 100 to the indoor heat exchanger 108 via the four-way valve 102. A second bypass circuit 112 is provided in which one end is connected to the connecting pipe and the other end is connected to the pipe extending from the capillary tube 106 to the outdoor heat exchanger 104. The first bypass circuit 110 is provided with a two-way valve 114, a check valve 116, and a heat storage heat exchanger 118, and the second bypass circuit 112 is provided with a two-way valve 120 and a check valve 122. Yes.

さらに、圧縮機100の周囲には蓄熱槽124が設けられており、蓄熱槽124の内部には、蓄熱熱交換器118と熱交換するための蓄熱材126が充填されている。この蓄熱槽124は、圧縮機100の外周面を覆うような形状に構成されている。   Further, a heat storage tank 124 is provided around the compressor 100, and the heat storage tank 124 is filled with a heat storage material 126 for exchanging heat with the heat storage heat exchanger 118. The heat storage tank 124 is configured to cover the outer peripheral surface of the compressor 100.

この冷凍サイクルにおいて、除霜運転時には、二つの二方弁114,120が開かれ、圧縮機100から吐出された冷媒の一部は第2バイパス回路112へと流れ、残りの冷媒は四方弁102と室内熱交換器108へと流れる。また、室内熱交換器108を流れた冷媒は暖房に利用された後、わずかの冷媒がキャピラリチューブ106を通って室外熱交換器104へと流れる一方、残りの大部分の冷媒は第1バイパス回路110へ流入し、二方弁114を通って蓄熱熱交換器118へと流れて蓄熱材126より熱を奪い、逆止弁116を通った後、キャピラリチューブ106を通過した冷媒と合流して室外熱交換器104へと流れる。その後、室外熱交換器104の入口で第2バイパス回路112を流れてきた冷媒と合流し、冷媒が持つ熱を利用して除霜を行い、さらに四方弁102を通過した後、圧縮機100に吸入される。   In this refrigeration cycle, during the defrosting operation, the two two-way valves 114 and 120 are opened, a part of the refrigerant discharged from the compressor 100 flows to the second bypass circuit 112, and the remaining refrigerant is the four-way valve 102. And flows to the indoor heat exchanger 108. In addition, after the refrigerant flowing through the indoor heat exchanger 108 is used for heating, a small amount of refrigerant flows to the outdoor heat exchanger 104 through the capillary tube 106, while the remaining most of the refrigerant passes through the first bypass circuit. 110 flows into the heat storage heat exchanger 118 through the two-way valve 114, takes heat from the heat storage material 126, passes through the check valve 116, and then merges with the refrigerant that has passed through the capillary tube 106 to the outdoor. It flows to the heat exchanger 104. After that, it merges with the refrigerant flowing through the second bypass circuit 112 at the inlet of the outdoor heat exchanger 104, performs defrosting using the heat of the refrigerant, passes through the four-way valve 102, and then enters the compressor 100. Inhaled.

この冷凍サイクル装置においては、第2バイパス回路112を設けることで、除霜時に圧縮機100から吐出されたホットガスを室外熱交換器104に導くとともに、室外熱交換器104に流入する冷媒の圧力を高く保つことができるので、除霜能力を高めることができ、極めて短時間に除霜を完了することができる。   In this refrigeration cycle apparatus, by providing the second bypass circuit 112, the hot gas discharged from the compressor 100 during defrosting is guided to the outdoor heat exchanger 104 and the pressure of the refrigerant flowing into the outdoor heat exchanger 104 Therefore, the defrosting ability can be increased, and the defrosting can be completed in a very short time.

特開平3−31666号公報JP-A-3-31666

しかしながら、特許文献1に記載する空気調和機は、蓄熱槽124および第1バイパス回路110、第2バイパス回路112などを有する複雑な冷凍サイクルが必要となるため構成部品が増え、圧縮機室を構成する仕切板や配管等部品間の隙間が狭くなり輸送時などに圧縮機100および蓄熱槽124が移動して部品相互の当たりが発生し、蓄熱槽124が破損してしまう可能性があるという課題を有していた。   However, the air conditioner described in Patent Document 1 requires a complicated refrigeration cycle including the heat storage tank 124, the first bypass circuit 110, the second bypass circuit 112, and the like, so that the number of components increases and the compressor chamber is configured. There is a possibility that the gap between parts such as partition plates and pipes to be narrowed, and the compressor 100 and the heat storage tank 124 may move during transportation and the parts may collide with each other, causing the heat storage tank 124 to be damaged. Had.

本発明は、前記従来の課題を解決するもので、蓄熱槽の破損を抑制することができる空気調和機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the air conditioner which can suppress the failure | damage of a thermal storage tank.

前記従来の課題を解決するために、本発明は、冷媒を圧縮する圧縮機と、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽とを有する空気調和機であって、蓄熱槽は、圧縮機の外周面を部分的に覆うように構成され、さらに蓄熱槽に設けた蓄熱槽側結合部と、圧縮機室を構成する仕切板に設けた仕切板側結合部とを、一定の余裕を設けて支持バンドで固定したことにより、輸送時などに圧縮機および蓄熱槽の移動を制限するので、部品相互の当たりや破損が抑制される。   In order to solve the above-mentioned conventional problems, the present invention is an air conditioner having a compressor for compressing a refrigerant and a heat storage tank for storing a heat storage material for storing heat generated by the compressor. Is configured to partially cover the outer peripheral surface of the compressor, and further includes a heat storage tank side coupling portion provided in the heat storage tank and a partition plate side coupling portion provided in the partition plate constituting the compressor chamber. Since the movement of the compressor and the heat storage tank is restricted at the time of transportation, etc., the contact and damage between components are suppressed.

本発明の空気調和機は、輸送時などに圧縮機および蓄熱槽の移動を制限して、蓄熱槽の破損を抑制することができる。   The air conditioner of the present invention can limit the movement of the compressor and the heat storage tank at the time of transportation or the like, and can suppress the breakage of the heat storage tank.

本発明に係る空気調和機の構成を示す図The figure which shows the structure of the air conditioner which concerns on this invention 図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of normal heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of defrosting and heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 蓄熱槽が組み付けられた状態の圧縮機の斜視図Perspective view of compressor with heat storage tank assembled 蓄熱槽が組み付けられた状態の圧縮機の正面図Front view of compressor with heat storage tank assembled 蓄熱槽が組み付けられた状態の圧縮機の上面図Top view of compressor with heat storage tank assembled アキュームレータを取り付けた状態の圧縮機の側面図Side view of compressor with accumulator installed 圧縮機、アキュームレータを取り外した状態の図4に示す蓄熱槽の斜視図4 is a perspective view of the heat storage tank shown in FIG. 4 with the compressor and the accumulator removed. 図4に示す突っ張り部材の斜視図4 is a perspective view of the tension member shown in FIG. 蓄熱熱交換器を組み付けた状態の蓄熱槽の蓋体の斜視図The perspective view of the cover body of the heat storage tank of the state which assembled | attached the heat storage heat exchanger 蓄熱熱交換器と蓄熱槽の蓋体との取り付け方法を説明するための断面図Sectional drawing for demonstrating the attachment method of the thermal storage heat exchanger and the cover body of a thermal storage tank 図10の位置決め部材の斜視図10 is a perspective view of the positioning member of FIG. 支持バンドが組み付けられた状態の空気調和機の一部を省略した斜視図The perspective view which abbreviate | omitted some air conditioners in the state where the support band was assembled 突起を設けた支持バンドの斜視図Perspective view of support band with protrusions ガイド部を設けた蓄熱槽の蓋体の断面図Sectional view of lid of heat storage tank with guide 従来の空気調和機の構成を示す模式図Schematic diagram showing the configuration of a conventional air conditioner

第1の発明は、本発明は、冷媒を圧縮する圧縮機と、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽とを有する空気調和機であって、蓄熱槽は、圧縮機の外周面を部分的に覆うように構成され、さらに蓄熱槽に設けた蓄熱槽側結合部と、圧縮機室を構成する仕切板に設けた仕切板側結合部とを、一定の余裕を設けて支持バンドで固定したことにより、輸送時などに圧縮機および蓄熱槽の移動を制限するので、部品相互の当たりや破損が抑制される。   1st invention is an air conditioner which has the compressor which compresses a refrigerant | coolant, and the thermal storage tank which accommodates the thermal storage material which accumulate | stores the heat | fever which generate | occur | produced with the compressor, Comprising: A thermal storage tank is a compressor. The heat storage tank side coupling portion provided in the heat storage tank and the partition plate side coupling portion provided in the partition plate constituting the compressor chamber are provided with a certain margin. By fixing with the support band, movement of the compressor and the heat storage tank is restricted during transportation and the like, so that contact and damage between parts are suppressed.

第2の発明は、特に第1の発明において、仕切板側結合部を蓄熱槽側結合部よりも上方に位置させたことにより、支持バンドが蓄熱槽と緩衝することがなく、蓄熱槽にある程度の動きの余裕を作り出すことができる。   In the second invention, in particular, in the first invention, since the partition plate side coupling portion is positioned above the heat storage tank side coupling portion, the support band is not buffered with the heat storage tank, and the heat storage tank has a certain degree. Can create a margin of movement.

第3の発明は、特に第1または第2の発明において、蓄熱槽側結合部の近傍に支持バンドを誘導するガイド部を設けたことにより、組立作業性を向上させることができる。   In the third invention, particularly in the first or second invention, the assembly workability can be improved by providing the guide portion for guiding the support band in the vicinity of the heat storage tank side coupling portion.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明に係る蓄熱装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
(Embodiment 1)
FIG. 1 shows a configuration of an air conditioner including a heat storage device according to the present invention, and the air conditioner is composed of an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe.

図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. A heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.

さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた冷媒配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた冷媒配管20を介して接続されている。また、膨張弁12と室外熱交換器14は冷媒配管22を介して接続され、室外熱交換器14と圧縮機6は冷媒配管24を介して接続されている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a refrigerant pipe 18 provided with the four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are refrigerant provided with the strainer 10. It is connected via a pipe 20. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a refrigerant pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a refrigerant pipe 24.

冷媒配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における冷媒配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と冷媒配管22は、冷媒配管28を介して接続されており、冷媒配管28には第1電磁弁30が設けられている。   A four-way valve 8 is disposed in the middle of the refrigerant pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the refrigerant pipe 24 on the refrigerant suction side of the compressor 6. . The compressor 6 and the refrigerant pipe 22 are connected via a refrigerant pipe 28, and a first electromagnetic valve 30 is provided in the refrigerant pipe 28.

さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。   Further, a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material for exchanging heat with the heat storage heat exchanger 34 (for example, An ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.

また、冷媒配管20と蓄熱熱交換器34は冷媒配管38を介して接続され、蓄熱熱交換器34と冷媒配管24は冷媒配管40を介して接続されており、冷媒配管38には第2電磁弁42が設けられている。   The refrigerant pipe 20 and the heat storage heat exchanger 34 are connected via a refrigerant pipe 38, and the heat storage heat exchanger 34 and the refrigerant pipe 24 are connected via a refrigerant pipe 40, and the refrigerant pipe 38 has a second electromagnetic wave. A valve 42 is provided.

室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。   In addition to the indoor heat exchanger 16, an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed. The unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating. On the other hand, air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30,42等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。   The compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30 and 42, etc. are electrically connected to a control device (not shown, for example, a microcomputer). Be controlled.

上記構成の本発明に係る空気調和機において、各部品の相互の接続関係と機能とを、暖房運転時を例にとり冷媒の流れとともに説明する。   In the air conditioner according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant, taking the heating operation as an example.

圧縮機6の吐出口から吐出された冷媒は、冷媒配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て冷媒配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、冷媒配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、冷媒配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。   The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the refrigerant pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the refrigerant pipe 20 through the indoor heat exchanger 16, passes through the strainer 10 that prevents foreign matter from entering the expansion valve 12, and then the expansion valve. To 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the refrigerant pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the refrigerant pipe 24, the four-way valve 8, and the accumulator. 26 and returns to the suction port of the compressor 6.

また、冷媒配管18の圧縮機6吐出口と四方弁8の間から分岐した冷媒配管28は、第1電磁弁30を介して冷媒配管22の膨張弁12と室外熱交換器14の間に合流している。   In addition, the refrigerant pipe 28 branched from between the compressor 6 discharge port of the refrigerant pipe 18 and the four-way valve 8 joins between the expansion valve 12 of the refrigerant pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. doing.

さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、詳細は後述するが、圧縮機6に接して覆うように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、冷媒配管20から室内熱交換器16とストレーナ10の間で分岐した冷媒配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た冷媒配管40は、冷媒配管24における四方弁8とアキュームレータ26の間に合流する。   Furthermore, although the heat storage tank 32 which accommodated the heat storage material 36 and the heat storage heat exchanger 34 in the inside is mentioned later for details, it arrange | positions so that it may contact and cover the compressor 6, and the heat storage material 36 The refrigerant pipe 38 that is stored in the refrigerant pipe 20 and branched from the refrigerant pipe 20 between the indoor heat exchanger 16 and the strainer 10 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42, and the heat storage heat exchanger 34. The refrigerant pipe 40 exiting from the outlet merges between the four-way valve 8 and the accumulator 26 in the refrigerant pipe 24.

次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。   Next, the operation during normal heating will be described with reference to FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.

通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、冷媒配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、冷媒配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、冷媒配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、冷媒配管24を通って四方弁8から圧縮機6の吸入口へと戻る。   During the normal heating operation, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the refrigerant pipe 18 from the four-way valve 8. It reaches the indoor heat exchanger 16. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16 and reaches the expansion valve 12 through the refrigerant pipe 20. The refrigerant decompressed by the expansion valve 12 is refrigerant pipe 22. Through the outdoor heat exchanger 14. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the refrigerant pipe 24.

また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。   Further, the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.

次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。   Next, the operation during defrosting / heating will be described with reference to FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant. In the figure, the solid line arrows indicate the flow of the refrigerant used for heating, and the broken line arrows indicate the flow of the refrigerant used for defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、制御装置から通常暖房運転から除霜・暖房運転への指示が出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 3, the air conditioner according to the present invention is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the temperature sensor 44, an instruction from the normal heating operation to the defrosting / heating operation is output from the control device.

通常暖房運転から除霜・暖房運転に移行すると、第1電磁弁30と第2電磁弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は冷媒配管28と第1電磁弁30を通り、冷媒配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、冷媒配管24を通って四方弁8と
アキュームレータ26を介して圧縮機6の吸入口へと戻る。
When the normal heating operation is shifted to the defrosting / heating operation, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, the first solenoid valve 30 and the second electromagnetic valve 42 are discharged from the discharge port of the compressor 6. A part of the vapor phase refrigerant passes through the refrigerant pipe 28 and the first solenoid valve 30 and merges with the refrigerant passing through the refrigerant pipe 22, heats the outdoor heat exchanger 14, condenses into a liquid phase, It returns to the suction port of the compressor 6 through the pipe 24 via the four-way valve 8 and the accumulator 26.

また、冷媒配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、冷媒配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、冷媒配管40を通って冷媒配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。   In addition, a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20 passes through the refrigerant pipe 38 and the second electromagnetic valve 42, and absorbs heat from the heat storage material 36 in the heat storage heat exchanger 34. Then, it evaporates and vaporizes, merges with the refrigerant passing through the refrigerant pipe 24 through the refrigerant pipe 40, and returns from the accumulator 26 to the suction port of the compressor 6.

アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。   The refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.

除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、制御装置から除霜・暖房運転から通常暖房運転への指示が出力される。   The temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees. When melting is finished, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature sensor 44 detects the temperature rise of the outdoor heat exchanger 14, it is determined that the defrosting has been completed, and the control device outputs an instruction from the defrosting / heating operation to the normal heating operation.

以上のような構成の空気調和機において、圧縮機6へ蓄熱槽32を組み付ける構成について、以下、図面を参照しながら説明する。   In the air conditioner having the above-described configuration, a configuration in which the heat storage tank 32 is assembled to the compressor 6 will be described below with reference to the drawings.

図4および図5は、圧縮機6へ蓄熱槽32を組み付けた状態の斜視図および正面図である。なお、蓄熱槽32の内部には液体状の蓄熱材36が充填され、蓄熱槽32には内部に冷媒が流通する蓄熱熱交換器34が収容されている。   4 and 5 are a perspective view and a front view of the compressor 6 with the heat storage tank 32 assembled thereto. The heat storage tank 32 is filled with a liquid heat storage material 36, and the heat storage tank 32 houses a heat storage heat exchanger 34 in which a refrigerant flows.

図4および図5に示すように、蓄熱槽32は、上方が開口した蓄熱槽本体46と、蓄熱槽本体46の上方開口を閉塞する蓋体48とを備える。また、蓄熱槽32は樹脂で構成されている。蓄熱槽32の構成の詳細については後述するが、本実施の形態の蓄熱槽32は、上側の空間と下側の空間とで大きさを異ならせている。   As shown in FIG. 4 and FIG. 5, the heat storage tank 32 includes a heat storage tank body 46 whose upper side is opened and a lid body 48 that closes the upper opening of the heat storage tank body 46. The heat storage tank 32 is made of resin. Although details of the configuration of the heat storage tank 32 will be described later, the size of the heat storage tank 32 of the present embodiment is different between the upper space and the lower space.

蓄熱槽32の内部に入っている蓄熱材36は液体状であるため、蓄熱材36は上側に行くほど高温の液体が溜まる。そこで、本実施の形態では図4に示すように、蓄熱槽32の上側空間を大きくし、最下部付近の下側空間を小さくすることで、高温の蓄熱材36を多く確保することができる構成としている。もし蓄熱槽32を金属部材で構成した場合、図4に示すような複雑な蓄熱槽32の形状を作り出すことは難しいのに対して、樹脂材料で蓄熱槽32を構成することで、簡単に複雑な形状の蓄熱槽32を作り出すことができる。   Since the heat storage material 36 contained in the heat storage tank 32 is in a liquid state, the higher the temperature of the heat storage material 36 is, the higher the liquid is stored. Therefore, in the present embodiment, as shown in FIG. 4, a configuration in which a large amount of the high-temperature heat storage material 36 can be secured by increasing the upper space of the heat storage tank 32 and reducing the lower space near the lowermost portion. It is said. If the heat storage tank 32 is made of a metal member, it is difficult to create a complicated shape of the heat storage tank 32 as shown in FIG. A heat storage tank 32 having a simple shape can be created.

さらに、蓄熱槽32の材質として樹脂材料を用いることで、コストを削減できるだけではなく、軽量化も実現することができる。特に、重量物である室外機に搭載するため、蓄熱槽32をより軽量化して、室外機の重量増加を極力抑えることができ、設置性・作業性の向上を実現することができる。   Furthermore, by using a resin material as the material of the heat storage tank 32, not only cost can be reduced, but also weight reduction can be realized. In particular, since it is mounted on an outdoor unit that is a heavy object, the heat storage tank 32 can be further reduced in weight, and an increase in the weight of the outdoor unit can be suppressed as much as possible, thereby improving installation and workability.

また、図6は、蓄熱槽32が組み付けられた圧縮機6を上方から見た上面図である。図6に示すように、略U字形状に構成された蓄熱槽本体46の一端46aと他端46bとの間の部分によって、圧縮機6の外周面6aをその周方向に部分的に覆うように構成されている。   FIG. 6 is a top view of the compressor 6 with the heat storage tank 32 assembled as viewed from above. As shown in FIG. 6, the outer peripheral surface 6 a of the compressor 6 is partially covered in the circumferential direction by a portion between one end 46 a and the other end 46 b of the heat storage tank main body 46 configured in a substantially U shape. It is configured.

具体的には、略U字形状に構成された蓄熱槽32の内周側に圧縮機6を配置し、図6に示すようにAから圧縮機6の外周面に沿ってBに至るまで、蓄熱槽32の内周と圧縮機6の外周とが接している。またAからBに至るまで約180度にわたって圧縮機6と蓄熱槽
32とが接触する構成となる。以下、蓄熱槽32と圧縮機6との具体的な接触構造について述べる。
Specifically, the compressor 6 is disposed on the inner peripheral side of the heat storage tank 32 configured in a substantially U shape, and from A to B along the outer peripheral surface of the compressor 6 as shown in FIG. The inner periphery of the heat storage tank 32 and the outer periphery of the compressor 6 are in contact. Further, the compressor 6 and the heat storage tank 32 are in contact with each other over about 180 degrees from A to B. Hereinafter, a specific contact structure between the heat storage tank 32 and the compressor 6 will be described.

圧縮機6とアキュームレータ26とは、蓄熱槽32に固定される前から、図7に示すように一体化されており、バンド6bで固定されている。また、圧縮機6の外周面6aには、伝熱シート50が密着されている。圧縮機6は、この伝熱シート50を介して蓄熱槽本体46の圧縮機側の外部表面46cと接触する(図8参照)。   Before being fixed to the heat storage tank 32, the compressor 6 and the accumulator 26 are integrated as shown in FIG. 7, and are fixed by the band 6b. A heat transfer sheet 50 is in close contact with the outer peripheral surface 6 a of the compressor 6. The compressor 6 contacts the external surface 46c on the compressor side of the heat storage tank body 46 through the heat transfer sheet 50 (see FIG. 8).

伝熱シート50は、自己吸着性を備えた弾性のシートであって、複数の貫通孔50aが形成されている。複数の貫通孔50aは、伝熱シート50と圧縮機6の外周面6aとの間の空気を外に抜くために形成されている。複数の貫通孔50aを介して空気が外に抜けることにより、伝熱シート50と圧縮機6の外周面6aとの密着面積が大きくなり、伝熱シート50と圧縮機6との間の熱伝達性が向上する。   The heat transfer sheet 50 is an elastic sheet having self-adsorptive properties, and has a plurality of through holes 50a. The plurality of through-holes 50a are formed for extracting air between the heat transfer sheet 50 and the outer peripheral surface 6a of the compressor 6 to the outside. When air is released to the outside through the plurality of through holes 50 a, the contact area between the heat transfer sheet 50 and the outer peripheral surface 6 a of the compressor 6 is increased, and heat transfer between the heat transfer sheet 50 and the compressor 6 is performed. Improves.

なお、貫通孔50a同士は所定間隔(例えば、10mmピッチ)で離れて設けられており、圧縮機6と伝熱シート50との間に気泡が生じたとしても、所定間隔(本実施の形態では、10mmのピッチ)に制限されて大きな気泡ができることはない。また、所定間隔は本実施の形態のように10mmピッチに限定されることは無く、例えば、1mm〜30mm程度のピッチであっても、気泡の大きさが制限されるため、大きな気泡の介在を防ぐことができる。   Note that the through holes 50a are spaced apart from each other at a predetermined interval (for example, 10 mm pitch), and even if bubbles are generated between the compressor 6 and the heat transfer sheet 50, the predetermined interval (in this embodiment) It is not limited to a pitch of 10 mm, and no large bubbles are formed. Further, the predetermined interval is not limited to a 10 mm pitch as in the present embodiment. For example, even if the pitch is about 1 mm to 30 mm, the size of the bubbles is limited. Can be prevented.

一方、図8に示すように、伝熱シート50と接触する蓄熱槽本体46の圧縮機側の外部表面46cの部分には、複数の溝46dが形成されている。複数の溝46dは、伝熱シート50と蓄熱槽本体46との間の空気を外に抜くために形成されている。また、複数の溝46dは、伝熱シート50と圧縮機6との間から貫通孔50aを介して伝熱シート50と蓄熱槽32との間に移動した空気も外に抜く役割をする。なお、複数の溝46dは、伝熱シート50が蓄熱槽本体46に密着したときに空気を外に抜くことができるように、伝熱シート50によって完全に覆われないような長さにされている。また、複数の溝46dは、弾性の伝熱シート50で埋まらない幅や深さを備え、例えば、幅が1mmに決定され、深さが0.5mmに決定されている。   On the other hand, as shown in FIG. 8, a plurality of grooves 46 d are formed in the portion of the external surface 46 c on the compressor side of the heat storage tank body 46 that contacts the heat transfer sheet 50. The plurality of grooves 46d are formed to draw air between the heat transfer sheet 50 and the heat storage tank body 46 to the outside. Further, the plurality of grooves 46d serve to draw out air that has moved between the heat transfer sheet 50 and the compressor 6 via the through hole 50a between the heat transfer sheet 50 and the heat storage tank 32. The plurality of grooves 46d have such a length that they are not completely covered by the heat transfer sheet 50 so that the air can be extracted outside when the heat transfer sheet 50 comes into close contact with the heat storage tank body 46. Yes. Further, the plurality of grooves 46d have a width and a depth that are not filled with the elastic heat transfer sheet 50. For example, the width is determined to be 1 mm and the depth is determined to be 0.5 mm.

なお、溝46d同士は所定間隔(例えば、10mmピッチ)で離れて設けられており、伝熱シート50と蓄熱槽本体46との間に発生する気泡の大きさを制限している。また、貫通孔50aと同様に、10mmのピッチに限定されることはなく、例えば、1mm〜30mmであっても、ピッチ間隔に気泡の大きさが制限されるので、大きな気泡の介在を防ぐという効果を奏する。   The grooves 46d are spaced apart from each other at a predetermined interval (for example, a pitch of 10 mm), and limit the size of bubbles generated between the heat transfer sheet 50 and the heat storage tank body 46. Further, like the through holes 50a, the pitch is not limited to 10 mm. For example, even if the pitch is 1 mm to 30 mm, the size of the bubbles is limited to the pitch interval, so that the inclusion of large bubbles is prevented. There is an effect.

このように、伝熱シート50に所定間隔で貫通孔50aを設け、さらに、蓄熱槽32の内周面に所定間隔で溝46dを設けることによって、圧縮機6と蓄熱槽32とを密着させる時に発生してしまう気泡を外に逃してやることができ、圧縮機6からの廃熱を効果的に蓄熱槽32へ伝えることができる。   In this way, when the through holes 50a are provided in the heat transfer sheet 50 at predetermined intervals, and the grooves 46d are provided at predetermined intervals on the inner peripheral surface of the heat storage tank 32, the compressor 6 and the heat storage tank 32 are brought into close contact with each other. The generated bubbles can be released to the outside, and the waste heat from the compressor 6 can be effectively transmitted to the heat storage tank 32.

なお、本実施の形態では、貫通孔50aを設ける所定間隔と、溝46dを設ける所定間隔とを同じにしているが、これに限定されることはなく、異なる所定間隔でも問題はない。   In the present embodiment, the predetermined interval at which the through-hole 50a is provided and the predetermined interval at which the groove 46d is provided are the same, but the present invention is not limited to this, and there is no problem with different predetermined intervals.

次に、蓄熱槽32と圧縮機6とを固定する構成について説明する。図7に示す圧縮機6とアキュームレータ26は、図4や図5に示すように、2本のバンド52、54によって蓄熱槽32に固定される。   Next, the structure which fixes the heat storage tank 32 and the compressor 6 is demonstrated. The compressor 6 and the accumulator 26 shown in FIG. 7 are fixed to the heat storage tank 32 by two bands 52 and 54 as shown in FIGS.

図6に示すように、蓄熱槽本体46の端部は、圧縮機6と接触するA点およびB点よりもさらにアキュームレータ26側に延伸している。これは、出来るだけ蓄熱材の量を多くしたいために、圧縮機6と直接接触しないが、高温の蓄熱材36の容積を増やして、除霜運転をしながら暖房運転ができる時間を長くしている。   As shown in FIG. 6, the end of the heat storage tank main body 46 extends further to the accumulator 26 side than the points A and B in contact with the compressor 6. In order to increase the amount of the heat storage material as much as possible, it is not in direct contact with the compressor 6, but the volume of the high-temperature heat storage material 36 is increased to increase the time during which the heating operation can be performed while performing the defrosting operation. Yes.

また、本実施の形態の蓄熱槽32は圧縮機6のみの周囲を覆うように構成されている。これはアキュームレータ26を含めて蓄熱槽32で覆ってしまうと、アキュームレータ26の温度は圧縮機6に比べて低いので、蓄熱槽32の温度を下げてしまい、逆効果となってしまう。よって効果的に圧縮機6の廃熱を蓄熱材36に蓄えようとする場合は、蓄熱槽32を圧縮機6のみの周囲を覆う構成にする方がよい。   Moreover, the heat storage tank 32 of this Embodiment is comprised so that the circumference | surroundings of the compressor 6 only may be covered. If this is covered with the heat storage tank 32 including the accumulator 26, the temperature of the accumulator 26 is lower than that of the compressor 6. Therefore, when it is going to store the waste heat of the compressor 6 in the heat storage material 36 effectively, it is better to make the heat storage tank 32 cover the periphery of the compressor 6 alone.

ところが、このような蓄熱槽32と圧縮機6とをバンドで固定しようとすると、ある一定のテンションが必要となってくる。そのため、上側のバンド52は蓄熱槽32とアキュームレータ26とを固定することによって、バンド52の締め付け力、ひいては蓄熱槽32と圧縮機6との密着性を高めている。   However, when trying to fix the heat storage tank 32 and the compressor 6 with a band, a certain tension is required. For this reason, the upper band 52 fixes the heat storage tank 32 and the accumulator 26, thereby enhancing the tightening force of the band 52 and consequently the adhesion between the heat storage tank 32 and the compressor 6.

もし、蓄熱槽32と圧縮機6とをバンドで固定した場合には、蓄熱槽32の両端部からバンド52が圧縮機に接するポイントまでの距離が短く、テンションが弱い。そのため、本実施の形態では、蓄熱槽32とアキュームレータ26とをバンド52で固定しており、その結果、蓄熱槽32の両端部からバンド52がアキュームレータ26に接するポイントまでの距離を長く取ることができ、テンションを強く保つことができる。   If the heat storage tank 32 and the compressor 6 are fixed with a band, the distance from both ends of the heat storage tank 32 to the point where the band 52 contacts the compressor is short, and the tension is weak. Therefore, in this Embodiment, the heat storage tank 32 and the accumulator 26 are being fixed with the band 52, As a result, the distance from the both ends of the heat storage tank 32 to the point which the band 52 touches the accumulator 26 can be taken long. Can keep the tension strong.

一方、下側のバンド54で固定する場所は、アキュームレータ26が無い場所となるため、蓄熱槽32と圧縮機6とをバンド54で固定する必要が出てくる。そのため、蓄熱槽32の最下部付近の一部を、圧縮機6の周方向に切り欠いた切り欠き部46gを設け、蓄熱槽32と圧縮機6とをバンド54で固定する際のテンションを確保するようにしている。その結果、蓄熱槽32の両端部からバンド54が圧縮機6に接するポイントまでの距離を長く取ることができ、テンションを強く保つことができる。   On the other hand, since the place where the lower band 54 is fixed is a place where the accumulator 26 is not present, it is necessary to fix the heat storage tank 32 and the compressor 6 with the band 54. Therefore, a notch 46g is formed by cutting out a part near the lowermost part of the heat storage tank 32 in the circumferential direction of the compressor 6 to secure tension when the heat storage tank 32 and the compressor 6 are fixed by the band 54. Like to do. As a result, the distance from the both ends of the heat storage tank 32 to the point where the band 54 contacts the compressor 6 can be increased, and the tension can be kept strong.

第1のバンドであるバンド52は、アキュームレータ26と蓄熱槽本体46とを固定する。具体的には、蓄熱槽本体46の一端46a、他端46bそれぞれにはバンド52が通過する孔を備えるバンド通し部46eが設けられており、バンド52は、2つのバンド通し部46eを通過した状態でアキュームレータ26に巻回される。   The band 52 which is the first band fixes the accumulator 26 and the heat storage tank main body 46. Specifically, each of one end 46a and the other end 46b of the heat storage tank main body 46 is provided with a band passing portion 46e having a hole through which the band 52 passes, and the band 52 has passed through the two band passing portions 46e. It is wound around the accumulator 26 in a state.

その結果、2つのバンド通し部46eを通過したアキュームレータ26と圧縮機6との間を通るバンド52で後述する突っ張り部材56を抑える構成となり、またアキュームレータ26の(圧縮機6とは反対方向の)外周面を通るバンド52によって、アキュームレータ26と蓄熱槽32とを引き付ける構成となり、ひいては圧縮機6と蓄熱槽32との密着性を高めることができる。   As a result, the band 52 passing between the accumulator 26 and the compressor 6 that has passed through the two band passing portions 46e is configured to suppress a tension member 56, which will be described later, and the accumulator 26 (in the direction opposite to the compressor 6). The band 52 that passes through the outer peripheral surface attracts the accumulator 26 and the heat storage tank 32, and as a result, the adhesion between the compressor 6 and the heat storage tank 32 can be enhanced.

第2のバンドであるバンド54は、圧縮機6と蓄熱槽本体46とを固定する。具体的には、バンド54は、図4に示すように蓄熱槽本体46の反圧縮機側の外部表面46fに沿って巻回され、図5に示すように圧縮機6の外周面6aに沿って巻回される。   A band 54 that is a second band fixes the compressor 6 and the heat storage tank main body 46. Specifically, the band 54 is wound along the outer surface 46f on the anti-compressor side of the heat storage tank body 46 as shown in FIG. 4, and along the outer peripheral surface 6a of the compressor 6 as shown in FIG. Is wound.

また、蓄熱槽32の最下部付近の両端部に切り欠き部46g(蓄熱槽32の上側の両端部よりも周方向に奥側へ移動させた部位)を設けることによって、蓄熱槽32と圧縮機6との密着性を高めることができる。   Moreover, the heat storage tank 32 and the compressor are provided by providing notches 46g (parts moved to the back side in the circumferential direction from both upper ends of the heat storage tank 32) at both ends near the lowermost part of the heat storage tank 32. 6 can be improved.

そして、バンド52を締めることによってアキュームレータ26を介して圧縮機6と蓄熱槽32とが伝熱シート50を介して密着する。それに加えて、バンド54を締めること
によって圧縮機6と蓄熱槽32とが伝熱シート50を介して密着する。その結果として、圧縮機6と伝熱シート50との間の空気と、伝熱シート50と蓄熱槽32との間の空気が外に抜ける。
Then, by tightening the band 52, the compressor 6 and the heat storage tank 32 are in close contact via the heat transfer sheet 50 via the accumulator 26. In addition, the compressor 6 and the heat storage tank 32 are in close contact with each other via the heat transfer sheet 50 by tightening the band 54. As a result, the air between the compressor 6 and the heat transfer sheet 50 and the air between the heat transfer sheet 50 and the heat storage tank 32 escape to the outside.

なお、バンド52、54は、クリープ特性を備える、例えばナイロンなどの樹脂から作製されたバンドが好ましい。なお、本明細書で言う「クリープ特性」は、具体的には、締め付け直後から所定の期間はバンドの締め付け力が大きく、時間の経過とともにその締め付け力が低下し、最終的には圧縮機6と蓄熱槽32との固定を維持する締め付け力になるような特性を言う。   Bands 52 and 54 are preferably bands made of a resin such as nylon having creep characteristics. Note that the “creep characteristic” in the present specification specifically means that the band tightening force is large during a predetermined period immediately after the tightening, and the tightening force decreases with the passage of time. And the characteristic which becomes the clamping force which maintains fixation with the heat storage tank 32.

例えば、バンド52、54は、締め付け直後は約25kg(キログラム)の締め付け力を発揮することにより圧縮機6と伝熱シート50との間の空気および伝熱シート50と蓄熱槽32との間の空気とを外に抜くことができ、時間の経過とともに締め付け力が低下して最終的には圧縮機6と蓄熱槽32との固定を維持する約5kgの締め付け力に安定するような樹脂から作製されたバンドが好ましい。   For example, the bands 52 and 54 exhibit a tightening force of about 25 kg (kilograms) immediately after tightening, thereby causing air between the compressor 6 and the heat transfer sheet 50 and between the heat transfer sheet 50 and the heat storage tank 32. Produced from a resin that can withdraw air and is stable with a clamping force of about 5 kg that eventually keeps the compressor 6 and the heat storage tank 32 fixed, with the clamping force decreasing over time. Band is preferred.

これは、製造過程において、圧縮機6と蓄熱槽32とを密着させようと思うと、ある一定の締め付け力が必要である(上述では、約25kgとしているが、これに限定されるものではない)。ところが、この締め付け力のまま維持されると、蓄熱槽32に長時間大きな締め付け力が作用してしまうことになる。そのため、時間が経つにつれて、締め付け力が弱くなり、最終的には圧縮機6と蓄熱槽32との密着が維持できる程度の力(上述では、約5kgとしているが、これに限定されるものではない)となるようなクリープ特性を持った材質の部材を、バンドの材料として採用することが好ましく、蓄熱槽32の耐久性を損なうことがない。   This is because a certain tightening force is required when the compressor 6 and the heat storage tank 32 are brought into close contact with each other in the manufacturing process (in the above description, although it is about 25 kg, it is not limited to this). ). However, if this tightening force is maintained, a large tightening force will act on the heat storage tank 32 for a long time. Therefore, as the time passes, the tightening force becomes weaker, and finally the force that can maintain the close contact between the compressor 6 and the heat storage tank 32 (in the above, about 5 kg, but is not limited thereto) It is preferable to employ a material having a creep characteristic such that the durability of the heat storage tank 32 is not impaired.

なお、参考までに説明すると、クリープ特性を備えないバンド、例えばステンレスから作製されたバンドの場合、以下のような問題が考えられる。   For reference, a band that does not have creep characteristics, such as a band made of stainless steel, may have the following problems.

ステンレスから作製されたバンドの場合、圧縮機6と伝熱シート50との間の空気と、伝熱シート50と蓄熱槽32との間の空気とが外に抜けるような大きい締め付け力で締め付けると、その締め付け力はそのまま維持される。大きい締め付け力が維持されると、蓄熱槽32が蓄熱して高温状態になったときに、すなわち、熱によって蓄熱槽本体46が軟化した場合(特に蓄熱槽本体46が樹脂から作製されている場合)、蓄熱槽本体46が圧縮機6側に向かって変形する可能性がある。そして、圧縮機6と接触する蓄熱槽本体46の部分に応力が集中し、蓄熱槽本体46が破損する可能性がある。または、蓋体48が蓄熱槽本体46から外れる可能性がある。   In the case of a band made of stainless steel, when tightened with such a large tightening force that the air between the compressor 6 and the heat transfer sheet 50 and the air between the heat transfer sheet 50 and the heat storage tank 32 come out. The tightening force is maintained as it is. When a large tightening force is maintained, when the heat storage tank 32 stores heat and becomes a high temperature state, that is, when the heat storage tank body 46 is softened by heat (particularly when the heat storage tank body 46 is made of resin). ), The heat storage tank body 46 may be deformed toward the compressor 6 side. And stress concentrates on the part of the thermal storage tank main body 46 which contacts the compressor 6, and the thermal storage tank main body 46 may be damaged. Alternatively, the lid body 48 may come off from the heat storage tank main body 46.

これとは反対に、小さい締め付け力で締めると、圧縮機6と伝熱シート50との間の空気と、伝熱シート50と蓄熱槽32との間の空気とが十分に外に抜けず、圧縮機6から伝熱シート50を介する蓄熱槽32への熱伝達性が低下する。したがって、バンド52、54は、クリープ特性を備えるのが好ましい。   On the contrary, when tightening with a small tightening force, the air between the compressor 6 and the heat transfer sheet 50 and the air between the heat transfer sheet 50 and the heat storage tank 32 do not escape sufficiently outside, The heat transferability from the compressor 6 to the heat storage tank 32 via the heat transfer sheet 50 is reduced. Accordingly, the bands 52 and 54 preferably have creep characteristics.

ところが、バンド52およびバンド54で固定された蓄熱槽32は、バンド52およびバンド54に掛かるテンションにより、蓄熱槽32の一端46aと他端46bとが近くなる方向に力が掛かっている状態となっている。さらに、樹脂材料で蓄熱槽32を構成しているため、蓄熱槽32が高温になるにつれて膨張し、より一端46aと他端46bとが近くなる方向になってしまい、その結果、図4に示したA点およびB点を中心として応力集中が発生してしまう。   However, the heat storage tank 32 fixed by the band 52 and the band 54 is in a state where a force is applied in a direction in which the one end 46 a and the other end 46 b of the heat storage tank 32 are close to each other due to the tension applied to the band 52 and the band 54. ing. Furthermore, since the heat storage tank 32 is made of a resin material, the heat storage tank 32 expands as the temperature rises, and the one end 46a and the other end 46b become closer to each other. As a result, as shown in FIG. Stress concentration occurs around the points A and B.

そこで、本実施の形態では、蓄熱槽32の圧縮機6側への変形を抑制するために、突っ
張り部材56が、蓄熱槽32に設けられている。圧縮機6とアキュームレータ26とを取り外した状態の図8に示すように、突っ張り部材56は、蓄熱槽本体46の一端46a、他端46bそれぞれのバンド通し部46eの間に介在するように配置される。
Therefore, in the present embodiment, the tension member 56 is provided in the heat storage tank 32 in order to suppress deformation of the heat storage tank 32 toward the compressor 6 side. As shown in FIG. 8 with the compressor 6 and the accumulator 26 removed, the tension member 56 is disposed so as to be interposed between the band-passing portions 46e of the one end 46a and the other end 46b of the heat storage tank main body 46. The

具体的には、図9に示すように、突っ張り部材56は、金属性のプレート部材であって、その両端に蓄熱槽本体46のバンド通し部46eと係合する切り欠き部56aを備える。また、突っ張り部材56は、2つのバンド通し部46eが対向する方向に関して該バンド通し部46eと面接触する接触面56bを備える。   Specifically, as shown in FIG. 9, the tension member 56 is a metallic plate member, and includes notches 56 a that engage with the band-passing portions 46 e of the heat storage tank main body 46 at both ends thereof. Further, the tension member 56 includes a contact surface 56b that is in surface contact with the band passing portion 46e in the direction in which the two band passing portions 46e face each other.

このような突っ張り部材56は、蓄熱槽本体46が圧縮機6側に変形しようとすると、すなわち2つのバンド通し部46eが接近しようとすると、接触面56bによって2つのバンド通し部46eの接近を抑制することができる。この突っ張り部材56により、2つのバンド通し部46eを介して蓄熱槽本体46の一端46a、他端46bの接近が抑制され、その結果として蓄熱槽本体46の圧縮機6側への変形が抑制される。   Such a tension member 56 suppresses the approach of the two band-passing portions 46e by the contact surface 56b when the heat storage tank main body 46 tries to deform toward the compressor 6, that is, when the two band-passing portions 46e try to approach each other. can do. The tension member 56 suppresses the approach of the one end 46a and the other end 46b of the heat storage tank body 46 through the two band-passing portions 46e, and as a result, the deformation of the heat storage tank body 46 toward the compressor 6 is suppressed. The

なお、図4に示すように、突っ張り部材56は、バンド通し部46eを通過したバンド52によって蓄熱槽本体46からの脱落を防止されている。すなわち、2つのバンド通し部46eを通過したバンド52に対して、突っ張り部材56は、圧縮機6側に配置されている。   In addition, as shown in FIG. 4, the tension member 56 is prevented from dropping from the heat storage tank main body 46 by the band 52 that has passed through the band passing portion 46e. That is, the tension member 56 is disposed on the compressor 6 side with respect to the band 52 that has passed through the two band passing portions 46e.

特に、蓄熱槽32が高温になって膨張した時に、突っ張り部材56がたわむ方向に力が掛かる。そこで、バンド52の取り付け位置と、突っ張り部材56の取り付け位置とを高さ方向に同じ位置(重なる位置)に配置することによって、バンド52で突っ張り部材56の背面側を抑える構成となり(図6参照)、突っ張り部材56のたわみも防ぐことができ、ひいては、蓄熱槽32の変形を防ぎ、応力が集中してしまうことを防ぐ。   In particular, when the heat storage tank 32 becomes hot and expands, a force is applied in the direction in which the tension member 56 bends. Therefore, the band 52 and the mounting position of the tension member 56 are arranged at the same position (overlapping position) in the height direction, thereby suppressing the back side of the tension member 56 with the band 52 (see FIG. 6). ), The deflection of the tension member 56 can also be prevented, and as a result, deformation of the heat storage tank 32 is prevented and stress is prevented from being concentrated.

図10は、蓄熱槽32に収容される蓄熱熱交換器34と蓄熱槽32の蓋体48との斜視図である。   FIG. 10 is a perspective view of the heat storage heat exchanger 34 accommodated in the heat storage tank 32 and the lid 48 of the heat storage tank 32.

図10に示すように、蓄熱熱交換器34は、例えば銅管等を蛇行状に形成したものであって、両端で蓄熱槽32の蓋体48に支持されている。また、蓄熱槽32内部の蓄熱材の熱量を有効的に使用するため、略U字形状の蓄熱槽32に沿って、蓄熱熱交換器34を蛇行させている。蓄熱熱交換器34の一端は冷媒配管38に接続され、他端は冷媒配管40に接続されている(図1参照)。   As shown in FIG. 10, the heat storage heat exchanger 34 is formed, for example, in a meandering manner such as a copper tube, and is supported by the lid body 48 of the heat storage tank 32 at both ends. Further, in order to effectively use the heat quantity of the heat storage material inside the heat storage tank 32, the heat storage heat exchanger 34 is meandered along the substantially U-shaped heat storage tank 32. One end of the heat storage heat exchanger 34 is connected to the refrigerant pipe 38, and the other end is connected to the refrigerant pipe 40 (see FIG. 1).

次に、蓋体48への蓄熱熱交換器34の固定方法について説明する。蓄熱熱交換器34は、蓄熱材36に対して耐性を持つ弾性材料から作製された栓体58を介して蓋体48に支持されている。図11に示すように、蓄熱熱交換器34の両端は、蓋体48の貫通孔48aに圧入された栓体58の貫通孔58aを通過することにより支持されている。   Next, a method for fixing the heat storage heat exchanger 34 to the lid 48 will be described. The heat storage heat exchanger 34 is supported by the lid body 48 via a plug body 58 made of an elastic material resistant to the heat storage material 36. As shown in FIG. 11, both ends of the heat storage heat exchanger 34 are supported by passing through the through holes 58 a of the plug body 58 press-fitted into the through holes 48 a of the lid body 48.

また、図10に示すように、蓄熱熱交換器34に、蓄熱槽本体46に対して蓄熱熱交換器34を位置決めする位置決め部材60が取り付けられている。   As shown in FIG. 10, a positioning member 60 that positions the heat storage heat exchanger 34 with respect to the heat storage tank body 46 is attached to the heat storage heat exchanger 34.

位置決め部材60は、蓄熱材36に対して耐性を持つ弾性材料から作製された部材であって、蓄熱熱交換器34の下部(蓄熱槽32の底側)の中央に位置する管の部分に取り付けられる。具体的には、図12に示すように、位置決め部材60は、蓄熱熱交換器34の下部中央に位置する管の部分が通過する貫通孔60aと、貫通孔60a内に蓄熱熱交換器34の管の部分を配置するための切れ込み部60bとを備える。蓄熱熱交換器34の下部中央に位置する管の部分は、切れ込み部60bを通過することにより、貫通孔60a内に配置される。   The positioning member 60 is a member made of an elastic material resistant to the heat storage material 36, and is attached to a pipe portion located in the center of the lower part of the heat storage heat exchanger 34 (the bottom side of the heat storage tank 32). It is done. Specifically, as shown in FIG. 12, the positioning member 60 includes a through hole 60a through which a portion of the tube located at the lower center of the heat storage heat exchanger 34 passes, and the heat storage heat exchanger 34 in the through hole 60a. And a notch 60b for disposing a portion of the tube. The portion of the tube located at the lower center of the heat storage heat exchanger 34 is disposed in the through hole 60a by passing through the cut portion 60b.

また、位置決め部材60は、蓄熱熱交換器34が蓄熱槽32内に収容された状態のとき、蓄熱槽本体46の内部表面に形成された凸状係合部46h(図8参照)と係合する凹状係合部60cを備える。このような位置決め部材60により、蓄熱熱交換器34は、蓄熱槽本体46に対して位置決めされる。   Further, the positioning member 60 engages with a convex engaging portion 46 h (see FIG. 8) formed on the inner surface of the heat storage tank body 46 when the heat storage heat exchanger 34 is accommodated in the heat storage tank 32. A concave engaging portion 60c is provided. With such a positioning member 60, the heat storage heat exchanger 34 is positioned with respect to the heat storage tank main body 46.

さらに、図10に示すように、蓄熱熱交換器34の所定の部分(詳細は後述する)に、蓄熱槽本体46と蓄熱熱交換器34との接触を回避する複数の緩衝部材62が取り付けられている。複数の緩衝部材62は、位置決め部材60と同様に、蓄熱材36に対して耐性を持つ弾性材料から作製された部材であって、位置決め部材60と同様の方法で蓄熱熱交換器34に取り付けられる。   Furthermore, as shown in FIG. 10, a plurality of buffer members 62 that avoid contact between the heat storage tank body 46 and the heat storage heat exchanger 34 are attached to a predetermined portion (details will be described later) of the heat storage heat exchanger 34. ing. Like the positioning member 60, the plurality of buffer members 62 are members made of an elastic material resistant to the heat storage material 36 and are attached to the heat storage heat exchanger 34 in the same manner as the positioning member 60. .

これまでに説明した栓体58、位置決め部材60、および緩衝部材62により、蓄熱熱交換器34と蓄熱槽32との接触によって起こる騒音発生を抑制している。   The plug 58, the positioning member 60, and the buffer member 62 described so far suppress the generation of noise caused by the contact between the heat storage heat exchanger 34 and the heat storage tank 32.

この騒音発生の原因について具体的に説明する。位置決め部材60、緩衝部材62が存在せず、且つ栓体58の代わりにボルトなどの固定手段によって蓄熱熱交換器34が蓄熱槽32の蓋体48に固定されている場合を考える。この場合、蓄熱熱交換器34は、ボルトなどの固定手段により、弾性材料から作製された栓体58に比べて、堅固に蓋体48に固定される。したがって、蓄熱熱交換器34は、蓋体48に固定された部分を固定端として揺動しやすい。   The cause of this noise generation will be specifically described. Consider a case where the positioning member 60 and the buffer member 62 do not exist and the heat storage heat exchanger 34 is fixed to the lid 48 of the heat storage tank 32 by a fixing means such as a bolt instead of the plug body 58. In this case, the heat storage heat exchanger 34 is firmly fixed to the lid 48 by a fixing means such as a bolt as compared with the plug 58 made of an elastic material. Accordingly, the heat storage heat exchanger 34 is likely to swing with the portion fixed to the lid 48 as a fixed end.

そのため、圧縮機6の振動が蓄熱槽32に伝わると、蓋体48を介して蓄熱熱交換器34に振動が伝わる。そして、蓄熱熱交換器34は揺動し、蓄熱槽本体46の内部表面と接触して衝突音が騒音として発生する。   Therefore, when the vibration of the compressor 6 is transmitted to the heat storage tank 32, the vibration is transmitted to the heat storage heat exchanger 34 via the lid 48. Then, the heat storage heat exchanger 34 swings and comes into contact with the inner surface of the heat storage tank body 46 to generate a collision sound as noise.

このような騒音発生を抑制するために蓄熱熱交換器34は、弾性材料から作製された栓体58を介して蓋体48に支持されている。すなわち、栓体58が、蓋体48から蓄熱熱交換器34へと伝わる振動を減衰させるダンパーの役割をする。また、位置決め部材60が蓄熱熱交換器34の下部を蓄熱槽本体46に対して位置決めすることにより、蓄熱熱交換器34の揺動が抑制される。さらに、複数の緩衝部材62が、蓄熱熱交換器34と蓄熱槽本体46との接触を回避する。   In order to suppress such noise generation, the heat storage heat exchanger 34 is supported by the lid body 48 via a plug body 58 made of an elastic material. That is, the plug body 58 functions as a damper that attenuates vibration transmitted from the lid body 48 to the heat storage heat exchanger 34. Further, the positioning member 60 positions the lower part of the heat storage heat exchanger 34 with respect to the heat storage tank main body 46, so that the swing of the heat storage heat exchanger 34 is suppressed. Further, the plurality of buffer members 62 avoid contact between the heat storage heat exchanger 34 and the heat storage tank body 46.

また、図11に示すように、蓄熱熱交換器34の冷媒配管は、弾性材料で構成された栓体58を介して蓋体48に取り付けられるため、栓体58の弾性材料で許容された範囲で蓄熱熱交換器34を動かすことができる。   Further, as shown in FIG. 11, the refrigerant pipe of the heat storage heat exchanger 34 is attached to the lid body 48 via a plug body 58 made of an elastic material, and therefore the range allowed by the elastic material of the plug body 58. The heat storage heat exchanger 34 can be moved.

特に、位置決め部材60を蓄熱槽本体46の内部表面側に出っ張っている凸状係合部46hにはめ込んで蓄熱熱交換器34の位置決めを行なっているため、蓄熱槽32を作る製造工程においては、重量物である蓄熱熱交換器34を蓄熱槽本体46に入れて、位置決め部材60を凸状係合部46hにはめ込む必要がある。   In particular, in the manufacturing process of making the heat storage tank 32, the positioning member 60 is fitted into the convex engagement portion 46h protruding on the inner surface side of the heat storage tank body 46 to position the heat storage heat exchanger 34. It is necessary to put the heat storage heat exchanger 34, which is a heavy object, in the heat storage tank main body 46 and fit the positioning member 60 into the convex engagement portion 46h.

しかしながら本実施の形態では、栓体58があることによって、蓄熱熱交換器34が蓋体48に固定されている箇所に柔軟性を持たせるため、蓄熱熱交換器34を蓄熱槽本体46に挿入した後、位置決め部材60を凸状係合部46hへはめ込みやすくなり、蓄熱槽32を製造しやすくなる。   However, in the present embodiment, since the plug body 58 is provided, the heat storage heat exchanger 34 is inserted into the heat storage tank main body 46 in order to give flexibility to the portion where the heat storage heat exchanger 34 is fixed to the lid body 48. After that, it becomes easy to fit the positioning member 60 into the convex engaging portion 46h, and the heat storage tank 32 can be easily manufactured.

また、蓄熱熱交換器34は銅管で構成されているため、蓄熱熱交換器34を蓄熱槽本体46へ挿入した時に、蓄熱熱交換器34と蓋体48とを固定する箇所を中心に、内周側に傾いてしまう。そのため、栓体58を弾性材料で構成しておくことによって、蓄熱熱交換
器34の傾きを吸収し、蓄熱熱交換器34と蓋体48との固定箇所に応力集中が発生しないという特有の効果も有する。
Moreover, since the heat storage heat exchanger 34 is comprised with the copper pipe, when the heat storage heat exchanger 34 is inserted in the heat storage tank main body 46, the location which fixes the heat storage heat exchanger 34 and the cover body 48 is centered, It will tilt to the inner circumference. Therefore, by configuring the plug body 58 with an elastic material, the inclination of the heat storage heat exchanger 34 is absorbed, and a specific effect that stress concentration does not occur in the fixing portion between the heat storage heat exchanger 34 and the lid body 48. Also have.

なお、複数の緩衝部材62は、栓体58と位置決め部材60とを用いることにより蓄熱熱交換器34の揺動を抑制した上でなお、蓄熱槽本体46の内部表面と接触する可能性がある蓄熱熱交換器34の部分に取り付けられている。   The plurality of buffer members 62 may come into contact with the inner surface of the heat storage tank body 46 after suppressing the oscillation of the heat storage heat exchanger 34 by using the plug body 58 and the positioning member 60. A heat storage heat exchanger 34 is attached.

このような本実施の形態によれば、蓄熱槽32(蓄熱槽本体46)が、一端46aと他端46bとの間の部分によって圧縮機6の外周面6aをその周方向に覆うように構成される場合、蓄熱槽32の一端46aと他端46bのそれぞれに設けられたバンド通し部46eの間に配置されて一端46aと他端46bの接近を抑制する突っ張り部材56により、蓄熱槽32の圧縮機6側への変形は抑制される。これにより、蓄熱槽32の圧縮機6側への変形によって起こりえる蓄熱槽32の破損を抑制することができる。   According to this embodiment, the heat storage tank 32 (heat storage tank main body 46) is configured to cover the outer peripheral surface 6a of the compressor 6 in the circumferential direction by a portion between the one end 46a and the other end 46b. In the case of the heat storage tank 32, the tension member 56 is disposed between the band-passing portions 46e provided at the one end 46a and the other end 46b of the heat storage tank 32 and suppresses the approach between the one end 46a and the other end 46b. Deformation to the compressor 6 side is suppressed. Thereby, damage to the heat storage tank 32 that may be caused by deformation of the heat storage tank 32 toward the compressor 6 can be suppressed.

また、本実施の形態においては、図13に示すように、蓄熱槽32の蓋体48に略U字形状を有する蓄熱槽側結合部63を設け、一方、室外機2内を仕切り圧縮機室を形成する仕切板64を設け、その仕切板64上に仕切板側結合部65を設ける。   Moreover, in this Embodiment, as shown in FIG. 13, the thermal storage tank side coupling | bond part 63 which has a substantially U shape is provided in the cover body 48 of the thermal storage tank 32, On the other hand, the inside of the outdoor unit 2 is divided and a compressor room A partition plate 64 is provided, and a partition plate side coupling portion 65 is provided on the partition plate 64.

そして、蓄熱槽側結合部63と仕切板側結合部65とを支持バンド66で固定することで、蓄熱槽32の移動を制限する。但し、支持バンド66で固定する際には、一定の余裕を設けて固定する必要がある。これは蓄熱槽32の移動ができない程度に固定してしまうと、逆に蓄熱槽32を破損させてしまう可能性がある。そのため、蓄熱槽32に一定の動きを持たせる程度の余裕を設けて、支持バンド66で固定している。   And the movement of the thermal storage tank 32 is restrict | limited by fixing the thermal storage tank side coupling | bond part 63 and the partition plate side coupling | bond part 65 with the support band 66. FIG. However, when fixing with the support band 66, it is necessary to fix with a certain margin. If this is fixed to such an extent that the heat storage tank 32 cannot be moved, the heat storage tank 32 may be damaged. For this reason, the heat storage tank 32 is fixed with the support band 66 with a margin enough to give a certain movement.

その結果、輸送時などに圧縮機6や蓄熱槽32の移動を制限することができるので、部品相互の当たりや破損を抑制することができる。   As a result, since the movement of the compressor 6 and the heat storage tank 32 can be restricted during transportation or the like, it is possible to suppress the hitting and breakage between components.

なお、支持バンド66による固定時の一定の余裕は、余裕が少なすぎると圧縮機6および蓄熱槽32からの振動を仕切板64に伝播して異音発生の原因となり、また余裕が多すぎると圧縮機6および蓄熱槽32の移動を制限できず部品相互の当たりや破損の原因となるため、空気調和機の構成に応じて異なる。   In addition, when the fixed margin by the support band 66 is too small, if the margin is too small, vibrations from the compressor 6 and the heat storage tank 32 are propagated to the partition plate 64 to cause abnormal noise, and if the margin is too large. Since the movement of the compressor 6 and the heat storage tank 32 cannot be restricted and causes contact with each other or damage, it differs depending on the configuration of the air conditioner.

また、図13に示すように、仕切板側結合部65の位置を、蓄熱槽側結合部63の位置よりも上方にしている。このように配置することによって、支持バンド66によって蓄熱槽32を抑えることがなく、蓄熱槽32に動くだけの余裕を持たせることができる。仮に、仕切板側結合部65の位置を、蓄熱槽側結合部63の位置よりも下方にした場合、支持バンド66で蓄熱槽32を押さえつけてしまうことになり、蓄熱槽32に動く余裕がなくなってしまい蓄熱槽32からの振動を仕切板64に伝播して異音発生の原因となってしまう。   Further, as shown in FIG. 13, the position of the partition plate side coupling portion 65 is set higher than the position of the heat storage tank side coupling portion 63. By arranging in this way, the heat storage tank 32 is not suppressed by the support band 66, and the heat storage tank 32 can be given a margin for movement. Temporarily, when the position of the partition plate side coupling | bond part 65 is made lower than the position of the thermal storage tank side coupling | bond part 63, it will hold down the thermal storage tank 32 with the support band 66, and there is no room for the thermal storage tank 32 to move. The vibration from the heat storage tank 32 is propagated to the partition plate 64 and causes abnormal noise.

また、図14に示すように、支持バンド66に突起66aを設けて、指定の結合長さで固定される構成とする。つまり突起66aがあるために、製造時に全ての機種において作業する人に依存されることなく所定の長さで固定することができるので、製品毎のバラツキをなくし、また個人による製造時のバラツキをなくすことができる。   Further, as shown in FIG. 14, the support band 66 is provided with a protrusion 66 a so as to be fixed with a specified coupling length. In other words, since there is the protrusion 66a, it can be fixed at a predetermined length without depending on the person working in all models at the time of manufacture, so that there is no variation between products, and there is no variation at the time of manufacture by an individual. Can be eliminated.

さらに、図15に示すように、蓄熱槽32の蓋体48に設けた略U字形状の蓄熱槽側結合部63の近傍かつ内側に、支持バンド66を誘導するガイド部67を有することにより、さらに組立作業性を向上させることができる。   Furthermore, as shown in FIG. 15, by having a guide portion 67 for guiding the support band 66 in the vicinity and inside of the substantially U-shaped heat storage tank side coupling portion 63 provided in the lid 48 of the heat storage tank 32, Furthermore, assembly workability can be improved.

以上、本実施の形態では1つのバンドで固定する構成を用いて説明したが、これに限定
されることはなく、複数個所で複数のバンドを用いて固定する構成にしても問題はなく、部品相互の当たりや破損を抑制することができる。
As described above, the present embodiment has been described using the configuration that is fixed with one band. However, the present invention is not limited to this, and there is no problem even if the configuration is fixed using a plurality of bands at a plurality of locations. Mutual contact and damage can be suppressed.

また、本実施の形態では蓄熱槽側結合部63は蓋体48に設けたが、蓄熱槽32の本体に結合部を設けて構成してもよい。   Moreover, although the heat storage tank side coupling | bond part 63 was provided in the cover body 48 in this Embodiment, you may comprise by providing a coupling | bond part in the main body of the heat storage tank 32. FIG.

本発明は、空気調和機に限らず、圧縮機の外周面をその周方向に覆うような構成の蓄熱槽を使用する冷凍サイクルを採用するものであれば、例えば、ヒートポンプ給湯器などに適用可能である。   The present invention is not limited to an air conditioner, and can be applied to, for example, a heat pump water heater as long as it adopts a refrigeration cycle that uses a heat storage tank configured to cover the outer peripheral surface of the compressor in the circumferential direction. It is.

2 室外機
4 室内機
6 圧縮機
6a 外周面
6b バンド
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
16 室内熱交換器
18 冷媒配管
20 冷媒配管
22 冷媒配管
24 冷媒配管
26 アキュームレータ
28 冷媒配管
30 第1電磁弁
32 蓄熱槽
34 蓄熱熱交換器
36 蓄熱材
38 冷媒配管
40 冷媒配管
42 第2電磁弁
44 温度センサ
46 蓄熱槽本体
46a 一端
46b 他端
46c 外部表面
46d 溝
46e バンド通し部
46f 外部表面
46g 切り欠き部
46h 凸状係合部
48 蓋体
48a 貫通孔
50 伝熱シート
50a 貫通孔
52 第1のバンド
54 第2のバンド
56 突っ張り部材
56a 切り欠き部
56b 接触面
58 栓体
58a 貫通孔
60 位置決め部材
60a 貫通孔
60b 切れ込み部
60c 凹状係合部
62 緩衝部材
63 蓄熱槽側結合部
64 仕切板
65 仕切板側結合部
66 支持バンド
66a 突起
67 ガイド部
DESCRIPTION OF SYMBOLS 2 Outdoor unit 4 Indoor unit 6 Compressor 6a Outer peripheral surface 6b Band 8 Four way valve 10 Strainer 12 Expansion valve 14 Outdoor heat exchanger 16 Indoor heat exchanger 18 Refrigerant piping 20 Refrigerant piping 22 Refrigerant piping 24 Refrigerant piping 26 Accumulator 28 Refrigerant piping 30 First solenoid valve 32 Thermal storage tank 34 Thermal storage heat exchanger 36 Thermal storage material 38 Refrigerant piping 40 Refrigerant piping 42 Second electromagnetic valve 44 Temperature sensor 46 Thermal storage tank body 46a One end 46b The other end 46c External surface 46d Groove 46e Band through portion 46f External surface 46g Notch 46h Convex engaging part 48 Lid 48a Through hole 50 Heat transfer sheet 50a Through hole 52 First band 54 Second band 56 Stretch member 56a Notch 56b Contact surface 58 Plug body 58a Through hole 60 Positioning member 60a Through hole 60b Notch 60c Jogakarigo unit 62 buffer member 63 heat storage tank-side coupling portion 64 partition plate 65 partitioning plate side coupling portion 66 supporting the band 66a protruding 67 guide portion

Claims (3)

冷媒を圧縮する圧縮機と、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽とを有する空気調和機であって、前記蓄熱槽は、前記圧縮機の外周面を部分的に覆うように構成され、さらに前記蓄熱槽に設けた蓄熱槽側結合部と、圧縮機室を構成する仕切板に設けた仕切板側結合部とを、一定の余裕を設けて支持バンドで固定したことを特徴とする空気調和機。 An air conditioner having a compressor for compressing a refrigerant and a heat storage tank for storing a heat storage material for storing heat generated by the compressor, wherein the heat storage tank partially covers the outer peripheral surface of the compressor The heat storage tank side coupling portion provided in the heat storage tank and the partition plate side coupling portion provided in the partition plate constituting the compressor chamber are fixed with a support band with a certain margin. Air conditioner characterized by. 前記仕切板側結合部を前記蓄熱槽側結合部よりも上方に位置させたことを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the partition plate side coupling portion is positioned above the heat storage tank side coupling portion. 前記蓄熱槽側結合部の近傍に前記支持バンドを誘導するガイド部を設けたことを特徴とする請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein a guide portion for guiding the support band is provided in the vicinity of the heat storage tank side coupling portion.
JP2010218185A 2010-09-29 2010-09-29 Air conditioner Active JP5110139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218185A JP5110139B2 (en) 2010-09-29 2010-09-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218185A JP5110139B2 (en) 2010-09-29 2010-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012072960A JP2012072960A (en) 2012-04-12
JP5110139B2 true JP5110139B2 (en) 2012-12-26

Family

ID=46169319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218185A Active JP5110139B2 (en) 2010-09-29 2010-09-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP5110139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8592841B2 (en) 1997-07-25 2013-11-26 Nichia Corporation Nitride semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987160B2 (en) * 2012-05-17 2016-09-07 パナソニックIpマネジメント株式会社 Air conditioner
JP6570269B2 (en) * 2014-10-28 2019-09-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heat storage device and air conditioner using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8592841B2 (en) 1997-07-25 2013-11-26 Nichia Corporation Nitride semiconductor device

Also Published As

Publication number Publication date
JP2012072960A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5183705B2 (en) Air conditioner
WO2012042689A1 (en) Thermal storage device and air conditioner provided with thermal storage device
JP5110139B2 (en) Air conditioner
JP4760995B1 (en) Heat storage device and air conditioner equipped with the heat storage device
WO2011099061A1 (en) Heat storage device, and air-conditioner provided with same
JP5287685B2 (en) Air conditioner outdoor unit
JP4634530B1 (en) Heat storage device and air conditioner equipped with the heat storage device
EP2623888B1 (en) Thermal storage device and air conditioner provided with thermal storage device
JP5110136B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP5287817B2 (en) Air conditioner
JP2012078012A (en) Heat storage apparatus and air conditioner with the same
JP4982401B2 (en) Air conditioner outdoor unit
JP2012072961A (en) Air conditioner
JP2013217594A (en) Fixing structure of temperature transducer
JP5987160B2 (en) Air conditioner
JP2018035946A (en) Outdoor unit for air conditioner
JP5182346B2 (en) Heat storage device and air conditioner using the same
WO2011099060A1 (en) Heat storage device, and air-conditioner provided with same
JP5083394B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP5067460B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP2014020679A (en) Heat storage device and air conditioner including the same
WO2011099062A1 (en) Heat storage device, and air conditioner provided with said heat storage device
JP2012077935A (en) Heat storage device, and air conditioner using the same
EP4253864A1 (en) Flow guiding apparatus
CN211290497U (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5110139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3